

Design and Application of a Multi-Hazard Risk Rapid Assessment Questionnaire for Hill Communities in the Indian Himalayan Region

Shivani Chouhan^{1*}, Mahua Mukherjee²

¹Research Scholar, Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, India

²Professor, Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, India

*Corresponding Author: Shivani Chouhan (s_chouhan@dm.iitr.ac.in)

***Corresponding Author:**

Name: Ms. Shivani Chouhan,
Email: s_chouhan@dm.iitr.ac.in,
Telephone: +91-9675457229 , +49-1744969778
Postal Address: Centre of excellence in disaster mitigation and management, IIT Roorkee, Roorkee
Uttarakhand, 247667, India

ABSTRACT

19 The Indian Himalayan Region (IHR) is prone to multiple-hazards and suffers great loss of life
20 and damage to infrastructure and property every year. Poor engineering construction,
21 unplanned and unregulated development, and relatively low awareness and capacity in
22 communities for supporting disaster risk mitigation is directly and indirectly contributing to the
23 risk and severity of disasters.

24 A comprehensive review of various existing survey forms for Risk assessment has found that
25 the survey questionnaires themselves have not been designed or optimised, specifically, for
26 hill communities. Hill communities are distinctly different from low-land communities, with
27 distinct characteristics and susceptibility to specific hazard and risk scenarios. Previous
28 studies have, on the whole, underrepresented the specific characteristics of hill communities,
29 and the increasing threat of natural disasters in the IHR creates an imperative to design hill-
30 specific questionnaires for multi-hazards risk assessment.

31 The main objective of this study is to design and apply a hill-specific risk assessment survey
32 form that contains more accurate information for hill communities and hill-based infrastructure
33 and allows for the surveys to be completed efficiently and in less time. The proposed survey
34 form is described herein and is validated through a pilot survey at several locations in the hills
35 of Uttarakhand, India. The survey form covers data related to vulnerability from Earthquake
36 (Rapid Visual Screening), Flood, High Wind, Landslide, Industrial, Fire Hazard in the building,
37 Climate Change and Non-Structural Falling Hazard. The proposed form is self-explanatory,

38 pictorial with easy terminologies, and is divided into various sections for better understanding
39 of the surveyor etc.

40 The application process confirmed that the survey questionnaire performed well and met
41 expectations in its application. The form is readily transferrable to other locations in the IHR
42 and could be internationalised and used throughout the Himalaya.

43 **Keywords:** Survey, Questionnaire Design, Multi-Hazard, Rapid Visual Screening, Himalaya

44 **1 Introduction**

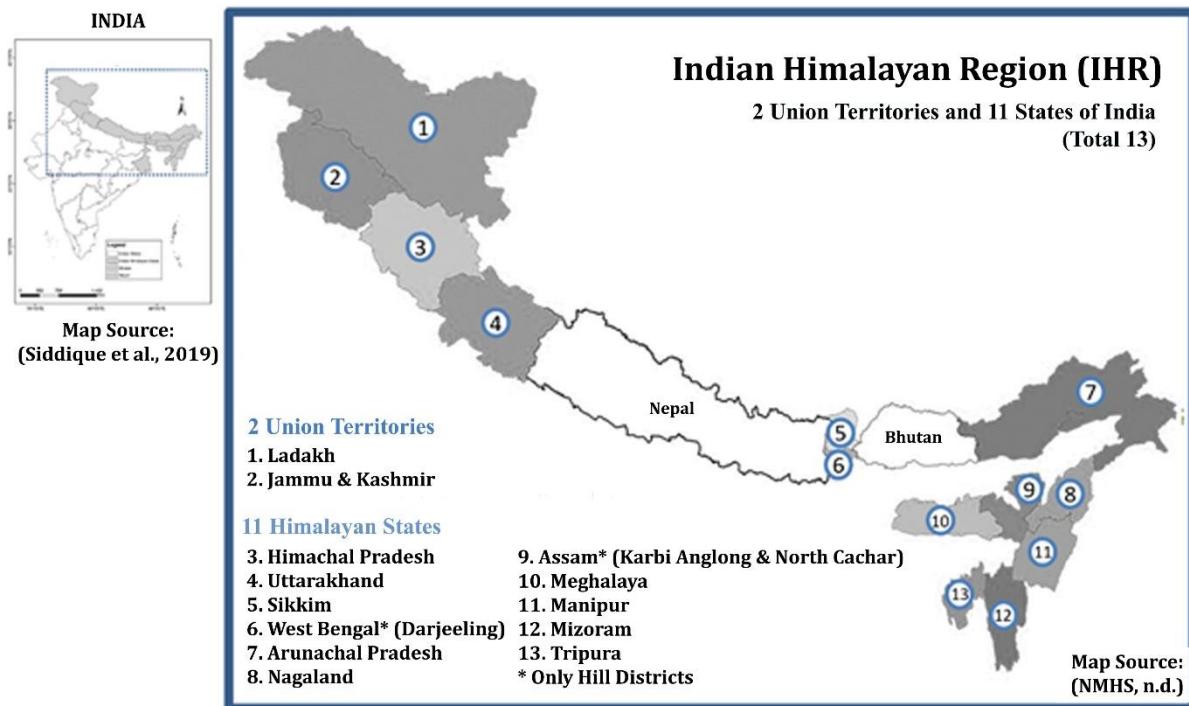
45 The Indian Himalayas considered a significant part of the world's mountain ecosystems
46 (Singh, 2005). The Himalayas are geologically active, delicate, and vulnerable to both natural
47 and human-made processes due to their structural instability and maturity (Kala, 2014).
48 Numerous hazards interact at most locations, resulting in cascading or synergetic effects
49 (Aksha *et al.*, 2020). The Indian Himalayan Region (IHR), being prone to multiple hazards,
50 suffers great loss of life and damage to infrastructure and properties every year (Chouhan *et*
51 *al.*, 2022a). Multi-hazard frequency has risen in recent decades, resulting in massive socio-
52 economic losses. There has been a constant rise in the number of deaths, property losses,
53 and damage to infrastructure and facilities (Chandel and Brar, 2010). According to UNDRR
54 (UNDRR, n.d.), the multi-hazard concept refers to "(1) the selection of multiple major hazards
55 that the country faces, and (2) the specific contexts where hazardous events may occur
56 simultaneously, cascadingly or cumulatively over time, and taking into account the potential
57 interrelated effects."

58 Poor engineering and construction, reckless development, human intervention, unrecognized
59 practices, irresponsible development initiatives, and a lack of knowledge are directly and
60 indirectly contributing to the risk and severity of disasters (Chouhan *et al.*, 2022b). Many
61 natural disasters have become human-made phenomena as a result of the spread of
62 irresponsible construction practices. Such disasters have a devastating socio-economic
63 impact on the country's economy, putting even more strain on an already stressed economy
64 (Disasters, 2007).

65 Various research work, disaster risk assessment studies and, implementation projects are
66 being executed by national and international organizations for disaster risk reduction in the
67 Himalayas. The data collection for any risk assessment in this difficult terrain is a crucial task,
68 as correct information documentation has played a significant role that directly or indirectly
69 lead to an influence in correct assessment of the risk factor (Chouhan *et al.* 2022b).

70 Surveys using a well-crafted questionnaire is a proven method in the research fraternity.
71 Questionnaires are the backbone of every survey when it comes to data collection. Using data,
72 one can gain a detailed understanding of a community's hazard profile, vulnerability
73 interactions and their contribution to risk reduction (Buck and Summers, 2020). The survey
74 information is required to be coherent for data analysis since they lead to critical decisions at
75 many levels, represent the site's vital characters and society's expectations and requirements
76 too. All of these outcomes hinge, of course, on the creation of a robust site-specific survey
77 form. A well designed and executed Multi-Hazard Risk Assessment (MHRA) can lead to more
78 robust strategies for disaster risk reduction (Kala, 2014; Sekhri et al., 2020) and can facilitate
79 by prioritizing development planning decisions.

80 After studying existing survey forms and practical field survey at various locations in the Indian
81 Himalayas, authors found that the existing MHRA survey forms used in India have some
82 lacuna from the hills point of views as Himalayas have different geography, cultural,
83 development practices, hazard profile etc. (Chouhan et. al., 2022b). A close evaluation of the
84 existing survey questionnaires reveals that there is a need for IHR-specific survey
85 questionnaire form to facilitate a MHRA, which should be easy to understand, pictorial, and
86 that creates a two-way disaster sensitization of giving and getting information from the
87 community.


88 In this research paper, the journey to design and application of the proposed Hill specific
89 MHRA survey form has been described. The pilot survey using the proposed survey form has
90 been conducted at 10 schools in Uttarakhand state of India and its results identify various risk
91 indicators in individual building as well as the school campus.

92 **2 Background**

93 *2.1 Defining the Indian Himalayan Region*

94 The Indian Himalayan Region (IHR) straddles the northern latitudes of 26 20' and 35 40', and
95 the eastern latitudes of 74 50' and 95 40' (Sekhri et al., 2020). In India, it comprises 16.2 % of
96 all the geographical land and is home to 76 million people. Natural resources, biodiversity, and
97 ethnic variety are abundant in IHR. (Goodrich et al., 2019; Sekhri et al., 2020). It stretches
98 from the Indus River to the Brahmaputra River in the east. (Srivastava et al., 2015). There are
99 a total of 11 Indian Himalayan states and 2 Union territories as shown in Fig. 1, which have
100 109 administrative districts (Kala, 2014). The region is socially and economically
101 underprivileged, with 171 schedule tribes accounting for almost 30 % of India's total tribal
102 population and a high literacy rate of 79 percent. The population is growing exponentially,
103 putting a strain on the region's resources (COI, 2011). Tourism is a lucrative business in IHR
104 (NITI Aayog, 2018) and it contributes to support a lot of construction projects like hotels,

105 restaurants, road construction etc. across the region (Kala, 2014). Agriculture is a profitable
106 venture for Himalayan people, and it is mainly rain-nourished. Furthermore, climate change is
107 hazardous to the region's progress and hinders socio-economic development (Sekhri *et al.*,
108 2020).

109

110 *Figure 1: Study Area: Indian Himalayan Region, Source: adapted from (NMHS, n.d.)(Siddique et. al., 2019)*

111 The IHR represents a significant role in the world's mountain ecosystems (Singh, 2005). IHR
112 attracts tourists worldwide because of its natural richness, unique biodiversity, and cultural
113 diversity (NITI Aayog, 2018,; Gaur and Kuro, 2018). The number of pilgrims has risen
114 dramatically in prominent pilgrim centres across the Himalayas over the ages (Kala, 2014),
115 putting extra stress on these resources and posing a danger of socioeconomic loss.

116 2.2 *Multi Hazards in IHR*

117 Being geologically young and expanding (Wester *et al.*, 2019), the IHR is vulnerable to natural
118 disasters (Gautam *et. al.*, 2013). The Himalaya, the world's highest mountain range is
119 geologically active, fragile, and susceptible to natural and man-made processes (Kala, 2014).
120 Indian geography, climate, topography, and population growth all contribute to its high risk and
121 vulnerability (Sharma *et al.*, 2017). Mountain hazards are widespread, and hills characteristics
122 of fragility, restricted accessibility, marginality, and heterogeneity (Gerlitz *et al.*, 2016) may
123 turn a hazard into a catastrophe, transforming mountains into high-risk zones. Furthermore,
124 mountains need a long time to recover from disruptions (Sekhri *et al.*, 2020).

125 Multi-Hazard Frequency has risen in recent decades, resulting in massive socio-economic
 126 losses (Rehman et al., 2022). Unrecognized practices, irresponsible development initiatives,
 127 and a lack of knowledge contribute to disasters having a more significant effect. One of the
 128 most challenging aspects of natural hazards risk assessment is determining how to estimate
 129 the risk of several hazards in the same region and how they interact (Hackl et. at., 2015).

130 In the recent decade, severe earthquakes, floods, and landslides have devastated IHR,
 131 including the M 7.6 Kashmir earthquake in 2005, the Malpa Landslide in 2009, the M 6.8
 132 Sikkim earthquake in 2011, the 2013 Uttarakhand flash flood, and others, affecting
 133 approximately thousands of deaths and property losses (MHA, 2011; BMTPC, 2019; Kumar
 134 et al., 2016). Table 1 illustrate and describe the major hazard events that have occurred
 135 historically in the Indian Himalayan region.

