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Response to anonymous referee #2 

We thank referee #2 for reading the manuscript carefully and providing thoughtful and con-

structive comments. Below, their comments (C) are reproduced with our responses (R) follow-

ing. Manuscript text is shown in serif font, intended changes and additions are underscored. 

C2.1 Introduction. I have the feeling that only the most standard methods have been referenced in the 

introduction (conventional flood frequency analysis, regional flood frequency analysis, use of historical 

information etc.), but in the literature other approaches linking flood estimation with physical pro-

cesses are present (see e.g., Basso et al. (2021) and references herein for a systematized description 

of a mechanistic-stochastic physically-based approach for the estimation of river flows/floods). I would 

suggest the authors to mention other-than-conventional and widely used approaches in the paper in-

troduction, especially if relevant in the discussion of physically-based models or methods less affected 

by the time series shortness, as the standard ones usually are. 

R2.1 Thank you for pointing this out and bringing up alternative approaches. 

As for the introduction in general, we indeed tried to mention the most common approaches 

relevant in our context, namely with focus on applications in large river basins, and on rare to 

very rare events. We will clarify this and at the same time add some key references concern-

ing flood estimation in a broader context. 

As for the mechanistic-stochastic physically-based approach, we will add a paragraph after 

L55 to mention potential benefits and limitations in the context of our research, following 

Basso et al. (2021). The preceding text as well as the subsequent introduction to the continu-

ous simulation approach starting on L56 will be slightly reorganised and extended to make it 

fit to the new paragraph. 

Overall, we will modify L40–67 of the introduction as follows: 

Generally speaking, common approaches for flood estimation can be categorised into statistical and 

deterministic (or hydrological) methods as well as combinations thereof (for an overview and evalua-

tion see e.g., Rogger et al., 2012; Okoli et al., 2019). Statistical approaches are widely used (see e.g., 

Castellarin et al., 2012; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, 2012; Eng-

land, Jr. et al., 2019; Environment Agency, 2020) and also popular to derive design floods for safety 

assessments. For this, conventional frequency analysis is performed on observed streamflow records, 

and then a simple return period conversion factor given by design codes (e.g., Bundesministerium für 

Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft and Technische Universität Wien, 2009; 

Bundesamt für Energie, 2018; International Commission on Large Dams, 2018) is applied. In addition, 

it is possible to augment flood frequency analysis with additional data and evidence (Gutknecht et al., 

2006; Merz and Blöschl, 2008) such as historical floods (e.g., Bayliss and Reed, 2001; Neppel et al., 

2010; Hall et al., 2014; Benito et al., 2015; Salinas et al., 2016; Wetter, 2017), paleofloods (Benito and 

Thorndycraft, 2005; Baker, 2008; Baker et al., 2010; Benito and O'Connor, 2013; O’Connor et al., 

2014), regional frequency analyses (Hosking and Wallis, 1993, 1997), envelope curves (Castellarin et 

al., 2005), or by differentiating for flood-generating mechanisms (Fischer, 2018; Barth et al., 2019). 

Also, floods can be estimated from rainfall information via simple approaches such as the GRADEX 

method (Guillot and Duband, 1969; Naghettini et al., 1996) or the rational method (Mulvany, 1851). 

Nevertheless, the comparatively short streamflow records contain a rather heterogeneous and likely un-

representative sample of floods, and neither of the aforementioned methods is able to cover the whole 

gamut of possible hydrometeorological patterns and the corresponding responses of the river system. 
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This issue has even greater relevance in large river basins, where flows from individual tributaries in-

teract in a complex manner (see Guse et al., 2020), possibly further complicated through flow manage-

ment (e.g., lake regulation and reservoir operation). 

While the above approaches are predominantly based on statistical elements, further approaches have 

emerged that combine random elements with understanding of the most relevant physical factors such 

as soil moisture and runoff dynamics (see e.g., Laio et al., 2001; Porporato et al., 2004; Botter et al., 

2007, 2009; Basso et al., 2015, 2016; Zorzetto et al., 2016). Linked with a systematic description of 

advances in this field, Basso et al. (2021) recently introduced the PHysicallybased Extreme Value 

(PHEV) distribution as an example of such a mechanistic-stochastic and physically based approach. 

PHEV showed lower uncertainty and less bias in estimation of large floods (return period of 1 000 

years, daily time scale) in comparison to conventional frequency analysis, albeit with a tendency for a 

slight underestimation and higher variability in performance. Main limitations of PHEV are the as-

sumption of an invariable recession coefficient as well as the exclusion of some hydroclimatological 

regimes (in particular snow- and glacier-dominated, monsoon and seasonally dry). 

