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Throughout the paper, we will use the terms: model and algorithm interchangeably, but they convey the same meaning. 

 
Abstract 
Snow covered mountains attract an increasing number of people. . At the same time our changing climate 20 

will lead to more precipitation which in turn elevates the risk of avalanches in many regions globally. 
AAvalanche risk assessments is complex and challenging, with terrain assessment as one of the most 
fundamental factors. To aid peoplespeople’s terrain assessment, Parks Canada developed the Avalanche 
Terrain Exposure Scale (ATES), a terrain classification system that classifies the severity of avalanche terrain 
into five classes from 0, no avalanchenon-avalanche terrain to 4 extreme terrain. Manual classification of is 25 

laborious and dependent on expertsexpert’s assessments. To ease the process Larsen andt his 
colleguescolleagues developed an automated ATES algorithmmodel (avalanche assessment model AutoATES 
v1.0)..  “” AlthoghAlthough the model allowed  for a large scalelarge-scale avalanche classificationmapping, 
itit had some significant limitations. This paper presentpresents an improved AutoATES v2.0 algorithmmodel 
improving the potential release area (PRA) model, utilizing the new Flow-Py runout simulation package and 30 

incorporating forest density data in the PRA, Flow-Py and in a newly developed post-forest-classification step. 
model with updated run-out modelling capabilities, inclusion of forest data and an improved classification of 
potential release areas (PRA). AutoATES v2.0 The model has also been rewritten in open sourceopen-source 
software making it more widely available. The paper includeincludes a verificationvalidation study of the 
model measured against two consensus maps made by three experts at two manual expert classification at 35 

two different locations in Western Canada..   
 
This paper documents substantial improvements to the original automated avalanche terrain exposure 
mapping (AutoATES v1.0) algorithm. The most significant drawbacks of AutoATES v1.0 have been addressed 
by including forest density data, improving the avalanche runout estimations in low-angle runout zones, 40 

accounting for overhead exposure and open-source software. The algorithm also supports the new ATES v2.0 
terrain class ‘extreme’ terrain. We used two benchmark maps from Bow Summit and Connaught Creek to 
validate the improvements from AutoATES v1.0 to v2.0. For Bow Summit, the F1 score (a measure of how 
well the algorithmmodel performs) improved from 64.01% to 77.30%. For Connaught Creek, the F1 score 
improved from 4039.81% to 71.38%. The main challenge limiting large-scale mapping is the determination 45 

of optimal input parameters for different regions and climates. In areas where AutoATES v2.0 is applied, it 
can be a valuable tool for avalanche risk assessment and decision-making. Ultimately, our goal is for 
AutoATES v2.0 to enable efficient, regionallarge-scale, and potentially global ATES mapping in a standardized 
manner rather than based solely on expert judgement. 
 50 

1. Introduction 
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Snow avalanches lead to a yearly average of Approximately 140 fatal accidents result from snow avalanches 
in Europe and Northern America annually (Techel et al., 2016, 2018; Birkeland et al., 2017)(Techel et al., 2016, 
2018; Birkeland et al., 2017). In recent decades, most of these fatalities have been related to the recreational 
use of avalanche terrain (Engeset et al., 2018). In More than 980% of fatal avalanche accidents are related to 55 

recreational activity and triggered by90% of cases, the victim or someone in their party group triggered the 
avalanche (Schweizer and Lütschg, 2001; Techel and Zweifel, 2013; Engeset et al., 2018)(Schweizer and 
Lütschg, 2001). This means that avalanche accidents are not random, but rather a result of less than 
optimalless-than-optimal decisions. Strengthening peoplespeople’s ability to make better decisions by raising 
awareness, providing information and education is important and may ultimately save lives. To do so, mMany 60 

countries have  established an avalanche forecasting services to increase awareness of and help mitigate the 
risk of avalanches and focus on increased public education (Engeset et al., 2018). However, dDespite the 
availability of public regional avalanche forecasting in many countriesaccess to updated avalanche forecast, 
assessing the avalanche risk is a complex task for backcountry recreationists . tThedue to the complexity and 
variability of the spatial and temporal variability of snowinof the snowpack still leaves avalanche risk 65 

management a complex task. The inherent lack of feedback from the environment also turn avalanche terrain 
intoincreases the complexity and. This results in a wicked learning environment, where feedback is not 
always reliable (Fisher et al., 2022)(Fisher et al., 2022). Reliable information and decision makingdecision-
making support are therefore crucial. The most efficient method to mitigate the avalanche hazard is to 
choose appropriate terrain for the given avalanche conditions (Thumlert and Haegeli, 2017).  70 

The avalanche risk is managed by performing detailed assessments of, factors such as i.e., weather, 
snowpack, and signs of instabilities or by the use of travel techniques / safety equipment (e.g. airbag, 
transceiver, probe, and shovel) at a regional scale. Another efficient method to mitigate the avalanche hazard 
is using appropriate terrain for the avalanche conditions (Thumlert and Haegeli, 2017). 
 75 

Assessing avalanche terrain may be intuitive for avalanche professionals (Landrø et al., 2020)(Landrø et al., 
2020);, however, this may not be the case for recreational users of avalanche terrain. To aid non-
professionals terrain assessment Parks Canada developed tThe Aavalanche Tterrain Eexposure Sscale (ATES 
v1.0). This is a terrain classification system developed by Parks Canada to  communicate the potential 
exposure to avalanches and thus how difficultcomplex avalanche management would be in  complexities and 80 

risks of traveling in different types of avalanche-prone terrain (Statham et al., 2006)(Statham et al., 2006).  
The complexity of avalanche terrain is the result of interactions of multiple release areas, tracks, and 
deposition areas. Within these three areas, other factors like, e.g., terrain traps or forest density, could make 
terrain management more complex due to a more severe outcome. 
 85 

Originally, ATES v1.0 categorized popular backcountry routes into three levels: Simple (1), Challenging (2), 
and Complex (3). With the growing adoption of ATES, its application expanded beyond individual routes to 
spatial zones, such as the initiative by Avalanche Canada which mapped several thousand square kilometers 
of avalanche terrain (Campbell and Gould, 2013). An update to the system led to ATES v2.0, which introduced 
two new classes: Non-avalanche terrain (0) and Extreme (4). This revised version also expand the scope of 90 

ATES to include spatial representations like zones, areas, and corridors. The updated scale is referred to as 
ATES v2.0 and a more thorough description can be found in Statham and Campbell (2023).  
 
ATES classification has been used to provide guidelines for terrain use linked to people’s specific avalanches 
management skills (CAA, 2016) or for recreational purposes (Campbell and Gould, 2013; Thumlert and 95 

Haegeli, 2017; Larsen et al., 2020; Schumacher et al., 2022). ATES mapping has also been used to describe 
backcountry users’ terrain preferences recorded by GPS (i.e., Hendrikx et al., 2022; Johnson & Hendrikx, 
2021; Sykes et al., 2020).  
 
The development of ATES maps for Avalanche Canada from 2009 through 2012 was done using a combination 100 

of manual mapping and a GIS-assisted workflow (Campbell and Gould, 2013). ATES zoning was labor 
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intensive, relied heavily on expert judgement and as a result ATES maps were typically only available in high-
use areas. Campbell and Gould (2013) identified the limitations of this method and presented a more 
quantifiable zonal model that could leverage GIS tools for more systematic terrain classification. 
 105 

 The terrain was initially clustered in three classes and graded from The system was recently updated to 
include two additional terrain classes: Non-avalanche terrain (0), and Extreme (4).The updated system is 
referred to as ATES v2.0. Statham and Campbell, 2023). 
 ATES is a commonly used classification scheme worldwide and quantifies the avalanche terrain into an easy-
to-understand rating: simple (class 1), challenging (class 2), and complex (class 3) terrain. A more detailed 110 

technical description of these classes is presented in Statham et al. (2006) and also reproduced in Larsen et 
al., (2020). Recently, the ATES classification scheme has been updated to include two additional ratings; non-
avalanche (class 0, optional) and extreme (class 4) terrain to complement the current ATES classes from 1-3 
(Statham and Campbell, 2023). 
 115 

Avalanche hazard mapping has been common practice for decades to calculate the potential consequence 
of different avalanche scenarios related to infrastructure (Schläppy et al., 2013). The maps are often 
calculated for a specific return period (i.e., the probability of a given magnitude avalanche every 100 years) 
and determines the likelihood of an avalanche (sometimes with specific impact pressures) within a defined 
area. The return periods vary by application, and by country (DIBK, 2017; BFF and SLF, 1984). In recent years, 120 

it has become more common to undertake classify an assessment of avalanche terrain zoning, where the aim 
is to divide theRecent work has classified avalanche terrain (e.g., ATES) and provided guidelines for terrain 
use avalanche terrain into different zones or classes (e.g., ATES) depending on a specific skill level (CAA, 2016) 
or for recreational purposes (Campbell and Gould, 2013; Schmudlach and Köhler, 2016; Thumlert and 
Haegeli, 2017; Harvey et al., 2018; Larsen et al., 2020; Schumacher et al., 2022). In addition to mapping to 125 

inform users, ATES mapping has also been used as an important component to assess and measureto 
describe backcountry users terrain use preferences of backcountry users usingrecorded by GPS at a range of 
spatial scales (e.g., Hendrikx et al., 2022; Johnson & Hendrikx, 2021; Sykes et al., 2020).  
 
