

Design and Application of a Multi-Hazard Risk Rapid Assessment Questionnaire for Hill Communities in the Indian Himalayan Region

Shivani Chouhan^{1*}, Mahua Mukherjee²

¹Research Scholar, Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, India

²Professor, Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, India

*Corresponding Author: Shivani Chouhan (s_chouhan@dm.iitr.ac.in)

***Corresponding Author:**

Name: Ms. Shivani Chouhan,

Email: s_chouhan@dm.iitr.ac.in,

Telephone: +91-9675457229 , +49-1744969778

*Postal Address: Centre of excellence in disaster mitigation and management, IIT Roorkee, Roorkee
Uttarakhand, 247667, India*

ABSTRACT

19 The Indian Himalayan Region (IHR) is prone to multiple-hazards and suffers great loss of life
20 and damage to infrastructure and property every year. Poor engineering construction,
21 unplanned and unregulated development, and relatively low awareness and capacity in
22 communities for supporting disaster risk mitigation is directly and indirectly contributing to the
23 risk and severity of disasters.

24 A comprehensive review of various existing survey forms for Risk assessment has found that
25 the survey questionnaires themselves have not been designed or optimised, specifically, for
26 hill communities. Hill communities are distinctly different from low-land communities, with
27 distinct characteristics and susceptibility to specific hazard and risk scenarios. Previous
28 studies have, on the whole, underrepresented the specific characteristics of hill communities,
29 and the increasing threat of natural disasters in the IHR creates an imperative to design hill-
30 specific questionnaires for multi-hazards risk assessment.

31 The main objective of this study is to design and apply a hill-specific risk assessment survey
32 form that contains more accurate information for hill communities and hill-based infrastructure
33 and allows for the surveys to be completed efficiently and in less time. The proposed survey
34 form is described herein and is validated through a pilot survey at several locations in the hills
35 of Uttarakhand, India. **The survey form covers data related to vulnerability from Earthquake**
36 **(Rapid Visual Screening), Flood, High Wind, Landslide, Industrial, Fire Hazard in the building,**
37 **Climate Change and Non-Structural Falling Hazard.** The proposed form is self-explanatory.

Commented [SS1]: Comment (R1)-1: In line 23-29, if it has some international application in some other countries, give some names or suggest in brief what modifications can be made to convert them for international use specifically in some Asian countries.

Response: We appreciate the reviewer, for bringing out attention to this point. We agree with you about its scope in other Asian countries with Himalayas, however our paper has applied only in Indian Himalayan region till now and focus on the same. Taking your suggestion into consideration, addition have been made in the conclusion section.

Commented [SS2]: Comment (R1)-2: In line 35, It's researcher's work, so it should be clear what hazards have been considered. Do not use term etc. Name hazards which you are considering in particular.

Response: We appreciate the reviewer for pointing this out. Taking this comment into consideration, we have revised this line.

38 pictorial with easy terminologies, and is divided into various sections for better understanding
39 of the surveyor etc.

40 The application process confirmed that the survey questionnaire performed well and met
41 expectations in its application. The form is readily transferrable to other locations in the IHR
42 and could be internationalised and used throughout the Himalaya.

43 **Keywords:** Survey, Questionnaire Design, Multi-Hazard, Rapid Visual Screening, Himalaya

44 **1 Introduction**

45 The Indian Himalayan is considered a significant part of the world's mountain ecosystems
46 (Singh, 2005). The Himalayas are geologically active, delicate, and vulnerable to both natural
47 and human-made processes due to their structural instability and maturity (Kala, 2014).
48 Numerous hazards interact at most locations, resulting in cascading or synergetic effects
49 (Aksha *et al.*, 2020). The Indian Himalayan Region (IHR) being prone to multiple hazards
50 suffers great loss of life and damage to infrastructure and properties every year (Chouhan *et*
51 *al.*, 2022a). Multi-hazard frequency has risen in recent decades, resulting in massive socio-
52 economic losses. There has been a constant rise in the number of deaths, property losses,
53 and damage to infrastructure and facilities (Chandel and Brar, 2010). According to UNDRR
54 (UNDRR, n.d.), the multi-hazard concept refers to "(1) the selection of multiple major hazards
55 that the country faces, and (2) the specific contexts where hazardous events may occur
56 simultaneously, cascadingly or cumulatively over time, and taking into account the potential
57 interrelated effects."¹