136 *Table 1: Major Disaster Events in IHR, Source: adapted from (BMTPC, 2019; Kumar et al., 2016).*

SN	Date	Location (Latitude, Longitude)	Place	Indian Himalayan State	Hazard/ Magnitude	Casualties	Source
1	1869, Jan 10	(25.00, 93.00)	Near Cachar	Assam	Earthquake 7.5 Mw	Unknown	Kumar et al., 2016
2	1885 May 30	(34.10, 74.60)	Sopor	Jammu & Kashmir	Earthquake 7.0 Mw	Unknown	Kumar et al., 2017
3	1897 Jun 12	(26.00, 91.00)	Shillong plateau	Meghalaya	Earthquake 8.7 Mw	1500	Kumar et al., 2018
4	1905 Apr 04	(32.30, 76.30)	Kangra	Himachal Pradesh	Earthquake 8.0 Mw	19,000	Kumar et al., 2019
5	1918 Jul 08	(24.50, 91.00)	Srimangal	Assam	Earthquake 7.6 Mw	Unknown	Kumar et al., 2020
6	1930 Jul 02	(25.80, 90.20)	Dhubri	Assam	Earthquake 7.1 Mw	Unknown	Kumar et al., 2021
7	1943 Oct 23	(26.80, 94.00)	Assam	Assam	Earthquake 7.2 Mw	Unknown	Kumar et al., 2022
8	1950 Aug 15	(28.50, 96.70)	Arunachal Pradesh– China Border	Arunachal Pradesh	Earthquake 8.5 Mw	1526	Kumar et al., 2023
9	1975 Jan 19	(32.38, 78.49)	Kinnaur	Himachal Pradesh	Earthquake 6.2 Mw	Unknown	Kumar et al., 2024
10	1988 Aug 06	(25.13, 95.15)	Manipur– Myanmar border	Manipur	Earthquake 6.6 Mw	1000	Kumar et al., 2025
11	1991 Oct 20	(30.75, 78.86)	Uttarkashi, UP	Uttarakhand (now)	Earthquake 6.6 Mw	2000	Kumar et al., 2026
12	1998 Aug 18	(30.01, 80.04)	Malpa, Pithoragarh district	Uttarakhand (now)	Landslide	380	Kumar et al., 2027
13	1999 Mar 29th	(30.41, 79.42)	Chamoli District, UP	Uttarakhand (now)	Earthquake 6.8 Mw	100	Kumar et al., 2028
14	2005 Oct 08th	(34.48, 73.61)	Kashmir	Jammu & Kashmir	Earthquake 7.6 Mw	74,500	Kumar et al., 2029
15	2006 Feb 14th	(27.37, 88.36)	Sikkim	Sikkim	Earthquake 5.7 Mw	0	BMTPC, 2019
16	2010 Aug 06th	(34.15, 77.57)	Leh	Ladakh (now)	Cloudburst	257	BMTPC, 2019
17	2011 Sep 18th	(27.7, 88.2)	Sikkim Nepal border	Sikkim	Earthquake 6.8 Mw	60	Kumar et al., 2016
18	2012 July– Aug	(26.20, 92.93)	Assam	Assam	Floods	91	BMTPC, 2019

19	2012 Aug-Sep	(30.72, 78.43), (30.28, 78.98), (29.84, 79.76)	Uttarkashi, Rudraprayag & Bageshwar	Uttarakhand	Floods	52	BMTPC, 2019
20	2013 June 16th	(30.06, 79.01)	Uttaranchal	Uttarakhand (now)	Flood, Landslide, Cloud Burst	5748	Kumar et al., 2016
21	2014 Sep	(33.27, 75.34)	Jammu & Kashmir	Jammu & Kashmir	Flood, Cloud Burst	277	Kumar et al., 2016
22	2016 Jan 04th	(24.81, 93.93)	Imphal, Manipur	Manipur	Earthquake 6.7 Mw	8	BMTPC, 2019

137

138 The Himalayan region is among the most seismically active in the world due to the collision of
 139 the Indian and Eurasian plates. A series of four major earthquakes has occurred within a short
 140 span of 53 years (Srivastava et al., 2015); namely Shillong (1897), Kangra (1905), Bihar-Nepal
 141 (1934) and Assam-Tibet (1950). Tectonic activities in the mountains constantly threaten the
 142 stability of the mountains, being an active region. One of the most frequent natural disasters
 143 in the Himalayas occurs when large landslides occur, destroying infrastructures, destroying
 144 trees, and killing people. Landslides cause huge social and economic losses to mountain-
 145 dwelling populations.(Sarkar et al., 2015). The areas which are close to the River valley has
 146 witnessed a large number of mass movements during recent years (Srivastava et al., 2010).
 147 A recent flash flood, along with a debris flow at Kedarnath on 16-17 June 2013, which claimed
 148 over a thousand lives, was caused by cloudbursts and landslides breaching temporary dams
 149 along river valleys (Allen, 2015). More than 82 percent of the world's population lived on land
 150 affected by floods between 1985 and 2003 (Mouri et al., 2013). There is an increase in forest
 151 fire frequency globally, especially in Asia. There are major environmental and ecological
 152 impacts caused by wildfires, which can result in the fatalities of tens of thousands of people
 153 and massive property losses (Parajuli et al., 2020).

154 **2.3 Need of Study**

155 Without a comprehensive evaluation of multi-hazards, it is impossible to develop any concrete
 156 policy measures to combat the potential risk posed by multiple hazards.(Sekhri et al., 2020)
 157 IHR being prone to Multi Hazards (Kala, 2014), Risk Resilient Development planning is the
 158 only way to prepare Himalayan community from upcoming disasters.

159 It is well known that the Himalayas are a high-risk area for multi-hazards (Pathak et al., 2019),
 160 although fewer risk assessments have been conducted in the IHR region. An assessment of
 161 hazards generally focuses on a single threat, such as landslides, earthquakes, or flooding. As
 162 a result, physical processes are considered in isolation. In most areas of the Himalayas,
 163 hazards are interrelated and generate cascading effects or synergies which make the entire
 164 region vulnerable (Sekhri et al., 2020). Probabilistic risk frameworks have been proposed, but
 165 as a result of a lack of quality and quantity of data, these approaches are seldom feasible in

166 developing countries (Sanam et al., 2020). Furthermore, the existing risk assessment
167 models/tools for a specific hazard in the region has limited application and effectiveness from
168 a policy standpoint (Sekhri et al., 2020).

169 Researchers are involved in a number of research projects in IHR in the field of assessing the
170 risk of disasters in India, though there have been very few assessments of hazards associated
171 with the IHR region, none of which incorporate multi-hazards (Wester et al., 2019) In addition,
172 risk resulting from a single hazard is not applicable and cannot be considered effectively in
173 policy analysis in the region (Sekhri et al., 2020).

174 The comparative study of some of the most used survey forms to assess risk in India is shown
175 in the Table 2. Every survey form has its own unique features. In some cases, the focus is
176 largely on one particular hazard and the other hazards are minor. The detail of all the
177 mentioned survey forms will be explained later in Table 4 in this paper. It has been observed
178 from the Table 2 that none of the forms (SN 1 to 6) are focusing on Multi Hazard Risk
179 calculation/identification as per IHR Scenarios, which is not only prone to earthquakes, but
180 also prone to floods, landslides, high winds, industrial hazards and at building level falling
181 hazard (Non-Structural Hazard), fire and electrical hazards etc.

182 *Table 2: Comparison between survey forms used in India to assess Risk*

SN		1	2	3	4	5	6	7
Developed by/for		ARYA	FEMA	NDMA	IIT-B	HPSDMA	BMTPC	MH-RVS (Proposed)
Source: adapted from		Arya, 2006	FEMA, 2015	NDMA, 2020	Sinha & Goyal, 2001	Kumar et al., 2016	BMTPC, 2019	Author
Understanding	Pictorial					✓		✓
IHR is prone to Multi Hazard	Earthquake	✓	✓	✓	✓	✓	✓	✓
	Flood			✓		✓	✓	✓
	High Wind						✓	✓
	Landslide	✓	✓	✓		✓	✓	✓
	Fire and Electrical					✓		✓
	Industrial							✓
	Climate Change							✓
	Non-Structural /Falling Hazard	✓	✓	✓	✓	✓		✓

183

184 Furthermore, while working with data collection teams on the ground during DRR Projects, the
185 authors have observed that surveyors face several problems, such as the technically
186 advanced language of the existing survey form, which requires trained technical personnel to
187 fill out, and this leads to costly human resources. Secondly, no graphical explanation of the

188 form leads to understanding, which further leads to incorrect data collection. Thirdly,
189 Surveyors are not able to convey correct objective to the respondent, creates no interest to
190 response to reply further. Fourthly, most of the above-mentioned forms are not hill specific.
191 MHRA survey forms need to be made easy, simple, informative, with simple language or/and
192 visual explanation, for surveyors as well as respondents to get connected to it for giving and
193 receiving information.

194 Indian Himalayan Region is also the point of attraction for tourists and pilgrims globally, and
195 tourism plays an imperative role in enhancing the economy of the Himalayan state. Thus,
196 safety is the immense need of the government at various levels.

197 There is no such survey form for comprehensive database for the IHR Region for informed
198 decision-making, related to multi hazard and other aspects of sustainable hill development.
199 Considering the IHR scenarios, there is immense need for a Hill specific survey form, that can
200 help to gather important information from the field and help in Risk assessment for further
201 decision making, to prepare the hill community from future disasters.

202 **3 Multi Hazard Survey Framework**

203 *3.1 Survey Form design methodology*

204 The survey methodologies start with a few recommendations for designing a good survey, like
205 (1) the survey form should satisfy the objectives of the research, (2) there should appropriate
206 (but not very long) length of questionnaires covering all essential parts, (3) questions should
207 convey a single thought at a time, (4) language should be simple and easy to understand by
208 the surveyors as well as the respondent, (5) multiple choice questions are mostly preferred to
209 increase response rate, reduce time and patterned the responses, (6) The survey should be
210 concrete and conform to the respondent's perspective, (7) the use of unclear words should be
211 avoided (8) it should meet the survey logic i.e. there is no further progress or possibility of
212 further correspondence from the respondent, if the logic is flawed. It takes practice and
213 verification to ensure that when considering an option only the next logical question comes to
214 mind (Roopa and Rani, 2012).

215 *3.2 Methodology Adopted*

216 To gather beneficial and appropriate information related to multi-hazards in the Himalayan
217 region, careful attention must be given to the design of the questionnaire that covers all the
218 important contributing factors from various identified hazards and fulfils all the gaps identified
219 from the existing survey form and field experience. Designing an effective questionnaire, it
220 takes time, effort, and a variety of stages. The methodology to prepare the Multi-Hazard
221 Survey form for Indian Himalayan Region is shown in Fig. 2.

222 A number of Disaster Risk Reduction projects conducted in Indian Himalayan Region provided
223 Author 1 with a rare opportunity to be part of a Data Collection team. As a result of these
224 projects, author has been able to interact on the ground with hill communities and surveyors
225 and learned that there are several gaps in the existing survey forms (Section 3.4) from both a
226 Himalayan and surveyor perspective. MHRA Survey form contains all the gist of data collection
227 experience. This research paper is based on a comprehensive literature review (Section 3.3)
228 as well as field experience.

229 To ensure that the survey form was designed in accordance with Disaster Risk Assessment
230 requirements, Hill specific hazards, important components, question sequence and layout,
231 simple language, disaster sensitization, and two-way information sharing (giving and
232 receiving), some initial considerations were taken into account.

233 We have designed a draft MHRA survey form (Section 4.1) and applied it to some of the
234 buildings in five villages in Uttarakhand (Fig. 5). An initial pilot survey has been conducted at
235 10 schools (section 4.2) using the proposed survey form with content and graphical inputs.
236 The results and observations relating to the Pilot survey are discussed in sections 4.2 and 4.5
237 of this paper.