This mapping was undertaken using a combination of manual mapping and GIS-assisted mapping workflowsF, 130 

rom 2009 through 2012, Avalanche Canada mapped several thousand square kilometers of avalanche terrain 
(Campbell and Gould, 2013). This initial ATES mapping was done using a combination of manual mapping and 
GIS-assisted mapping workflows. This work was labor intensive,which relied heavily on expert judgement and 
as a result ATES maps was typically only available in high-use areas. Campbell and Gould (2013) spelled out 
the need for a more quantifiable model and suggested a new spatial ATES model for GIS-assisted 135 

classification.Statham et al. (2006) noted that the ultimate goal would be to apply the ATES classification 
spatially to produce ATES maps across entire regions. From 2009 through 2012, Avalanche Canada mapped 
several thousand square kilometers of avalanche terrain (Campbell and Gould, 2013). This mapping was 
undertaken using a combination of manual mapping and GIS-assisted mapping workflows, which relied 
heavily on expert judgement. As part of this work, Campbell and Gould (2013) identified the need for a more 140 

quantifiable model and suggested a new zonal ATES model for GIS-assisted classification. Therefore, the 
majority of large-scale mapping of ATES have been limited by the manual labor needed to generate maps. As 
a result, ATES is , therefore, typically only available in high-use areas. due to the number of resources needed 
to generate ATES maps. 
 145 

An automated model to classify avalanche terrain wouldill need the following components; 1) A model of 
potential release areas (PRA) for avalanches and 2) a run-out simulation which is an estimation of where and 
how far an avalanche would slide. 
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The first attempt at a fully automated ATES classification model was made by Larsen et al. (2020) using a 150 

combination of the zonal and technical model of ATES (Campbell and Gould, 2013; Statham et al., 
2006)(Campbell and Gould, 2013; Statham et al., 2006).  
Larsen et al. (2020)The authors developed an automated ATES (AutoATES v1.0) algorithmmodel that was 
able to maket produces spatial ATES maps zones for all of Norway, using only a digital elevation model (DEM) 
as input. This simple approach to terrain characteristics does not consider overhead exposure into account 155 

and the performance of the simple avalanche runout simulation is also insufficient in flatter terrain. In 
addition, The main limitations of this work were that the algorithmmodel did not account for forest ddensity, 
which has been found to be significantly associated with avalanche releaseto be one of the most important 
factors for ATES classification (Delparte, 2008, Schumacher et al 2022).ata, or overhead exposure, and the 
performance of the simple avalanche runout simulation was insufficient in flat runouts. A final challenge was 160 

that theThe algorithmmodel was also heavily dependent on proprietary software (Larsen et al., 2020), 
thereby increasing the monetary and computing costs to operate the model, and alsoand limiting open- 
sources access. 
 
1.1 Improving potential release areas (PRA) algorithmmodel. 165 

In AutoATES v1.0, Larsen et al. (2020) used the PRA algorithmmodel developed by Veitinger et al. (2016) due 
to its continuous raster output ranging from 0 to 1. The model uses windshelter, roughness, slope angle and 
forest density as inputs. However, the forest density is only processed as a binary input, meaning that the 
input is either forested or non-forested. If an area is defined as forested, it is not processed by the PRA 
algorithmmodel and defined as a non-PRA. Sharp (2018) improved the PRA algorithmmodel by incorporating 170 

forest density as a parameter in the fuzzy logic operator, making the interaction of forest density dynamic 
and equally important compared to roughness, slope angle and windshelter. 
 
In AutoATES v1.0, Larsen et al. (2020) utilized the PRA model by Veitinger et al. (2016), which outputs a 
continuous range of values between 0 and 1. This model considers factors such as windshelter, terrain 175 

roughness, slope angle, and forest density. Originally, forest density was only a binary input, effectively 
categorizing areas as either 'forested' or 'non-forested'. In the binary approach, any 'forested' area was not 
further processed by the PRA model and was simply labeled as non-PRA. In 2018, Sharp improved the PRA 
model by including the forest density parameter in what's known as a fuzzy logic operator. Fuzzy logic, unlike 
binary, does not restrict inputs to yes-or-no values; instead, it allows for degrees of truth. For instance, 180 

instead of an area being classified as simply 'forested' or 'not forested,' it could be 'somewhat,' 'mostly,' or 
'completely' forested. This method acknowledges the nuances in forest density and treats it with equal 
importance to other factors like roughness, slope angle, and wind shelter. The PRA establishes the baseline 
for where avalanches may release and is used as an input for the avalanche runout simulations. 
 185 

 

Two of the most used PRA algorithms are those developed by Bühler et al. (2013) and Veitinger et 
al. (2016). A key difference between the two algorithms is that the one from Bühler et al. (2013) 
produces a polygon-based output using roughness, curvature, slope angle and forest density. In 
contrast, the PRA from Veitinger et al. (2016) produces a continuous raster layer ranging from 0 to 190 

1 due do its Fuzzy membership approach. The inputs are windshelter, roughness, slope angle and 
forest (binary). Both algorithms are considered to have a good performance, although Bühler and 
his collogues polygon-based algorithm was found to be slightly more accurate (Bühler et al., 2018).  
 
 195 

In avalanche terrain classificationzoning, the main goal is to divide the terrain into different zones 
or classes representing different levels of exposure to avalanchesareas of hazard, using a defined 
classification scheme. Avalanche terrain, especiallyThe complexity of avalanche terrain when 
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complex is the result of interactions of multiple release areas, tracks, and deposition areas. Within 
these three areas, other factors like, ei.ge., terrain traps or forest density, could make terrain 200 

management more complex due to a more severe outcome. TThe two most important components 
in making a gooddeveloping a reliable avalanche terrain classification zoning algorithm are (1) the 
delineation of the start zone area, as defined by the potential release area (PRA) modelpotential 
release area (PRA) of an avalanche start zone, and (2) the avalanche runout distance and width, 
accounting for the track and deposition area (Sykes et al., 2022)(Sykes et al., 2022). An increase in 205 

accuracy in either of these components directly benefits avalanche terrain zoning models. 
Additional factors like forest density have also been found to be significant (Delparte, 2008; 
Schumacher et al., 2022).  
 
The use of an appropriate PRA model to delineate the start zones of avalanche paths, is critical when creating 210 

a good avalanche terrain classificationzoning model (Sykes et al., 2022). The PRA establishes the baseline 

for where avalanches may release and is used as an input for the avalanche runout simulations. Manual 
classification of PRAs is time- consuming and often involves field observations, historic events 
review, and numerical simulations (Bühler et al., 2018)(Bühler et al., 2018). A range of different PRA 
algorithms based on GIS or remote sensing have been developed (Bühler et al., 2018, 2013; Maggioni 215 

and Gruber, 2003; Barbolini et al., 2011; Pistocchi and Notarnicola, 2013; Chueca Cía et al., 2014; 
Andres and Chueca Cia, 2012; Ghinoi and Chung, 2005; Veitinger et al., 2016)(Bühler et al., 2018, 
2013; Maggioni and Gruber, 2003; Barbolini et al., 2011; Pistocchi and Notarnicola, 2013; Chueca 
Cía et al., 2014; Andres and Chueca Cia, 2012; Ghinoi and Chung, 2005; Veitinger et al., 2016). 
 220 

The two most commonly used PRA algorithms are those developed by Bühler et al. (2013) and Veitinger et 
al. (2016). A key difference between the two algorithms is that the one from Bühler et al. (2013) produces a 
binary polygon-based output, while the one from Veitinger et al. (2016) produces a continuous raster layer 
ranging from 0 to 1 . Both algorithms are considered to have a good performance, even although Bühler and 
his colloguesthe polygon-based algorithm was found to be slightly more accurate (Bühler et al. 2018). In prior 225 

automated ATES mapping work, Larsen et al., (2020) used the PRA algorithm of Veitinger et al. 2016 for the 
AutoATES v1.0 algorithm due to the continuous raster output. It is possible to include a binary forest 
parameter in the Veitinger et al. (2016) PRA model. However, the binary nature of the parameter results in 

coarse output, as the model removes all PRAs when the forest parameter takes the value 1. Sharp (2018) 
improved this PRA algorithm by incorporating forest density as a parameter in the fuzzy logic operator, 230 

making the forest interaction more dynamic. 
 
