1 2 3	Design and Application of a Multi- Hazard Risk Rapid Assessment Questionnaire for Hill Communities in the Indian Himalayan Region
4	Shivani Chouhan ^{1*} , Mahua Mukherjee ²
5 6 7 8 9	¹ Research Scholar, Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, India ² Professor, Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, India *Corresponding Author: Shivani Chouhan (s_chouhan@dm.iitr.ac.in)
11	*Corresponding Author:
12 13 14 15 16 17	Name: Ms. Shivani Chouhan, <u>Email:</u> s_chouhan@dm.iitr.ac.in, Telephone: +91-9675457229, +49-1744969778 Postal Address: Centre of excellence in disaster mitigation and management, IIT Roorkee, Roorkee Uttarakhand, 247667, India

ABSTRACT

The Indian Himalayan Region (IHR) is prone to multiple-hazards and suffers great loss of life and damage to infrastructure and property every year. Poor engineering construction, unplanned and unregulated development, and relatively low awareness and capacity in communities for supporting disaster risk mitigation is directly and indirectly contributing to the risk and severity of disasters.

A comprehensive review of various existing survey forms for Risk assessment has found that the survey questionnaires themselves have not been designed or optimised, specifically, for hill communities. Hill communities are distinctly different from low-land communities, with distinct characteristics and susceptibility to specific hazard and risk scenarios. Previous studies have, on the whole, underrepresented the specific characteristics of hill communities, and the increasing threat of natural disasters in the IHR creates an imperative to design hillspecific questionnaires for multi-hazards risk assessment.

The main objective of this study is to design and apply a hill-specific risk assessment survey form that contains more accurate information for hill communities and hill-based infrastructure and allows for the surveys to be completed efficiently and in less time. The proposed survey form is described herein and is validated through a pilot survey at several locations in the hills of Uttarakhand, India. The survey form covers data related to vulnerability from Earthquake (Rapid Visual Screening), Flood, High Wind, Landslide, Industrial, Fire Hazard in the building, Climate Change and Non-Structural Falling Hazard. The proposed form is self-explanatory, pictorial with easy terminologies, and is divided into various sections for better understandingof the surveyor etc.

- The application process confirmed that the survey questionnaire performed well and met expectations in its application. The form is readily transferrable to other locations in the IHR and could be internationalised and used throughout the Himalaya.
- 43 **Keywords:** Survey, Questionnaire Design, Multi-Hazard, Rapid Visual Screening, Himalaya

44 **1** Introduction

45 The Indian Himalayan is considered a significant part of the world's mountain ecosystems 46 (Singh, 2005). The Himalayas are geologically active, delicate, and vulnerable to both natural 47 and human-made processes due to their structural instability and maturity (Kala, 2014). 48 Numerous hazards interact at most locations, resulting in cascading or synergetic effects 49 (Aksha et al., 2020). The Indian Himalayan Region (IHR) being prone to multiple hazards 50 suffers great loss of life and damage to infrastructure and properties every year (Chouhan et 51 al.,2022a). Multi-hazard frequency has risen in recent decades, resulting in massive socio-52 economic losses. There has been a constant rise in the number of deaths, property losses, 53 and damage to infrastructure and facilities (Chandel and Brar, 2010). According to UNDRR 54 (UNDRR, n.d.), the multi-hazard concept refers to "(1) the selection of multiple major hazards 55 that the country faces, and (2) the specific contexts where hazardous events may occur 56 simultaneously, cascadingly or cumulatively over time, and taking into account the potential 57 interrelated effects."

Poor engineering and construction, reckless development, human intervention, unrecognized practices, irresponsible development initiatives, and a lack of knowledge are directly and indirectly contributing to the risk and severity of disasters (Chouhan et al., 2022b). Many natural disasters have become human-made phenomena as a result of the spread of irresponsible construction practices. Such disasters have a devastating socio-economic impact on the country's economy, putting even more strain on an already stressed economy (Disasters, 2007).

Various research work, disaster risk assessment studies and, implementation projects are being executed by national and international organizations for disaster risk reduction in the Himalayas. The data collection for any risk assessment in this difficult terrain is a crucial task, as correct information documentation has played major significant role that directly or indirectly lead to an influence in correct assessment of the risk factor (Chouhan et al.2022b). 70 Surveys using a well-crafted questionnaire is a proven method in the research fraternity. 71 Questionnaires are the backbone of every survey when it comes to data collection. Using data, 72 one can gain a detailed understanding of a community's hazard profile, vulnerability 73 interactions and their contribution to risk reduction (Buck and Summers, 2020). The survey 74 information is required to be coherent for data analysis since they lead to critical decisions at 75 many levels, represent the site's vital characters and society's expectations and requirements 76 too. All of these outcomes hinge, of course, on the creation of a robust site-specific survey 77 form. A well designed and executed MHRA can lead to more robust strategies for disaster risk 78 reduction (Kala, 2014; Sekhri et al., 2020) and can facilitate by prioritizing development 79 planning decisions.

After studying existing survey forms and practical field survey at various location in Indian Himalayas, author founds that the existing MHRA survey forms used in India have some lacuna from hills point of views as Himalayas have different geography, cultural, development practices, hazard profile etc. (Chouhan et. al., 2022b). A close evaluation of the existing survey questionnaires reveals that there is a need for the IHR-specific survey questionnaire form to facilitate a MHRA, which should be easy to understand, pictorial, and that creates a two-way disaster sensitization of giving and getting information from the community.

In this research paper, the journey to design and application of the proposed Hill specific
MHRA survey form has been describe. The pilot survey using the proposed survey form has
been conducted at 10 schools in Uttarakhand state of India and its results identify various risk
indicators in a building as well as school campus.

91 2 Background

92 2.1 Defining the Indian Himalayan Region

93 The Indian Himalayan Region (IHR) straddles the northern latitudes of 26 20' and 35 40', and 94 the eastern latitudes of 74 50' and 95 40' (Sekhri et al., 2020). In India, it comprises 16.2% of 95 all the geographical land and is home to 76 million people. Natural resources, biodiversity, and 96 ethnic variety are abundant in IHR. (Goodrich et al., 2019; Sekhri et al., 2020). It stretches 97 from the Indus River to the Brahmaputra River in the east. (Srivastava et al., 2015). There are 98 a total of 11 Indian Himalayan states and 2 Union territory as shown in Figure 1, which has 99 109 administrative districts (Kala, 2014). The region is socially and economically 100 underprivileged, with 171 schedule tribes accounting for almost 30% of India's total tribal 101 population and a high literacy rate of 79 percent. The population is growing exponentially, 102 putting a strain on the region's resources (COI, 2011). Tourism is a lucrative business in IHR 103 (NITI Aayog, 2018) and it contributes to support a lot of construction projects like hotels, 104 restaurants, road construction etc. across the region (Kala, 2014). Agriculture is a profitable

- 105 venture for Himalayan people, and it is mainly rain-nourished. Furthermore, climate change is
- 106 hazardous to the region's progress and hinders socio-economic development (Sekhri et al.,
- 107 2020).

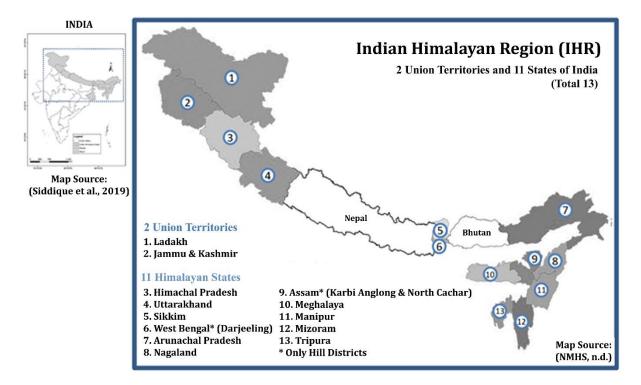


Figure 1: Indian Himalayan Region, Source: adapted from (NMHS, n.d.)(Mohammad Imran Siddique, Jayesh
 Desai, Himanshu Kulkarni, 2019)

The IHR represents a significant role in the world's mountain ecosystems (Singh, 2005). IHR attracts tourists worldwide because of its natural richness, unique biodiversity, and cultural diversity (NITI Aayog, 2018,; Gaur and Kutro, 2018). The number of pilgrims has risen dramatically in prominent pilgrim centres across the Himalayas over the ages (Kala, 2014), putting extra stress on these resources and posing a danger of socioeconomic loss.

116 2.2 Multi Hazards in IHR

Being geologically young and expanding (Wester et al., 2019), the IHR is vulnerable to natural 117 118 disasters (Gautam et. al., 2013). The Himalaya, the world's highest mountain range is geologically active, fragile, and susceptible to natural and man-made processes (Kala, 2014). 119 120 Indian geography, climate, topography, and population growth all contribute to its high risk and 121 vulnerability (Sharma et al., 2017). Mountain hazards are widespread, and hills characteristics 122 are fragility, restricted accessibility, marginality, and heterogeneity (Gerlitz et al., 2016) may turn a hazard into a catastrophe, transforming mountains into high-risk zones. Furthermore, 123 124 mountains need a long time to recover from disruptions (Sekhri et al., 2020).

Multi-Hazard Frequency has risen in recent decades, resulting in massive socio-economic losses (Rehman et al., 2022). Unrecognized practices, irresponsible development initiatives, and a lack of knowledge contribute to disasters having a more significant effect. One of the most challenging aspects of natural hazards risk assessment is determining how to estimate the risk of several hazards in the same region and how they interact (Hackl et. at., 2015).

130 In the recent decade, severe earthquakes, floods, and landslides have devastated IHR, 131 including the M 7.6 Kashmir earthquake in 2005, the Malpa Landslide in 2009, the M 6.8 132 Sikkim earthquake in 2011, the 2013 Uttarakhand flash flood, and others, affecting 133 approximately thousands of deaths and property losses (MHA, 2011; BMTPC, 2019; Kumar 134 et al., 2016). Table 1 illustrate and describe the major hazard events that have occurred 135 historically in the Indian Himalayan region.

SN	Date	Location (Latitude, Longitude)	Place	Indian Himalayan State	Hazard/ Magnitude	Casualties	Source
1	1869, Jan 10	(25.00, 93.00)	Near Cachar	Assam	Earthquake 7.5 Mw	Unknown	Kumar et al., 2016
2	1885 May 30	(34.10, 74.60)	Sopor	Jammu & Kashmir	Earthquake 7.0 Mw	Unknown	Kumar et al., 2017
3	1897 Jun 12	(26.00, 91.00)	Shillong plateau	Meghalaya	Earthquake 8.7 Mw	1500	Kumar et al., 2018
4	1905 Apr 04	(32.30, 76.30)	Kangra	Himachal Pradesh	Earthquake 8.0 Mw	19,000	Kumar et al., 2019
5	1918 Jul 08	(24.50, 91.00)	Srimangal	Assam	Earthquake 7.6 Mw	Unknown	Kumar et al., 2020
6	1930 Jul 02	(25.80, 90.20)	Dhubri	Assam	Earthquake 7.1 Mw	Unknown	Kumar et al., 2021
7	1943 Oct 23	(26.80, 94.00)	Assam	Assam	Earthquake 7.2 Mw	Unknown	Kumar et al., 2022
8	1950 Aug 15	(28.50, 96.70)	Arunachal Pradesh– China Border	Arunachal Pradesh	Earthquake 8.5 Mw	1526	Kumar et al., 2023
9	1975 Jan 19	(32.38, 78.49)	Kinnaur	Himachal Earthquake 6.2 Pradesh Mw		Unknown	Kumar et al., 2024
10	1988 Aug 06	(25.13, 95.15)	Manipur– Myanmar border	Manipur	Earthquake 6.6 Mw	1000	Kumar et al., 2025
11	1991 Oct 20	(30.75, 78.86)	Uttarkashi, UP	Uttarakhand (now)	Earthquake 6.6 Mw	2000	Kumar et al., 2026
12	1998 Aug 18	(30.01, 80.04)	Malpa, Pithoragarh district	Uttarakhand (now)	Landslide	380	Kumar et al., 2027
13	1999 Mar 29th	(30.41, 79.42)	Chamoli District, UP	Uttarakhand (now)	Earthquake 6.8 Mw	100	Kumar et al., 2028
14	2005 Oct 08th	(34.48, 73.61)	Kashmir	Jammu & Kashmir	Earthquake 7.6 Mw	74,500	Kumar et al., 2029
15	2006 Feb 14th	(27.37, 88.36)	Sikkim	Sikkim	Earthquake 5.7 Mw	0	BMTPC, 2019
16	2010 Aug 06th	(34.15, 77.57)	Leh	Ladakh (now)	Cloudburst	257	BMTPC, 2019
17	2011 Sep 18th	(27.7, 88.2)	Sikkim Nepal border	Sikkim	Earthquake 6.8 Mw	60	Kumar et al., 2016
18	2012 July- Aug	(26.20, 92.93)	Assam	Assam	Floods	91	BMTPC, 2019