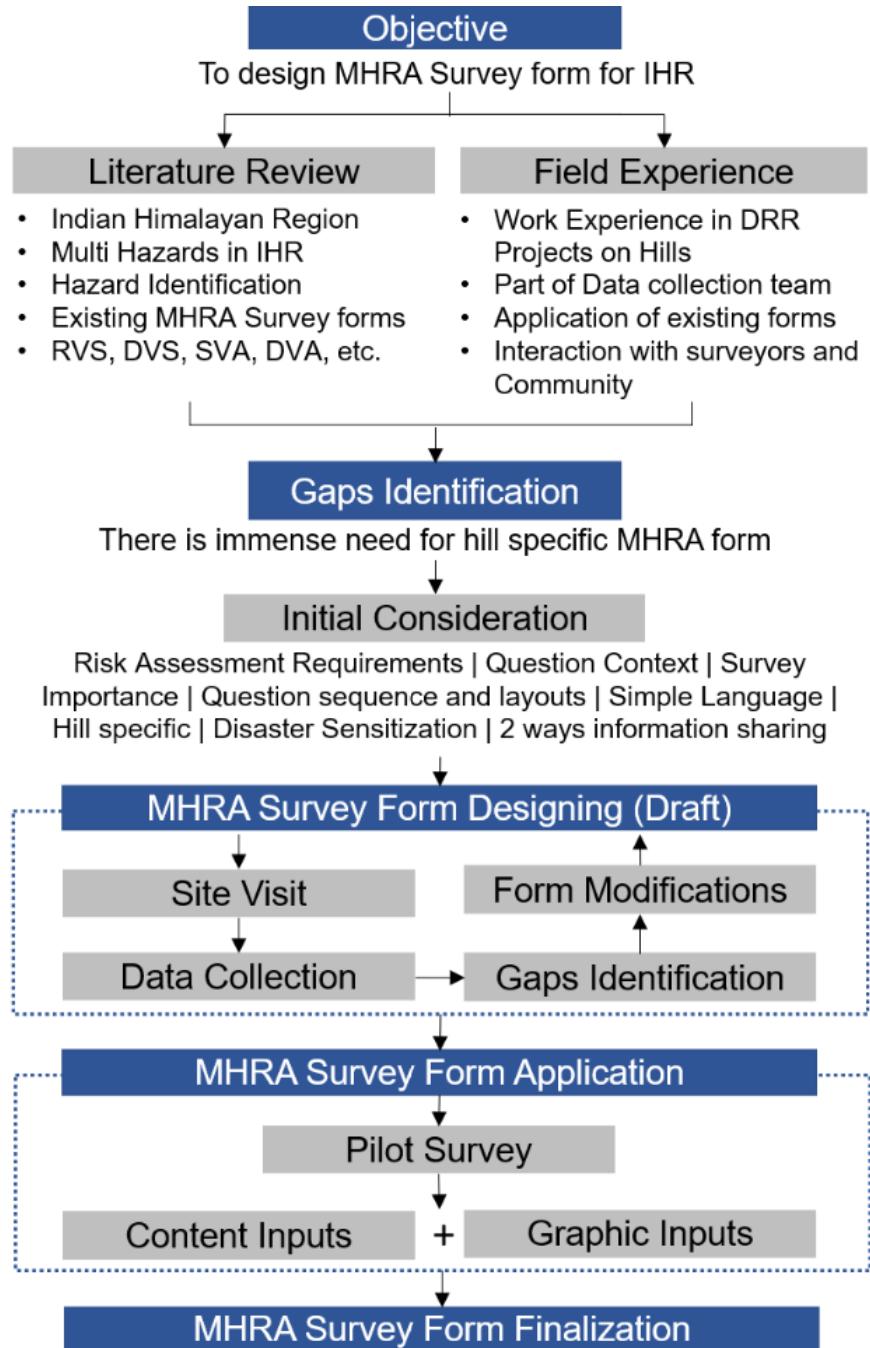
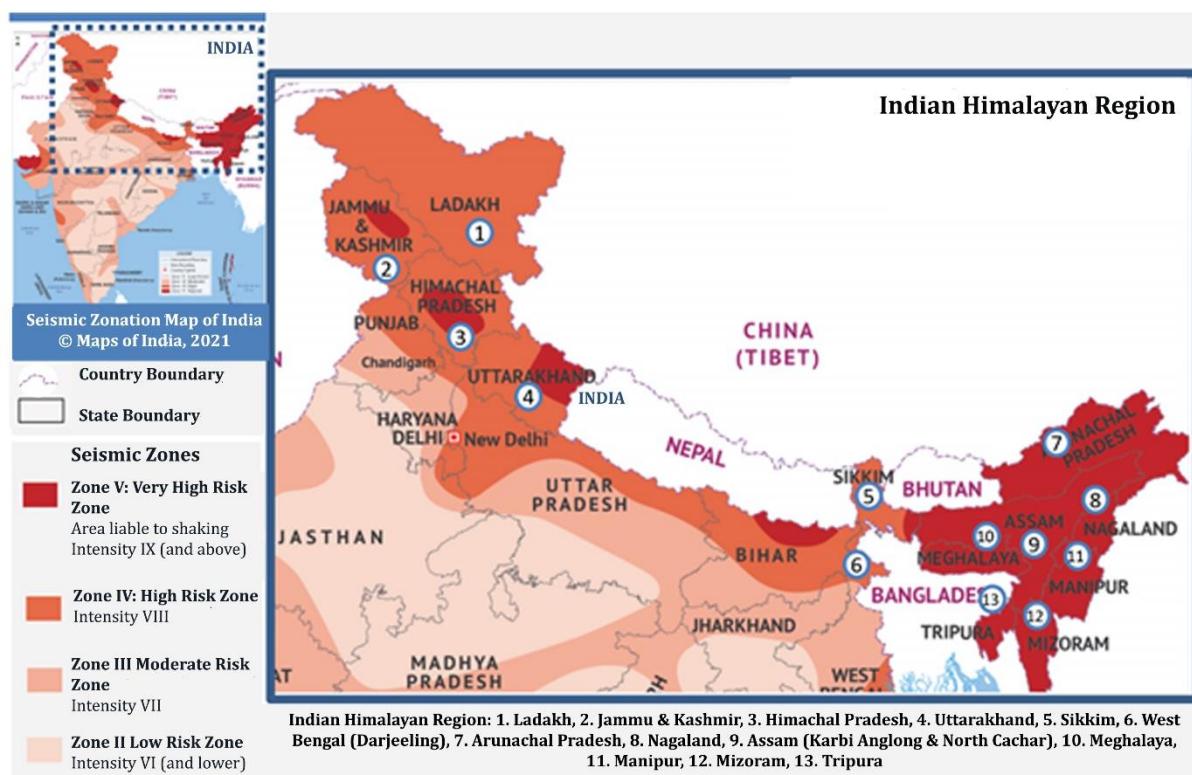


Figure 2: Methodology adopted by author


241 3.3 Existing Multi Hazard Risk Assessment (MHRA) Survey Forms

242 The spread of non-engineering construction, unrecognized construction and planning
 243 practices, reckless developmental activities, and a lack of awareness increase the impact of
 244 disasters. IHR being seismically active, as shown in the seismic zonation map of India, creates
 245 the importance of Risk assessment of existing buildings. Earthquakes are feared because
 246 they are so unpredictable. Yet, as we often hear, "Earthquakes don't kill, Buildings do"
 247 (attributed to Francesca Valli, Change Management Thought-Leader), and as the detailed

248 assessment is limited by the number of homes and the cost, one of the considering
249 approaches is Rapid Visual Screening (RVS) that is used for seismic vulnerability assessment.
250 Using this methodology, a risk assessment has been conducted for areas subjected to
251 earthquakes (Kumar et al., 2016).

252 **3.3.1 Seismic Zonation Map of India**

253 The first seismic zoning map of India was published in 1935 by the Geological Survey of India
254 (G. S. I.) (Fig. 3) (A. K. Mohapatra, 2010). Based on the damage earthquakes caused in
255 various parts of India, this map has undergone numerous modifications (IS-code1893-1, 2002)
256 (Marcussen, 2017), (Khattri et al., 1984) since its original creation As per the Seismic zonation
257 map, India is divided into four distinct seismic risk zones shown here by colour (Dunbar, 2003)
258 in Fig. 3 below:

259

260 *Figure 3: Seismic Zonation Map of India, Source: adapted from (pp. Map of India, 2021)*

261 **3.3.2 About RVS**

262 Applied Technology Council (ATC) developed the RVS method in the late 1980s and
263 published it in the FEMA: 154 in 1988. In later versions, it was revised in FEMA: 178-1989,
264 1992 (revised), FEMA: 310-1998, and FEMA: 154-1988, 2002 (revised), for rapid visual
265 screening of buildings. (Kumar et al., 2016)

266 Rapid Visual Screening (RVS) avoids the need for structural calculations by using a visual
267 method. An evaluator determines damageability grade by identifying (a) the primary structural

268 lateral load resisting system as well as (b) the structural features of the building that can impact
269 seismic performance in combination with that system. The process of inspecting, gathering
270 data, and deciding on the next course of action occurs on site and may last several hours,
271 depending on the size of the building (Arya, 2006; Arya, 2006b).

272 **3.3.2.1 Uses of RVS Results:**

273 The foremost uses of this technique concerning seismic advancement of existing buildings are
274 to assess a building's seismic vulnerability to categorize it further. It is used to determine the
275 structural vulnerability (damageability) of buildings and determine the seismic rehabilitation
276 requirements. In cases where further assessments are not considered necessary or are not
277 feasible, retrofitting requirements are simplified (to a collapse prevention level) (Arya, 2006a;
278 Arya, 2006b).

279 **3.3.3 Multi Hazard Risk Assessment used in India**

280 **3.3.3.1 RVS Methodology Proposed by Prof. Anand S Arya for Masonry Buildings**

281 This RVS procedure that was designed for the Indian context follows a grading system where
282 the screener identifies the primary load-resisting system of the building and determines
283 parameters that may be modified to improve seismic performance of the structure (NDMA,
284 2020)

285 Rapid Visual Screening form of Masonry Buildings developed by Prof. Anand S Arya consist
286 of zoning, according to Indian conditions, and buildings with importance are given
287 consideration. Also, special hazards (liquefiable area, landslide prone area, plan irregularities,
288 and vertical irregularities) and falling hazards are taken into account. Finally, a grading system
289 was performed in the buildings. Refer (Arya, 2006a) for detailed RVS survey forms for
290 masonry buildings.

291 **3.3.3.2 RVS Methodology Proposed by Prof. Anand S Arya for RC frame or Steel Frame**

292 The Rapid Visual Screening form of Reinforced Concrete frame and Steel Frame for Seismic
293 Hazards developed by Prof. Anand S Arya has 6 components (i) general information (ii)
294 Building typology based on foundation type, roof, floor, etc. (iii) Structural frame type (iv)
295 Special Hazard (v) Non-Structural building components (vi) Damageable Grades (Arya,
296 2006b).

297 Seismic safety features of RC Frame Buildings consist of parameters like Frame Action,
298 Presence of Soft Storey, Short Column Effect, Concept of Weak Beam Strong Column,
299 Pounding of Buildings, Building Distress and Other important features, Water Seepage,
300 Corrosion of Reinforcement, Quality of Construction, Quality of Concrete and non-structural

301 falling hazards. Refer (Arya, 2006a; Arya, 2006b) for detailed RVS Survey form for RC and
302 steel buildings.

303 *3.3.3.3 RVS Procedure developed by Dr. Sudhir K Jain*

304 In this method, a checklist for pre-screened buildings is prepared based on Indian conditions.
305 It is one of the first methodologies in India featuring a points system. Performance scores are
306 calculated based on factors such as zone, architectural considerations, structural parameters,
307 and geotechnical characteristics. In India, this method is used in many locations, with the first
308 applications being in Gujarat after the Bhuj earthquake (Jain et al., 2010).

309 *3.3.3.4 RVS form developed by NDMA 2020*

310 In the Disaster Management Act of 2005, a paradigm shift from Relief-centric approach to
311 Mitigation- and Preparedness-centric approach is sought, with continued emphasis on
312 proactive, holistic and integrated Response. With this Act in mind, NDMA initiated a series of
313 discrete, comprehensive, and integrated initiatives. Among the recommended actions was
314 assessing earthquake risk within the existing built environment.

315 NDMA developed this report to make end users aware of RVS's outcomes by presenting RVS
316 in clear and tangible terms. On the basis of discussions with the relevant domain experts,
317 NDMA have developed recommended forms for Pre-Earthquake and Post-Earthquake Level
318 1 Assessments of 7 building typologies (i. Reinforced Concrete Building, ii. Burnt Clay Bricks
319 Building, iii. Confined Masonry Building, iv. Random Rubble Masonry Building, v. Mud House,
320 vi. Dhajji Dewari, vii. Ekra House). A form is developed to categorize the different building
321 attributes into three categories: Red (High Risk), Yellow (Moderate Risk), and Green (Low
322 Risk) (NDMA, 2020).

323 *3.3.3.5 Seismic Vulnerability Assessment by Prof. Ravi Sinha and Prof. Alok Goyal*

324 Prof. Ravi Sinha and Prof. Alok Goyal from Indian Institute of Technology Bombay (IIT-B)
325 prepared a "National Policy for Seismic Vulnerability Assessment of Buildings and Procedure
326 for Rapid Visual Screening of Buildings for Potential Seismic Vulnerability". A key feature of
327 this procedure is that it allows a trained evaluator to conduct a walkthrough of the building to
328 determine vulnerability. It is compatible with GIS-based city databases, and can also be used
329 for a variety of other planning and mitigation tasks (Sinha and Goyal, 2001).

330 RVS analysed 10 different types of building, based on the materials and construction types
331 most commonly found in urban areas. There were both engineered and non-engineered
332 constructions (built according to specifications) in this category (Sinha and Goyal, 2001).

333 3.3.3.6 *Building Vulnerability form developed by HPSDMA & TARU*
334 A form originally prepared by TARU consultancy and the Himachal Pradesh State Disaster
335 Management Authority (HPSDMA) is shown in (Kumar et al., 2016). A building is visually
336 examined by an experienced screener as part of RVS to identify features that contribute to
337 seismic performance. This method is known as a 'sidewalk survey.' In this side walk survey,
338 checklists are provided for each of the five types of buildings i.e., RC frames, brick masonry,
339 stone masonry, Rammed Earth, and hybrid (Kumar et al., 2016).

340 3.3.3.7 *Vulnerability Atlas of India developed by BMTPC*
341 Building Materials and Technology Promotion Council (BMTPC) published the Vulnerability
342 Atlas of India as its first edition in 1997 (BMTPC, 2019). It was hailed as "useful tool for policy
343 planning on natural disaster prevention and preparedness, especially for housing and related
344 infrastructures". First of its kind, it provided a means for assessing not only district-level
345 hazards, but also the vulnerability and risks of housing stock. It was greatly utilized by State
346 Governments and their agencies in order to develop micro-level action plans on how to reduce
347 the impact of natural disasters since buildings and housing are commonly damaged or
348 destroyed due to natural disasters, resulting in life losses and disruptions to socio-economic
349 activities.

350 The revised Atlas 2019 reflects advances in scientific & technical knowledge, addition of new
351 datasets, results of disasters caused by earthquakes and cyclones, possible damage from
352 landslides, floods, thunderstorms, failures of roads and trains during disasters, changes in the
353 political map of the country, and new statistics on walling and roofing data of houses (BMTPC,
354 2019). Table 3 and Fig. 4 shows different Housing typologies used in BMTPC, based on wall
355 and roof type and material identified in India and also their Damage risk under various hazard
356 intensities.