1.2 Improvements for run-out simulations 
There are several avalanche runout simulation models available to which, estimate the potential track and 
deposition area, given specific start zone inputs from the PRA model (Christen et al., 2010; Sampl and 235 

Zwinger, 2004; Tarboton, 1997; D’Amboise et al., 2022), outputs the potential track and deposition area.. In 
principle, these runout models could cancan be divided into two categories: (1) process-based, which 
attempt to calculate all the physical properties involved, or (2) empirical models which areis driven by data-
based observations. Which modelling approach to chooseSelecting an appropriate modelling approach 
depends on the problem to be solved, data availability, the required accuracy and the spatial scale 240 

(D’Amboise et al., 2022)(D’Amboise et al., 2022). Given access to highly detailed data and unlimited 
computational power, the process-based models outperform the data-based empirical models. However, 
given the limitations in computational power when processing large areas and the need for more accurate 
digital elevation models ( DEMsDEM’s) in many countries, the data-based model is more suitable for large-
scale mapping applications. 245 
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Two of the most common process-based simulation tools for avalanche hazard assessment are the RAMMS 
(Christen et al., 2010)(Christen et al., 2010) and Samos-AT (Sampl and Zwinger, 2004)(Sampl and Zwinger, 
2004) models. Both models are made to simulate an accurate prediction of avalanche runout distances, flow 
velocities and impact pressures in a 3-dimentional space. These models are typically calibrated towards 250 

known avalanches with long return periods and defines potential avalanche terrain. These models are 
suitable for avalanche terrain zoning, where the aim is to divide the potential avalanche terrain into different 
zones, across large spatial areas such as regional forecast areas or entire countries, these models are less 
suitable.  
 255 

In contrast to the process-based models, data-based models are computationally inexpensive and can more 
easily be applied to large geographic areas. A common data-based method to delineate avalanche runout is 
applying the classical runout angle concepts and path routing in three-dimensional terrain (D'Amboise et al. 
2022). Comparison of the model results to more computationally expensive simulation type models shows 
that they respond adequately for the delineation of broad scale terrain classification. 260 

  
In prior automated ATES mapping work, Larsen et al. (2020), used the multiple flow direction algorithmmodel 
D-infinity (Tarboton, 1997)(Tarboton, 1997). This algorithmmodel is coupled with the alphatravel angle (also 
known asi.e., travel alpha angle). The D-infinity algorithmmodel identifies the cells downslope of the starting 
cell for each PRA cell. The algorithmmodel spreads downslope until a defined alpha angle is reached from 265 

the starting cell (as per Heim, 1932; Lied & Bakkehøi, 1980; Toft et al., 2023)(as per Heim, 1932; Lied & 
Bakkehøi, 1980; Toft et al., 2023). While used in hydrology applications, a substantial weakness of the D-
infinity algorithmmodel is that it cannot appropriately model avalanche movement, which may occasionally 
flow in flat and uphill terrain. 
 270 

Recently, D'Amboise et al. (2022) presented a new customizable simulation package (Flow-Py) to estimate 
the runout distance and intensity (the effect from the runout simulation at a specific location) of avalanches.  
The model utilizes persistence-based routing instead of terrain-based routing, enabling the simulation to 
respond appropriately to flat or uphill terrain. Where the D-infinity algorithmmodel only considers flow 
direction, the Flow-Py algorithmmodel also considers flow process intensity.  TheyBoth algorithmmodels use 275 

the same stopping criteria to estimate the runout distance by defining the alpha angle from the initial starting 
cell. 
 
 
2. Model development 280 

The main objective of the AutoATES v2.0 model is to improve large-scale spatial ATES mapping, update the 
mapping to reflect recent changes in ATES v2.0 and improve the model workflow. For AutoATES v2.0 to be a 
viable option for large-scale ATES classification, the model performance should be at least as accurate as 
manual mapping.In this paper, we will present improvements´ll address thefor the significant drawbacks of 
AutoATES v1.0 by including forest density data, improving avalanche runout estimations in low-angle runout 285 

zones, accounting for overhead exposure and making the algorithm available as open-source software. The 
new algorithm will also support the new ATES v2.0 standard with the exception of class 0 – non avalanche 
terrain. 
 
 290 

2. Model motivationdevelopment 
The main objective of the AutoATES v2.0 algorithm is to improve large-scale spatial ATES mapping, update 
the mapping to reflect recent changes in ATES which include the two new terrain classes (0 and 4), and 
improve the model workflow. Manual ATES classification using avalanche experts is time-consuming and 
expensive (Sykes et al., 2020) which, limitsting large-scale mapping. For AutoATES v2.0 to be a viable option 295 
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for large-scale ATES classification, the model performance should, on average, be as accurate as manual 
mapping or better.  be at least as accurate as manual mapping. 
 
2.1 Model description 
This paper aims to document the improvements made to the AutoATES v1.0 algorithm initially developed by 300 

Larsen et al. (2020). In AutoATES v2.0, the influence of the forest density has been included by integrating 
the parameter into the PRA model (as per Sharp, 2018), track and the deposition area. The TauDEM runout 
model (Tarboton, 2005)(Tarboton, 2005), which uses the previously mentioned D-infinity algorithm and is 
known to perform poorly in flat deposition areas (Larsen et al. 2020), has been replaced by the new Flow-Py 
model which also has the option to include forest density data (D'Amboise et al. 2022). Another advantage 305 

of the Flow-Py model is a separate output layer which enables the model to quantify the overhead exposure 
from multiple avalanche paths, which is an important consideration in the updated ATES model. To improve 
the classification in forested areas, a new post-forest-classification step is added to the algorithm. Finally, the 
model now also includes the new ATES class for extreme terrain (Statham and Campbell, 2023)(Statham and 

Campbell, 2023) and steps to improve delineation of terrain traps. 310 

 
 
2.1.2 ImplementationImplementation 
To secure a broad adaptation of the new AutoATES model it is important that the model is open-source and 
easy to use. The v1.0 algorithmmodel was written using proprietary software. We have resolved this by 315 

rewriting the entire v2.0 algorithmmodel into the programming language Python using widely available and 
open-source modules. The AutoATES v2.0 model is available on GitHub (Toft et al., 2023)(Toft, Sykes, et al., 
2023). 
 
2.23 Input data 320 

The minimum input data required to run the full AutoATES v2.0 is a DEM and forest density raster (a digital 
representation of the terrain/elevation and forest density) , both using the GeoTIFF format. It is also possible 
to run the algorithmmodel with only a DEM as input, but the output would then only be valid for open, non-
vegetated forested terrain. Both rasters must have a matching spatial resolution and , extent, andextent and 
be defined using a projected coordinate system. The algorithmmodel has been tested with spatial resolutions 325 

ranging from 5 to 30 m (cell sizes), but it should be possible to run other spatial resolutions. 
 
Our parametrization for forest density allows for various metrics of forest density inputs. The algorithmmodel 
is designed to work with stem density, percent canopy cover, basal area orand no forest (only for mapping 
of open terrain). The forest type must be defined using a string in the beginning of the Python script ('stems', 330 

'pcc', 'bav' orand 'no_forest'). Forest density influences snow accumulation and snowpack stability, with 
denser forests generally reducing the risk of avalanches (Bebi et al., 2009)..  
 