58 Poor engineering and construction, reckless development, human intervention, unrecognized
59 practices, irresponsible development initiatives, and a lack of knowledge are directly and
60 indirectly contributing to the risk and severity of disasters (Chouhan *et al.*, 2022b). Many
61 natural disasters have become human-made phenomena as a result of the spread of
62 irresponsible construction practices. Such disasters have a devastating socio-economic
63 impact on the country's economy, putting even more strain on an already stressed economy
64 (Disasters, 2007).

65 Various research work, disaster risk assessment studies and, implementation projects are
66 being executed by national and international organizations for disaster risk reduction in the
67 Himalayas. The data collection for any risk assessment in this difficult terrain is a crucial task,
68 as correct information documentation has played major significant role that directly or indirectly
69 lead to an influence in correct assessment of the risk factor (Chouhan *et al.* 2022b).

Commented [SS3]: Comment (R2)-2: The National Building Code of India (2016) published by the Bureau of Indian Standards (BIS), New Delhi, describes the 'Multi-Hazard Risk Concept' and 'Multi-Hazard Prone Area,' which can be helpful for the readers if included in the review presented by the authors in the manuscript.
Response: Thank you so much reviewer for sharing this information. We agree and have updated it in the introduction section.

70 Surveys using a well-crafted questionnaire is a proven method in the research fraternity.
71 Questionnaires are the backbone of every survey when it comes to data collection. Using data,
72 one can gain a detailed understanding of a community's hazard profile, vulnerability
73 interactions and their contribution to risk reduction (Buck and Summers, 2020). The survey
74 information is required to be coherent for data analysis since they lead to critical decisions at
75 many levels, represent the site's vital characters and society's expectations and requirements
76 too. All of these outcomes hinge, of course, on the creation of a robust site-specific survey
77 form. A well designed and executed MHRA can lead to more robust strategies for disaster risk
78 reduction (Kala, 2014; Sekhri et al., 2020) and can facilitate by prioritizing development
79 planning decisions.

80 After studying existing survey forms and practical field survey at various location in Indian
81 Himalayas, author founds that the existing MHRA survey forms used in India have some
82 lacuna from hills point of views as Himalayas have different geography, cultural, development
83 practices, hazard profile etc. (Chouhan et. al., 2022b). A close evaluation of the existing survey
84 questionnaires reveals that there is a need for the IHR-specific survey questionnaire form to
85 facilitate a MHRA, which should be easy to understand, pictorial, and that creates a two-way
86 disaster sensitization of giving and getting information from the community.

87 In this research paper, the journey to design and application of the proposed Hill specific
88 MHRA survey form has been describe. The pilot survey using the proposed survey form has
89 been conducted at 10 schools in Uttarakhand state of India and its results identify various risk
90 indicators in a building as well as school campus.