357 *Table 3: Damage Risk to various Housing Category identified by BMTPC under various Hazard Intensities*
358 (*BMTPC, 2019*)

Category (Type of Wall and Roof)	Earthquake Intensity MSK				Wind Velocity m/s				Flood Prone
	\geq IX	VIII	VII	\leq VI	55 & 50	47	44 & 39	33	
A1. Mud wall (All roofs)	VH	H	M	L	VH	H	M	L	VH
A2.a. Unburned Brick Wall (Sloping roofs)	VH	H	M	L	VH	H	M	L	VH
A2.b. Unburned Brick Wall (Flat roofs)	VH	H	M	L	VH	H	M	L	VH
A3.a. Stone Wall (Sloping roofs)	VH	H	M	L	VH	H	M	L	VH
A3.b. Stone Wall (Flat roofs)	VH	H	M	L	H	M	L	L	VH
B.a. Burned Brick Wall (Sloping roofs)	H	M	L	VL	H	M	M	L	H
B.b. Burned Brick Wall (Flat roofs)	H	M	L	VL	M	L	L	VL	H
C1.a. Concrete Wall (Sloping roofs)	M	L	VL	NIL	H	M	M	L	L
C1.b. Concrete Wall (Flat roofs)	M	L	VL	NIL	L	VL	VL	VL	L

C2. Wood Wall (All roofs)	M	L	VL	NIL	VH	H	M	L	H
C3. Ekra Wall (all roofs)	M	L	VL	NIL	VH	H	M	L	H
X1. GI (Galvanised Iron) and other metal sheets (All roofs)	M	VL	NIL	NIL	VH	H	M	L	H
X2. Bamboo, Thatch, Grass, Leaves etc. (All roofs)	M	VL	NIL	NIL	VH	VH	H	L	VH
VH: Very High Risk; H: High Risk; M: Moderate Risk; L: Low Risk; VL: Very Low Risk									

359

Housing Category : Wall Types

Category - A : Buildings in field-stone, rural structures, unburnt brick houses, clay houses
Category - B : Ordinary brick building; buildings of the large block & prefabricated type, half-timbered structures, building in natural hewn stone
Category - C : Reinforced building, well built wooden structures
Category - X : Other materials not covered in A,B,C. These are generally light.
Notes: 1. Flood prone area includes that protected area which may have more severe damage under failure of protection works. In some other areas the local damage may be severe under heavy rains and choked drainage.
2. Damage Risk for wall types is indicated assuming heavy flat roof in categories A, B and C (Reinforced Concrete) building
3. Source of Housing Data : Census of Housing, GOI, 2011

Housing Category : Roof Type

Category - R1 - Light Weight (Grass, Thatch, Bamboo, Wood, Mud, Plastic, Polythene, GI Metal, Asbestos Sheets, Other Materials)
Category - R2 - Heavy Weight (Tiles, Stone/Slate)
Category - R3 - Flat Roof (Brick, Concrete)
EQ Zone V : Very High Damage Risk Zone (MSK > IX)
EQ Zone IV : High Damage Risk Zone (MSK VIII)
EQ Zone III : Moderate Damage Risk Zone (MSK VII)
EQ Zone II : Low Damage Risk Zone (MSK < VI)
Level of Risk : VH = Very High; H = High;
M = Moderate; L = Low; VL = Very Low

* Total No.of Houses excluding Vacant/Locked Houses

360 **Building Materials & Technology Promotion Council**

Peer Group, MoHUA, GOI

361 *Figure 4: Damage Risk and Housing category identified by BMTPC (BMTPC, 2019)*

362 **3.3.4 Multi Hazard Risk Assessment used Globally**

363 **3.3.4.1 FEMA 154**

364 The FEMA handbook demonstrates how to rapidly identify, inventory, and rank buildings that are at high risk of causing death, injury, or severe damage in the event of an earthquake. 365 Rapid Visual Screening (RVS) can be carried out with a short exterior inspection, lasting 15 to 366 30 minutes, by trained personnel using the data collection form in the handbook. The guide is 367 targeted at building officials, engineers, architects, building owners, emergency managers, 368 and citizens who are interested in the topics.

370 Its purpose was to provide an evaluation of the seismic safety of a large inventory of buildings 371 quickly and inexpensively, with minimal access to the buildings, and to identify those that 372 require more detailed examination. FEMA 154 was developed by ATC under contract to FEMA 373 (ATC-21 Project) in 1988. As with its predecessors, the Third Edition aims to identify, 374 inventory, and screen buildings that present a potential risk. This latest version includes major 375 improvements, such as: updating the Data Collection Form and including an optional more 376 detailed page, preparing additional reference guides, and including additional building types 377 that are common, considerations such as existing retrofits, additions to existing buildings, and 378 adjacency, and many others (FEMA, 2015).

379 3.3.4.2 *Flood Vulnerability Assessment survey*
380 The Flood Vulnerability Assessment survey form prepared by the Asian Institute of Technology
381 (AIT) Bangkok and Climate Technology Centre and Network (CTCN) (Peiris, 2015) has 5
382 Sections: (i) General Information (ii) Type of Building (iii) Flood damage and cost (iv) Flood
383 emergency response (v) Effect on livelihood and income and was designed for Residential,
384 Institutional, Commercial/Industrial damages and Infrastructure damages. Refer (Singh, 2005)
385 for detailed Survey form.

386 3.3.4.3 *Landslide Vulnerability Assessment survey*
387 Scientists and researchers focus more on researching landslide susceptibility and the hazard
388 component rather than assessing the vulnerability of buildings to landslides. Even when the
389 same construction material is used, construction practices vary across the country. Currently,
390 there is no standard method for determining building vulnerability by using indicators.

391 The parts covered by Landslide risk assessment survey forms are (i) General information (ii)
392 Building Function (iii) Vulnerability Indicators like Architectural Features, Material
393 Characteristics, Structural Features, Geographical features, and quality of Workmanship,
394 Construction & maintenance, etc. which are also covered during RVS and has been covered
395 in the proposed survey form CitSci, GIS based data collection app for landslide (Singh et al.,
396 2019).

397 3.4 *Features required for a Multi Hazard Survey Form for IHR*

398 3.4.1 **Gaps Identified in existing survey forms**

399 Existing Survey forms have their strengths & weaknesses. After studying various survey forms
400 for Risk assessment prepared by various national and international authorities, it is observed
401 that hill-specific survey forms that can take care of multiple aspects of risk and sustainability
402 assessment together do not exist. Available forms are complicated, not-so user friendly,
403 consisting of terminologies difficult to communicate and comprehend, no pictorial clues for
404 understanding, involve several rounds of calculations for coherent multi-hazard risk evaluation
405 using the data, and most importantly, they are not hill site-specific or designed for the Indian
406 Himalayan region.

407 Hills have their own situation, condition, geography, climate, development trends, construction
408 practices, culture, etc., and they are distinctly different from other regions. RVS is mostly used
409 in India to assess the visual structural vulnerability of the building, as it involves no structural
410 calculations. On the other hand, SVA (Simplified Vulnerability Assessment) and DVA (Detailed
411 Vulnerability Assessment) are for the detailed structural survey of a building, and therefore
412 more precise and use engineering information along with more explicit data on ground motion.

413 Data filling is not easy enough for the surveyor and requires a very high level of engineering
 414 knowledge, skills, and experience. Pictorial explanation from surveyor point of view can ease
 415 the communication. Most of the survey forms are focused on single hazard, (mostly for seismic
 416 evaluation of a building) irrelevant of multi hazard from Himalayan point of view, and how
 417 prone a building's location is to other hazards. Integration between risk understanding and
 418 sustainable development is too limited or non-existent. Thus, it has been observed that there
 419 is an immense need to design hill-specific questionnaires for multi-hazards risk assessment
 420 for Indian Himalayan Region.

421 **3.4.2 Comparative Study of some risk assessment survey forms mostly used in India**
 422 Table 4 shows the comparative analysis of Risk assessment survey forms developed by
 423 various organizations and mostly used in India with the proposed Multi-Hazard RVS. Forms
 424 have been compared on various sections like typology, General Information, History of
 425 Disasters, Site Conditions, Building geometry, structural and non-structural component of a
 426 building etc.

427 *Table 4: Comparative Study of some risk assessment survey forms mostly used in India*

		1	2	3	4	5	6	7
Developed by/for		ARY A	FEMA	NDM A	IIT-B	HPSDM A	BMTP C	MH-RVS (Proposed)
Source		Arya, 2006	FEMA, 2015	NDM A, 2020	Sinh a & Goya I, 2004	Kumar et al., 2016	BMTP C, 2019	Author
Typology	A1: Mud & Unburnt Brick			<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>
	A2: Stone Wall	<input type="checkbox"/>		<input type="checkbox"/>				
	B: Burnt Brick	<input type="checkbox"/>						
	C1: Concrete Wall	<input type="checkbox"/>						
	C2: Wood Wall		<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>
	X: Other Materials			<input type="checkbox"/>			<input type="checkbox"/>	<input type="checkbox"/>
	Steel	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>			<input type="checkbox"/>
General Information	About Building and owner	<input type="checkbox"/>		<input type="checkbox"/>				
	Sketch/Photo and drawings	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>			<input type="checkbox"/>
	Occupancy (Day & Night)	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>
	Cost of Construction					<input type="checkbox"/>		
	Construction quality and Maintenance		<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>
Disaster History	Seismic Zone		<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>
	Disaster History and Damage status					<input type="checkbox"/>		<input type="checkbox"/>
	Disaster cause					<input type="checkbox"/>		
	Retrofitting history							<input type="checkbox"/>
Site Condition	Location of building				<input type="checkbox"/>			<input type="checkbox"/>

	Site Condition							
Building Geometry	Dimension of Building							
	Shape of Building, floors	<input type="checkbox"/>		<input type="checkbox"/>				
	Re-entrant corners					<input type="checkbox"/>		<input type="checkbox"/>
Foundation	Type of Sub-Soil	<input type="checkbox"/>		<input type="checkbox"/>				
	Foundation detail	<input type="checkbox"/>				<input type="checkbox"/>		<input type="checkbox"/>
	Depth of ground water table	<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
Walls	Walls details	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
	Separation of walls at joint			<input type="checkbox"/>				<input type="checkbox"/>
	Wall failure observed			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
Earthquake Bands	Earthquake band details and status			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
Cracks	Cracks details			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	grade of cracks	<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
Openings	Opening(s) details			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	Frames details near opening							<input type="checkbox"/>
Roof and Floor	Type and material		<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
	Roof's attachment with walls			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	Failures observed					<input type="checkbox"/>		<input type="checkbox"/>
Pounding effect	Height of building			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	distance from closest building							<input type="checkbox"/>
	Quality of adjacent building		<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
Heavy weight on top	Type and positioning of Heavy weights					<input type="checkbox"/>		<input type="checkbox"/>
	Intact status with structure							<input type="checkbox"/>
Parapet	Parapet material			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	Parapet intact with structure			<input type="checkbox"/>				<input type="checkbox"/>
Overhang	Type of overhangs	<input type="checkbox"/>		<input type="checkbox"/>				
	length and intact status			<input type="checkbox"/>				<input type="checkbox"/>
Staircase	Staircase details	<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	Lift status							<input type="checkbox"/>
Column and Beam	Column Beam details			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	Beam with infill wall		<input type="checkbox"/>					<input type="checkbox"/>
	Connection and continuity	<input type="checkbox"/>		<input type="checkbox"/>				<input type="checkbox"/>
Basement	No. of basement					<input type="checkbox"/>		<input type="checkbox"/>
	Column and retaining Wall							<input type="checkbox"/>
Soft Storey	Soft Storey's details		<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
High Wind	Potential threat from wind							<input type="checkbox"/>
Landslide	Position of potential landslide	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>				<input type="checkbox"/>
	Stabilized slope status		<input type="checkbox"/>	<input type="checkbox"/>				<input type="checkbox"/>
	Barriers to rockfall			<input type="checkbox"/>				<input type="checkbox"/>
Industrial	Potential threat from Industrial Hazard							<input type="checkbox"/>
Fire	Fire Safety Status					<input type="checkbox"/>		<input type="checkbox"/>

	Location of potential fire threats							<input type="checkbox"/>
Climate Change	Understanding & Concern							<input type="checkbox"/>
Non-Structural Elements	Cantilever availability (Chimneys, Balconies, Parapet, Sunshades, claddings)	<input type="checkbox"/>		<input type="checkbox"/>				
	Other Non-Structural elements	<input type="checkbox"/>		<input type="checkbox"/>				
	No. of unattached Non-structural elements							<input type="checkbox"/>

: Concern (major/minor)

428

429 4 IHR Specific MHRA Survey Form Preparation

430 4.1 Survey Form Preparation

431 The proposed survey form is a modification of the Rapid Visual Screening (RVS) survey
 432 questionnaire, i.e., a form used for structural and non-structural components of a building that
 433 performs during an Earthquake. In the original RVS questionnaire no other hazards are
 434 considered. A building's location on a vulnerable site, its structural condition, and performance
 435 can lead to disastrous situations. The other hill-specific hazards are also incorporated into the
 436 proposed form to identify the risk components from multi-hazards. Whilst the Himalayan region
 437 is prone to earthquakes as per India's Seismic Zonation Map (Fig. 3), the proposed survey
 438 form also covers other hazards like landslide, flood, industrial explosion/emissions, fire
 439 vulnerability, hydro-climatic factors, etc., which will be addressed one by one in this paper.

440 4.2 Preliminary Survey

441 Before conducting the Pilot survey, a preliminary survey has been conducted to test the
 442 proposed form, research methodology, and identifying gaps in the existing survey form.

443 This small assessment also evaluated the RVS form with minor enhancements to evaluate its
 444 performance and confirm gaps, and to see if it can meet the requirement for risk assessment
 445 at other areas with similar geographical characteristics and conditions as experienced in the
 446 Indian Himalayan Region.