2.33.1 Percent canopy cover 
Canopy cover has a direct relationship with radiation balance and can impact formation of persistent weak 335 

layers as well as give an estimate of the degree of snowfall intercepted by trees prior to falling onto the 
snowpack (Bebi et al., 2009). Forest canopy also impedes wind transport of snow reducing the formation of 
wind slabs. Percent canopy cover is a widely used metric that quantifies the extent of forest density by 
measuring the proportion of the ground area obscured by tree canopies when viewed from above. Percent 
canopy cover can be estimated using various methods, including aerial photography, satellite imagery, 340 

remote sensing techniques, and ground-based measurements. The resultant parameter used in our model 
has a value ranging from 00 to 100. to 100. 
 

2.33.2 Stem density 
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Stem density is a metric used to quantify the number of tree stems (trunks) per unit area, typically expressed 345 

as stems per hectare or stems per square meter, which provides insight into forest structure and 
composition. Stem density can influence the snowpack stability and avalanche initiation, as a higher stem 
density generally results in more trees obstructing and anchoring the snow, thereby reducing the likelihood 
of avalanche occurrence (Bebi et al., 2009). Stem density can be measured through various techniques, 
including field surveys, aerial imagery analysis, or remote sensing data. The resultant parameter used in our 350 

model can have a value ranging from zero0 to infinity, anda couple of thousands (depending on minimum 
stem diameter) and is stated in number of stems density per hectare. 
 
2.33.3 Basal area 
The basal area is a unit used to describe the sum of the cross-sectional areas of all trees within a given space, 355 

specifically those in the dominant, co-dominant, and high intermediate positions within the forest canopy. 
It's a measure of the density of trees and is quantified in square meters per hectare The basal area represents 
the total cross-sectional area of all living trees in the dominant, co-dominant, and high intermediate crown 
positions and is measured in m2/hectare (Sandvoss et al., 2005)(Sandvoss et al., 2005). The advantage with 
basal area over crown covercanopy cover and stem density isare that it incorporates the size of trees in 360 

addition to the number of trees and is a more direct measurement of the density of the forest vegetation.  
The basal area value can have any value starting from zero upwards. While theoretically, there is no upper 
limit to this value, practically it is generally capped at around 60 square meters per hectare to reflect realistic 
forest conditions. 
The resultant parameter used in our model can have a value ranging from zero0 to infinity, andinfinity and is 365 

stated in m2 per hectare. 
 
2.44 Model components 
The AutoATES v2.0 algorithmmodel is split into two main components: (1) pre-processing and (2) the 
AutoATES classifier. In the pre-processing step, the DEM and forest density rasters are used as input for the 370 

start zone PRA algorithmmodel. When the PRA calculations areare complete, the PRA and DEM areis used to 
calculate the avalanche runout using the Flow-Py component. When all the key components are calculated, 
they are used as input for the AutoATES classifier which assigns the final ATES classes for each raster cell 
(Figure 1). 
 375 

 
Figure 1: The main components of the AutoATES v2.0 algorithmmodel. First, a pre-processing step is completed to 
calculate all the necessary raster layers using PRA and Flow-Py. Finally, the AutoATES classifier is used to assign the final 
ATES classifications. 

2.44.1 PRA 380 

The AutoATES v1.0 algorithmmodel (Larsen et al., 2020) incorporated the PRA model developed by Veitinger 
et al. (2016) to calculate the potential release areas. This PRA model (v1.0) uses slope angle, roughness and 
windshelter as input parameters. Sharp (2018) modified this algorithmmodel to also include forest density. 
The models apply Cauchy membership values to determine how important each parameter is. A Cauchy 
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membership value reflect how strongly an input variable belongs within a certain setThe algorithms utilize 385 

Cauchy membership values to assign the importance of each parameter (Jang et al., 1997). A Cauchy 
membership values must be defined for each input variable (Eq. 1). 
 

𝜇(𝑥) =
1

1+(
𝑥−𝑐

𝑎
)
2𝑏      (1) 

 390 

where 𝜇(𝑥) is the Cauchy membership value;, x is an input variable (e.g., slope angle, windshelter, or forest);, 
and a, b, and c are parameters which control the weight of each input variable. We use the membership 
values suggested by Veitinger et al. (2016) for slope angle and windshelter, while using the value suggested 
by Sharp (2018) for stem density (Figure 2). In our modified version of the PRA model (v2.0), we have chosen 
to remove the roughness parameter due to the scale issues with 5-30 m cell sizes (t.he original PRA 395 

algorithmmodel was made to work with a 2 m cell size).  The removal of roughness makes it less ideal for 
higher resolution DEMsDEM’s (< 5 m cell sizes), see section 4.1.4 for a discussion around this. We have also 
defined some new membership functions for canopy cover and basal area based on input from Parks Canada 
avalanche experts and through testing of the AutoATES model on our two study areas. These values could be 
fine-tuned for specific datasets and applicationsdifferent inputs to improve the performance of the PRA 400 

model. 
 

 
Figure 2: The different Cauchy functions used by Veitinger et al. (2016) and Sharp (2018) for slope angle and stem 
density. The values a, b and c are inputs for the Cauchy membership value (Eq. 1).  We have suggested new membership 405 
values for windshelter, canopy cover (%) and basal area. We recommend that these values are fine-tuned for specific 
datasets and applications., Rread a more in-depth discussion of this in section 4.3. 

The Cauchy membership values from slope angle, windshelter and forest density areis used as inputs for the 
fuzzy operator. We use the same “fuzzy AND” operator used by both Veitinger et al. (2016) and Sharp (2018), 
originally defined by Werners (1988)(1988). The PRA value is therefore defined as follows in Eq. 2: 410 

 

μPRA(x) = γ ∙ min(μs(x), μw(x)μf(x)) +
(1−γ)+(μs(x),μw(x)μf(x))

3
,   (2) 

 
x ∈ X, γ ∈ [0, 1] 

 415 

With three fuzzy sets slope angle μs(x), windshelter μw(x), forest density μf(x) and with γ defined in Eq. 3 
as: 
 

γ = 1 − min(μs(x), μw(x)μf(x))     (3) 

 420 

The PRA output is a continuous layer ranging between 0 (not likely) to 1 (very likely). Most data-based runout 
models need release areas in a binary format where 0 is no potential release areas, while the potential release 
areas are encoded as 1. To convert the PRA layer to a binary format, we select a cut off threshold (PRAthreshold) 
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where all pixels above this value is consideredare included in the a potential release area for the runout 
modelling. We found the PRAthreshold from Larsen et al. (2020) to be too conservative for our study areas and 425 

have therefore increased the value to 0.15. The PRAthreshold could be adjusted depending on whether frequent 
or more extreme avalanche scenarios are of interest. 
 
We have also adjusted how the windshelter index is calculated. Using a 2 m DEM, Veitinger et al. (2016) 
resampled the DEM by a factor of 5 (from 2 m to 10 m) and applied a 11x11 sliding window (a technique 430 

where a fixed-size segment of data moves over the entire data set one step at a time). . This is according to 
the recommendations of Plattner et al. (2006),(2006), which found the optimal radius to be 60 meters, 
followed by a secondary optimal radius of 250 meters. To achieve the same results, we removed the down 
sampling factor of 5 and used the 10 m DEM directly to calculate the windshelter index. If other DEM 
resolutions are to be used, the windshelter index should be adjusted accordingly to use either 60 m 435 

(recommended) or 250 m as the radius around each cell. This could be done by either resampling the spatial 
resolution or changing the size of the sliding window. 
 
2.44.2 Avalanche simulation 
The Flow-Py model developed by D’Amboise et al. (2022) is used for the avalanche simulation of the potential 440 

track and deposition area. It is similar to the TauDEM algorithmmodel utilized in AutoATES v1.0 which uses 
the alpha angle to limit the flow (Larsen et al., 2020; Tarboton, 1997). Flow-Py also includes a flow process 
intensity parameter which makes it able to handle mass movement in flat and uphill terrain, significantly 
improving the output compared to the previous modelAutoATES v1.0. Another advantage withof the FlowPy 
model is the additional output layers which represents the overhead exposure. We utilize the cell count and 445 

zdelta layer by scaling the two layers from 0-100 and taking their average value which represents the overhead 
exposure layer. In the AutoATES v2.0 algorithmmodel it is possible to select cell count, zdelta or both to 
represent the overhead exposure. The layer enables us to quantify the exposure from different release areas 
at every raster cell. We use the forest detrainment module of Flow-Py which makes it possible to use forest 
density as an input layer to limit spreading and runout distance. An in-depth description of the Flow-Py 450 

simulation package can be found in D’Amboise et al. (2022). 
 