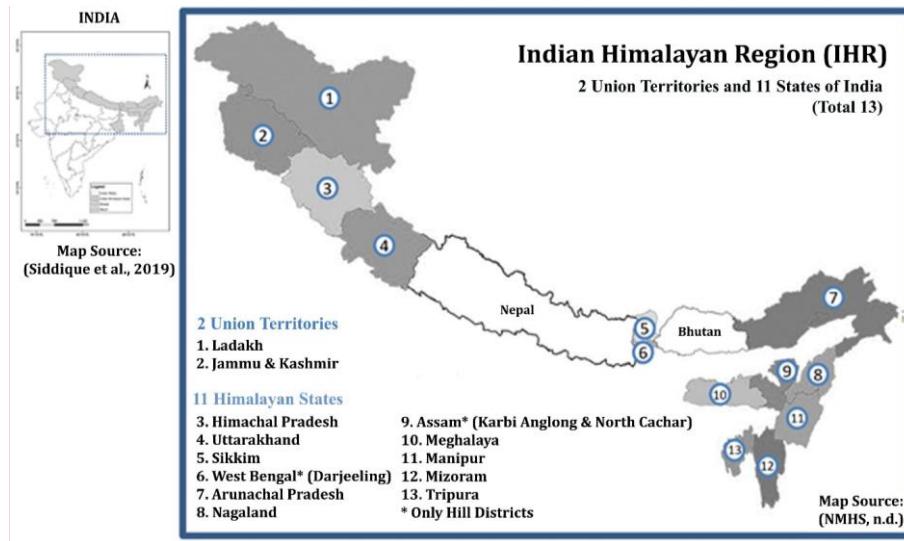
91 **2 Background**

92 *2.1 Defining the Indian Himalayan Region*

93 The Indian Himalayan Region (IHR) straddles the northern latitudes of 26 20' and 35 40', and
94 the eastern latitudes of 74 50' and 95 40' (Sekhri et al., 2020). In India, it comprises 16.2% of
95 all the geographical land and is home to 76 million people. Natural resources, biodiversity, and
96 ethnic variety are abundant in IHR. (Goodrich et al., 2019; Sekhri et al., 2020). It stretches
97 from the Indus River to the Brahmaputra River in the east. (Srivastava et al., 2015). There are
98 a total of 11 Indian Himalayan states and 2 Union territory as shown in Figure 1, which has
99 109 administrative districts (Kala, 2014). The region is socially and economically
100 underprivileged, with 171 schedule tribes accounting for almost 30% of India's total tribal
101 population and a high literacy rate of 79 percent. The population is growing exponentially,
102 putting a strain on the region's resources (COI, 2011). Tourism is a lucrative business in IHR
103 (NITI Aayog, 2018) and it contributes to support a lot of construction projects like hotels,
104 restaurants, road construction etc. across the region (Kala, 2014). Agriculture is a profitable

Commented [SS4]: Comment (R1)-3: In line 87-88, give reference of this data

Response: Taking this comment into consideration, we have added Reference to this line.


Commented [SS5]: Comment (R1)-4: In line 92, There are two Union Territories not one accordingly modification are needed in text.

Response: We appreciate the reviewer's insightful observation and taking this comment into consideration, we have updated it in text as well as in figure 1.

Commented [SS6]: Comment (R1)-5: In line 96, How tourism helps in construction of Dam Project. I think something is missing. Please modify.

Response: We appreciate the reviewer's insightful observation. Taking this point into consideration, modification has been done in this line.

105 venture for Himalayan people, and it is mainly rain-nourished. Furthermore, climate change is
106 hazardous to the region's progress and hinders socio-economic development (Sekhri *et al.*,
107 2020).

108

109 *Figure 1: Indian Himalayan Region, Source: adapted from (NMHS, n.d.) (Mohammad Imran Siddique, Jayesh*
110 *Desai, Himanshu Kulkarni, 2019)*

111 The IHR represents a significant role in the world's mountain ecosystems (Singh, 2005). IHR
112 attracts tourists worldwide because of its natural richness, unique biodiversity, and cultural
113 diversity (NITI Aayog, 2018; Gaur and Kuroto, 2018). The number of pilgrims has risen
114 dramatically in prominent pilgrim centres across the Himalayas over the ages (Kala, 2014),
115 putting extra stress on these resources and posing a danger of socioeconomic loss.

116 2.2 *Multi Hazards in IHR*

117 Being geologically young and expanding (Wester *et al.*, 2019), the IHR is vulnerable to natural
118 disasters (Gautam *et. al.*, 2013). The Himalaya, the world's highest mountain range is
119 geologically active, fragile, and susceptible to natural and man-made processes (Kala, 2014).
120 Indian geography, climate, topography, and population growth all contribute to its high risk and
121 vulnerability (Sharma *et al.*, 2017). Mountain hazards are widespread, and hills characteristics
122 are fragility, restricted accessibility, marginality, and heterogeneity (Gerlitz *et al.*, 2016) may
123 turn a hazard into a catastrophe, transforming mountains into high-risk zones. Furthermore,
124 mountains need a long time to recover from disruptions (Sekhri *et al.*, 2020).