447 The Preliminary survey was conducted at 5 Gram Panchayats of Chinalisaur sub-district in
 448 Uttarkashi, Uttarakhand, namely Chinalisaur, Dhanpur, Dharasu, Hidhara, and Bagi, in
 449 October and November 2019, using Draft MHRA Survey form. Some of the pictures of the visit
 450 are provided in ig5.

451

452

Figure 5: View of Site selected for Pilot Survey

453 The preliminary survey was conducted to determine (1) Whether the questions are clearly
 454 framed? (2) Does it cover all the requirements as per hill communities? (3) Is the wording of
 455 the questions correct enough to lead to the desired outcomes? (4) Are the questions as well
 456 options for answers suggested hill specific or not? (5) Are the questions positioned in the most
 457 satisfactory order? (6) Do surveyors and respondents of all classes understand the questions?
 458 (7) Are the questions and their options self-explanatory or not? (8) Do the sections in the
 459 survey form cover risk assessment related questions for all identified hazards or not? (9) Are
 460 the questions as per construction practices and construction materials available on hills or
 461 not? (10) Is there any need to add some questions or specific, or do some need to be
 462 eliminated so as to improve the flow of the survey session. (11) Do the surveyor and
 463 respondent understand the importance of this survey or the objective behind this survey and
 464 responded in that way?

465 **4.2.1 Observations during Preliminary survey**

466 Feedback from the Preliminary study proved very helpful in determining the key gaps and
 467 shortcomings of the form design and in informing improvements to the proposed form design.
 468 Specifically (1) The preliminary study showed that a surveyor's observations of a project site,
 469 his or her understanding of each question, and his/her strategy for convincing the residents to
 470 provide accurate data played a significant role in risk assessment. (2) In some questions, the
 471 use of technical terms or difficult words, or questions designed to gather too much data at

472 once, discourage respondent interest in responding further and make the Surveyor
473 uncomfortable to proceed. (3) The questionnaire may not be self-explanatory and requires
474 someone with civil engineering training to fill it out. (4) Building geometry, construction
475 practices, construction materials, and development trends play an essential role during any
476 hazard, thus existing building related questions and options must be incorporated. (5) Survey
477 questions are developed primarily from observations made by survey and engineers as
478 opposed to responses from residents. (6) If the Surveyor is not familiar with the terminologies
479 and aims behind filling out the questionnaire, it leads to no response or respondents
480 sometimes loose interest to answer further. (7) An unclear survey vision, study purpose, and
481 inadequate training of the Surveyor will make it difficult to explain the importance of data
482 collection to the respondent, leading to unclear questions and less accurate responses. (8)
483 Surveyors should be trained enough to pick out the correct option from respondents' lengthy
484 responses. (9) Need of pictorial representation of answers/options for better understanding of
485 the Surveyor. (10) Different answers are obtained when questions are arranged
486 inappropriately or answers are arranged incorrectly. (11) Observing the interaction between
487 multiple hazard types in the same area is a challenging aspect of natural hazards risk
488 assessment.

489 *4.3 Proposed MHRA Form*

490 After the Preliminary survey conducted at the Chinyalisaur sub-district, significant points were
491 identified/observed that has been incorporated in the Proposed survey form of Multi-Hazard
492 at hill locations with all the simple content and graphical inputs for better understanding.
493 Hence, the modifications from a Multi-hazard risk point of view and surveyors' point of view
494 can be seen in the proposed form (Table 5 and 6).

495 These amendments and the full survey form are presented below.

496 *Table 5a: Proposed MHRA Survey form (Part A)*

Rapid Visual Screening (RVS) form	
SURVEYOR	
1	Name of the Surveyor
2	Mobile no. of Surveyor
3	Inspection Data
4	Inspection Time

497

GENERAL INFORMATION					
5	Name of Building/Owner				
6	Address				
7	Town/City, District and State				
8	Coordinates				
9	Total No. of Building Blocks present in premises				
10	Name of Block to be surveyed				
11	Draw Sketch of Site Plan				

498

12	Function of Block	Residential (Individual House)		Residential (Apartments)		Residential (Other)
		Educational (School)	Educational (College)	Educational (Institute/ University)		
		Lifeline (Hospital)	Lifeline (Police Station)	Lifeline (Fire Station)	Lifeline (Power Station)	Lifeline (Water/ Sewage Plant)
		Commercial (Hotel)	Commercial (Shopping)	Commercial (Recreational)		Commercial (Other)
		Office (Govt.)		Office (Private)		
		Mixed Use (Residential and Commercial)		Mixed Use (Residential and Industrial)		Mixed Use (Other)
		Industrial (Agriculture)		Industrial (Live Stock)		Industrial (Other)
				0 to 10	11 to 50	51 to 100
13	Occupancy in day time	0 to 10	11 to 50	51 to 100	101 to 1000	more than 1000
14	Occupancy in night time	0 to 10	10 to 20	51 to 100	101 to 1000	more than 1000
15	Name of Owner					
16	Name of Contact Person					
17	Contact No. of Contact Person					
18	Year of Construction:					
19	Structural or Construction drawings available?	Yes		No		
20	Total built up area (sq.m)					
21	No. of Floors	Low Rise (1 to 3)	Mid Rise (4 to 7)		High Rise (7 and above)	
22	What is the overall Construction quality	Excellent	Good	Average	Poor	Very Poor
23	What is the overall Maintenance Status	Excellent	Good	Average	Poor	Very Poor

499

500

501

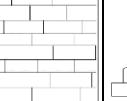
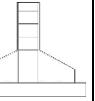
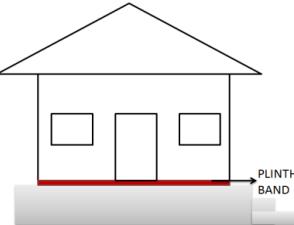
DISASTER HISTORY					
24	Seismic Zone	Zone V	Zone IV	Zone III	Zone II
25	Did this area faced any Major disaster?:	Yes		No	
26	If Yes in Q.25, Which Disaster?:	Earthquake	Flood	Landslide	Wind
					Industrial
		Fire	Other	If Other, Specify	
27	If Yes in Q.25, in which date/year				
28	If Yes in Q.25, What is the major damage status	No effect	Minimum Effect	Medium Effect	Maximum Effect
29	Is the building Retrofitted/ Renovated ever?	Yes		No	
30	If Yes in Q.29, Year of last renovated?				

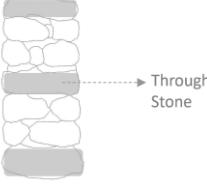
502
503

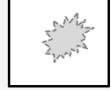
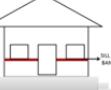
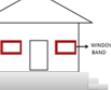
SITE CONDITION					
31	Location of Building:	Isolated	Internal Corner		End
32	Slope of Ground:	Flat Terrain	Gentle Slope	Steep Slope	Terraced land
33	Cut & Fill Material:	RCC	Hybrid		Other
34	Is there Visible cracks on the ground	Yes, Many		Yes, few	No
35	Is there any open space in the property?	Yes, more than 1500 sq.ft		Yes, less than 1500 sq.ft	No
36	What is the total area of Open spaces in the campus (in sq.ft) :				

Note: RCC: Reinforced Cement Concrete; H: House position

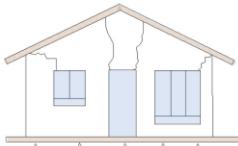
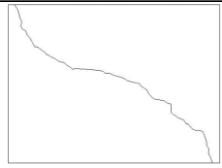
504


BUILDING GEOMETRY					
37	Shape of Building Block in Plan:	Square	Rectangle (L<=3B)	Narrow Rectangle (L>3B)	Rectangle with courtyard
		T-Shaped	U-Shaped	E-Shaped with Central courtyard	H-Shaped




		Not stepped	Stepped near centre	Stepped near the end	Heavy upper floor
38	Shape of building Block in Elevation: No. of Reentrants corner in Plan				
39	No. of Reentrants corner in Plan				
40	Is extra strength available in reentrants corner?	Yes		No	
41	No. of Floors	only G	G+1	G+2	G+3
					$\geq G+4$

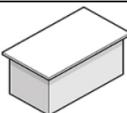
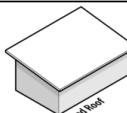
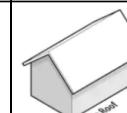
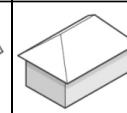
505
506



Note: G: Ground floor

FOUNDATION					
		Rock	Gravel or Sand	Soft or Medium	Other
42	Type of Sub Soil:				
		Strip	Raft	Isolated	
43	Type of Foundation:				
		Pile	Combined	Other	
507					

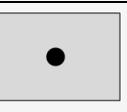
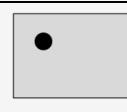
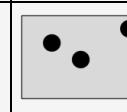
		Adope	Stone	Brick	RCC	Other	
44	Basic Construction material of Foundation:						
45	Mortar Material in Foundation:	Dry Masonry	Mud	Lime	Cement	Other	
46	Plinth beam available?	Yes	No				
47	Sinking in Foundation?	Yes	Partial	No			
48	If Yes or Partial in Q.47, What is the Reason for Sinking?	Cause of nearest water resources	Without any water resources		Other (specify)		
508	49 Depth of ground water table					Don't know	
WALL							
50	Type of Wall:	Brick	Stone	Confined	RCC	Other	
				Only Column available & No Beams	Column & Beam, both available		
51	Is through-stone used in Stone Wall?	Yes	Partial	No			
52	What is the Wall material?	Adobe or Mud Wall	River Boulder wall	Quarry Stone wall	Dressed wall	fired brick wall	
509		hollow concrete block wall			Other		

510	53	Type of mortar	Dry masonry	Mud	Lime	Cement	Other
	54	Thickness of interior Wall (in mm):	< 115 mm	115 mm (4.5")	230 mm (9")	230 to 450 mm	> 450 mm
	55	Length of longest interior wall (in meter)					
		Max. Height of the wall (in meters)					
	56	Thickness of exterior Wall (in mm):	< 115 mm	115 mm	230 mm	230 to 450 mm	> 450 mm
	57	Length of longest exterior wall (in meter)					
58	How many Separation of walls at T and L junction?						
511	512	Wall Failure type observed:	Bulging of wall	delaminating of wall	tilting of walls	dampness in wall	No failure
No. of walls with these failures							
Note: RCC: Reinforced Cement Concrete							
EARTHQUAKE BANDS							
513	59	Which of the Earthquake bands available?	Plinth Band	Sill Band	Lintel Band	Roof Band	
			Gable Band	Door Band	Window Band	Corner Band	No Band
	60	If Bands available in Q.59, What is the Material of Band:	Wood	Reinforced brick	Reinforced concrete	Other (Specify)	
	61	If Bands available in Q.59, Thickness of Band (in mm):					
	62	If bands available in Q59, Are the bands continuous?	Yes	Partial	No		Don't know





514

CRACKS						
63	Type of Cracks:	Structural cracks		Superficial cracks	N/A	
	Note: Superficial cracks are seen in one side of wall, on the other hand structural cracks can be seen on both side of the wall					
64	Type of Structural cracks:	Diagonal cracks	Vertical cracks	Horizontal Cracks	Remark	
	Specify, No. of Cracks in each case					
	Specify, Length of cracks in each case (in cm)					
65	Are there any cracks on	Grade 5	Grade 4	Grade 3	Grade 2	Grade 1
		Column	Beam	Near Openings	Near corner	No cracks

515
516




Note: MS: Mild Steel, SS: Stainless Steel

OPENING					
66	Is there any opening(s) larger than 50% of the length of the wall	Yes, all		Yes, few	No
67	Are there any opening close to wall junction or corner or to floor/roof	Yes, all		Yes, few	No
68	Is frames available around the door?:	Yes		Partial	No
69	If Yes/Partial in Q.68, What is the material of Frame used:	Wooden	MS/SS	other (Specify)	
70	Is frames available around the window	Yes		Partial	No
71	If Yes/Partial in Q.70, What is the material of Frame used:	Wooden	MS/SS	other (Specify)	
72	Is Grills available around the window?:	Yes		Partial	No

ROOF AND FLOOR						
73	Type of Roof:	Flat Roof	One side slope	two side slope	four side slope	Other (specify)
			 Sloped Roof	 Gabled Roof		
74	Material of Roof:	RCC		Reinforced brick slab	Tile or slate	CGI Sheets
		Jack arch roof		Wooden	Other (Specify)	
75	Are the roof anchored into the wall	Yes		Partial	No	
76	Type of Roof failures observed	Sagging	Cracks	Dampness	Other	No failure
77	Type of Flooring	Mud	Stone	Concrete	Wood.bam boo	Mosaic floor tile

Note: RCC: Reinforced Cement Concrete; CGI: Corrugated Galvanized Iron

POUNDING EFFECT DETAILS					
78	Height of Structure /Block (in meters)				
79	Is there any adjacent building, which is very close (no gaps) to this building	Yes	with very little gap		
80	Distance from nearest buildings (in meters)				
81	Quality of adjacent building	Very Good	Good	Moderate	Poor
					Very Poor

HEAVY WEIGHT ON TOP					
82	Type of Heavy weight present on the top of the building?	water tank (Concrete)	Water tank (Plastic)	Car Parking on the top of the building	
		Heavy generator/ machine	Communication tower	Roof top Garden	Other
83	If Yes in Q.82, What is the Position of Heavy weight?	Centric	Eccentric	Distributed	Corners
84	Are the heavy weight intact properly with structure?	Yes		Partial	No