2.44.3 AutoATES classifier 
When the pre-processing of PRA and Flow-Py is completed, the AutoATES classifier uses a set of map algebra 
equations to define each ATES class. The following raster layers from the pre-processing step are used as 455 

input in the AutoATES classifier: 
 

• Slope angle (calculated from the DEM) 

• Forest density (provided by the user, as per section 2.3.1-2.3.3) 

• PRA (calculated from the DEM and forest data) 460 

• Runout distance as a function of alpha angle (calculated from PRA and Flow-Py) 

• Overhead exposure (cell count, zdelta or both) (calculated from PRA and Flow-Py) 
 
The first step of the AutoATES classifier is controlled by adjustable thresholds for slope angle, runout distance, 
overhead exposure and island filter size (Table 1). Using these parameters, the AutoATES model outputs a 465 

preliminary, and conservative, layer with the categorical classes (1) simple, (2) challenging, (3) complex and 
(4) extreme terrain by keeping the maximum value betweenof the 3 input rasters. 
 
Table 1: The recommended input parameters for AutoATES according to Sykes et al. (2023). The encoding describes the 
name of each parameter in the AutoATES algorithmmodel. 470 

Input parameter Class Range Encoding 

Slope angle threshold 
(SAT) 

Simple (1) < 18° SAT12=18° 
SAT23=28° Challenging (2) 18 – 28° 
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Complex (3) 28 – 39° SAT34=39° 
Extreme (4) > 39° 

Alpha angle threshold 
(AAT) 

Simple (1) < 24° 
AAT12=24° 
AAT23=33° 

Challenging (2) 24° – 33° 
Complex (3) > 33° 

Overhead exposure 
(OE) 

Simple (1) < 50 
OE12=50 

OE23=40350 
Challenging (2) 50 – 40350 

Complex (3) > 34050  

Island filter size 
(ISLsize) 

  30,000 m2  

 
The second step of the AutoATES classifier is to reduce the exposure in certain ATES classes depending on 
forest density. The forest density is applied in a secondary step to increase the importance of the forest 
density criteria. The forest density layers are divided into four different categories with different thresholds 
for each forest density input (Table 2). 475 

 
Table 2: The recommended input parameters for AutoATES according to Sykes et al. (2023). The encoding is the same 
for all three forest types, but the forest input type can be defined by a string (‘no_forest’, ‘pcc’, ‘stems’ or ‘bav’) in the 
AutoATES script. describes the name of each parameter in the AutoATES algorithm. Only one of the forest inputs can be 
used at the time, the encoding is therefore identical for all three forest density types. 480 

Input parameter Class Range Encoding  

 Open 0 – 20% 
TREE1=20 
TREE2=55 
TREE3=75 

Forest densityCanopy cover (%) 

(Percent canopy cover) 

Sparse 20 – 555% 
Moderate 55 – 75% 
Dense 75 – 100% 

 Open 0 – 100  
TREE1=100 
TREE2=250 
TREE3=500 

Forest densityStem density (no. 
of stems/ha) (stem density/ha) 

Sparse 100 – 250  
Moderate 250 – 500  
Dense > 500 

 Open 0 – 10  
TREE1=10 
TREE2=20 
TREE3=25 

Forest density (basal area)Basal area 

(m2/ha) 

Sparse 10 – 20  
Moderate 20 – 25  
Dense > 25 

 
Once the forest density parameter has been coded into the four classes of forest density (iei.ege., open, 
sparse, moderatemoderate, and dense), as a function of the forest density input parameter used, we mapped 
these categorical descriptors on to ATES classes (Table 3).  
 485 
Table 3: Forest criteria applied to the second step of the AutoATES. 

  Initial ATES rating 

Forest criteria  Simple (1) Challenging (2) Complex (3) Extreme (4) 

Open PRA & Runout Simple (1) Challenging (2) Complex (3) Extreme (4) 

Sparse PRA & Runout Simple (1) Simple (1) Challenging (2) Complex (3) 

Moderate 
PRA Simple (1) Simple (1) Challenging (2) Complex (3) 

Runout Simple (1) Simple (1) Simple (1) Complex (3) 

Dense 
PRA Simple (1) Simple (1) Simple (1) Challenging (2) 

Runout Simple (1) Simple (1) Simple (1) Complex (3) 

 
Finally, the island filter size is applied removing clusters smaller than a specified area and incorporating it to 
the surrounding class. The filter size is not a new addition to the algorithmmodel as it is a part of the v1.0 
algorithmmodel, but Sykes et al. (2023)(2023) found that a filter size of 30,000 m2 (Table 1) was the optimal 490 
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filter size for all the spatial resolutions tested.  The additional step improves the accuracy of challenging (2) 
and complex (3) terrain, and in some cases in extreme (4) terrain. 
 
2.55 AutoATES outputs 
The outputs from AutoATES v2.0 have the same spatial resolution as the input. The following outputs are 495 

available: 
 

• Continuous PRA 

• Flow-Py raw outputs (D’Amboise et al. 2022). 

• Preliminary ATES classification of slope angle 500 

• Preliminary ATES classification of runout distance 

• Preliminary ATES classification of overhead exposure 

• Forest density criteria 

• AutoATES v2.0 

• AutoATES v2.0 with island size filter 505 

 
2.66 Model assessmentvalidation 
To evaluate the performance of AutoATES v2.0, we use two Canadian benchmark maps made explicitly for 
Connaught Creek, British Colombia and Bow Summit, Alberta Canada (Figure 3). These are the only locations 
that have manually mapped maps using the ATES v2.0 model (Sykes et al., 2023). The benchmark maps were 510 

made by combining individual maps from a panel of three experts, utilizing methodologies such as 
Geographic Information Systems (GIS), remote sensing imagery, local knowledge, and field-based 
investigations. Sykes et al. (2023) provide an in-depth description of how the benchmark maps were 
developed. 
 515 

For the model validation, the benchmark maps are compared against the AutoATES v2.0 model described 
above using the optimized parameters from Sykes et al. (2023). Input data for the validation model is a 26 m 
ALOS DEM combined with forest density data (basal area) from the British Columbia Vegetation Resource 
Inventory (BC VRI). For more information about the input data, see Sykes et al. (2023). 
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520 

 
Figure 3: Two areas where benchmark maps for the updated ATES are available in Glacier and Banff National Park. An 
overview of the greater area with the study areas in 3D view and overview photo (adapted from Sykes et al., 2023).  
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We use the metrics aAccuracy, precision, recall, and F1-score are essential metrics forto evaluateing the 525 

performance of thea model. These metrics provide a more detailed assessment, accounting for class 
imbalance and varying prediction results. They have been widely used in various fields, including avalanche 
literature (e.g., Keskinen et al., 2022)(e.g., Keskinen et al., 2022). For a more in-depth understanding of these 
metrics and their sources, see Liu et al. (2014), who provides a comprehensive review of evaluation metrics 
for classifiers. 530 

 
3. Results and validation 
In order toTo evaluate the performance of AutoATES v2.0, we use two Canadian benchmark maps made 
explicitly for Connaught Creek, British Colombia and Bow Summit, Alberta Canada (Figure 3). These are the 
only locations that have manually mapped maps using the the new 5 class ATES v2.0 model (Sykes et al., 535 

2023)(Statham and Campbell, 2023). The benchmark maps were made by combining individual maps from a 
panel of three experts, utilizing methodologies such as Geographic Information Systems (GIS), remote 
sensing imagery, local knowledge, and field-based investigations. Statham et al.Sykes et al. (2023) provide an 
in-depth description of how the benchmark maps were developed. 
 540 
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Figure 3: Two areas where benchmark maps for the updated ATES are available is in Glacier and Banff National Park. An 545 
overview of the greater area with the study areas in 3D view and overview photo (adapted from Sykes et al., 2023).. 

 
3.1. Model accuracy 
There is no true validation dataset for AutoATES due to differences in scale between automated and manual 
methods, but we believe the new benchmark maps made by Sykes et al. (2023) provides the best spatial 550 

validation maps to date. In figure 4, we visualize the differences between AutoATES v1.0, v2.0 and the ATES 
benchmark maps for Connaught Creek and Bow Summit. 
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 555 

Figure 4: A visual comparison between AutoATES v1.0, v2.0 and the ATES benchmark maps for Connaught Creek and 
Bow Summit using the European ATES color scheme (Statham et al., 2023). AutoATES v1.0 does not use the extreme (4) 
class.  