Another common approach used in safety assessments are PMP-PMF (Possible Maximum Precipita-

tion-Possible Maximum Flood) estimates, which can follow deterministic (hydrometeorological) or sta-

tistical concepts (World Meteorological Organization, 2009). This approach can achieve the range of 

peak flow extremes examined here, but results have no clear estimate of return period and are usually 

not applicable over large spatial domains. Moreover, the estimation of PMP and ensuing PMF bears 

substantial simplifications and considerable uncertainties (Salas et al., 2014; Micovic et al., 2015; Ben 

Alaya et al., 2018; Zhang and Singh, 2021) 

Hydrological methods avoid the abovementioned limitations, more comprehensively link flood estima-

tion with physical processes, and allow for representing effects caused by operation of hydraulic infra-

structure. Such methods typically involve a catchment runoff model that is fed with meteorological 

data and provides simulated discharge as an output (Beven, 2011). In case continuous simulation (CS) 

is employed rather than an event-based approach, there is no need to separate discharge into baseflow 

and stormflow, and assumptions about antecedent conditions of a flood event (e.g., snowpack, soil 

moisture, storage levels of lakes and reservoirs) are not required (Calver and Lamb, 1995; Pathiraja et 

al., 2012). Beven (1987) was one of the first to recognise the potential of this compelling approach, and 

CS has indeed been implemented in numerous studies since. However, application in industry is still 

challenging due to the considerable effort necessary (see overview by Lamb et al., 2016 and references 

therein). In CS, precipitation data are required to perform rainfall-runoff simulations and subsequently 

process the simulation results with conventional frequency analyses. Although observed series of pre-

cipitation can be used […] 

C2.2 Study area and observational data. Why do time series end in 2014? Are there no more recent 

data available? 

R2.2. The research presented in this paper was done within the EXAR project, for which work 

started in early 2016. At that time, consolidated data were available until the end of 2014 only. 

C2.3 Methods. What is exactly the rationale behind the choice of using two different weather genera-

tors? I understand that they are implemented independently, and they are used for different purposes, 

but I miss a clear explanation of the reasons why for example you choose GWEX instead of the 

SCAMP as input to the HBV model and not the other way around. 

R2.3 The two different weather generators are first of all used to assess the structural uncer-

tainty in the meteorological part of this study. They are actually used for similar purposes but, 

as indicated on L266–270 in the original manuscript, it was only possible to run the full set of 
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GWEX generated weather scenarios through HBV light and RS Minerve due to the exception-

ally high computational cost of long simulations at multiple sites. 

Please see also in particular our response to comment C1.8 by referee #1 (who also ad-

dressed the rationale for using two different weather generators): For clarification, we will 

move Lines 710–713 to the section containing Lines 156–159, slightly adjust the text and add 

cross-references: 

Our model chain consists of three main components. First, two weather generators – GWEX (Section 

3.2.1) and SCAMP (Section 3.2.2) – were used to provide 30 time series scenarios of precipitation and 

temperature with a length of 10 000 years each, and to assess the structural uncertainty in the meteoro-

logical part of this study (Sections 5.3 and 5.5). Second, the full outputs of GWEX were used as input 

for the bucket-type catchment model HBV [...] 

C2.4 L193: It is not clear to me what do you mean by “…represents the dependence structure of inno-

vations in the generation process” 

R2.4 “Generation process” refers to the multivariate autoregressive model (MAR) process 

which contains so-called innovations which are modelled using a multivariate distribution. 

“Generation” will be replaced by “multivariate autoregressive model (MAR)”: 

A Student copula represents the dependence structure of innovations in the multivariate autoregressive 

model (MAR) and introduces a tail dependence between at-site extremes. 

C2.5 L268: could you be clearer about the “technical issues”? What are they related to? 

R2.5 This point was also raised by referee #1, see our response to comment C1.19: The most 

likely cause of the issue was a file transfer problem, i.e., the silent crash of a copy process of 

GWEX data to the computational cloud where HBV was run. Due to this, the HBV simulations 

for the 11 000 scenario years in question were forced with data from an outdated version of 

GWEX. The ensuing inconsistency was only discovered a few months later, when further 

computationally intensive work had been done within the EXAR project on the basis of the 

continuous simulations. It was therefore decided to discard the affected scenario years, as the 

remaining consistent simulations were still 289 000 years long and thus sufficient for the 

scope of EXAR. We will complement the text as follows: 

From the 300 000 years simulated in total, 11 000 were discarded due to an inconsistency (most likely 

caused by a file transfer problem and the subsequent usage of an outdated version of GWEX data; for 

details, see Viviroli and Whealton, 2020), leaving 289 000 years for detailed analysis. 