517
518

519

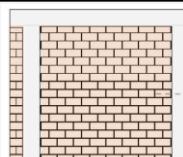
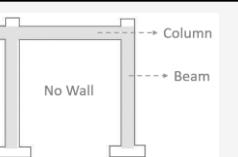
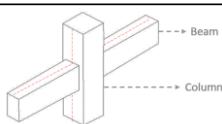
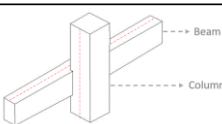
520

PARAPET WALL				
85	Is Parapet wall present at roof	Yes	Partial	No
86	If Yes or Partial in Q.85, What is the Material of Parapet Wall?	Lightweight (Wooden, MS/SS)	Heavy weight (RCC, Brick)	Remark
87	Intact with structure	Yes	Partial	No

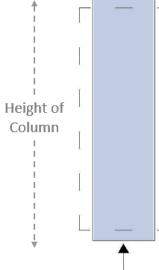
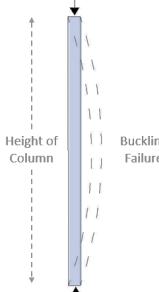
521
522

Note: MS: Mild Steel, SS: Stainless Steel, RCC: Reinforced Cement Concrete

OVERHANGS				
88	Overhangs present	Yes	No	
89	Length of overhangs (meters)			
90	Overhangs with structural	Yes	No	
91	Overhangs with Brackets /beam	Yes	No	

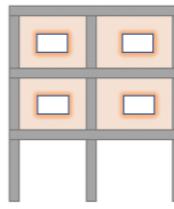
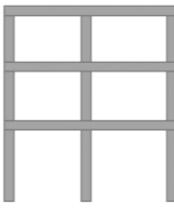
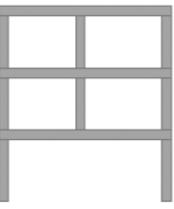
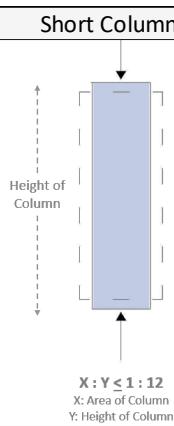
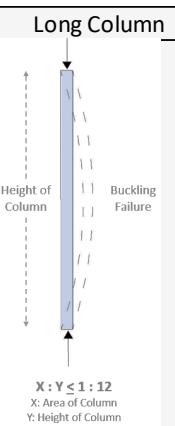




STAIRCASE				
92	Staircase present	Yes	No	
93	Staircase placed at symmetrical location in plan of the bulding	Symmetrical	Un-symmetrical	
94	If Yes in Q.92, What is the Material of Staircase?	RCC	Brick	Wooden
				MS/SS
95	If Yes in Q.68, Is Staircase intact with building structure?	Yes	No	
96	Lift Status?	Intact	Not Intact	Not Available

523



Note: MS: Mild Steel, SS: Stainless Steel, RCC: Reinforced Cement Concrete

COLUMN				
97	Column available?	Yes	No	
98	If yes in Q.97, What is the type of Column?	Short Column	Long Column	
		$X : Y \leq 1 : 12$ X: Area of Column Y: Height of Column	$X : Y \leq 1 : 12$ X: Area of Column Y: Height of Column	
99	Material of Column	Concrete	Masonry (Brick/ Stone)	Wood
		Steel	Other	

526






BEAM				
100	Beam available?	Yes		No
101	If Yes in Q.100., Beam with infill walls available?	Yes		Partial
			Infill Wall	
102	If Yes in Q.100., Beam – Column connections?	Centric		Eccentric
			Centric Beam Column Joints	
103	Beam -Beam Connection?	Centric		Eccentric
104	If Yes in Q.100., Material of Beam	Concrete	Masonry (Brick/ Stone)	Wood Steel Other

527

BASEMENT				
105	Is Basement Available?	Yes		No
106	If Yes in Q.105, No. of Basement			
107	Effective height of column in basement?	Short Column		Long Column
			Crushing Failure	
108	Retaining wall available ?	Yes		No
109	If Yes in Q.108, What is the Material of the retaining wall ?	RCC	Brick Stone	Other

528
529

Note: RCC: Reinforced Cement Concrete

SOFT STOREY					
	A soft story building is a multi-story building in which one or more floors have windows, wide doors, large unobstructed commercial spaces, or other openings in places where a shear wall would normally be required for stability as a matter of earthquake engineering design.				
		Stiff and Strong upper floors due to masonry infills	The columns in one storey longer than those above	Soft storey caused by discontinuous column	
110	Soft Storey available ?	Yes		No	
111	Effective height of column in basement?	<p>Short Column</p>		<p>Long Column</p>	

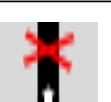
530

112	Is shearwall available in Soft Storey?	Yes	Partially	No
113	Retaining wall available ?	Yes		No
114	If Yes in Q.113, What is the Material of the retaining wall ?	RCC	Brick	Stone
				Other

531

532

MULTI HAZARD SURVEY FORM					
FLOOD					
1	Is the site low lying or prone to water logging?	Yes			No
2	Is there any water body near the site?	Yes			No
3	What is the type of water body and whether it is prone to flooding?	Lake, flood prone	Lake, not flood prone	River, flood prone	River, not flood prone
					N/A
4	What is the distance from the nearest water body?	0 - 250 M	250 - 500 M	500 - 1000 M	1 KM - 2 KM
					2 KM and above
5	What is the potential damage level due to the expected duration of flooding?	Very High	High	Medium	Low
					Very Low
6	Is the plinth made up of non-erodible material?	Yes			No
7	What is the height of the plinth? (in meters)				


533

HIGH WIND					
8	What is the average wind speed in this location	Maximum Speed		Minimum Speed	
9	Are there trees and/or towers too close to the building that may fall on it during high wind/cyclone?	can stop building from functioning		threat can damage building but not hamper functioning	No threat
10	Do the door and windows have a good and accessible latch?	if neither doors or windows have accessible and good latches.		If some of the doors and windows have accessible and good latches	If both doors and windows have accessible and good latches
11	Is there a covered walkway for building to building connection?	no covered walkway		weak covered walkway	strong covered walkway
LANDSLIDE					
12	Is there any hills near to the building, which can cause damage due to landslide	Yes			No
13	If Yes in Q.12, what is the distance of the base off the Hill from building?	Less Than 30 M	30 M - 100 M	100 - 250 M	250 - 500 M
					More than 500 M
14	Is the slope near the building stabilized?	Yes			No
15	Are there any large rocks or potential falling hazards near the building?	Yes			No
16	Are there barriers to rockfall ?	Yes			No
INDUSTRY					
17	Is there any industry near to the building, which can cause damage due to industrial hazard, fire etc.	Yes			No
18	If Yes in Q.17, how many active industries are there?	Yes			No
19	What is the distance of nearest Industry from building?	0 - 100 M	100 - 250 M	250 - 500 M	500 - 1000 M
					More than 1 km
20	What is the distance of nearest Petrol Pump from building?	0 - 100 M	100 - 250 M	250 - 500 M	500 - 1000 M
					More than 1 km

534

535

536

FIRE					
537	21	Are the access roads from main street wide enough to allow one fire engine to reach, reverse and return to the main road?	two or more such access roads		No access road
538	22	Are there potential fire threats within 30 meters of the building such as petrol pump, electrical substation, combustible materials store, etc.?	Yes		No
539	23	Is there adequate open assembly area for people during any emergency?	enough space	inadequate open space (1-4 square feet per student)	negligible
537	24	Is main meter box and switch box located in the staircase/ entrance lobby/ passage/ corridor?	Yes		No
537	25	Are the main meter box and switch box enclosed in a metallic box?	Yes		No
538	26	Is there more than 1 staircase which can be used as a fire escape staircase ideally at maximum distance from the other staircase?	Yes		No
538	27	In case of Public building or Life line building, Are there proper signages in the campus for Emergency Exit, Fire equipment etc.?	Yes		No
539	28	Is the kitchen located at a safe distance from classrooms, staircase, passage corridor?	Yes, beyond 50 m	Yes, within 20-50 m	Yes, within 10-20 m
					adjacent
539	29	Is the ceiling material safe from fire?	Yes		No
539	30	What is the status of fire safety equipment in the building?	100% - Fire extinguisher in each floor of each block	75% - Fire extinguisher in 3/4 th of all floors	50% - Fire extinguisher in half of all floors
					25% - Fire extinguisher in 1/4 th of all floors
					0% - No Equipment

31	Is the transformer too close to the compound wall or inside the building?	Yes		No	
32	Are there overhead cables running through or near premises/building?	Yes		No	
33	If there is a forest area near the building?	Yes		No	
34	What is the distance of the tree line from the building?				
35	Is there any combustible construction material present in the building?	Yes		No	

CLIMATE CHANGE

36	How much do you think climate change threatens your personal	Very Likely	Likely	Neutral	Unlikely	Very Unlikely
37	Which issues are of more concern in your opinion? (On the scale of 10, more marks to most concerned)	Climate change/Global Warming	Poverty	Over-population	Un-employment	Crime
		Infectious Diseases	Economic Situation	Unplanned Infrastructure	Deforestation	Air pollution
		Water pollution	Tourism growth	Poor Waste Management	Extinction of species	Traffic
38	In your opinion, What is the reason that the temperature on earth has been rising over the past decade?	Human Activities	Natural Causes	No Change	Don't know	Other
39	How much do you think the following has contributed to global climate change? (on scale of 10, more marks to most contributer)	Deforestation	Overpopulation	Tourist growth	Landuse Landcover	Greenhouse gases
		Industrialization	Melting of Ice	Warming of water surface	Other	Don't know

Non Structural Risk/ Falling Hazard							
40	List of Nonstructural elements which are vulnerable to falling or not attached properly	Element	Need Attention	Number	Element	Need Attention	Number
		Fan			Wooden Frame at Roof		
		Tubelight			Door		
		Electrical Wires			Window Frames		
		AC			Heavy Machinaries		
		Open Shelve (Glass)			Cylinder in Open space		
		Open Shelve (Iron)			Board		
		Wardrobe (Wooden)			Ventilator		
		Wardrobe (Iron)			Fire Extinguisher		
		HeavyTable			Cantilever Chimneys		
		Heavy Frames			Cantilever Balconies		
		Heavy Furnitures			Cantilever Sunshades		
		Heavy weight on top of almirah			Other		
41	No. of Exits in the Room:						
42	What is the status of Electrical Safety in the Room	GOOD		OK		POOR	

542

543

544 4.4 Risk Score Computation

545 After all the parametric studies from various Indian Standard codes and Reports ((NDMA, 546 2020), (URDPFI, 2015); IS-13828 (1993); IS-4326 (1993); IS-1893-1 (2016); IS-13935, 2009; 547 IS-15988 (2013)) on ideal building parameters and weak components of a building from the 548 design, construction, site condition, surrounding condition, location and hazard points of view, 549 risk scores were decided on an average basis on 24 components separately (refer section 4.5 550 of this paper) for better judgment and understanding. Risk scores were derived from the 551 proposed survey form by appropriately weighing the data points against a risk number chart 552 with higher weightage given to higher risk (Chouhan et al., 2022b). The data was then 553 aggregated on a scale of ten (Table 7). For example, if a building answers all weighted MCQs 554 with the highest risk option, it will be scored 10/10 and similarly for low risk and moderate risk. 555 All questions in the questionnaire were not weighted; those with ambiguous risk consequences 556 were left un-weighted to be studied objectively. The risk scores intend to give a relative idea 557 of where the risk lies within a building and among buildings to enable prioritization during risk 558 mitigation planning.

559 Table 7: Risk Score Computation, Source adapted from (Chouhan et al., 2022b)

Risk Score	0 to 2	2.1 to 4	4.1 to 6	6.1 to 8	8.1 to 10
Risk Status	Very low	Low	Moderate	High	Very high

Building Status	Very Safe	Safe	Moderately Safe	Unsafe	Very Unsafe
Recommendation	Need Maintenance	Need Attention and Maintenance	Need Attention and SVA	Required DVA and Retrofitting	Required Retrofitting Urgently
Under the supervision of experts					
SVA: Simplified Vulnerability Assessment, DVA: Detailed Vulnerability Assessment					

560

561 **4.5 Pilot Survey**

562 After finalization of the proposed MHRA Survey form, a Pilot survey was conducted at 10
 563 schools of Uttarakhand state. The results of the building level survey and campus level survey
 564 are shown below in section 4.5.1. and 4.5.2.

565 **4.5.1 Result of Rapid Visual Screening Survey**

566 As per IS Code 13935 (2009), the key goal of seismic reinforcement is to improve a weakened
 567 building's seismic resilience as it is being repaired, making it stronger in the event of potential
 568 earthquakes. The individual results of 17 components of RVS are elaborated, which highlights
 569 the weaker part that needs attention in a building.