136 Table 1: Major Disaster Events in IHR, Source: adapted from (BMTPC, 2019; Kumar et al., 2016).

19	2012 Aug- Sep	(30.72, 78.43), (30.28, 78.98), (29.84, 79.76)	Uttarkashi, Rudraprayag & Bageshwar	Uttarakhand	Floods	52	BMTPC, 2019
20	2013 June 16th	(30.06, 79.01)	Uttaranchal	Uttarakhand (now)	Flood, Landslide, Cloud Burst	5748	Kumar et al., 2016
21	2014 Sep	(33.27, 75.34)	Jammu & Kashmir	Jammu & Kashmir	Flood, Cloud Burst	277	Kumar et al., 2016
22	2016 Jan 04th	(24.81, 93.93)	Imphal, Manipur	Manipur	Earthquake 6.7 Mw	8	BMTPC, 2019

138 The Himalayan region is among the most seismically active in the world due to the collision of 139 the Indian and Eurasian plates. A series of four major earthquakes has occurred within a short 140 span of 53 years (Srivastava et al., 2015); namely Shillong (1897), Kangra (1905), Bihar-Nepal 141 (1934) and Assam-Tibet (1950). Tectonic activities on the mountains constantly threaten the 142 stability of the mountains, being an active region. One of the most frequent natural disasters 143 in the Himalayas occurs when large landslides occur, destroying infrastructures, destroying 144 trees, and killing people. Landslides cause huge social and economic losses to mountain-145 dwelling populations. (Sarkar et al., 2015). An area of near the River valley has witnessed a 146 large number of mass movements during recent years (Srivastava et al., 2010). A recent flash 147 flood, along with a debris flow at Kedarnath on 16-17 June 2013, which claimed over a 148 thousand lives, was caused by cloudbursts and landslides breaching temporary dams along 149 river valleys (Allen, 2015). More than 82 percent of the world's population lived on land affected 150 by floods between 1985 and 2003 (Mouri et al., 2013). There is an increase in forest fire 151 frequency globally, especially in Asia. There are major environmental and ecological impacts 152 caused by wildfires, which can result in the fatalities of tens of thousands of people and 153 massive property losses (Parajuli et al., 2020).

154 2.3 Need of Study

Without a comprehensive evaluation of multi-hazards, it is impossible to develop any concrete
policy measures to combat the potential risk posed by multiple hazards. (Sekhri et al., 2020)
IHR being prone to Multi Hazards (Kala, 2014), Risk Resilient Development planning is the
only way to prepare Himalayan community from upcoming disasters.

159 It is well known that the Himalayas are a high-risk area for multi-hazards (Pathak et al., 2019), 160 although fewer risk assessments have been conducted in the IHR region. An assessment of 161 hazards generally focuses on a single threat, such as landslides, earthquakes, or flooding. As 162 a result, physical processes are considered in isolation. In most areas of the Himalayas, 163 hazards are interrelated and generate cascading effects or synergies which make the entire 164 region vulnerable (Sekhri et al., 2020). Probabilistic risk frameworks have been proposed, but 165 as a result of a lack of quality and quantity of data, these approaches are seldom feasible in

- developing countries (Sanam et al., 2020). Furthermore, the existing risk assessment
 models/tools for a specific hazard in the region has limited application and effectiveness from
 a policy standpoint (Sekhri et al., 2020).
- Researchers are involved in a number of research projects in IHR in the field of assessing the risk of disasters in India, though there have been very few assessments of hazards associated with the IHR region, none of which incorporate multi-hazards (Wester et al., 2019) In addition,
- 172 risk resulting from a single hazard is not applicable and cannot be considered effectively in
- 173 policy analysis in the region (Sekhri et al., 2020).
- 174 The comparative study of some of the most used survey form to assess risk in India in shown 175 in the Table 2. Every survey form has its own unique features. In some cases, the focus is 176 largely on one particular hazard and the other hazards are minor. The detail of all the 177 mentioned survey form will be explain later in Table 4 in this paper. It has been observed from 178 the Table 2 that none of the forms (SN 1 to 6) are focusing on Multi Hazard Risk 179 calculation/identification as per IHR Scenarios, which is not only prone to earthquakes, but 180 also prone to floods, landslides, high winds, industrial hazards and at building level falling 181 hazard (Non-Structural Hazard), fire and electrical hazards etc.

	Comparative Study between some survey forms used in India										
SN		1	2	3	4	5	6	7			
Developed by/for		ARYA	FEMA	NDMA	IIT-B	HPSDMA	BMTPC	MH-RVS (Proposed)			
Source: adapted from		Arya, 2006	FEMA , 2015	NDMA , 2020	Sinha & Goyal, 2001	Kumar et al., 2016	BMTPC , 2019	Author			
Understanding	Pictorial										
	Earthquake										
	Flood										
	High Wind										
	Landslide										
IHR is prone to Multi Hazard	Fire and Electrical										
	Industrial										
	Climate Change										
	Non-Structural /Falling Hazard										

182 Table 2: Comparison between survey forms used in India to assess Risk

183

Furthermore, while working with data collection teams on the ground during DRR Projects, the
Author has observed that surveyors face several problems, such as the technical advance
language of the existing survey form, which requires trained technical personnel to fill out, and

- this leads to costly human resources. Secondly, no graphical explanation of the form leads to
 little understanding, which further leads to incorrect data collection. Thirdly, Surveyors are not
- able to convey correct objective to the respondent, that creates no interest to response to reply
- 190 further. Fourthly, most of the above-mentioned forms are not hill specific and many more.
- 191 MHRA survey forms need to be made easy, simple, informative, with simple language or/and
- 192 visual explanation, for surveyors as well as respondents to get connected to it for giving and
- 193 receiving information.
- Indian Himalayan Region is also the point of attraction for tourists and pilgrims globally, and
 tourism plays an imperative role in enhancing the economy of the Himalayan state. Thus,
 safety is the immense need of the government at various levels.
- 197 There is no such survey form for comprehensive database for the IHR Region for informed 198 decision-making, related to multi hazard and other aspects of sustainable hill development. 199 Considering the IHR scenarios, there is immense need for a Hill specific survey form, that can 190 help to gather important information from the field and help in Risk assessment for further 201 decision making, to prepare the hill community from future disasters.

202 3 Multi Hazard Survey Framework

203 3.1 Survey Form design methodology

204 The survey methodologies start with few recommendations for designing a good survey like 205 the survey form should satisfy the objectives of the research, there should dictate length of 206 questionnaires coving all essential parts, questions should convey single thought at a time, its 207 language should be simple and easy to understand by the surveyors as well as the 208 respondent, Multiple choice questions are mostly preferred to increase response rate, reduce 209 time and patterned the responses, As much as possible-be concrete and conform to the 210 respondent's perspective, the use of unclear words should be avoided and at last it should 211 meet the Survey logic i.e. There is no further progress or possibility of further correspondence 212 from the respondent, if the logic is flawed. It takes practice and verification to ensure that 213 when considering an option only the next logical question comes to mind (Roopa and Rani, 214 2012).

215 3.2 Methodology Adopted

To gather beneficial and appropriate information related to multi-hazards in the Himalayan region, careful attention must be given to the design of the questionnaire that covers all the important contributing factors from various identified hazards and fulfils all the gaps identified from the existing survey form and field experience. Designing an effective questionnaire, it takes time, effort, and a variety of stages. The methodology to prepare the Multi-Hazard Survey form for Indian Himalayan Region is shown in Figure 2. A number of Disaster Risk Reduction projects conducted in Indian Himalayan Region provided Author 1 with a rare opportunity to be part of a Data Collection team. As a result of these projects, author has been able to interact on the ground with hill communities and surveyors and learned that there are several gaps in the existing survey forms (Section 3.4) from both a Himalayan and surveyor perspective. MHRA Survey form contains all the gist of data collection experience. This research paper is based on a comprehensive literature review (Section 3.3) as well as field experience.

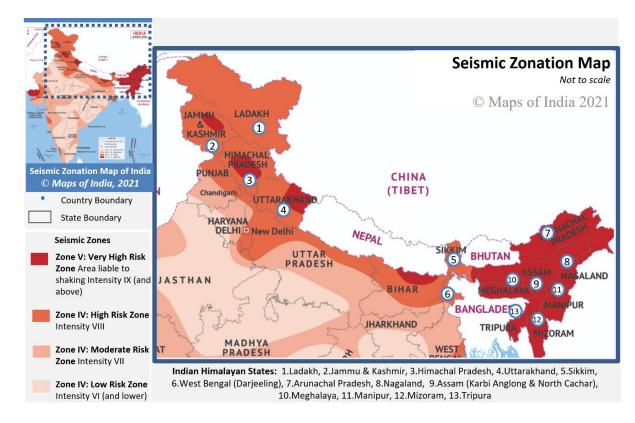
To ensure that the survey form was designed in accordance with Disaster Risk Assessment requirements, Hill specific hazards, important components, question sequence and layout, simple language, disaster sensitization, and two-way information sharing (giving and receiving), some initial considerations were taken into account.

We have designed a draft MHRA survey form (Section 4.1) and applied it to some of the buildings in five villages in Uttarakhand (Figure 5). An initial pilot survey has been conducted at 10 schools (section 4.2) using the proposed survey form with content and graphical inputs. The results and observations relating to the Pilot survey are discussed in sections 4.2 and 4.5 of this paper.

Objective To design MHRA Survey form for IHR Literature Review Field Experience Indian Himalayan Region Work Experience in DRR Multi Hazards in IHR Projects on Hills Hazard Identification Part of Data collection team Existing MHRA Survey forms Application of existing forms RVS, DVS, SVA, DVA, etc. Interaction with surveyors and Community Gaps Identification There is immense need for hill specific MHRA form Initial Consideration Risk Assessment Requirements | Question Context | Survey Importance | Question sequence and layouts | Simple Language | Hill specific | Disaster Sensitization | 2 ways information sharing MHRA Survey Form Designing (Draft) Form Modifications Site Visit Data Collection Gaps Identification MHRA Survey Form Application **Pilot Survey** Content Inputs Graphic Inputs MHRA Survey Form Finalization

239

240


Figure 2: Methodology adopted by author

241 3.3 Existing Multi Hazard Risk Assessment (MHRA) Survey Forms

The spread of non-engineering construction, unrecognized construction and planning practices, reckless developmental activities, and a lack of awareness increase the impact of disasters. IHR being seismically active, as shown in the seismic zonation map of India, creates the importance of Risk assessment of existing buildings. Earthquakes are feared because they are so unpredictable. Yet, as we often hear, "Earthquakes don't kill, Buildings do" (attributed to Francesca Valli, Change Management Thought-Leader), and as the detailed assessment is limited to the number of homes and the cost, one of the considering approaches
is Rapid Visual Screening (RVS) that is used for seismic vulnerability assessment. Using this
methodology, a risk assessment has been conducted for areas subjected to earthquakes
(Kumar et al., 2016).