 
We use a confusion matrix for each study area to compare the ATES benchmark, which serves as the ground 560 

truth, against the results generated by the AutoATES v2.0 model (Table 4). The confusion matrices enable us 
to evaluate the performance of the AutoATES v2.0 model by calculating various metrics, such as accuracy, 
precision, recall, and F1-score. For Bow Summit, the algorithmmodel performs really wellwell for simple 
terrain with 91.97% accuracy, but the accuracy for challenging terrain is much lower at 65.34%. Complex and 
extreme terrain is closer to the average, with both with an accuracy of 798.70% and 78.97% respectively 565 

(Table 4). The accuracy distribution between the four classes is slightly different for Connaught Creek. The 
v2.0 model performs the worst in simple terrain with an accuracy of 633.31%. Challenging terrain has an 
accuracy of 71.0%, complex has an accuracy of 78.0% and extreme terrain has an accuracy of 832.94% (Table 
4). 
 570 

Table 4: A confusion matrix is used to compare the ATES benchmark maps with AutoATES v2.0. Bow Summit is presented 
above, while Connaught Creek is presented below. The accuracy of each terrain class is marked out with grey shading 
(area or percent of pixels correctly identified). 

Bow Summit 

AutoATES v2.0 

Simple (1) 
Simple (1)Challenging 

(2) 
Challenging (2) Complex (3) Extreme (4) 

ATES  

benchmark 

Simple (1) 4,527,848 m2 (91.97%) 140,608 m2 (10.78%) 16,900 m2 (1.01%) 0 m2 (0.00%) 

Challenging (2) 391,404 m2 (7.95%) 852,436 m2 (65.34%) 179,816 m2 (10.75%) 0 m2 (0.00%) 

Complex (3) 4,056 m2 (0.08%) 310,960 m2 (23.83%) 1,316,172 m2 (78.70%) 110,188 m2 (21.03%) 

Extreme (4) 0 m2 (0.00%) 676 m2 (0.05%) 159,536 m2 (9.54%) 413,712 m2 (78.97%) 

Connaught 

Creek 
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ATES  

benchmark 

Simple (1) 1,364,844 m2 (63.31%) 263,640 m2 (10.64%) 76,388 m2 (1.03%) 0 m2 (0.00%) 

Challenging (2) 683,436 m2 (31.30%) 1,757,600 m2 (70.96%) 884,208 m2 (11.92%) 676 m2 (0.05%) 

Complex (3) 102,752 m2 (4.77%) 449,540 m2 (18.15%) 5,787,236 m2 (78.00%) 237,276 m2 (17.01%) 

Extreme (4) 4732 m2 (0.22%) 6084 m2 (0.25%) 671,944 m2 (9.06%) 1,156,636 m2 (82.94%) 

 
A visual presentation of the differences between the two models is shown in Figure 5 where a comparison 575 

shows how the models perform compared to the benchmark map for each ATES class, for Bow Summit and 
Connaught Creek. The bar sections show the absolute accuracy, which areis the percentage of pixels that 
areis identical between the benchmark and the automated map. In Bow Summit the v2.0 algorithm has 
greatly improved challenging terrain a lot with a cost of a small reduction in accuracy of complex terrain. In 
Connaught Creek, the v2.0 algorithm has improved in all terrain classes, but the improvement is especially 580 

clear for simple and challenging terrain. 
 

 
Figure 5: The figure shows how the new AutoATES v2.0 model performs compared to the benchmark maps for Bow 
Summit and Connaught Creek. The figure uses the European ATES color scheme (Statham and Campbell,et al., 2023). 585 
The bar sections show the absolute accuracy, which is the percentage of pixels that is identical between the benchmark 
and the automated map.  

 
3.2 Ablation study 
The performance of the AutoATES v2.0 model has  is a dramatic improvedment significantlydramaticallyas 590 

compared to the AutoATES v1.0. The transition from v1.0 to v2.0 has been marked by numerous internal 
iterations, featuring improvements such as an optimized PRA algorithmmodel accounting for forest data, 
incorporating the Flow-Py runout model, considering forest data in the final terrain class algorithmmodel, 
and more. To fully understand the underlying factors behind the improvements of AutoATES v2.0, it is crucial 
to examine each of the components that have been modified., whichThis will help clarify how each 595 

modification contributes to the overall performance of the algorithmmodel.  
 
To do this, we utilize the concept of an ablation study which is a common method used to evaluate the 
importance or contribution of individual components within a system, model, or algorithmmodel. It is a type 
of sensitivity analysis that aims to understand the impact of removing or ablating specific components on 600 

the overall performance or output of the system. Ablation studies are commonly employed in machine 
learning, computational neuroscience, and other scientific disciplines to analyze and understand the roles 
and relationships of different elements in a complex system (Meyes et al., 2019)(Meyes et al., 2019). 
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The general procedure for an ablation study involves the following steps:  605 

 
1. Train or develop the full model or system with all its components and parameters intact, and measure 

its performance on a given task or dataset.  
2. Systematically remove or disable one component or parameter at a time, keeping the rest of the model 

unchanged.  610 

3. Measure the performance of the modified model without the removed component or parameter.  
4. Compare the performance of the modified model to the performance of the original, complete model.  
5. Repeat steps 2-4 for each component or parameter of interest. 
 
For AutoATES v2.0, we have identified six components of the algorithmmodel that have been developed since 615 

the v1.0. Using the concepts of an ablation study approach, we have calculated the precision, recall and F1-
score by removing different components of the algorithmmodel (Table 5). The reference model is the final 
AutoATES v2.0. TheA lower F1-score for a model has compared to the reference, the moreindicates an 
important is the component that has been removed. In Bow Summit, the most important component is the 
inclusion of forest data in the PRA algorithmmodel (dev4). In Connaught Creek, the most important factor is 620 

the post-forest-classification (dev6). In general, all new components in AutoATES v2.0 improve the model by 
several percentspercent, except the inclusion of the alpha angle threshold between challenging and simple 
terrain AAT23 (dev2), which only improves by 0.08-0.14% for the two study areas. 
 
Table 5: The results from the ablation study where different components are removed to measure the effect for Bow 625 
Summit. The term dev1-6 defines the development model being evaluated, SAT34 is the slope angle threshold between 
complex and extreme terrain and AAT23 is the alpha angle threshold between challenging and complex terrain. 

B
o

w
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u
m

m
it

 

Version Component removed Pixel 
accuracy 

Precision Recall F1-score F1-score 
change 

v1.0*   67.40% 68.75% 66.07% 64.06% -13.24 % 

dev1* SAT34 threshold 87.63% 78.74% 76.05% 81.81% 4.51 % 

dev2 AAT23 threshold 84.20% 82.82% 80.97% 77.16% -0.14 % 

dev3 Forest data from PRA v1.0 78.40% 78.6% 75.90% 70.21% -7.09 % 

dev4 Forest data from PRA v2.0 76.80% 71.29% 70.61% 68.03% -9.27 % 

dev5 Flow-Py (back to TauDEM) 79.10% 69.82% 68.99% 72.66% -4.64 % 

dev6 Post-forest-classification 80.30% 73.38% 72.12% 75.49% -1.81 % 

v2.0 Reference 84.40% 75.74% 76.19% 77.30% 0.00 % 

 

C
o

n
n

au
gh

t 
C

re
ek

 

Version Component removed 
Pixel 
accuracy 

Precision Recall F1-score 
F1-score 
change 

v1.0*   49.44% 40.21% 38.70% 38.70% -32.68 % 

dev1* SAT34 threshold 80.20% 72.43% 74.73% 72.79% 1.41 % 

dev2 AAT23 threshold 74.70% 73.65% 70.89% 71.30% -0.08 % 

dev3 Forest data from PRA v1.0 71.80% 71.23% 64.12% 66.71% -4.67 % 

dev4 Forest data from PRA v2.0 72.70% 73.33% 64.68% 67.73% -3.65 % 

dev5 Flow-Py (back to TauDEM) 65.50% 66.78% 67.55% 65.87% -5.51 % 

dev6 Post-forest-classification 59.90% 56.40% 48.20% 48.30% -23.08 % 

v2.0 Reference 74.90% 73.80% 70.94% 71.38% 0.00 % 

* AutoATES v1.0 and dev1 uses the old ATES v1.0 framework with three terrain classes, which could lead to higher F1-
scores. See section 4.1.1 for an in-depth discussion.  630 