570 Table 8: *Result of RVS of 10 schools through Proposed form*

SN	Risk Status	Very Low Risk	Low Risk	Moderate Risk	High Risk	Very High Risk	Total
1	Site Condition	54 %	13 %	29 %	2 %	2 %	100 %
		32	8	17	1	1	59 blocks
2	Building Geometry	34 %	27 %	14 %	20 %	5 %	100 %
		20	16	8	12	3	59 blocks
3	Foundation	27 %	22 %	51 %	0 %	0 %	100 %
		16	13	30	0	0	59 blocks
4	Wall	36 %	37 %	27 %	0 %	0 %	100 %
		21	22	16	0	0	59 blocks
5	Earthquake Bands	0 %	0 %	7 %	10 %	83 %	100 %
		0	0	4	6	49	59 blocks
6	Cracks	2 %	83 %	0 %	0 %	15 %	100 %
		1	49	0	0	9	59 blocks
7	Openings	63 %	17 %	19 %	1 %	0 %	100 %
		37	10	11	1	0	59 blocks
8	Roof	7 %	3 %	10 %	78 %	2 %	100 %
		4	2	6	46	1	59 blocks
9	Pounding Effect	25 %	0 %	5 %	39 %	31 %	100 %
		15	0	3	23	18	59 blocks
10	Heavy Weight on top	95 %	0 %	2 %	0 %	3 %	100 %
		56	0	1	0	2	59 blocks
11	Parapet	93 %	0 %	7 %	0 %	0 %	100 %
		45	0	4	0	0	59 blocks

12	Overhang	53 %	0 %	15 %	0 %	32 %	100 %
		31	0	9	0	19	59 blocks
13	Staircase	80 %	0 %	3 %	12 %	5 %	100 %
		47	0	2	7	3	59 blocks
14	Column	51 %	0 %	12 %	0 %	37 %	100 %
		30	0	7	0	22	59 blocks
15	Beam	32 %	2 %	7 %	7 %	52 %	100 %
		19	1	4	4	31	59 blocks
16	Basement	100 %	0 %	0 %	0 %	0 %	100 %
		59	0	0	0	0	59 blocks
17	Soft Storey	100 %	0 %	0 %	0 %	0 %	100 %
		59	0	0	0	0	59 blocks

571

572 4.5.2 Result of Multi-Hazard Survey

573 The survey was conducted by considering the campus of the school as one unit. It primarily focuses on the location of school premises under a vulnerable zone or not, if yes, to which 574 kind of hazard. It solves the question of how the school campus is prepared. The result of 575 multi-hazard survey is shown in the [Table 9](#) below:

577 [Table 9: Result of Multi-Hazards of 10 schools through Proposed form](#)

SN	Risk Status	Very Low Risk	Low Risk	Moderate Risk	High Risk	Very High Risk	Total
1	Flood Risk	10%	50%	30%	0%	10%	100%
		1	5	3	0	1	10 Schools
2	High Wind Risk	70%	20%	10%	0%	0%	100%
		7	2	1	0	0	10 Schools
3	Landslide Risk	100%	0%	0%	0%	0%	100%
		10	0	0	0	0	10 Schools
4	Industrial Risk	100%	0%	0%	0%	0%	100%
		10	0	0	0	0	10 Schools
5	Fire Risk	0%	20%	60%	20%	0%	100%
		0	2	6	2	0	10 Schools
6	Non-Structural Risk	0%	0%	0%	80%	20%	100%
		0	0	0	8	2	10 Schools

578

579 The photos of the 10 schools where pilot survey was conducted is shown in the [Fig. 6](#) below:

580

581 *Figure 6: Photo of the 10 schools*

582 **5 Discussion:**

583 **5.1 Pilot Survey**

584 The IHR requires effective and standardised Multi-Hazard Risk Assessment, and for that
 585 purpose a customized designed Survey Form has been designed to capture the unique
 586 characteristics of hill communities and assets. The proposed form performed reasonably well.
 587 Effectiveness & data collection is comfortable from both ends i.e., Respondents & Surveyor.
 588 The questions are properly framed in various sections, the language is simple and it is easy
 589 to interpret. The pictorial explanation makes it easy for surveyors to correct input data, as its
 590 explanation is self-explanatory. The objective behind the data collection is well clear to the
 591 Respondents and Surveyor.

592 **5.2 Key features of the proposed MHRA survey form**

593 The key features of the proposed form are it is specially designed for data collection in the
 594 Indian Himalayan region with risk of earthquake, flood, high wind, industrial hazard, non-
 595 structural risk, fire vulnerability and climate change awareness. As the value addition, the
 596 proposed survey form consist of questions related to climate change also, as the promotion of
 597 self-mobilisation and action is enhanced by awareness; it increases enthusiasm and support.
 598 It is therefore crucial to raise awareness about climate change adaptation in order to manage
 599 the impacts of climate change, increase adaptive capacity, and reduce overall vulnerability.

600 The proposed survey form is very useful for any type of study related to Hazard Risk
 601 assessment in hills. Time taken to complete the questionnaire, i.e. the length of the
 602 questionnaire is good enough i.e. 10 minutes for the trained civil engineer and 17 minutes for
 603 the trained non-engineering background surveyor. With practice, the surveyor can reduce
 604 time. The language of the form is simple and specific, i.e. one answer on one dimension is
 605 required, it considers all possible contingencies when determining a response and it is
 606 designed in a way that it collects more & more accurate information in less time.
 607 Questionnaires permit the collection and analysis of quantitative data in a standardized
 608 manner, ensuring their internal consistency and coherence. The question sequence is clear
 609 and smooth moving. By sequencing questions properly, the chances of misinterpreting

610 individual questions are greatly reduced. The pictorial options make it comfortable for the
611 surveyor to fill the answer by looking at the building.

612 The survey form is divided into sections so that only one thought can be conveyed at a time.
613 It includes the advanced version of RVS that covers risk status for foundation, wall, roof,
614 openings, beam, column, site conditions, etc. of a building. It is covering all the points required
615 for building analysis in RVS. It covers questions related to all identified hazards that are directly
616 indirectly contributing to risk factors. It covers all the required questions as per hill condition,
617 situation, climate, geography, construction practices, construction materials, etc. The format,
618 including the font and layout, is good enough to read by the surveyor. Before going into the
619 field, the surveyor must require a reading of the full survey form carefully with all terminologies
620 clear. It includes non-structural risk survey questions. The safety of occupants in a building
621 following an incident can be at risk due to reduced capacity of structural components or
622 damage to non-structural components. This hill-specific MHRA questionnaire survey may act
623 as a risk sensitization tool.

624 *5.3 Result of Pilot Survey*

625 It can be seen that the detailed multi-hazard risk assessment will help the schools to identify
626 the potential threats presented in the building as well as premises and the steps to retrofit the
627 structure.

628 Due to the region's strong earthquake zonation, RVS and NSRA (Non-Structural Risk
629 Assessment) data suggest high structural and non-structural vulnerability in almost all the 10
630 schools (figure 7), which assumes greater significance. On the other hand, schools need to
631 improve their fire safety measurement and trainings. High wind and floods pose a prominent
632 moderate to high risk. Industry and landslides, on the other hand, pose no risk. The risk of fire
633 arises from a shortage of fire safety equipment and structural issues such as the absence of
634 an alternate staircase, the incorrect placement of fire-risk properties, etc. Fire disasters have
635 the potential to be catastrophic, but this should be a top priority as we advance. The wind is a
636 significant concern in this region because it is vulnerable to frequent windstorms. High-speed
637 winds pose a risk in the form of hazard trees/ towers, flying objects weakly latched
638 doors/windows.

639 Heavy furniture (tables, cabinets) and hanging electrical items/wire products face a
640 considerable risk of falling in the case of a tragedy in different rooms and labs. Falling hazards
641 can obstruct escape routes and injure people as they collide with them during minor seismic
642 shaking/earthquakes. When a disaster strikes, it's crucial for students and workers to have as
643 little disruption as possible during the critical reaction time. Mitigation measures primarily

644 involve simple fixes of non-structural elements with the structural element (wall and floor) and
645 are hence, for the most part, low-cost solutions.

646 Overall, the total risk is rated moderate on the risk scale considered by the authors after
647 structural and non-structural factors.

648 **6 Conclusion**

649 The Indian Himalayan region is facing disaster every year with significant loss of life and
650 property, as it is very prone to multi-hazards. Thousands of studies, research, and projects
651 are funded nationally and internationally to minimize the loss and prepare the community to
652 face the upcoming disaster.

653 A questionnaire is the backbone for any survey, which is the base for all types of research
654 work for better accuracy. This article describes why there is a need for a hill-specific survey
655 form that focuses on the multi-hazards in hills and hill's existing scenarios. It then described
656 the steps of how a Hill-specific Multi-Hazard Risk Assessment Survey form was developed,
657 validated through pilot survey, and tailored specifically for hill communities.

658 This article identifies gaps in the existing survey form used in India for risk assessment and
659 highlights the problem faced by the surveyors on ground while filling these survey forms. The
660 proposed form is a self-explanatory, pictorial, simple, easy to understand, covers hill specific
661 important components and it addresses several hazards such as earthquakes, floods, high
662 wind, landslides, industrial hazard, fire vulnerability and non-structural risk in the building.

663 The proposed survey form designed and applied under this study will help all the stakeholders
664 to collect better information from the field and made it easy for the surveyors to understand
665 even for non-technical person. This form will also identify the weak components of a building,
666 construction practices, their development trend, and vulnerability of the location, so that future
667 construction can be planned, considering the risk factors and vulnerable zones. Most of the
668 assessment criteria for multi-hazard risks are met by the proposed survey form. The more
669 accurate the data, the better will be its results.

670 The preliminary survey conducted at Chinyalisaur district of Uttarakhand validates the
671 questionnaire and survey form, and provided invaluable feedback now incorporated in to the
672 final survey form design. Through preliminary and pilot surveys it has been observed that the
673 proposed form is designed in a way that it can collect more accurate information in less time.
674 Questionnaires permit the collection and analysis of quantitative data in a standardized
675 manner, ensuring their internal consistency and coherence. The language and sequence of
676 questions is designed for clear and easy communication. Pictorial explanations of questions,

677 the unique feature, provides easy flow of information between the respondents and surveyors.
678 Thus, this hill-specific MHRA questionnaire survey may act as a risk sensitization tool.

679 The survey form is divided into various sections that covers firstly building specific questions
680 as buildings play crucial roles during any hazard, and secondly location specific questions that
681 cover the vulnerability of buildings towards other hazards. The result of the pilot survey
682 highlights the risk status for various components of a building which will help further in utilizing
683 the retrofitting and renovation budget in fruitful and planned way. On the other hand, the result
684 of the pilot survey also shows location wise vulnerability i.e., vulnerability of the building
685 towards other hazards that can help further in decision making related to disaster reduction,
686 preparedness and planning strategies at that location for that particular identified hazard. It
687 will also help to understand the development trend in that particular location and take action
688 for future development strategies.

689 The suggested form is a proposed version of Rapid Visual Screening (RVS), which can assess
690 the risk of any structure and includes all structural and non-structural components that respond
691 during a seismic event. It also includes information about the building's sensitivity to possible
692 danger zones such as landslides, floods, wind, and industrial hazards.

693 This study has the scope of application in other Asian countries with Himalayas like Nepal,
694 Bhutan, China and Pakistan. Its international application will enhance the survey form and
695 scope for future research. The proposed survey form will not only act as self-sensitization for
696 the building owners at micro level but will also have good scope at regional level i.e., macro
697 level, when results of all the buildings will be on single screen. The data collected using this
698 form can be used in any study related to Multi-Hazard Risk Assessment. It can be used by
699 civil engineers as well as non-civil engineering background people. People can self-assess
700 their building. To do this effectively, it is crucial to reinforce the networks of science,
701 technology, and decision-makers and create a sustainable technological outcome for disaster
702 risk reduction.

703 **Acknowledgment**

704 This research was supported by National Mission for Himalayan Studies (NMHS), Project
705 Grant No. NMH_1334_DMC and CoPREPARE, Project Grant no. IGP2020-24/COPREPARE
706 – funded by UGC. We are indebted to the local residents who actively participated in the
707 household survey. The authors are grateful to Mr. Tom Burkitt, from DHI, for supporting
708 editorial and proofreading.

709 **Data availability Statement**

710 This article is part of doctoral research and the data collection has been done by the first
711 author physically on-site. The data is available from the authors on the request basis.

712 **Disclosure statement**

713 No potential conflict of interest was reported by the authors.

714 **References**

715

716 Allen, S. K., Rastner, P., Arora, M., Huggel, C., and Stoffel, M.: Lake outburst and debris flow
717 disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic
718 predisposition, *Landslides*, 13(6), 1479–1491. doi:10.1007/s10346-015-0584-3, 2015.

719 Aksha, A. K., Resler, L. M., Juran, L., and Carstensen, L. W.: A geospatial analysis of multi-
720 hazard risk in, *Geomatics, Nat. Hazards Risk*, 11(1), 88–111. doi:
721 10.1080/19475705.2019.1710580, 2020.

722 Arya, A. S.: Rapid Visual Screening of RCC Buildings, Prepared Under GOI – UNDP Disaster
723 Risk Management Programme, Ministry of Home Affairs, India, pp 14 pp., 2006a

724 Arya, A. S.: Rapid Visual Svreening of Masonry Buildings, *GOI – UNDP Disaster Risk
725 Management Programme*, 13935, 17–41 pp., 2006b

726 BMTPC.: Vulnerability Atlas of India: 3rd edition, Ministry of Housing and Urban Affairs,
727 Government of India, India, 478 pp., <https://vai.bmtpc.org/>, 2019

728 Buck, Kyle. D., and Summers, J. Kelvin.: Application of a multi-hazard risk assessment for
729 local planning local planning, *Geomatics, Nat. Hazards Risk.*, 11(1), 2058-2078,
730 <https://doi.org/10.1080/19475705.2020.1828190>, 2020.