252 3.3.1 Seismic Zonation Map of India

The first seismic zoning map of India was published in 1935 by the Geological Survey of India (G. S. I.) (Figure 3) (A. K. Mohapatra, 2010). Based on the damage earthquakes caused in various parts of India, this map has undergone numerous modifications (IS-code1893-1, 2002) (Marcussen, 2017), (Khattri *et al.*, 1984) since its original creation As per Seismic zonation map, India is divided into four distinct seismic risk zones shown here by colour (Dunbar, 2003) in Figure 3 below:

260 Figure 3: Seismic Zonation Map of India, Source: adapted from (pp. Map of India, 2021)

261 3.3.2 About RVS

259

Applied Technology Council (ATC) developed the RVS method in the late 1980s and published it in the FEMA: 154 in 1988. In later versions, it was revised in FEMA: 178-1989, 1992 (revised), FEMA: 310-1998, and FEMA: 154-1988, 2002 (revised), for rapid visual screening of buildings. (Kumar et al., 2016)

Rapid Visual Screening (RVS) avoids the need for structural calculations by using a visual
 method. An evaluator determines damageability grade by identifying (a) the primary structural

lateral load resisting system as well as (b) the structural features of the building that can impact
seismic performance in combination with that system. The process of inspecting, gathering
data, and deciding on the next course of action occurs on site and may last several hours,
depending on the size of the building (Arya, 2006; Arya, 2006b).

272 3.3.2.1 Uses of RVS Results:

The foremost uses of this technique concerning seismic advancement of existing buildings are to assess a building's seismic vulnerability to categorize it further. It is used to determine the structural vulnerability (damageability) of buildings and determine the seismic rehabilitation requirements. In cases where further assessments are not considered necessary or are not feasible, retrofitting requirements are simplified (to a collapse prevention level) (Arya, 2006a; Arya, 2006b).

279 3.3.3 Multi Hazard Risk Assessment used in India

280 3.3.3.1 RVS Methodology Proposed by Prof. Anand S Arya for Masonry Buildings

RVS procedure that was designed for the Indian context, follows a grading system where the
screener identifies the primary load-resisting system of the building and determines
parameters that may be modified to improve seismic performance of the structure (NDMA,
2020)

Rapid Visual Screening form of Masonry Buildings developed by Prof. Anand S Arya consist
of zoning, according to Indian conditions, and buildings with importance are given
consideration. Also, special hazards (liquefiable area, landslide prone area, plan irregularities,
and vertical irregularities) and falling hazards are taken into account. Finally, a grading system
was performed in the buildings. Refer (Arya, 2006a) for detail RVS survey forms for masonry
buildings prepared by Prof. A.S. Arya.

291 3.3.3.2 RVS Methodology Proposed by Prof. Anand S Arya for RC frame or Steel Frame

The Rapid Visual Screening form of Reinforced Concrete frame and Steel Frame for Seismic Hazards developed by Prof. Anand S Arya has 6 components (i) general information (ii) Building typology based on foundation type, roof, floor, etc. (iii) Structural frame type (iv) Special Hazard (v) Non-Structural building components (vi) Damageable Grades (Arya, 2006b).

Seismic safety features of RC Frame Buildings consist of parameters like Frame Action,
Presence of Soft Storey, Short Column Effect, Concept of Weak Beam Strong Column,
Pounding of Buildings, Building Distress and Other important features, Water Seepage,
Corrosion of Reinforcement, Quality of Construction, Quality of Concrete and non-structural

falling hazards. Refer (Arya, 2006a; Arya, 2006b) for detailed RVS Survey form for RC and
 steel buildings prepared by Prof. A.S. Arya.

303 3.3.3.3 RVS Procedure developed by Dr. Sudhir K Jain

In this method, a checklist for pre-screened buildings is prepared based on Indian conditions.
It is one of the first methodologies in India featuring a points system. Performance scores are
calculated based on factors such as zone, architectural considerations, structural parameters,
and geotechnical characteristics. In India, this method is used in many locations, with the first
applications being in Gujarat after the Bhuj earthquake (Jain et al., 2010).

309 3.3.3.4 RVS form developed by NDMA 2020

In the Disaster Management Act of 2005, a paradigm shift from Relief-centric approach to Mitigation- and Preparedness-centric approach is sought, with continued emphasis on proactive, holistic and integrated Response. With this Act in mind, NDMA initiated a series of discrete, comprehensive, and integrated initiatives. Among the recommended actions was assessing earthquake risk within the existing built environment.

315 NDMA developed this report to make end users aware of RVS's outcomes by presenting RVS 316 in clear and tangible terms. On the basis of discussions with the relevant domain experts, 317 NDMA have developed recommended forms for Pre-Earthquake and Post-Earthquake Level 318 1 Assessments of 7 building typologies (i. Reinforced Concrete Building, ii. Burnt Clay Bricks 319 Building, iii. Confined Masonry Building, iv. Random Rubble Masonry Building, v. Mud House, 320 vi. Dhajji Dewari, vii. Ekra House). A form is developed to categorize the different building 321 attributes into three categories: Red (High Risk), Yellow (Moderate Risk), and Green (Low 322 Risk). Refer (NDMA, 2020) for detailed survey form.

323 3.3.3.5 Seismic Vulnerability Assessment by Prof. Ravi Sinha and Prof. Alok Goyal

Prof. Ravi Sinha and Prof. Alok Goyal from Indian Institute of Technology Bombay (IIT-B) prepared a "National Policy for Seismic Vulnerability Assessment of Buildings and Procedure for Rapid Visual Screening of Buildings for Potential Seismic Vulnerability". A key feature of this procedure is that it allows a trained evaluator to conduct a walkthrough of the building to determine vulnerability. It is compatible with GIS-based city databases, and can also be used for a variety of other planning and mitigation tasks.

RVS analysed 10 different types of building, based on the materials and construction types
most commonly found in urban areas. There were both engineered and non-engineered
constructions (built according to specifications) in this category. Refer (Sinha and Goyal, 2001)
for detailed survey form.

334 3.3.3.6 Building Vulnerability form developed by HPSDMA & TARU

335 A form originally prepared by TARU consultancy and the Himachal Pradesh State Disaster 336 Management Authority (HPSDMA) is shown in the paper titled Rapid visual screening of 337 different housing types in Himachal Pradesh, India. A building is visually examined by an 338 experienced screener as part of RVS to identify features that contribute to seismic 339 performance. This method is known as a 'sidewalk survey.' In this side walk survey, checklists 340 are provided for each of the five types of buildings i.e., RC frames, brick masonry, stone 341 masonry, Rammed Earth, and hybrid (Kumar et al., 2016). Refer (Kumar et.at. 2016) for 342 Building Vulnerability form developed by HPSDMA & TARU.

343 3.3.3.7 Vulnerability Atlas of India developed by BMTPC

344 Building Materials and Technology Promotion Council (BMTPC) published the Vulnerability 345 Atlas of India as its first edition in 1997. It was hailed as "useful tool for policy planning on 346 natural disaster prevention and preparedness, especially for housing and related 347 infrastructures". First of its kind, it provided a means for assessing not only district-level 348 hazards, but also the vulnerability and risks of housing stock. It was greatly utilized by State Governments and their agencies in order to develop micro-level action plans on how to reduce 349 350 the impact of natural disasters since buildings and housing are commonly damaged or 351 destroyed due to natural disasters, resulting in life losses and disruptions to socio-economic 352 activities.

The revised Atlas 2019 reflects advances in scientific & technical knowledge, addition of new datasets, results of disasters caused by earthquakes and cyclones, possible damage from landslides, floods, thunderstorms, failures of roads and trains during disasters, changes in the political map of the country, and new statistics on walling and roofing data of houses. (BMTPC, 2019). Table 3 and Figure 4 shows different Housing typologies used in BMTPC, based on wall and roof type and material identified in India and also their Damage risk under various hazard intensities.

360 Table 3: Damage Risk to various Housing Category identified by BMTPC (BMTPC, 2019)

		EQ Intens	ity MSK		v	Vind Velo	ocity m/s		Flood
Category (Type of Wall and Roof)	<u>≥</u> IX	VIII	VII	≤VI	55 & 50	47	44 & 39	33	Prone
A1. Mud wall (All roofs)	VH	н	м	L	VH	н	м	L	VH
A2.a. Unburned Brick Wall (Sloping roofs)	VH	н	м	L	VH	н	м	L	VH
A2.b. Unburned Brick Wall (Flat roofs)	VH	н	м	L	VH	н	м	L	VH
A3.a. Stone Wall (Sloping roofs)	VH	н	м	L	VH	н	м	L	VH
A3.b. Stone Wall (Flat roofs)	VH	н	м	L	н	м	L	L	VH
B.a. Burned Brick Wall (Sloping roofs)	н	м	L	VL	н	м	м	L	н
B.b. Burned Brick Wall (Flat roofs)	н	м	L	VL	м	L	L	VL	н
C1.a. Concrete Wall (Sloping roofs)	м	L	VL	NIL	н	м	м	L	L
C1.b. Concrete Wall (Flat roofs)	М	L	VL	NIL	L	VL	VL	VL	L
C2. Wood Wall (All roofs)	М	L	VL	NIL	VH	н	м	L	н
C3. Ekra wall (All roofs)	М	L	VL	NIL	VH	н	м	L	н
X1 GI and other metal sheets (All roofs)	М	VL	NIL	NIL	VH	н	м	L	н
X2 Bamboo, Thatch, Grass, Leaves, etc. (All roofs)	М	VL	NIL	NIL	νн	∨н	н	L	∨н

Damage Risk to Housing under various Hazard Intensities

361

Housing Category : Wall Types

Category - A : Buildings in field-stone, rural structures,

unburnt brick houses, clay houses Category - B : Ordinary brick building; buildings of the large block & prefabricated type, half-timbered structures, building in natural hewn stone Category - C : Reinforced building, well built wooden structures **Category - X** : Other materials not covered in A,B,C. These are generally light. **Notes**: 1. Flood prone area includes that protected area which may have more severe damage under failure of protection works. In some other areas the local damage may be severe under heavy rains and chocked drainage. 2. Damage Risk for wall tupes is indicated assuming heavy flat roof

- in categories A, B and C (Reinforced Concrete) building
- 3. Source of Housing Data : Census of Housing, GOI, 2011

Building Materials & Technology Promotion Council 362

Housing Category : Roof Type

Category - R1 - Light Weight (Grass, Thatch, Bamboo, Wood, Mud, Plastic, Polythene, GI Metal, Asbestos Sheets, Other Materials) Category - R2 - Heavy Weight (Tiles, Stone/Slate) Category - R3 - Flat Roof (Brick, Concrete) EQ Zone V : Very High Damage Risk Zone (MSK > IX) EQ Zone IV : High Damage Risk Zone (MSK VIII) EQ Zone III : Moderate Damage Risk Zone (MSK VII) EQ Zone II : Low Damage Risk Zone (MSK < VI) Level of Risk : VH = Very High; H = High; M = Moderate; L = Low; VL = Very Low

* Total No.of Houses excluding Vacant/Locked Houses

Peer Group, MoHUA, GOI

363 Figure 4: Damage Risk and Housing category identified by BMTPC (BMTPC, 2019)

364 3.3.4 Multi Hazard Risk Assessment used Globally

365 3.3.4.1 FEMA 154

The FEMA handbook demonstrates how to rapidly identify, inventories, and rank buildings that 366 367 are at high risk of death, injury, or severe damage in the event of an earthquake. Rapid Visual 368 Screening (RVS) can be carried out with a short exterior inspection, lasting 15 to 30 minutes, by trained personnel using the data collection form in the handbook. The guide is targeted at 369 370 building officials, engineers, architects, building owners, emergency managers, and citizens 371 who are interested in the topics.