C2.6 Results. There is not a clear discussion about the reasons why the two weather generators pro-

vide different precipitation ranges. I think that you should spend some time on better describing the 

differences in the outputs obtained through the simulations and what they are related to. 

R2.6 This is a relevant comment which was also raised by referee #1, please see our re-

sponse to comment C1.22: We will extend and rephrase the last paragraph of Section 4.1.2 

as follows: 

At the scale of the entire Aare River basin, MAP extremes are roughly similar for GWEX and SCAMP 

(Figure 3, Figure 4). At the sub-basin scale, however, the extremes of SCAMP are generally larger than 

those of GWEX and show slightly different spatial patterns. Both of these differences are probably ex-

plained by the fact that the two weather generators are built upon substantially different approaches and 

generation processes: GWEX produces multi-site 3-day amounts disaggregated at a daily scale, 
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whereas SCAMP produces regional MAP and MAT values at a daily scale. Three-day maxima in 

SCAMP are thus the result of the aggregation of three consecutive daily simulated values. The tem-

poral coherency between MAP values generated by SCAMP for consecutive days comes from the 

large-scale atmospheric forcing, which follows relevant atmospheric trajectories from one day to the 

next. However, this conditioning does not necessarily preserve the day-to-day dynamics of rainfall sys-

tems. Nevertheless, it can be noticed that the largest difference – found for the Neuchâtel sub-region – 

is rather moderate (+10% for MAP3d and +20% for MAP1d). A further comprehensive evaluation of 

precipitation time series generated with both weather generators is found in Evin et al. (2018, 2019) 

and Chardon et al. (2020), as well as in Raynaud et al. (2020), which reports on severity, spatial and 

temporal dynamics, and meteorological relevance of events. 

C2.7 L370: I would avoid reporting only the Nash-Sutcliffe efficiency values, but at least complement 

them with another evaluation criterion, as the NSE is not the optimal one when model accuracy needs 

to be assessed. 

R2.7 That is of course a valid point, thank you. We will report on all three efficiency criteria 

shown in Figure 6, but for brevity declare median efficiencies. The range can be inferred from 

Figure 6. We will in addition report these median efficiencies for the three sites in the Emme, 

Lorze, and Saane Rivers that showed poorer performance: 

Results (Figure 6b) show good to very good agreement between observations and simulations (median 

efficiencies over all three representative parameter sets: NSE 0.83, KGE 0.85, KGE_NP 0.89) for all 

sites in the Aare, Reuss and Limmat Rivers. The three sites in the Emme, Lorze, and Saane Rivers 

showed poorer performance (NSE 0.34, KGE 0.65, KGE_NP 0.66). 

The abbreviations of the efficiencies used above are currently only declared and used in the 

legend for Figure 6. Therefore, we will define them also in the main text on L437ff.: 

Hydrological simulations for the individual HBV sub-catchments were evaluated based on three crite-

ria: the Nash-Sutcliffe (NSE) (Nash and Sutcliffe, 1970), the Kling-Gupta (KGE) (Gupta et al., 2009) 

and the non-parametric Kling-Gupta (KGE_NP) (Pool et al., 2018) efficiencies. 

C2.8 L418: I suggest the authors to define the FOEN acronym, as it is not clear what you are referring 

to (I had to go to the Acknowledgments section to understand its meaning). 

R2.8 Thank you for noting this. In response to comment C1.25 by referee #1, we will expand 

the description of extrapolation methods in Chapter 2 on study area and observational data, 

and define the FOEN acronym there already. 

C2.9 Figure 10a. Despite considering this representation very nice, I have to say that most of the in-

formation in the smallest circles is lost. I would suggest leaving it like it is for the entire basin and the 

sub-regions but simplify the symbols for all the other sites (maybe only showing a couple of repre-

sentative durations, so that the colors are clear). 

R2.9. We understand this comment and recognize that it is difficult to appraise the information 

in the smallest circles precisely. However, we argue that the regions with the largest return 

levels still stand out thanks to all the small circles. This information cannot be inferred in simi-

lar detail at the level of sub-regions only. We have tried a number of alternative design solu-

tions, but the current representation still appeared to be best for highlighting the multiscale 

structure of precipitation extremes, as well as the regions and areas with the highest precipi-

tation amounts. 
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C2.10 L470: I believe the first comma should be removed 

 R2.10 Thank you, will be done. 

C2.11 L666: a comma is missed after e.g. 

 R2.11 Thank you, will be added 
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