Commented [SS7]: Comment (R2)-9: The whole manuscript has inconsistencies in formatting, font size, and unnecessary capitalization of the first letter of the words. While citing the tables and figures in the text, the first letter should be capitalized; for example, in line 170, it can be "Table 2". Also, the quality of the figures and sub-figures require enhancement. The references should be arranged with a consistent formatting style.

Response: We appreciate the reviewer's helpful suggestion. Taking this comment into consideration, (1) We have identified the text (table and figure) and capitalized the first letter as Table and Figure (2) The images with better high quality pixel size is already send as a separate file (3) Referencing style is improved as per journal's guidelines.

Commented [SS8]: Comment (R1)-4: In line 92, There are two Union Territories not one accordingly modification are needed in text.

Response: We appreciate the reviewer's insightful observation and taking this comment into consideration, we have updated it in text as well as in figure 1.

125 Multi-Hazard Frequency has risen in recent decades, resulting in massive socio-economic
 126 losses (Rehman et al., 2022). Unrecognized practices, irresponsible development initiatives,
 127 and a lack of knowledge contribute to disasters having a more significant effect. One of the
 128 most challenging aspects of natural hazards risk assessment is determining how to estimate
 129 the risk of several hazards in the same region and how they interact (Hackl et. at., 2015).

130 In the recent decade, severe earthquakes, floods, and landslides have devastated IHR,
 131 including the M 7.6 Kashmir earthquake in 2005, the Malpa Landslide in 2009, the M 6.8
 132 Sikkim earthquake in 2011, the 2013 Uttarakhand flash flood, and others, affecting
 133 approximately thousands of deaths and property losses (MHA, 2011; BMTPC, 2019; Kumar
 134 et al., 2016). Table 1 illustrate and describe the major hazard events that have occurred
 135 historically in the Indian Himalayan region.

136 *Table 1: Major Disaster Events in IHR, Source: adapted from (BMTPC, 2019; Kumar et al., 2016).*

SN	Date	Location [(Latitude, Longitude)]	Place	Indian Himalayan State	Hazard/ Magnitude	Casualties	Source
1	1869, Jan 10	(25.00, 93.00)	Near Cachar	Assam	Earthquake 7.5 Mw	Unknown	Kumar et al., 2016
2	1885 May 30	(34.10, 74.60)	Sopor	Jammu & Kashmir	Earthquake 7.0 Mw	Unknown	Kumar et al., 2017
3	1897 Jun 12	(26.00, 91.00)	Shillong plateau	Meghalaya	Earthquake 8.7 Mw	1500	Kumar et al., 2018
4	1905 Apr 04	(32.30, 76.30)	Kangra	Himachal Pradesh	Earthquake 8.0 Mw	19,000	Kumar et al., 2019
5	1918 Jul 08	(24.50, 91.00)	Srimangal	Assam	Earthquake 7.6 Mw	Unknown	Kumar et al., 2020
6	1930 Jul 02	(25.80, 90.20)	Dhubri	Assam	Earthquake 7.1 Mw	Unknown	Kumar et al., 2021
7	1943 Oct 23	(26.80, 94.00)	Assam	Assam	Earthquake 7.2 Mw	Unknown	Kumar et al., 2022
8	1950 Aug 15	(28.50, 96.70)	Arunachal Pradesh– China Border	Arunachal Pradesh	Earthquake 8.5 Mw	1526	Kumar et al., 2023
9	1975 Jan 19	(32.38, 78.49)	Kinnaur	Himachal Pradesh	Earthquake 6.2 Mw	Unknown	Kumar et al., 2024
10	1988 Aug 06	(25.13, 95.15)	Manipur– Myanmar border	Manipur	Earthquake 6.6 Mw	1000	Kumar et al., 2025
11	1991 Oct 20	(30.75, 78.86)	Uttarkashi, UP	Uttarakhand (now)	Earthquake 6.6 Mw	2000	Kumar et al., 2026
12	1998 Aug 18	(30.01, 80.04)	Malpa, Pithoragarh district	Uttarakhand (now)	Landslide	380	Kumar et al., 2027
13	1999 Mar 29th	(30.41, 79.42)	Chamoli District, UP	Uttarakhand (now)	Earthquake 6.8 Mw	100	Kumar et al., 2028
14	2005 Oct 08th	(34.48, 73.61)	Kashmir	Jammu & Kashmir	Earthquake 7.6 Mw	74,500	Kumar et al., 2029
15	2006 Feb 14th	(27.37, 88.36)	Sikkim	Sikkim	Earthquake 5.7 Mw	0	BMTPC, 2019
16	2010 Aug 06th	(34.15, 77.57)	Leh	Ladakh (now)	Cloudburst	257	BMTPC, 2019
17	2011 Sep 18th	(27.7, 88.2)	Sikkim Nepal border	Sikkim	Earthquake 6.8 Mw	60	Kumar et al., 2016
18	2012 July- Aug	(26.20, 92.93)	Assam	Assam	Floods	91	BMTPC, 2019