372 Its purpose was to provide an evaluation of the seismic safety of a large inventory of buildings 373 guickly and inexpensively, with minimal access to the buildings, and to identify those that 374 require more detailed examination. FEMA 154 was developed by ATC under contract to FEMA 375 (ATC-21 Project) in 1988. As with its predecessors, the Third Edition aims to identify, 376 inventory, and screen buildings that present a potential risk. This latest version includes major 377 improvements, such as: updating the Data Collection Form and including an optional more 378 detailed page, preparing additional reference guides, and including additional building types 379 that are common, considerations such as existing retrofits, additions to existing buildings, and adjacency, and many others. (FEMA, 2015). Refer (FEMA, 2015) for detail survey form . 380

381 3.3.4.2 Flood Vulnerability Assessment survey

The Flood Vulnerability Assessment survey form prepared by the Asian Institute of Technology (AIT) Bangkok and Climate Technology Centre and Network (CTCN) (Peiris, 2015) has 5 Sections: (i) General Information (ii) Type of Building (iii) Flood damage and cost (iv) Flood emergency response (v) Effect on livelihood and income, designed for Residential, Institutional, Commercial/Industrial damages and Infrastructure damages. Refer (Singh, 2005) for Flood Vulnerability Assessment Survey form developed by CTCN and AIT

388 3.3.4.3 Landslide Vulnerability Assessment survey

389 Scientists and researchers focus more on researching landslide susceptibility and the hazard 390 component rather than assessing the vulnerability of buildings to landslides. Even when the 391 same construction material is used, construction practices vary across the country. Currently, 392 there is no standard method for determining building vulnerability by using indicators.

The parts cover by Landslide risk assessment survey forms are (i) General information (ii) Building Function (iii) Vulnerability Indicators like Architectural Features, Material Characteristics, Structural Features, Geographical features, and quality of Workmanship, Construction & maintenance, etc. which are also covered during RVS and has been covered in the proposed survey form CitSci, GIS based data collection app for landslide (Singh et al., 2019).

399 3.4 Features required for a Multi Hazard Survey Form for IHR

400 **3.4.1 Gaps Identified in existing survey forms**

Existing Survey forms have their strengths & weaknesses. After studying various survey forms for Risk assessment prepared by various national and international authorities, it is observed that hill-specific survey forms that can take care of multiple aspects of risk and sustainability assessment together do not exist. Available forms are complicated, not-so user friendly, consisting of terminologies difficult to communicate and comprehend, no pictorial clues for 406 understanding, involve several rounds of calculations for coherent multi-hazard risk evaluation
407 using the data, and most importantly, they not hill site-specific or designed for the Indian
408 Himalayan region.

409 Hills have their own situation, condition, geography, climate, development trends, construction 410 practices, culture, etc., and they are distinctly different from other regions. RVS is mostly used 411 in India to assess the visual structural vulnerability of the building, as it involves no structural 412 calculations. On the other hand, SVA and DVA are for the detailed structural survey of a 413 building, and therefore more precise and use engineering information along with more explicit 414 data on ground motion. Data filling is not easy enough for the surveyor and requires a very 415 high level of engineering knowledge, skills, and experience. Pictorial explanation from 416 surveyor point of view can ease the communication. Most of the survey forms are focused on 417 single hazard, (mostly for seismic evaluation of a building) irrelevant of multi hazard from 418 Himalayan point of view, and how prone is buildings for its location is from other hazards. 419 Integration between risk understanding and sustainable development is too limited or non-420 existent. Thus, it has been observed that there is an immense need to design hill-specific 421 questionnaires for multi-hazards risk assessment for Indian Himalayan Region.

422 3.4.2 Comparative Study of some risk assessment survey forms mostly used in India 423 Here is the comparative analysis of Risk assessment survey forms developed by various 424 organizations and mostly used in India with the proposed Multi-Hazard RVS. It has been 425 compared on various sections like typology, General Information, History of Disasters, Site 426 Conditions, Building geometry, structural and non-structural component of a building etc.

		1	2	3	4	5	6	7
Developed by/for		ARY A	FEMA	NDM A	IIT-B	HPSDM A	BMTP C	MH-RVS (Propose d)
Source		Arya, 2006	FEMA , 2015	NDM A, 2020	Sinh a & Goya I, 2004	Kumar et al., 2016	BMTP C, 2019	Author
	A1: Mud & Unburnt Brick							
	A2: Stone Wall							
	B: Burnt Brick							
Typology	C1: Concrete Wall							
	C2: Wood Wall							
	X: Other Materials							
	Steel							
General Information	About Building and owner							

427 Table 4: Comparative Study of some risk assessment survey forms mostly used in India

	Sketch/Photo and				
	drawings				
	Occupancy (Day & Night)				
	Cost of Construction				
	Construction quality and Maintenance				
	Seismic Zone				
Disaster	Disaster History and Damage status				
History	Disaster cause				
	Retrofitting history				
	Location of building				
Site Condition	Site Condition				
	Dimension of Building				
Building	Shape of Building, floors				
Geometry					
	Re-entrant corners				
	Type of Sub-Soil Foundation detail				
Foundation					
	Depth of ground water table				
	Walls details				
Walls	Separation of walls at joint				
	Wall failure observed				
Earthquake Bands	Earthquake band details and status				
Cracks	Cracks details				
	grade of cracks				
	Opening(s) details				
Openings	Frames details near opening				
	Type and material				
Roof and Floor	Roof's attachment with walls				
	Failures observed				
	Height of building				
Pounding effect	distance from closest building				
enect	Quality of adjacent building				
Heavy weight	Type and positioning of Heavy weights				
on top	Intact status with structure				
	Parapet material				
Parapet	Parapet intact with structure				
	Type of overhangs				
Overhang	length and intact status				
	Staircase details				
Staircase	Lift status	1			
	Column Beam details				
Column and	Beam with infill wall				
Beam	Connection and				
	continuity				<u> </u>

	No. of basement								
Basement	Column and retaining Wall								
Soft Storey	Soft Storey's details								
High Wind	Potential threat from wind								
	Position of potential landslide								
Landslide	Stabilized slope status								
	Barriers to rockfall								
Industrial	Potential threat from Industrial Hazard								
	Fire Safety Status								
Fire	Location of potential fire threats								
Climate Change	Understanding & Concern								
Non-Structural	Cantilever availability (Chimneys, Balconies, Parapet, Sunshades, claddings)								
Elements	Other Non-Structural elements								
	No. of unattached Non- structural elements								
	□□: Concern (major/minor)								

429 4 IHR Specific MHRA Survey Form Preparation

430 4.1 Survey Form Preparation

431 The proposed survey form is a modification of the Rapid Visual Screening (RVS) survey 432 questionnaire, i.e., a form used for structural and non-structural components of a building that 433 performs during an Earthquake. In the original RVS questionnaire no other hazards are 434 considered. A building's location on a vulnerable site, its structural condition, and performance 435 can lead to disastrous situations. The other hill-specific hazards are also incorporated into the 436 proposed form to identify the risk components from multi-hazards. Whilst the Himalayan region 437 is prone to earthquakes as per India's Seismic Zonation Map (Figure 3), the proposed survey 438 form also covers other hazards like landslide, flood, industrial explosion/emissions, fire vulnerability, hydro-climatic factors, etc., which will be addressed one by one in this paper. 439

440 4.2 Preliminary Survey

441 Before conducting the Pilot survey, a preliminary survey has been conducted to test the 442 proposed form, research methodology, and identifying gaps in the existing survey form.

This small assessment also evaluated the RVS form with minor enhancements evaluate its performance and confirm gaps, and to see if it can meet the requirement for risk assessment at other areas with similar geographical characteristics and conditions as experienced in the Indian Himalayan Region. The Preliminary survey had been conducted at 5 Gram Panchayats of Chinyalisaur sub-district
in Uttarkashi, Uttarakhand, namely Chinyalisaur, Dhanpur, Dharasu, Hidhara, and Bagi, in
October and November 2019, using Draft MHRA Survey form. Some of the pictures of the visit
are provided in Figure 5.

- 451
- 452

Figure 5: View of Site selected for Pilot Survey

453 The preliminary survey was conducted to determine (1) Whether the questions are clearly 454 framed? (2) Does it cover all the requirements as per hill communities? (3) Is the wording of 455 the questions correcting enough to lead to the desired outcomes? (4) Is the question as well 456 options for answer suggested is hill specific or not? (5) Is the question positioned is in the most 457 satisfactory order? (6) Surveyors and respondents of all classes understand the questions? 458 (7) The questions and their options are self-explanatory or not? (8) The sections in the survey 459 form cover risk assessment related questions for all identified hazards or not? (9) The 460 questions are as per construction practices and construction materials available on hills or 461 not? (10) Are there any need to add some Questions or specified, or some need to be 462 eliminated so as to mention the flow of the survey session. (11) Does surveyor and 463 Respondent understand the importance of this survey or the objective behind this survey and 464 response in that way?

465 **4.2.1 Observations during Preliminary survey**

466 Feedback from the Preliminary study proved very helpful in determining the key gaps and 467 shortcomings of the form design and in informing improvements to the proposed form design. 468 Specifically (1) The preliminary study showed that a surveyor's observations of a project site, 469 his or her understanding of each question, and his/her strategy for convincing the residents to 470 provide accurate data played a significant role in risk assessment. (2) In some questions, the 471 use of technical terms or difficult words, or questions designed to gather too much data at 472 once, discourage respondent interest in responding further and make the Surveyor 473 uncomfortable to proceed. (3) The questionnaire may not be self-explanatory and requires 474 someone with civil engineering training to fill it out. (4) Building geometric, Construction 475 practices, Construction materials, development trend plays an essential role during any 476 hazard, thus existing building related questions and options must be incorporated. (5) Survey 477 questions are developed primarily from observations made by surveys and engineers as 478 opposed to responses from residents. (6) If the Surveyor is not familiar with the terminologies 479 and aims behind filling that questionnaire, it leads to no response or respondent sometimes 480 loose interest to answer further. (7) An unclear survey vision, study purpose, and inadequate 481 training of the Surveyor will make it difficult to explain the importance of data collection to the 482 respondent, leading to unclear questions and less accurate responses. (8) Surveyors should 483 be trained enough to pick out the correct option from respondents' lengthy responses. (9) 484 Need of pictorial representation of answers/options for better understanding of the Surveyor. 485 (10) Different answers are obtained when questions are arranged inappropriately or answers 486 are arranged incorrectly. (11) Observing the interaction between multiple hazard types in the 487 same area is a challenging aspect of natural hazards risk assessment.

488 4.3 Proposed MHRA Form

After the Preliminary survey conducted at the Chinyalisaur sub-district, significant points were identified/observed that has been incorporated in the Proposed survey form of Multi-Hazard at hill locations will all the simple content and graphical inputs for better understanding. Hence, the modifications from a Multi-hazard risk point of view and surveyors' point of view can be seen in the proposed form (Table 5 and 6).

- 494 These amendments and the full survey form are presented below.
- 495 Table 5a: Proposed MHRA Survey form (Part A)

	Rapid Visual Screening (RVS) form									
	SURVEYOR									
1	Name of the Surveyor									
2	Mobile no. of Surveyor									
3	Inspection Data									
4	Inspection Time									

	GENERAL INFORMATION								
5	Name of Building/Owner								
6	Address								
7	Town/City, District and State								
8	Coordinatnates								
9	Total No. of Building Blocks present inpremises								
10	Name of Block to be survey								
	Draw Sketch of Site Plan								

						Residential	
		Residential (In	dividual House)	Residential (A	ppartments)	(Other)	
		Educational (School)	Educational (College)	Educatior	nal (Institute/	University)	
		Lifeline (Hospital)	Lifeline (Police Station)	Lifeline (Fire Station)	Lifeline (Power Station)	Lifeline (Water/ Sewage Plant)	
12	Function of Block	Commercial (Hotel)	Commencial (Shopping)	Comm (Recrea		Commercial (Other)	
		Office	(Govt.)	Office (I	Private)	· · ·	
		Mixed Use (R	Residential and	Mixed Use (Residential	Mixed Use	
		Comn	nercial)	and Indu	ustrial)	(Other)	
		Industrial ((Agriculture)	Industrial (Industrial (Other)		
13	Occupancy in day time	0 to 10	11 to 50	51 to 100	101 to 1000	more than 1000	
14	Occupancy in night time	0 to 10	10 to 20	51 to 100	101 to 1000	more than 1000	
15	Name of Owner						
16	Name of Contact Person						
17	Contact No. of Contact Person						
18	Year of Construction:						
19	Structural or Construction drawings available?	Yes		No			
20	Total built up area (sq.m)						
21	No. of Floors	Low Rise (1 to 3)	Mid Rise	(4 to 7)	High Rise (7 and above)	
22	What is the overall Construction quality	Excellent	Good	Average	Poor	Very Poor	
23	What is the overall Maintainance Status	Excellent	Good	Average	Poor	Very Poor	

	DISASTER HISTORY										
24	Seismic Zone	Zone V	Zone IV	Zone III	Zone II	Don't know					
25	Did this area faced any Major disaster?:	Yes		No							
	If Yes in Q.25, Which Disaster?:	Earthquake	Flood	Landslide	Wind	Industrial					
26											
20		Fire	Other	If Other,							
				Specify							
27	If Yes in Q.25, in which date/year										
28	If Yes in Q.25,What is the major	No effect	Minimum Effect	Medium Effect	Maximum Effect						
	damage status										
29	Is the building Retrofitted/ Renovated ever?	Yes		No							
30	If Yes in Q.29, Year of last renovated?										