 
4. Discussion 
One of the primary challenges when developing AutoATES v2.0 has been to create a robust process for 
validating the output. Initial attempts by Larsen et al., (2020) compared AutoATES v1.0 to available linear and 
spatial ATES ratings in Norway, however the validity of these ratingslayers was uncertain because they were 635 

developed over multiple years by numerous experts with limited review.Initial attempts by Larsen et al., 
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(2020) compared AutoATES v1.0 to available linear and spatial ATES ratings in Norway, but the validity of 
these layers was uncertain, given that multiple experts generated them, over a period of years, with limited 
review.  
 640 

In contrast, the approach by Sykes et al., (2023), attempts to address these deficiencies, and create 
benchmark maps for two regions in Canada. Their approach -– which used three experts to map each study 
area and then create benchmark maps based on their individual output -– is a more comprehensive 
methodology to address this issue. Their approach, which used three human ATES mappers who 
independently mapped each study area, and then created benchmark maps based on their individual output 645 

through a detailed discussion of the terrain characteristics, is a more comprehensive methodology to address 
this issue. For the purpose of our analysis, we consider these benchmark ATES maps as the standard to which 
we will measure any AutoATES models to.  
 
When conducting making our confusiononsensus matrices, we combine non-avalanche and simple terrain to 650 

make a 4-class validation dataset to be used against the AutoATES v2.0. We have chosen to not include a 
non-avalanche terrain class due to the challenges of defining non-avalanche terrain using automated 
methods. 
 
While the benchmark maps provide the best available validation dataset there are still fundamental 655 

differences in how terrain rating experts human mappers create ATES maps versus AutoATES. The scale of 
analysis for human mappersterrain rating experts is generally focused on terrain features, classifying an 
entire ridgeline, bowl, or gulley as a single unit of analysis. In contrast, AutoATES is a raster-based model 
which operates on a pixel-by-pixel analysis scale. The size of the pixels depends on the DEM data available 
for a given study area. Variability in DEM resolution and quality is one of the biggest challenges of applying 660 

AutoATES in data sparse regions (e.g. , like Western Canada). The scale mismatch between terrain rating 
experts human mapped ATES and AutoATES is a persistent difference and an issue that needs to be 
thoroughly considered with further validation efforts. The optimal scale of use for AutoATES is outside the 
scope of this current work, but detailed analysis by Sykes et al., (2023) has considered the impact of DEM 
resolution on AutoATES and notes that there is no real difference in performance using DEM datasets with a 665 

spatial resolution ranging from 5-26 m. We therefore recommend that the spatial resolution of the DEM and 
forest data is between 5 to 30 meters. 
 
4.1 Model performance 
We investigated the performance of the AutoATES v2.0 algorithmmodel compared to the v1.0 model, both 670 

designed to identify potential release and runout areas. Although the underlying concept remains consistent 
between the two versions, numerous components have been altered or refined in the latest iteration. 
 
4.1.1 Extreme terrain (dev1) 
The first modification to the AutoATES v2.0 model was to include the extreme terrain class from ATES v2.0. 675 

We incorporated the new class by including another slope angle threshold (SAT). We measured the 
importance of this change by using the results from the ablations study (Table 5, dev1). The result is that the 
ablated model performs better with regards to F1-score (ei.ge., 4.51% improvement for Bow Summit, and 
1.41% for Connaught Creek) than the reference model. This means that excluding the SAT34 threshold 
(e.i.ge., complex / extreme threshold) increases the accuracy of the model. However, without it, the 680 

algorithmmodel would be using the old ATES v1.0 classification excluding extreme terrain. This implies that 
excluding the SAT34 threshold enhances the model'’s numerical accuracy. Nonetheless, its absence would 
cause the algorithmmodel to employ the outdated ATES v1.0 classification, which does not account for 
extreme terrain, and therefore diminishing its value for ATES v2.0. 
 685 
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When working with classification problems, decision boundaries are the borders or thresholds that separate 
different classes (Lee and Landgrebe, 1993)(Lee and Landgrebe, 1993). The complexity of the decision 
boundaries often depends on the number of classes. When there are fewer classes, the decision boundaries 
tend to be simpler, as there are fewer regions to separate in the feature space. With simpler decision 
boundaries, the model may have an easier time making accurate predictions, as there is less chance of 690 

overfitting or incorrectly assigning data points to the wrong class. This could lead to higher precision, recall, 
and ultimately higher F1 scores. We believe the fewer classes in the ATES v1.0 is the reason why it performs 
better than the ATES v2.0 reference model. 
 
4.1.2 Terrain traps (dev2) 695 

To improve the algorithmmodel’s’ ability to identify severe terrain traps such as depressions and gullies, 
another alpha angle threshold (AAT) was added to be included in complex terrain. The previous model only 
had AAT thresholds which defaulted terrain into simple and challenging terrain. The extra component was 
added in the early stages of the development of AutoATES v2.0. The ablation analysis shows that this change 
has a very little effect on the overall performance of the model (Table 5, dev2) . (ei.ge.with a, 0.14% decrease 700 

for Bow Summit, and 0.08% for Connaught Creek). This method would not help for modeling other common 
terrain traps such as cliffs, crevassescrevasses and forest. We have not made any attempts to model other 
types of terrain traps because we believe it would have a very limited effect on the overall performance given 
our spatial resolution.  Rationale for why we did not try to model these? Is it a valid approach to model terrain 
traps using a 30 m DEM? We are probably not picking up this as Flow-Py is sensitive to DEM resolution. 705 

 
4.1.3 Forest data in PRA (dev3 and dev4) 
Forest density is considered to beis one of the most important parameters for ATES classification. In the 
original PRA v1.0 from Veitinger et al. (2016) it was not possible to include forest density as one of the inputs. 
The modified PRA v2.0 used in the AutoATES v2.0 algorithmmodel builds on the work from Sharp (2018).  710 

 
The PRA was initially developed and optimized for a 2m DEM, while we utilize a 10m DEM as default. If 
roughness was calculated using a 10m DEM, it would measure the roughness at basin scale, instead of the 
roughness at the slope scale (Blöschl, 1999; Blöschl and Sivapalan, 1995). The roughness is also dependent 
of a snow depth value which is impossible to define without assessing the snowpack properties at a given 715 

time. We do not consider that there is value in running AutoATES v2.0 using high resolution DEMs (< 5 meter). 
Sykes et al., (2023) further illustrates the impact of DEM scale on ATES mapping. We have therefore chosen 
to remove the roughness parameter from our version of the PRA model. 
 
When comparing the importance of PRA v1.0 (dev3) and PRA v2.0 (dev4) to the reference model, we see that 720 

the forest density into PRA is among one of the most important components (Table 5, dev3-4) (ei.ge., 7.09-
9.27% decrease for Bow Summit, and 3.65-4.67% for Connaught Creek). Comparing the results between PRA 
v1.0 and PRA v2.0, we can measure the difference between the two models without forest input. We found 
that the PRA v1.0 performed better than v2.0 in Bow Summit, but the opposite is the case in Connaught 
Creek. However, given that Larsen et al. (2020) did not adapt the PRA v1.0 algorithmmodel according to the 725 

recommendations of Veitinger et al. (2016), we believe the changes are conceptually still important even 
though there are no substantial differences between the two in the ablation validation. 
 
4.1.4 Roughness in PRA 
The PRA was initially developed and optimized for a 2 m DEM, while we utilize a 10 m DEM as default. If 730 

roughness was calculated using a 10 m DEM, it would measure the roughness at basin scale, instead of the 
roughness at the slope scale (Blöschl, 1999; Blöschl and Sivapalan, 1995). The roughness is also dependent 
of a snow depth value which is impossible to define without assessing the snowpack properties at a given 
time. We do not consider that there isSykes et al. (2023) demonstrate minimal value in running AutoATES 
v2.0 using high resolution DEM’s (< 5 m). Sykes et al., (2023) further illustrates the impact of DEM scale on 735 
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ATES mapping. We have therefore chosen to remove the roughness parameter from our version of the PRA 
model. 
 