Commented [SS9]: Comment (R1)-6: In line 128, In table 1 in column 3 Location- what these numbers in column represent clarify.

Response: Taking this comment into consideration, we have added the description in bracket (at third column of table 1) as Latitude and Longitude.

19	2012 Aug- Sep	(30.72, 78.43), (30.28, 78.98), (29.84, 79.76)	Uttarkashi, Rudraprayag & Bageshwar	Uttarakhand	Floods	52	BMTPC, 2019
20	2013 June 16th	(30.06, 79.01)	Uttaranchal	Uttarakhand (now)	Flood, Landslide, Cloud Burst	5748	Kumar et al., 2016
21	2014 Sep	(33.27, 75.34)	Jammu & Kashmir	Jammu & Kashmir	Flood, Cloud Burst	277	Kumar et al., 2016
22	2016 Jan 04th	(24.81, 93.93)	Imphal, Manipur	Manipur	Earthquake 6.7 Mw	8	BMTPC, 2019

137

138 The Himalayan region is among the most seismically active in the world due to the collision of
 139 the Indian and Eurasian plates. A series of four major earthquakes has occurred within a short
 140 span of 53 years (Srivastava et al., 2015); namely Shillong (1897), Kangra (1905), Bihar-Nepal
 141 (1934) and Assam-Tibet (1950). Tectonic activities on the mountains constantly threaten the
 142 stability of the mountains, being an active region. One of the most frequent natural disasters
 143 in the Himalayas occurs when large landslides occur, destroying infrastructures, destroying
 144 trees, and killing people. Landslides cause huge social and economic losses to mountain-
 145 dwelling populations.(Sarkar et al., 2015). An area of near the River valley has witnessed a
 146 large number of mass movements during recent years (Srivastava et al., 2010). A recent flash
 147 flood, along with a debris flow at Kedarnath on 16-17 June 2013, which claimed over a
 148 thousand lives, was caused by cloudbursts and landslides breaching temporary dams along
 149 river valleys (Allen, 2015). More than 82 percent of the world's population lived on land affected
 150 by floods between 1985 and 2003 (Mouri et al., 2013). There is an increase in forest fire
 151 frequency globally, especially in Asia. There are major environmental and ecological impacts
 152 caused by wildfires, which can result in the fatalities of tens of thousands of people and
 153 massive property losses (Parajuli et al., 2020).

154 **2.3 *Need of Study***

155 Without a comprehensive evaluation of multi-hazards, it is impossible to develop any concrete
 156 policy measures to combat the potential risk posed by multiple hazards.(Sekhri et al., 2020)
 157 IHR being prone to Multi Hazards (Kala, 2014), Risk Resilient Development planning is the
 158 only way to prepare Himalayan community from upcoming disasters.