		SITE (CONDITION			
		Isolated	Internal	Corner	E	End
31	Location of Building:	House	Н			н
				-		
		Flat Terrain	Gentle Slope	Steep Slope	Terrad	ced land
32	Slope of Ground:	—	/		\neg	
33	Cut & Fill Material:	RCC	Hyb	rid	0	ther
55						
34	Is there Visible cracks on the ground	Yes,	Many	Yes,	few	No
35	Is there any open space in the	Vos moro th	an 1500 sg.ft	Yes, less thar	o 1500 ca ft	No
	property?	res, more un	an 1500 sq.rt	res, less that	11500 sq.11	NU
36	What is the total area of Open					
	spaces in the campus (in sq.ft) :					

Note: RCC: Reinforced Cement Concrete; H: House position

		BUILDIN	G GEOMETRY			
		Square	Rectangle (L<=3B)	Narrow Rectangle (L>3B)	Rectangle with courtyard	L-Shaped
37	Shape of Building Block in Plan:	T-Shaped	U-Shaped	E-Shaped with Central courtyard	H-Shaped	Other

		Not stepped	Stepped near centre	Stepped near the end	Heavy u	pper floor
38	Shape of building Block in Elevation: No. of Reentrants corner in Plan				• •	•
39	No. of Reentrants corner in Plan					4
40	Is extra strength available in reentrants corner?	Yes		No		
41	No. of Floors	only G	G+1	G+2	G+3	<u>></u> G+4

Note: G: Ground floor

		FOU	NDATION			
		Rock	Gravel o	r Sand	Soft or Medium	Other
42	Type of Sub Soil:		A.			
		St	rip	Ra	ft	Isolated
		External Wall 4				
43	Type of Foundation:					
		P	ile	Comb	ined	Other
			 Column Pile cap GL Piles Hard Strata 	<u> </u>	Column	

		Adope	Stone	Brick	RCC	Other
44	Basic Construction material of Foundation:					
45	Mortar Material in Foundation:	Dry Masonry	Mud	Lime	Cement	Other
		Yes	No			
46	Plinth beam available?					PLINTH BAND
47	Sinking in Foundation?	Y	'es	Partial		No
48	If Yes or Partial in Q.47, What is the Reason for Sinking?		earest water ources	Without a resoเ	-	Other (specify)
49	Depth of ground water table					Don't know

		-	WALL			
		Brick	Stone	Confined	RCC	Other
				Only Column	Column &	
50	Type of Wall:			available &	Beam, both	
				No Beams	available	
51	Is through-stone used in Stone Wall?	Yes	Partial	No		·····▶ Through Stone
		Adobe or	River Boulder	Quarry Stopo	Dressed	fired brick
		Mud Wall	wall	wall	wall	wall
52						
52	What is the Wall material?					
		hollov	w concrete bloc	k wall	0	ther

53	Tune of mortor	Dry masonry	Mud	Lime	Cement	Other
55	Type of mortar					
	Thickness of interior Wall (in mm):	< 115 mm	115 mm (4.5")	230 mm (9")	230 to 450 mm	> 450 mm
54	Length of longest interior wall (in meter)					
	Max. Height of the wall (in meters)					
	Thickness of exterior Wall (in	< 115 mm	115 mm	230 mm	230 to 450 mm	> 450 mm
55	mm):					
	Length of longest exterior wall					
	(in meter)					
56	Thickness of Mortar (in mm):					
57	How many Separation of walls					
57	at T and L junction?					
		Bulging of wall	delaminating of wall	tilting of walls	dampness in wall	No failure
58	Wall Failure type observed:		and and a second			

LI

509

51	0
51	1

Note: RCC: Reinforced Cement Concrete

No. of walls with these failures

	EARTHQUAKE BANDS						
		Plinth Band	Sill Band	Lintel Band	Roo	f Band	
50		AND AND	- Pilling	UNTE SHO		AND AND	
	Which of the Earthquake						
59	bands available?	Gable Band Door Band	Window	Corner	No Band		
			Door Dund	Band	Band	No balla	
60	If Bands available in Q.59, What is theMaterial of Band:	Wood	Reinforced brick	Reinforced concrete	Other	(Specify)	
	what is the waterial of band.						
61	If Bands available in Q.59,						
01	Thickness of Band (in mm):						
62	If bands available in Q59, Are	Yes	Partial	No		Don't know	
02	the bands continuous?	103	Tartiar			DOILCKIOW	

		C	RACKS			
	Type of Cracks:	Structur	ral cracks	Superficia	al cracks	N/A
63	Note: Superfial cracks are seen in one side of wall, on the other hand structural cracks can be seen on both side of the wall					
		Diagonal cracks	Vertical cracks	Horizontal Cracks	Re	mark
	Type of Structural cracks:					
64	Specify, No. of Cracks in each case					
	Specify, Length of cracks in each case (in cm)					
	Grade of Cracks	Grade 5	Grade 4	Grade 3	Grade 2	Grade 1
65	Are there any cracks on	Column	Beam	Near Openings	Near corner	No cracks

		OF	PENING		
	Is there any opening(s) larger	Yes	, all	Yes, few	No
66	than 50% of the length of the wall				
	Are there any opening close to	Yes, all		Yes, few	No
67	wall junction or corner or to floor/roof				
68	Is frames available around the	Yes		Partial	No
68	door?:				
69	If Yes/Partial in Q.68, What is	Wooden	MS/SS		other (Specify)
09	the material of Frame used:				
70	Is frames available around the	Y	es	Partial	No
70	window				
71	If Yes/Partial in Q.70, What is	Wooden	MS/SS		other (Specify)
/1	the material of Frame used:				
72	Is Grills available around the	Y	es	Partial	No
72	window?:				

515 Note: MS: Mild Steel, SS: Stainless Steel

	·	ROOF	AND FLOOR			
		Flat Roof	One side slope	two side slope	four side slope	Other (specify)
73	Type of Roof:	\bigcirc		California California		
		R	сс	Reinforced brick slab	Tile or slate	CGI Sheets
	Material of Roof:					
74		Jack arch roof		Wooden	Other	(Specify)
75	Are the roof anchored into the wall	Yes		Partial		No
76	Type of Roof failures observed	Sagging	Cracks	Dampness	Other	No failure
77	Type of Flooring	Mud	Stone	Concrete	Wood.bam boo	Mosaic floor tile

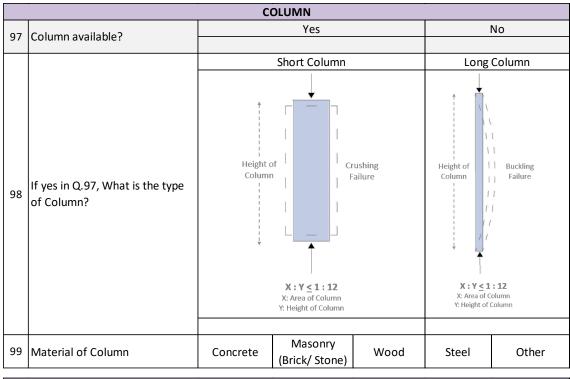
Note: RCC: Reinforced Cement Concrete; CGI: Corrugated Galvanized Iron

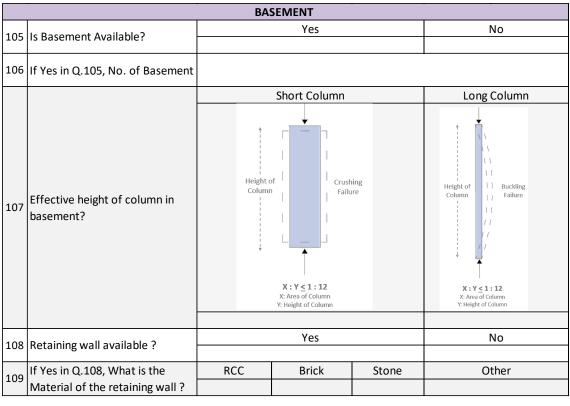
	POUNDING EFFECT DETAILS						
78	Height of Structure /Block (in						
/0	meters)						
	Is there any adjacent building,						
79	which is very close (no gaps) to	Yes	Yes with very little gap				
	this building						
80	Distance from nearest buildings						
80	(in meters)						
81	Quality of adjacent building	Very Good	Good	Moderate	Poor	Very Poor	

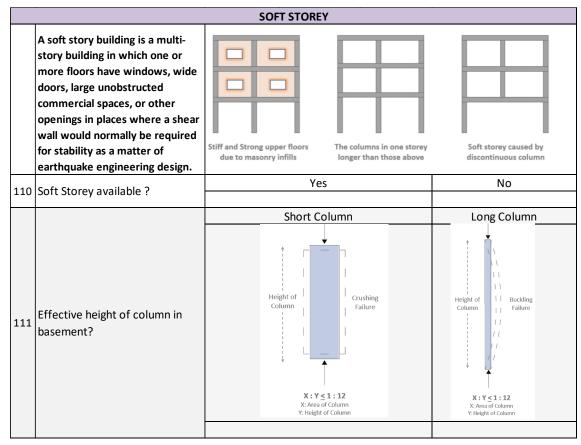
		HEAVY W	EIGHT ON TOP			
		water tank (Concrete)	Water tank (Plastic)	Car Parking o the bu	•	Big hoarding
82	Type of Heavy weight present					
02	on the top of the building?	Heavy generator/ machine	Communicatio n tower	Roof top Garden	Other	None
		Centric	Eccentric	Distributed	Corners	Remark
83	If Yes in Q.82, What is the Position of Heavy weight?	•	•	••	•	
84	Are the heavy weight intact	Y	es	Partial		No
04	properly with structure?					