4.1.54 Flow-Py (dev5) 
The previous iteration of AutoATES had some severe issues with the runout simulation of avalanches where 740 

avalanches wherewere simulated using a flow model for water. The Flow-Py simulation works in a similar 
fashion where the flow is limited by an alpha angle threshold, but the flow model has been changed to give 
more realistic outputs in terms of snow avalanches. Some other advantages with the Flow-Py simulation suite 
are that there are additional outputs such as cell count and zdelta which makes it possible to account for the 
exposure of multiple overlapping paths and avalanche paths with high kinetic energy. When we compare the 745 

Flow-Py outputs compared to the TauDEM, we see a substantial improvement when using the Flow-Py 
outputs (Table 5, dev5), with a(ei.ge., 4.64% decrease for Bow Summit, and 5.51% for Connaught Creek). 
 
4.1.65 Post-forest-classification (dev6) 
Even though the inclusion of forest density in the PRA algorithmmodel improved the performance of 750 

AutoATES, we found the need to reclassify sections that were obviously where densely forested and resulted 
in a higher ATES rating than needed. To improve this, we added a post-forest-classification criteria. This was 
really efficientefficient for Connaught Creek, but less efficient for Bow Summit (Table 5, dev6) (ei.ge., (1.81% 
decrease for Bow Summit, and 23.08% for Connaught Creek). The forest impact of dev6 is minimal at Bow 
Summit, but really importantimportant for Connaught Creek. We don’t know why this is, but one hypothesis 755 

is that there is more steep forested terrain in Connaught Creek, and the algorithmmodel therefore relies 
more on the post-forest-classification. Connaught Creek also has more large runouts and overhead hazard 
that rely on the post-forest-classification.   
 
In the future, we hope to be less reliant on the post-forest-classification criteria by optimizing the forest 760 

detrainment module in Flow-Py. This module of Flow-Py makes it possible to reduce the runout length in 
areas with dense forest.  
 
4.1.76 Discrepancies 
The discrepancy in accuracy scores between the two study areas is mainly attributed to the complex terrain 765 

of Connaught Creek with many smaller topographical features and the limitations of the Vegetation 
Resources Inventory (BC VRI) forest data resolution in capturing local forest characteristics (Sykes et al., 
2023). This issue significantly affects the assessment of overhead hazards and boundaries delineation 
between ATES classes, with challenging (2) terrain showing the lowest accuracy and high rates of 
underprediction errors. Sykes et al. (2023) provides an extended discussion of the differences between the 770 

two study sites. 
 
4.3 Application 
AutoATES v2.0 is meant to be a stand-alone tool for mapping large-scale areas, but it should first be validated 
for a smaller area by experts to assess whether there is a need to make some changes to the input 775 

parameters. When the user is confident with their maps, the parameters could be used to generate ATES 
maps for a larger surrounding area. 
 
While it is possible to run the presented version of AutoATES v2.0 without making any changes, we 
recommend a workflow where the optimal parameters are first identified. The suggested parameters in this 780 

paper are valid for the two test areas in Western Canada., Wso when applying AutoATES v2.0 for other areas, 
the parameters, there will likely need to be a re-evaluated the parameters for the area being mapped. Blindly 
applying the parameters presented in this document to other regions without site specific calibration risks 
inaccurate ATES mapping, and potential catastrophic outcomes. Users should apply atthis model at their own 
risk. We therefore urge all future users of our code to conduct, and document, their a local validation before 785 
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proceeding with the generation of large-scale ATES maps. This is, especially important when the intended 
target group is the general public. 
 
Begin with a relevant test area which should include a variety of terrain and all terrain classes. We 
recommend a workflow where the PRA model and Flow-Py is processed independent of the AutoATES 790 

classifier. The output from PRA and Flow-Py is easier to validate by local experts compared to the AutoATES 
output. It is more intuitive as avalanche experts have more tangible experience with identifying start and 
runout zones. In our experience, we complete approximately 1-3 iterations of PRA and Flow-Py before 
moving on to the AutoATES classifier. In general, we have experienced that the ‘c’ parameter in the Cauchy 
function for slope angle combined with the max alpha angle for Flow-Py are the most effective for 795 

customizing the output. We also recommend fine-tuning all parameters in the Cauchy function for PRA when 
using new other forest density data than what’s being  that is different than what we used in this validation.. 
This could be done by using a local avalanche terrain expert to review the output from each Cauchy 
membership value and adjust until the output is appropriate. 
 800 

When these steps are done in advance, our experience is that the output of the AutoATES classifier tends to 
be much more accurate. The final AutoATES could then be shared among local experts whoich provides 
further feedback. Changes could then be made to the AutoATES classifier parameters and improved during 
an iterative process. When the final input parameters are set, they could be used to generate larger areas. A 
description of the input parameters used should be shared as meta-data with the resulting spatial maps.   805 

 
4.3.1 Large scale application 
We have used the DEM from ALOS at a spatial resolution of 26 m. This dataset is available worldwide and 
could enable large scale application of AutoATES v2.0 in the future. The main limitation right now is that to 
our knowledge, there is no global forest data available that have a suitable accuracy and resolution. In all 810 

countries we have tested AutoATES (Norway, Canada, USA) there has been a considerable testing period to 
determine the best available forest data and fine tuning of model parameters to work well with local forest 
data. This is the rationale for providing multiple ‘default’ settings for the input forest data including stem 
density, canopy cover, and basal area. The PRA parameters used for each of these are unique and need to be 
locally tested before large scale application of AutoATES v2.0. 815 

 
4.4 Limitations 
Despite the notable improvements of the AutoATES v2.0 model, there are still some limitations that should 
be acknowledged. 
 820 

• Flow-Py is computationally heavy, which may present challenges when processing large datasets or 
applying the model in real-time applications. This could potentially limit the scalability and 
accessibility of the model for certain use cases and users with limited computational resources. 

• Determining the optimal input parameters for the AutoATES model is important to get the best 
performance possible. The suitability of these parameters across different snow climates and terrain 825 

types remains an open question. Further research and validation are needed to ensure that the 
chosen parameters provide accurate and reliable results in various contexts. Users should not blindly 
adopt the input parameters stated in this paper. 

• The model does not account for changes in vegetation over time such as natural events like landslides 
or forest fires. Therefore, it is important to update the ATES mapping periodically to account for 830 

major changes in the landscape. 
Due to the limited sample size of mapped class 0 terrain in the validation data sets that we used to 
develop autoATESv2.0, we do not feel that there has been sufficient research on this topic to 
warrant publication at this time. AutoATES is a promising tool for estimating areas with no 
exposure to avalanche terrain, however there is significant liability associated with deeming an 835 
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area safe from avalanche hazard. Further development of the autoATESv2.0 model and 
consultation with avalanche community stakeholders is necessary before delving into automated 
mapping of class 0 terrain.Class 0 – non-avalanche terrain – why is it not part of the model? 

•  
 840 

Addressing these limitations in future work could enhance the performance, applicability, and reliability of 
the AutoATES model, ensuring its effectiveness across a wide range climates and terrain characteristics. 
 
5. Conclusion 
In conclusion, the development of AutoATES v2.0 has focused on creating a more robust and accurate 845 

algorithmmodel for mapping avalanche terrain into ATES ratings by incorporating new components to 
improve the algorithmmodel. This has been achieved by integrating new components that enhance the 
algorithmmodel's performance, including the addition of an extreme terrain class, improved PRA with 
support for multiple forest density types, Flow-Py, and a post-forest-classification criteria. Moreover, a 
significant portion of the code has been rewritten to increase efficiency and eliminate dependency on 850 

proprietary software. 
 
However, limitations related to the determination of optimal input parameters for different regions and 
climates need to be considered for future model development. By addressing these limitations and 
continuing to refine the model through iterative testing and expert feedback, AutoATES v2.0 can serve as a 855 

valuable tool for avalanche risk assessment and decision-making in a wide range of snow climates and terrain 
types. Ultimately, our goal is for AutoATES v2.0 to enable efficient, large-scale, and potentially global ATES 
mapping in a standardized manner. 
 
6. Code and data availability 860 

To reproduce the results from this study, please find the AutoATES v2.0 algorithmmodel and validation data 
from the ablation study in the OSF repository. For future application of AutoATES v2.0, a GitHub repository 
will be maintained with future iterations of the algorithmmodel available (Toft et al. 2023).  
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