731 Chandel, V. B. S., and Brar, K. K.: Seismicity and vulnerability in Himalayas : the case of
732 Himachal Pradesh, India, *Geomatics, Nat. Hazards Risk.*, 1(1), 69-84, doi:
733 10.1080/19475701003643441, 2010.

734 Chouhan, S., Narang, A., and Mukherjee, M.: Multi-Hazard Risk Assessment of Schools in
735 Lower Himalayas: Haridwar District, Uttarakhand, India, EGU General Assembly 2022,
736 Vienna, Austria, 23–27 May 2022, EGU22-4333, <https://doi.org/10.5194/egusphere-egu22-4333>, 2022a.

738 Chouhan, S., Narang, A., and Mukherjee, M.: Multihazard risk assessment of educational
739 institutes of Dehradun, Uttarakhand, Int. J. Disaster Resil. Built Environ., ISSN: 1759-5908,
740 <https://doi.org/10.1108/IJDRBE-08-2021-0091>, 2022b.

741 COI-Census of India: <https://censusindia.gov.in/census.website/>, last access: 16 July 2022.,
742 2011

743 Disasters in Himalayan Region: <https://library.oapen.org/handle/20.500.12657/22932>, last
744 access: 16 July 2022., 2007.

745 Dunbar, P.K., Bilham, R.G., and Laituri, M.J.: Earthquake Loss Estimation for India Based on
746 Macroeconomic Indicators, Risk Science and Sustainability, Edited by: Beer, T., Ismail-Zadeh,
747 A., NATO Science (Vol 112), Springer, Dordrecht, 163-180, https://doi.org/10.1007/978-94-010-0167-0_13, 2003.

749 FEMA.: Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook: 3rd
750 edition, Federal Emergency Management Agency, Washington, 388 pp., 2015.

751 Gerlitz, J. Y., Macchi, M., Brooks, N., Pandey, R., Banerjee, S., and Jha, S. K.: The
752 Multidimensional Livelihood Vulnerability Index – an instrument to measure livelihood
753 vulnerability to change in the Hindu Kush Himalayas, Clim. Dev, 9(2), 124-140, doi:
754 [10.1080/17565529.2016.1145099](https://doi.org/10.1080/17565529.2016.1145099), 2016.

755 Goodrich, C. G., Prakash, A., and Udas, P. B.: Gendered vulnerability and adaptation in Hindu-
756 Kush Himalayas: Research insights, Environ. Dev., 31, 1-8,
757 <https://doi.org/10.1016/j.envdev.2019.01.001>, 2018.

758 Gautam, M. R., Timilsina, G. R., and Acharya, K.: Climate Change in the Himalayas: Current
759 State of Knowledge, World Bank Policy Research Working Paper No. 6516, SSRN, 64 pp.,
760 2013.

761 Gaur, V. S., and Kotru, R.: Sustainable Tourism in the Indian Himalayan Region, Report of
762 Working Group II, NITI Aayog-Government of India, India, 100 pp., 2018.

763 Hackl, J., Adey, B. T., and Heitzler, M.: An Overarching Risk Assessment Process to Evaluate
764 the Risks Associated with Infrastructure Networks due to Natural Hazards,
765 Int. J. Perform. Eng., 11(2), 153-168, doi: [10.23940/ijpe.15.2.p153.mag](https://doi.org/10.23940/ijpe.15.2.p153.mag), 2015.

766 IS-code13828-1993: Indian Standard Improving Earthquake Resistance of Low Strength
767 Masonry Buildings-Guidelines, Indian Standard Codes- guidelines, Bureau of Indian
768 Standards, New Delhi, 22 pp., <https://archive.org/details/gov.law.is.13828.1993>, 2008.

769 IS-code13935-2009: Indian Standard Seismic Evaluation, Repair And Strengthening Of
770 Masonry Buildings-Guidelines (First Revision), Indian Standard Codes- guidelines, Bureau of
771 Indian Standards, New Delhi, 44 pp., <https://archive.org/details/gov.in.is.13935.2009>, 2009.

772 IS-code1893(1)2002: Indian Standard Criteria for Earthquake Resistant Design of Structures
773 Part 1 General Provisions and Buildings (Fifth Revision), Indian Standard Codes- guidelines,
774 Bureau of Indian Standards, New Delhi, 45 pp.,
775 <https://archive.org/details/gov.in.is.1893.1.2002>, 2002.

776 IS-code1893(1)2016: Indian Standard Criteria for Earthquake Resistant Design of Structures
777 Part 1 General Provisions and Buildings (Fifth Revision), Indian Standard Codes- guidelines,
778 Bureau of Indian Standards, New Delhi, 44 pp., <https://archive.org/details/1893Part12016>,
779 2016.

780

781 IS-code4326-1993: Indian Standard Earthquake Resistant Design and Construction of
782 Buildings - Code of Practice (Second Revision), Indian Standard Codes- guidelines, Bureau
783 of Indian Standards, New Delhi, 41 pp., <https://archive.org/details/7.ls.4326.1993>, 1993.
784 Jain, S. K., Mitra, K., Kumar, M., and Shah, M.: A Rapid Visual Seismic Assessment Procedure
785 for RC Frame buildings in India, in: Proceedings of the 9th U.S. National and 10th Canadian
786 Conference on Earthquake Engineering, Toronto, Ontario, Canada, 25-29 June 2010,
787 Paper No 972, doi: 10.13140/2.1.2285.0884, 2010.

788 Kala, C. P.: Deluge , disaster and development in Uttarakhand Himalayan region of India-
789 Challenges and lessons for disaster management, Int. J. Disaster Risk Reduct., 8, 143-152,
790 doi: 10.1016/j.ijdrr.2014.03.002, 2014.

791 Khattri, K. N., Rogers, A. M., Perkins, D. M., and Algermissen: 'A seismic hazard map of india
792 and adjacent areas', Tectonophysics, 108(1-2), 93-108, 111-134. doi:
793 [https://doi.org/10.1016/0040-1951\(84\)90156-2](https://doi.org/10.1016/0040-1951(84)90156-2), 1984.

794 Kumar, S. A., Rajaram, C., Mishra, S., Kumar, R. P., and Karnath, A.: Rapid visual screening
795 of different housing typologies in Himachal Pradesh, India, Nat Hazards, 85(3), 1851-1875,
796 doi: 10.1007/s11069-016-2668-3, 2016.

797 Mohapatra, A. K., and Mohanty, W. K.: An Overview of Seismic Zonation Studies in India, in:
798 Indian Geotechnical Conference, GEOtrendz, 16-18 December 2010, 175-178, 2010.

799 Marcussen, E.,: Explaining the 1934 Bihar-Nepal Earthquake : The Role of Science , Astrology
800 , and “ Rumours” In: Schenk, G. (eds) Historical Disaster Experiences. Transcultural
801 Research – Heidelberg Studies on Asia and Europe in a Global Context. Springer, Cham.,

802 241-266, doi: 10.1007/978-3-319-49163-9, 2017.

803 Map of India: <https://www.mapsofindia.com/maps/india/seismiczone.htm>, last access: 16
804 January 2022., 2021.

805 MHA-Ministry of Home Affairs: https://www.mha.gov.in/division_of_mha/disaster-management-division, last access: 16 July 2022., 2011.

806

807 Mouri, G., Minoshima, D., Golosov, V., Chalov, S., Seto, S., Yoshimura, K., Nakamura, S.,
808 and Oki, T.: Probability assessment of flood and sediment disasters in Japan using the Total
809 Runoff-Integrating Pathways model, Int. J. Disaster Risk Reduct., 3, 31-43,
810 <https://doi.org/10.1016/j.ijdrr.2012.11.003>, 2013.

811 NDMA: A Primer on Rapid Visual Screening (RVS) Consolidating Earthquake Safety
812 Assessment Efforts in India, Manual and Guidelines, National Disaster Management Authority,
813 Government of India, India, 75 pp., 2020.

814 NITI Aayog: Report of Working Group II Sustainable Tourism in the Indian Himalayan Region
815 https://www.niti.gov.in/writereaddata/files/document_publication/Doc2.pdf. Last access: 25
816 January 2022., 2018.

817 NMHS- National Mission on Himalayan Studies: <https://nmhs-himal.res.in/login.php>, last
818 access: 16 July 2022., 2019.

819 Parajuli, A., Gautam, A. P., Sharma, S. P., Bhujel, K. B., Sharma, G., Thapa, P. B., Bist, B. S.,
820 and Poudel, S.: Forest fire risk mapping using GIS and remote sensing in two major
821 landscapes of Nepal, Geomatics, Nat. Hazards Risk., 11(1), 2569-2586,
822 <https://doi.org/10.1080/19475705.2020.1853251>, 2020.

823 Pathak, R., Negi, V. S., Rawal, R. S., and Bhatt, I. D.: Alien plant invasion in the Indian
824 Himalayan Region: state of knowledge and research priorities, Biodivers. Conserv., 28(12),
825 3073-3102, <https://doi.org/10.1007/s10531-019-01829-1>, 2019.

826 Peiris, T. A.: Flood Risk Assessment for Dungsum Chu Basin in Samdrup Jonkhar, Data
827 Collection Report, Climate Technology Centre and Network (CTCN) and Asian Institute of
828 Technology (AIT), Bhutan, 33 pp., 2015.

829 Rehman, A., Song, J., Haq, F., Mahmood, S., Ahamad, M. I., Basharat, M., and Mehmood, M.
830 S.: Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and
831 Frequency Ratio Techniques in the Northwest Himalayas, Pakistan, Int. J. Remote Sens,
832 14(3)-554, 1-31, <https://doi.org/10.3390/rs14030554>, 2022.

833 Roopa, S., and Rani, M.: Questionnaire Designing for a Survey, Journal of Indian Orthodontic
834 Society, 46(4), 273-277, doi: 10.1177/0974909820120509s, 2012.

835 Sanam, K. A., Lynn, M. R., Luke, J., and Laurence, W. C. Jr.: A geospatial analysis of multi-
836 hazard risk in Dharan, Nepal, Geomatics, Nat. Hazards Risk., 11(1), 88-111,
837 <https://doi.org/10.1080/19475705.2019.1710580>, 2020.

838 Sarkar, S., Kanungo, D. P., and Sharma, S.: Landslide hazard assessment in the upper
839 Alaknanda valley of Indian Himalayas, Geomatics, Nat. Hazards Risk., 6(4), 308-325,
840 <http://dx.doi.org/10.1080/19475705.2013.847501>, 2015.

841 Sekhri, S., Kumar, P., Fürst, C., and Pandey, R.: Mountain specific multi-hazard risk
842 management framework (MSMRMF): Assessment and mitigation of multi-hazard and climate
843 change risk in the Indian Himalayan Region, Ecol. Indic., 118, 106700, doi:
844 10.1016/j.ecolind.2020.106700, 2020.

845 Sharma, S., Roy, P. S., Chakravarthi, V., Srinivasarao, G., and Bhanumurthy, V.: Extraction
846 of detailed level flood hazard zones using multi-temporal historical satellite data-sets – a case
847 study of Kopili River Basin , Assam , India', Geo Nat Hazards Risk., 13(1), 2227-2251, doi:
848 10.1080/19475705.2016.1265014, 2017.

849 Siddique, M. I., Desai, J., Kulkarni, H., and Mahamuni, K.: Comprehensive report on Springs
850 in the Indian Himalayan Region, Report number: ACWA/Hydro/2019/H88, Advanced Center
851 for Water Resouces Development and Management, India, 198 pp., doi:
852 10.13140/RG.2.2.12104.06408, 2019.

853 Singh, J. S.: Sustainable development of the Indian Himalayan region: Linking ecological and
854 economic concerns, Current Science, 90(6), 784–788, <http://www.jstor.org/stable/24089189>,
855 2005.

856 Singh, A., Kanungo, D. P. and Pal, S.: Physical vulnerability assessment of buildings exposed
857 to landslides in India, Nat Hazards, 96(2), 753–790. doi: 10.1007/s11069-018-03568-y. 2019.

858 Sinha, R., and Goyal, A.: A National Policy for Seismic Vulnerability Assessment of Buildings
859 and Procedure for Rapid Visual Screening of Buildings for Potential Seismic Vulnerability,
860 Report, Indian Institute of Technology Bombay, Mumbai, 12 pp., 2001.

861 Srivastava, H. N., Verma, M., Bansal, B. K., and Sutar, A. K.: Discriminatory characteristics of
862 seismic gaps in Himalaya, Geomatics, Nat. Hazards Risk., 6(3), 224-242,
863 <http://dx.doi.org/10.1080/19475705.2013.839483>, 2015.

864 Srivastava, V., Srivastava, H. B., and Lakhera, R. C.: Fuzzy gamma based geomatic modelling
865 for landslide hazard susceptibility in a part of Tons river valley, northwest Himalaya, India.
866 Geomatics, Nat. Hazards Risk., 1(3), 225–242. doi:10.1080/19475705.2010.490103, 2010.

867 UNDRR.: <https://www.undrr.org/terminology#R>, last access: 30 January 2022.

868 URDPFI.: Urban and Regional Development Plans formulation and implementation (URDPFI)
869 Guidelines, 1, Town and Country Planning Organization, Ministry of Urban Development,
870 Government of India, 447 pp., 2015.

871 Wester, P., Mishra, A., Mukherji, A., & Shrestha, A. B. (Eds).: The Hindu Kush Himalaya
872 Assessment, Springer Nature, Nepal, 627 pp., <https://doi.org/10.1007/978-3-319-92288-1>,
873 2019.