159 It is well known that the Himalayas are a high-risk area for multi-hazards (Pathak et al., 2019),
 160 although fewer risk assessments have been conducted in the IHR region. An assessment of
 161 hazards generally focuses on a single threat, such as landslides, earthquakes, or flooding. As
 162 a result, physical processes are considered in isolation. In most areas of the Himalayas,
 163 hazards are interrelated and generate cascading effects or synergies which make the entire
 164 region vulnerable (Sekhri et al., 2020). Probabilistic risk frameworks have been proposed, but
 165 as a result of a lack of quality and quantity of data, these approaches are seldom feasible in

Commented [SS10]: Comment (R2)-3: (1) The need and relevance of variety of multi-hazard scenarios and risk assessment thereof for infrastructure in case of India should be highlighted in the introduction. (2) This aspect in the context of, multi-hazard analysis and design guidelines: recommendations for structure and infrastructure systems in the Indian context, which has been discussed earlier- provides basis for further investigation, as being dealt with in the present study. (3) Moreover, the existing strategies of risk assessment of the infrastructures in areas of India subjected to multi-hazard should be mentioned to provide a broad perspective in this research area.

Response: We appreciate the reviewer's suggestion. (1) We agree with the reviewer however the brief about the variety of multi-hazard scenarios and risk assessment used in India is already explained in section 3.3.4 and need of it is explained in section 2.3 of the manuscript. (2) Study of design guidelines and recommendations from Indian context is in itself a huge study. We have planned it to be the part of separate article, as this manuscript focus only on design and application of the proposed survey form. (3) The brief about existing strategies of risk assessment used in India has been already explained in section 3.3.3.

166 developing countries (Sanam et al., 2020). Furthermore, the existing risk assessment
 167 models/tools for a specific hazard in the region has limited application and effectiveness from
 168 a policy standpoint (Sekhri et al., 2020).

169 Researchers are involved in a number of research projects in IHR in the field of assessing the
 170 risk of disasters in India, though there have been very few assessments of hazards associated
 171 with the IHR region, none of which incorporate multi-hazards (Wester et al., 2019) In addition,
 172 risk resulting from a single hazard is not applicable and cannot be considered effectively in
 173 policy analysis in the region (Sekhri et al., 2020).

174 The comparative study of some of the most used survey form to assess risk in India is shown
 175 in the Table 2. Every survey form has its own unique features. In some cases, the focus is
 176 largely on one particular hazard and the other hazards are minor. The detail of all the
 177 mentioned survey form will be explained later in Table 4 in this paper. It has been observed from
 178 the Table 2 that none of the forms (SN 1 to 6) are focusing on Multi Hazard Risk
 179 calculation/identification as per IHR Scenarios, which is not only prone to earthquakes, but
 180 also prone to floods, landslides, high winds, industrial hazards and at building level falling
 181 hazard (Non-Structural Hazard), fire and electrical hazards etc.

182 *Table 2: Comparison between survey forms used in India to assess Risk*

Comparative Study between some survey forms used in India							
SN	1	2	3	4	5	6	7
Developed by/for	ARYA	FEMA	NDMA	IIT-B	HPSDMA	BMTPC	MH-RVS (Proposed)
Source: adapted from	Arya, 2006	FEMA, 2015	NDMA, 2020	Sinha & Goyal, 2001	Kumar et al., 2016	BMTPC, 2019	Author
Understanding	Pictorial						
IHR is prone to Multi Hazard	Earthquake						
	Flood						
	High Wind						
	Landslide						
	Fire and Electrical						
	Industrial						
	Climate Change						
	Non-Structural /Falling Hazard						

183

184 Furthermore, while working with data collection teams on the ground during DRR Projects, the
 185 Author has observed that surveyors face several problems, such as the technical advance
 186 language of the existing survey form, which requires trained technical personnel to fill out, and

Commented [SS11]: Comment (R2)-9: The whole manuscript has inconsistencies in formatting, font size, and unnecessary capitalization of the first letter of the words. While citing the tables and figures in the text, the first letter should be capitalized; for example, in line 170, it can be "Table 2". Also, the quality of the figures and sub-figures require enhancement. The references should be arranged with a consistent formatting style.

Response: We appreciate the reviewer's helpful suggestion. Taking this comment into consideration, (1) We have identified the text (table and figure) and capitalized the first letter as Table and Figure (2) The images with better high quality pixel size is already send as a separate file (3) Referencing style is improved as per journal's guidelines.