	PARAPET WALL							
85	Is Parapet wall present at roof	Yes	Partial		No			
05								
		Lightweight (Wooden, MS/SS)	Heavy weight	(RCC, Brick)	Remark			
86	If Yes or Partial in Q.85, What is the Material of Parapet Wall?		H	The second secon				
87	Intact with structure	Yes	Partial		No			
07								

Note: MS: Mild Steel, SS: Stainless Steel, RCC: Reinforced Cement Concrete


	OVERHANGS							
88	Overhangs present	Yes	No					
89	Length of overhangs (meters)							
90	Overhangs with structural	Yes	No					
91	Overhangs with Brackets /beam	Yes	No					


	STAIRCASE							
92	Staircase present		Yes			No		
52								
93	Staircase placed at symmetrical		Symmetrical			nmetrical		
33	location in plan of the bulding							
94	If Yes in Q.92, What is the	RCC	Brick	Wooden	MS/SS	Other		
94	Material of Staircase?							
95	If Yes in Q.68, Is Staircase intact		Yes			No		
95	with building structure?							
96	Lift Status?	Intact	Not Intact		Not Available			
90								


524 Note: MS: Mild Steel, SS: Stainless Steel, RCC: Reinforced Cement Concrete

			BEAM			
100	Beam available?		Yes			No
100						
		Yes		Partial		No
101	If Yes in Q.100., Beam with infill walls available?	Infill Wall			No Wall	
		Centric		Eccei	ntric	Other
102	If Yes in Q.100., Beam – Column connections?		> Beam	Beam		
		Centric Beam Col	umn Joints	Eccentric Beam Colu	mn Joints	
103	Beam -Beam Connection?	Cei	ntric	Eccei	ntric	Other
104	If Yes in Q.100., Material of Beam	Concrete	Masonry (Brick/ Stone)	Wood	Steel	Other

Note: RCC: Reinforced Cement Concrete

112	Is shearwall available in Soft Storey?	Yes		Partialy	No
113	Retaining wall available ?		Yes	L	No
	If Yes in Q.113, What is the Material of the retaining wall ?	RCC	Brick	Stone	Other

531 Table 6a: Proposed MHRA Survey form (Part B)

	e 6a: Proposed MHRA Survey fo	. ,	RD SURVEY FO	DRM		
			LOOD			
1	Is the site low lying or prone to water logging?		Yes			No
2	Is there any water body near the site?		Yes			No
3	What is the type of water body and whether it is prone to flooding?	Lake, flood prone	Lake, not flood prone	River, flood prone	River, not flood prone	N/A
4	What is the distance from the nearest water body?	0 - 250 M	250 - 500 M	500 - 1000 M	1 KM - 2 KM	2 KM and above
5	What is the potential damage level due to the expected duration of flooding?	Very High	High	Medium	Low	Very Low
6	Is the plinth made up of non- erodible material?		Yes			No
7	What is the height of the plinth? (in meters)					
		HIG	6H WIND		1	
8	What is the average wind speed in this location	Maximum Speed		Minimum Speed		
9	Are there trees and/or towers too close to the building that may fall on it during high wind/cyclone?		uilding from ioning	threat car building but functio	not hamper	No threat
10	Do the door and windows have a good and accessible latch?	have accessi	ors or windows ible and good ches.	If some of th windows hav and good	e accessible	If both doors and windows have accessible and good latches
11	Is there a covered walkway for building to building connection?	no covere	d walkway	weak covere	ed walkway	strong covered walkway

	LANDSLIDE							
	Is there any hills near to the		Yes			No		
12	building, which can cause							
	damage due to landslide							
	If Yes in Q.12, what is the	Less Than 30	30 M - 100 M	100 250 M	250 - 500 M	More than		
13	distance of the base off the Hill	М	30 IVI - 100 IVI	100 - 250 101	250 - 500 101	500 M		
	from building?							
14	Is the slope near the building		Yes		No			
14	stabilized?							
	Are there any large rocks or		Yes		I	No		
15	potential falling hazards near							
	the building?							
16	Are there barriers to rockfall ?	Yes			No			
16								

		IN	DUSTRY			
	Is there any industry near to the		Yes		No	
17	building, which can cause					
11	damage due to industrial hazard,					
	fire etc.					
18	If Yes in Q.17, how many active		Yes			No
10	industries are there?					
	What is the distance of nearest	0 - 100 M	100 - 250 M	250 - 500 M	500 - 1000	More than 1
19	Industry from building?	0 - 100 101	100 - 250 101	250 - 500 101	М	km
	What is the distance of nearest	0 - 100 M	100 - 250 M	250 - 500 M	500 - 1000	More than 1
20	Petrol Pump from building?	0 - 100 M	100 - 250 101	250 - 500 101	М	km

	•	-	FIRE	-	-	
	Are the access roads from main		e such access ads	one such a	ccess road	No access road
21	street wide enough to allow one fire engine to reach, reverse and return to the main road?	+		2		×
			Yes			No
22	Are there potential fire threats within 30 meters of the building such as petrol pump, electrical substation, combustible materials store, etc.?					
23	Is there adequate open assembly area for people during	enough space	inadequate op square feet p		neg	ligible
	any emergency?					
	Is main meter box and switch		Yes			No
24	box located in the staircase/ entrance lobby/ passage/ corridor?					

	Are the main meter box and		Yes			No
25	switch box enclosed in a metallic box?					
26	Is there more than 1 staircase which can be used as a fire escape staircase ideally at maximum distance from the other staircase?		Yes	No		
27	In case of Public building or Life line building, Are there proper signages in the campus for Emergency Exit, Fire equipment etc.?	Fire	Yes	Ę		No
28	Is the kitchen located at a safe distance from classrooms, staircase, passage corridor?	Yes, beyond 50 m	Yes, within 20- 50 m	Yes, within 10-20 m	adjacent	Kitchen No Available
29	Is the ceiling material safe from fire?		Yes			No
30	What is the status of fire safety equipment in the building?	100% - Fire extinguisher in each floor of each block	75% - Fire extinguisher in 3/4 th of all floors	50% - Fire extinguisher in half of all floors	25% - Fire extinguisher in 1/4 th of all floors	0% - No Equipment
31	Is the transformer too close to the compound wall or inside the building?		Yes			No
32	Are there overhead cables running through or near premises/building?		Yes			No
33	If there is a forest area near the building?		Yes			No
34	What is the distance of the tree line from the building?					
35	Is there any combustible construction material present in the building?		Yes			No

		CLIMA	TE CHANGE		-	
36	How much do you think climate	Very Likely	Likely	Neutral	Unlikely	Very Unlikely
30	change threatens your personal					
		Climate change/Global Warming	Poverty	Over- population	Un- employment	Crime
37	Which issues are of more concern in your opinion? (On the scale of 10, more marks to most concerned)	Infectious Diseases	Economic Situation	Unplanned Infrastructure	Deforestatio n	Air pollution
		Water pollution	Tourism growth	Poor Waste Management	Extinction of species	Traffic
	In your opinion, What is the reason that the temperature on	Human Activities	Natural Causes	No Change	Don't know	Other
38	earth has been rising over the past decade?					
39	How much do you think the following has contributed to global climate change? (on scale	Deforestation	Overpopulation	Tourist growth	Landuse Landcover	Greenhouse gases
	of 10, more marks to most contributer)	Industrilizatio n	Melting of Ice	Warming of water surface	Other	Don't know

		Non Structura	Risk/ Fall	ing Hazar	d		
		Element	Need Attentio	Number	Element	Need Attentio	Number
		Fan			Wooden Frame at Roof		
		Tubelight			Door		
		Electrical Wires			Window Frames		
		AC			Heavy Machinaries		
40	List of Nonstructural elements which are vulnerable to falling or not attached properly	Open Shelve (Glass)			Cylinder in Open space		
		Open Shelve (Iron)			Board		
		Wardrobe (Wooden)			Ventilator		
		Wardrobe (Iron)			Fire Extinguisher		
		HeavyTable			Cantilever Chimneys		
		Heavy Frames			Cantilever Balconies		
		Heavy Furnitures			Cantilever Sunshades		
		Heavy weight on top of almirah			Other		
41	No. of Exits in the Room	:	•	•			
42	What is the status of Electrical Safety in the Room	GOOD			ОК	PO	OR

542 4.4 Risk Score Computation

543 After all the parametric studies from various Indian Standard codes and Reports ((NDMA, 544 2020), (URDPFI, 2015); IS-13828 (1993); IS-4326 (1993); IS-1893-1 (2016); IS-13935, 2009; 545 IS-15988 (2013)) on ideal building parameters and weak components of a building from 546 designing, construction, site condition, surrounding condition, location and hazard etc. point 547 of views, risk scores were decided on an average basis on 24 components separately (refer 548 section 4.5 of this paper) for better judgment and understanding. Risk scores were derived 549 from the proposed survey form by appropriately weighing the data points against a risk number 550 chart with higher weightage given to higher risk (Chouhan et al., 2022b). The data was then 551 aggregated on a scale of ten (Table 7). For example, if a building answers all weighted MCQs 552 with the highest risk option, it will be scored 10/10 and similarly for low risk and moderate risk. 553 All questions in the questionnaire were not weighted; those with ambiguous risk consequences 554 were left un-weighted to be studied objectively. The risk scores intend to give a relative idea of where the risk lies within a building and among building to enable prioritization during risk 555 556 mitigation planning.

557

Table 7: Risk Score Computation, Source adapted from (Chouhan et al., 2022b)

Risk Score	0 to 2	2.1 to 4	4.1 to 6	6.1 to 8	8.1 to 10
Color Code					
Risk Status	Very low	Low	Moderate	High	Very high
Building Status	Very Safe	Safe	Moderately safe	Unsafe	Very Unsafe
Recommendation	Need Maintenance	Need Attention and Maintenance	Need Attention and SVA	Required DVA and Retrofitting	Required Retrofitting urgently

558

559 4.5 Pilot Survey

560 After finalization of the proposed MHRA Survey form, Pilot survey has been conducted at 10 561 schools of Uttarakhand state. The results of Building level survey and campus level survey 562 has been shown below in section 4.5.1. and 4.5.2.

563 4.5.1 Result of Rapid Visual Screening Survey

As per IS Code 13935 (2009), the key goal of seismic reinforcement is to improve a weakened building's seismic resilience as it is being repaired, making it stronger in the event of potential earthquakes. The individual results of 17 components of RVS are elaborated, which highlights the weaker part that needs attention in a building.

568 Table 8: Result of RVS of 10 schools through Proposed form

SN	Risk Status	Very Low Risk	Low Risk	Moderate Risk	High Risk	Very High Risk	Total
----	-------------	------------------	-------------	------------------	--------------	-------------------	-------

4	Site	54%	13%	29%	2%	2%	100%
1	Condition	32	8	17	1	1	59 blocks
2	Building	34%	27%	14%	20%	5%	100%
2	Geometry	20	16	8	12	3	59 blocks
0	E a una dia tiana	27%	22%	51%	0%	0%	100%
3	Foundation	16	13	30	0	0	59 blocks
4) A / - II	36%	37%	27%	0%	0%	100%
4	Wall	21	22	16	0	0	59 blocks
-	Earthquake	0%	0%	7%	10%	83%	100%
5	Bands	0	0	4	6	49	59 blocks
0	Orealia	2%	83%	0%	0%	15%	100%
6	Cracks	1	49	0	0	9	59 blocks
7	On an in an	63%	17%	19%	1%	0%	100%
7	Openings	37	10	11	1	0	59 blocks
0	Deef	7%	3%	10%	78%	2%	100%
8	Roof -	4	2	6	46	1	59 blocks
0	Pounding	25%	0%	5%	39%	31%	100%
9	Effect	15	0	3	23	18	59 blocks
4.0	Heavy	95%	0%	2%	0%	3%	100%
10	Weight on top	56	0	1	0	2	59 blocks
		93%	0%	7%	0%	0%	100%
11	Parapet	45	0	4	0	0	59 blocks
10	Quarkan	53%	0%	15%	0%	32%	100%
12	Overhang	31	0	9	0	19	59 blocks
40	01-1-1-1-1	80%	0%	3%	12%	5%	100%
13	Staircase	47	0	2	7	3	59 blocks
4.4	Caluman	51%	0%	12%	0%	37%	100%
14	Column	30	0	7	0	22	59 blocks
4.5	Dearra	32%	2%	7%	7%	52%	100%
15	Beam	19	1	4	4	31	59 blocks
10	Deservet	100%	0%	0%	0%	0%	100%
16	Basement -	59	0	0	0	0	59 blocks
17	Soft Stores	100%	0%	0%	0%	0%	100%
17	Soft Storey	59	0	0	0	0	59 blocks

570 **4.5.2 Result of Other Multi-Hazard Survey**

571 The survey was conducted by considering the campus of the school as one unit. It primarily 572 focuses on the location of school premises under a vulnerable zone or not, if yes, to which 573 kind of hazard. It solves the question of how the school campus is prepared. The result of 574 multi-hazard survey is shown in the figure 6 below:

		Flood Risk Assessment				
		10%	50%	30%	10%	100%
5	\approx	1 s	5 schools	3 schools	1 s	10 Schools

	Wind Risk Assessment			Total
	70%	20%	10%	100%
576	 7 schools	2 schools	1 s	10 Schools

	Landslide Risk Assessment	Total
•	100%	100%
	10 schools	10 Schools

	Industrial Risk Assessment	Total
~~	100%	100%
•••	10 schools	10 Schools

0.0

579

	Fire Risk Assessment				
3	20%	60%	20%	100%	
)	2 schools	6 schools	2 schools	10 Schools	

		Non-Structural Risk Assessment		Total
		80%	20%	100%
580	4	8 schools	2 schools	10 Schools

581 Figure 6: Graphical presentation of the results of Multi-hazards risk

582 The photos of the 10 schools where pilot survey was conducted is shown in the figure below:

583

584 Figure 7: Photo of the 10 schools

585 **5 Discussion:**

586 5.1 Pilot Survey

587 The IHR requires effective and standardised Multi-Hazard Risk Assessment, and for that purpose a customized designed Survey Form has been designed to capture the unique 588 characteristics of hill communities and assets. The proposed form performed reasonably well. 589 590 Effectiveness & data collection is comfortable from both ends i.e., Respondents & Surveyor. 591 The questions are properly framed in various sections, the language is simple and it is easy 592 to interpret. The pictorial explanation makes it easy for surveyors to correct input data, as its 593 explanation is self-explanatory. The objective behind the data collection is well clear to the 594 Respondents and Surveyor.

595 5.2 Key features of the proposed MHRA survey form

596 The key features of the proposed form are it is specially designed for data collection in the 597 Indian Himalayan region with risk of Earthquake, Flood, High Wind, Industrial hazard, Non-598 Structural Risk, fire vulnerability and Climate change awareness. As the value addition, the 599 proposed survey form consist of questions related to climate change also, as the promotion of 600 self-mobilisation and action is enhanced by awareness; it increases enthusiasm and support. 601 It is therefore crucial to raise awareness about climate change adaptation in order to manage 602 the impacts of climate change, increase adaptive capacity, and reduce overall vulnerability.

603 The proposed survey form is very useful for any type of study related to Hazard Risk 604 assessment in hills. Time taken to complete the questionnaire, i.e. the length of the 605 questionnaire is good enough i.e. 10 minutes for the trained civil engineer and 17 minutes for 606 the trained non-engineering background surveyor. With practice, the surveyor can reduce 607 time. The language of the form is simple and specific, i.e. One answer on one dimension is 608 required, it considers all possible contingencies when determining a response, It is designed 609 in a way that it collects more & more accurate information in less time. Questionnaires permit the collection and analysis of quantitative data in a standardized manner, ensuring their 610 611 internal consistency and coherence. The question sequence is clear and smooth moving. By 612 sequencing questions properly, the chances of misinterpreting individual questions are greatly 613 reduced. The pictorial options make it comfortable for the surveyor to fill the answer by looking 614 at the building.

615 The survey form is divided into sections so that only one thought can be conveyed at a time. 616 It is the advanced version of RVS that covers risk status for foundation, wall, roof, openings, 617 beam, column, site conditions, etc. of a building. It is covering all the points required for 618 building analysis in RVS. It covers questions related to all identified hazards that are directly 619 indirectly contributing to risk factors. It covers all the required Questions as per hill condition, 620 situation, climate, geography, construction practices, construction materials, etc. The format, 621 including the font and layout, is good enough to read by the surveyor. Before going into the 622 field, the surveyor must require a reading of the full survey form carefully with all terminologies 623 clear. It covers the non-structural risk survey form. The safety of occupants in a building 624 following an incident can be at risk due to reduced capacity of structural components or 625 damage to non-structural components. This hill-specific MHRA questionnaire survey may act 626 as a risk sensitization tool.

627 5.3 Result of Pilot Survey

It can be seen that the detailed multi-hazard risk assessment will help the schools to identify
the potential threats presented in the building as well as premises and the steps to retrofit the
structure.

631 Due to the region's strong earthquake zonation, RVS and NSRA data suggest high structural 632 and non-structural vulnerability an almost all the 10 schools (figure 7), which assumes greater 633 significance. On the other hand, Schools need to improve its fire safety measurement and 634 trainings on the same. The high wind and flood pose a prominent moderate to high risk. 635 Industry and landslides, on the other hand, pose no risk. The risk of fire arises from a shortage 636 of fire safety equipment and structural issues such as the absence of an alternate staircase, 637 the incorrect placement of fire-risk properties, etc. Fire disasters have the potential to be 638 catastrophic, but this should be a top priority as we advance. The wind is a significant concern 639 in this region because it is vulnerable to frequent windstorms. High-speed winds pose a risk 640 in the form of hazard trees/ towers, flying objects weakly latched doors/windows.

Heavy furniture (tables, almirah) and hanging electrical items/wire products face a considerable risk of falling in the case of a tragedy in different rooms and labs. Falling hazards can obstruct escape routes and injure people as they collide with them during minor seismic shaking/earthquakes. When a disaster strikes, it's crucial for students and workers to have as little disruption as possible during the critical reaction time. Mitigation measures primarily involve simple fixes of non-structural elements with the structural element (wall and floor) and are hence, for the most part, low-cost solutions.

648 Overall, the total risk is rated moderate on the risk scale considered by the authors after 649 structural and non-structural factors.

650 6 Conclusion

The Indian Himalayan region is facing disaster every year with significant loss of life and property, as it is very prone to multi-hazards. Thousands of studies, research, and projects are funded nationally and internationally to minimize the loss and prepare the community to face the upcoming disaster.

A questionnaire is the backbone for any survey, which is the base for all types of research work for better accuracy. This article describes why there is a need for a hill-specific survey form that focuses on the multi-hazards in hills and hill's existing scenarios. It then described the steps of how a Hill-specific Multi-Hazard Risk Assessment Survey form was developed, validated through pilot survey, and tailored specifically for hill communities. This article identifying gaps in the existing survey form used in India for risk assessment and highlights the problem faced by the surveyors on ground while filling these survey forms. The proposed form is a self-explanatory, pictorial, simple, easy to understand, covers hill specific important components and it addresses several hazards such as earthquakes, floods, high wind, landslides, industrial hazard, fire vulnerability and non-structural risk in the building.

The proposed survey form is designed and applied under this study will help all the stakeholders to collect better information from the field and made it easy for the surveyors to understand even for non-technical person. This form will also identify the weak components of a building, construction practices, their development trend, and vulnerability of the location, so that future construction can be planned, considering the risk factors and vulnerable zones. Most of the assessment criteria for multi-hazard risks are met by the proposed survey form. The more accurate the data, and the better will be its results.

672 The preliminary survey conducted at Chinyalisaur district of Uttarakhand validates the 673 questionnaire and survey form, and provided invaluable feedback now incorporated in to the 674 final survey form design. Through preliminary and pilot survey it has been observed that the 675 proposed form is designed in a way that it can collect more accurate information in less time. 676 Questionnaires permit the collection and analysis of quantitative data in a standardized 677 manner, ensuring their internal consistency and coherence. The language and sequence of 678 questions is designed for clear and easy communication. Pictorial explanations of questions, 679 the unique feature, provides easy flow of information between the respondents and surveyors. 680 Thus, this hill-specific MHRA questionnaire survey may act as a risk sensitization tool.

681 The survey form is divided into various sections that covers firstly building specific questions 682 as building plays crucial role during any hazard and secondly location specific questions that 683 covers vulnerability of building towards other hazards. The result of pilot survey highlights risk 684 status for various components of a building which will help further in utilizing the retrofitting 685 and renovation budget in fruitful and planned way. On the other hand, result of pilot survey 686 also shows location wise vulnerability i.e., vulnerability of the building towards other hazards 687 that can help further in decision making related disaster reduction, preparedness and planning 688 strategies at that location for that particular identified hazard. It will also help to understand 689 the development trend in that particular location and take action for future development 690 strategies.

The suggested form is a proposed version of Rapid Visual Screening (RVS), which can assess the risk of any structure and includes all structural and non-structural components that respond during a seismic event. It also includes information about the building's sensitivity to possible danger zones such as landslides, floods, wind, and industrial hazards. Research is being undertaken to develop more accurate hill-specific risk assessment survey form that requires
less time, marginal effort. identify deficiencies and, most important suggest a site-specific
Multi-Hazard Survey form for hills.

698 This study has the huge scope of application in other Asian countries with Himalayas like 699 Nepal, Bhutan, China and Pakistan. Its international application will enhance the survey form 700 and have scope for future research. The proposed survey form will not only act as self-701 sensitization for the building owners at micro level but will also have huge scope at regional 702 level i.e. macro level, when results of all the buildings will be on single screen. The data 703 collected using this form can be used in any study related to Multi-Hazard Risk Assessment. 704 It can be used by civil engineers as well as non-civil engineering background people. People 705 can self-assess their building. To do this effectively, it is crucial to reinforce the networks of 706 science, technology, and decision-makers and create a sustainable technological outcome for 707 disaster risk reduction.

708 Acknowledgment

This research was supported by National Mission for Himalayan Studies (NMHS), Project Grant No. NMH_1334_DMC and CoPREPARE, Project Grant no. IGP2020-24/COPREPARE – funded by UGC. We are indebted to the local residents who actively participated in the household survey. The authors are grateful to Mr. Tom Burkitt, from DHI, for supporting editorial and proofreading.

714 Data availability Statement

This article is part of doctoral research and the data collection has been done by the first author physically on-site. The data is available from the authors on the request basis.

717 **Disclosure statement**

No potential conflict of interest was reported by the authors.

719 **References**

720

Allen, S. K., Rastner, P., Arora, M., Huggel, C., and Stoffel, M.: Lake outburst and debris flow
disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic
predisposition, Landslides, 13(6), 1479–1491. doi:10.1007/s10346-015-0584-3, 2015.

Aksha, A. K., Resler, L. M., Juran, L., and Carstensen, L. W.: A geospatial analysis of multihazard risk in, Geomatics, Nat. Hazards Risk, 11(1), 88–111. doi:

726 10.1080/19475705.2019.1710580, 2020.

- 727 Arya, A. S.: Rapid Visual Screening of RCC Buildings, Prepared Under GOI UNDP Disaster
- 728 Risk Management Programme, Ministry of Home Affairs, India, pp 14 pp., 2006a

Arya, A. S.,: Rapid Visual Svreening of Masonry Buildings, GOI – UNDP Disaster Risk
Management Programme, 13935, 17–41 pp., 2006b

BMTPC.: Vulnerability Atlas of India: 3rd edition, Ministry of Housing and Urban Affairs,
Government of India, India, 478 pp., https://vai.bmtpc.org/, 2019

Buck, Kyle. D., and Summers, J. Kelvin.: Application of a multi-hazard risk assessment for
local planning local planning, Geomatics, Nat. Hazards Risk., 11(1), 2058-2078,
https://doi.org/10.1080/19475705.2020.1828190, 2020.

Chandel, V. B. S., and Brar, K. K.: Seismicity and vulnerability in Himalayas: the case of
Himachal Pradesh, India, Geomatics, Nat. Hazards Risk., 1(1), 69-84, doi:
10.1080/19475701003643441, 2010.

Chouhan, S., Narang, A., and Mukherjee, M.: Multi-Hazard Risk Assessment of Schools in
Lower Himalayas: Haridwar District, Uttarakhand, India, EGU General Assembly 2022,
Vienna, Austria, 23–27 May 2022, EGU22-4333, https://doi.org/10.5194/egusphere-egu224333, 2022a.

Chouhan, S., Narang, A., and Mukherjee, M.: Multihazard risk assessment of educational
institutes of Dehradun, Uttarakhand, Int. J. Disaster Resil. Built Environ., ISSN: 1759-5908,
https://doi.org/10.1108/IJDRBE-08-2021-0091, 2022b.

746 COI-Census of India: https://censusindia.gov.in/census.website/, last access: 16 July 2022.,747 2011

Disasters in Himalayan Region: https://library.oapen.org/handle/20.500.12657/22932, last
access: 16 July 2022., 2007.

Dunbar, P.K., Bilham, R.G., and Laituri, M.J.: Earthquake Loss Estimation for India Based on
Macroeconomic Indicators, Risk Science and Sustainability, Edited by: Beer, T., Ismail-Zadeh,
A., NATO Science (Vol 112), Springer, Dordrecht, 163-180, https://doi.org/10.1007/978-94010-0167-0_13, 2003.

FEMA.: Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook: 3rd
edition, Federal Emergency Management Agency, Washington, 388 pp., 2015.

- Gerlitz, J. Y., Macchi, M., Brooks, N., Pandey, R., Banerjee, S., and Jha, S. K.: The
 Multidimensional Livelihood Vulnerability Index an instrument to measure livelihood
 vulnerability to change in the Hindu Kush Himalayas, Clim. Dev, 9(2), 124-140, doi:
 10.1080/17565529.2016.1145099, 2016.
- Goodrich, C. G., Prakash, A., and Udas, P. B.: Gendered vulnerability and adaptation in HinduKush Himalayas: Research insights, Environ. Dev., 31, 1-8,
 https://doi.org/10.1016/j.envdev.2019.01.001, 2018.
- Gautam, M. R., Timilsina, G. R., and Acharya, K.: Climate Change in the Himalayas: Current
 State of Knowledge, World Bank Policy Research Working Paper No. 6516, SSRN, 64 pp.,
 2013.
- Gaur, V. S., and Kotru, R.: Sustainable Tourism in the Indian Himalayan Region, Report ofWorking Group II, NITI Aayog-Government of India, India, 100 pp., 2018.
- Hackl, J., Adey, B. T., and Heitzler, M.: An Overarching Risk Assessment Process to Evaluate
 the Risks Associated with Infrastructure Networks due to Natural Hazards,
 Int. J. Perform. Eng., 11(2), 153-168, doi: 10.23940/ijpe.15.2.p153.mag, 2015.
- IS-code13828-1993: Indian Standard Improving Earthquake Resistance of Low Strength
 Masonry Buildings-Guidelines, Indian Standard Codes- guidelines, Bureau of Indian
 Standards, New Delhi, 22 pp., https://archive.org/details/gov.law.is.13828.1993, 2008.
- IS-code13935-2009: Indian Standard Seismic Evaluation, Repair And Strengthening Of
 Masonry Buildings-Guidelines (First Revision), Indian Standard Codes- guidelines, Bureau of
 Indian Standards, New Delhi, 44 pp., https://archive.org/details/gov.in.is.13935.2009, 2009.
- IS-code1893(1)2002: Indian Standard Criteria for Earthquake Resistant Design of Structures
 Part 1 General Provisions and Buildings (Fifth Revision), Indian Standard Codes- guidelines,
 Bureau of Indian Standards, New Delhi, 45 pp.,
 https://archive.org/details/gov.in.is.1893.1.2002, 2002.
- IS-code1893(1)2016: Indian Standard Criteria for Earthquake Resistant Design of Structures
 Part 1 General Provisions and Buildings (Fifth Revision), Indian Standard Codes- guidelines,
 Bureau of Indian Standards, New Delhi, 44 pp., https://archive.org/details/1893Part12016,
 2016.
- 785
- 786 IS-code4326-1993: Indian Standard Earthquake Resistant Design and Construction of
 787 Buildings Code of Practice (Second Revision), Indian Standard Codes- guidelines, Bureau

- of Indian Standards, New Delhi, 41 pp., https://archive.org/details/7.ls.4326.1993, 1993.
- Jain, S. K., Mitra, K., Kumar, M., and Shah, M.: A Rapid Visual Seismic Assessment Procedure
- for RC Frame buildings in India, in: Proceedings of the 9th U.S. National and 10th Canadian
- 791 Conference on Earthquake Engineering, Toronto, Ontario, Canada, 25-29 June 2010,
- 792 Paper No 972, doi: 10.13140/2.1.2285.0884, 2010.
- Kala, C. P.: Deluge , disaster and development in Uttarakhand Himalayan region of IndiaChallenges and lessons for disaster management, Int. J. Disaster Risk Reduct., 8, 143-152,
 doi: 10.1016/j.ijdrr.2014.03.002, 2014.
- Khattri, K. N., Rogers, A. M., Perkins, D. M., and Algermissen: 'A seismic hazard map of india
 and adjacent areas', Tectonophysics, 108(1–2), 93–108, 111–134. doi:
 https://doi.org/10.1016/0040-1951(84)90156-2., 1984.
- Kumar, S. A., Rajaram, C., Mishra, S., Kumar, R. P., and Karnath, A.: Rapid visual screening
 of different housing typologies in Himachal Pradesh, India, Nat Hazards, 85(3), 1851-1875,
 doi: 10.1007/s11069-016-2668-3, 2016.
- Mohapatra, A. K., and Mohanty, W. K.: An Overview of Seismic Zonation Studies in India, in:
 Indian Geotechnical Conference, GEOtrendz, 16–18 December 2010, 175-178, 2010.
- Marcussen, E.,: Explaining the 1934 Bihar-Nepal Earthquake : The Role of Science , Astrology
 and "Rumours" In: Schenk, G. (eds) Historical Disaster Experiences. Transcultural
 Research Heidelberg Studies on Asia and Europe in a Global Context. Springer, Cham.,
 241-266, doi: 10.1007/978-3-319-49163-9, 2017.
- 808 Map of India: https://www.mapsofindia.com/maps/india/seismiczone.htm, last access: 16809 January 2022., 2021.
- 810 MHA-Ministry of Home Affairs: https://www.mha.gov.in/division_of_mha/disaster-811 management-division, last access: 16 July 2022., 2011.
- Mouri, G., Minoshima, D., Golosov, V., Chalov, S., Seto, S., Yoshimura, K., Nakamura, S.,
 and Oki, T.: Probability assessment of flood and sediment disasters in Japan using the Total
 Runoff-Integrating Pathways model, Int. J. Disaster Risk Reduct., 3, 31-43,
 https://doi.org/10.1016/j.ijdrr.2012.11.003, 2013.
- NDMA: A Primer on Rapid Visual Screening (RVS) Consolidating Earthquake Safety
 Assessment Efforts in India, Manual and Guidelines, National Disaster Management Authority,
- 818 Government of India, India, 75 pp., 2020.

- 819 NITI Aayog: Report of Working Group II Sustainable Tourism in the Indian Himalayan Region
- https://www.niti.gov.in/writereaddata/files/document_publication/Doc2.pdf. Last access: 25
 January 2022., 2018.
- NMHS- National Mission on Himalayan Studies: https://nmhs-himal.res.in/login.php, last
 access: 16 July 2022., 2019.
- 824 Parajuli, A., Gautam, A. P., Sharma, S. P., Bhujel, K. B., Sharma, G., Thapa, P. B., Bist, B. S., 825 and Poudel, S.: Forest fire risk mapping using GIS and remote sensing in two major 826 landscapes of Nepal, Geomatics, Nat. Hazards Risk., 11(1), 2569-2586, 827 https://doi.org/10.1080/19475705.2020.1853251, 2020.
- Pathak, R., Negi, V. S., Rawal, R. S., and Bhatt, I. D.: Alien plant invasion in the Indian
 Himalayan Region: state of knowledge and research priorities, Biodivers. Conserv., 28(12),
 3073-3102, https://doi.org/10.1007/s10531-019-01829-1, 2019.
- Peiris, T. A.: Flood Risk Assessment for Dungsum Chu Basin in Samdrup Jonkhar, Data
 Collection Report, Climate Technology Centre and Network (CTCN) and Asian Institute of
 Technology (AIT), Bhutan, 33 pp., 2015.
- Rehman, A., Song, J., Haq, F., Mahmood, S., Ahamad, M. I., Basharat, M., and Mehmood, M.
 S.: Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and
 Frequency Ratio Techniques in the Northwest Himalayas, Pakistan, Int. J. Remote Sens,
 14(3)-554, 1-31, https://doi.org/10.3390/rs14030554, 2022.
- Roopa, S., and Rani, M.: Questionnaire Designing for a Survey, Journal of Indian Orthodontic
 Society, 46(4), 273-277, doi: 10.1177/0974909820120509s, 2012.
- Sanam, K. A., Lynn, M. R., Luke, j., and Laurence, W. C. Jr.: A geospatial analysis of multihazard risk in Dharan, Nepal, Geomatics, Nat. Hazards Risk., 11(1), 88-111,
 https://doi.org/10.1080/19475705.2019.1710580, 2020.
- Sarkar, S., Kanungo, D. P., and Sharma, S.: Landslide hazard assessment in the upper
 Alaknanda valley of Indian Himalayas, Geomatics, Nat. Hazards Risk., 6(4), 308-325,
 http://dx.doi.org/10.1080/19475705.2013.847501, 2015.
- Sekhri, S., Kumar, P., Fürst, C., and Pandey, R.: Mountain specific multi-hazard risk
 management framework (MSMRMF): Assessment and mitigation of multi-hazard and climate
 change risk in the Indian Himalayan Region, Ecol. Indic., 118, 106700, doi:
 10.1016/j.ecolind.2020.106700, 2020.

Sharma, S., Roy, P. S., Chakravarthi, V., Srinivasarao, G., and Bhanumurthy, V.: Extraction
of detailed level flood hazard zones using multi-temporal historical satellite data-sets – a case
study of Kopili River Basin , Assam , India', *Geo Nat Hazards Risk.*, 13(1), 2227-2251, doi:
10.1080/19475705.2016.1265014, 2017.

854 Siddique, M. I., Desai, J., Kulkarni, H., and Mahamuni, K.: Comprehensive report on Springs 855 in the Indian Himalayan Region, Report number: ACWA/Hydro/2019/H88, Advanced Center 856 for Water Resouces Development and Management, India, 198 pp., doi: 857 10.13140/RG.2.2.12104.06408, 2019.

- Singh, J. S.: Sustainable development of the Indian Himalayan region: Linking ecological and
 economic concerns, Current Science, 90(6), 784–788, http://www.jstor.org/stable/24089189,
 2005.
- Singh, A., Kanungo, D. P. and Pal, S.: Physical vulnerability assessment of buildings exposed
 to landslides in India, Nat Hazards, 96(2), 753–790. doi: 10.1007/s11069-018-03568-y. 2019.
- Sinha, R., and Goyal, A.: A National Policy for Seismic Vulnerability Assessment of Buildings
 and Procedure for Rapid Visual Screening of Buildings for Potential Seismic Vulnerability,
 Report, Indian Institute of Technology Bombay, Mumbai, 12 pp., 2001.
- Srivastava, H. N., Verma, M., Bansal, B. K., and Sutar, A. K.: Discriminatory characteristics of
 seismic gaps in Himalaya, Geomatics, Nat. Hazards Risk., 6(3), 224-242,
 http://dx.doi.org/10.1080/19475705.2013.839483, 2015.
- Srivastava, V., Srivastava, H. B., and Lakhera, R. C.: Fuzzy gamma based geomatic modelling
 for landslide hazard susceptibility in a part of Tons river valley, northwest Himalaya, India.
 Geomatics, Nat. Hazards Risk., 1(3), 225–242. doi:10.1080/19475705.2010.490103, 2010.
- UNDRR.: <u>https://www.undrr.org/terminology#R</u>, last access: 30 January 2022.
- URDPFI.: Urban and Regional Development Plans formulation and implementation (URDPFI)
 Guidelines, 1, Town and Country Planning Organization, Ministry of Urban Development,
 Government of India, 447 pp., 2015.
- Wester, P., Mishra, A., Mukherji, A., & Shrestha, A. B. (Eds).:The Hindu Kush Himalaya
 Assessment, Springer Nature, Nepal, 627 pp., https://doi.org/10.1007/978-3-319-92288-1,
 2019.