Commented [SS12]: Comment (R1)-7: Table 2 is summary of Table3. This may be stated here. In fact, here author may give other such studies if carried out by some states. This part is need assessment only so why Table 2 is required which is summary of your main work.

Response: We appreciate the reviewer's insightful recommendation. I agree with you that Table 2 is the summary, however it is to show the need of this study in a summarized way. On the other hand, Table 3 is the detailed comparison of all the existing survey form used in India and the proposed survey form. Because of this reason, we would like to keep it as it is.

187 this leads to costly human resources. Secondly, no graphical explanation of the form leads to
188 little understanding, which further leads to incorrect data collection. Thirdly, Surveyors are not
189 able to convey correct objective to the respondent, that creates no interest to response to reply
190 further. Fourthly, most of the above-mentioned forms are not hill specific and many more.
191 MHRA survey forms need to be made easy, simple, informative, with simple language or/and
192 visual explanation, for surveyors as well as respondents to get connected to it for giving and
193 receiving information.

194 Indian Himalayan Region is also the point of attraction for tourists and pilgrims globally, and
195 tourism plays an imperative role in enhancing the economy of the Himalayan state. Thus,
196 safety is the immense need of the government at various levels.

197 There is no such survey form for comprehensive database for the IHR Region for informed
198 decision-making, related to multi hazard and other aspects of sustainable hill development.
199 Considering the IHR scenarios, there is immense need for a Hill specific survey form, that can
200 help to gather important information from the field and help in Risk assessment for further
201 decision making, to prepare the hill community from future disasters.

202 **3 Multi Hazard Survey Framework**

203 **3.1 Survey Form design methodology**

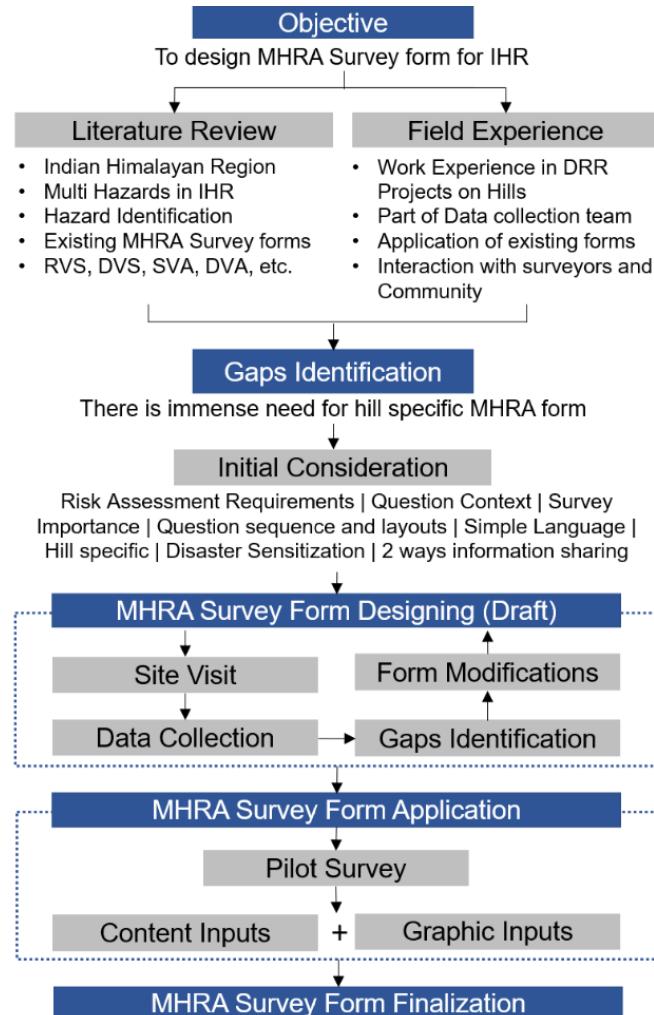
204 The survey methodologies start with few recommendations for designing a good survey like
205 the survey form should satisfy the objectives of the research, there should dictate length of
206 questionnaires covering all essential parts, questions should convey single thought at a time, its
207 language should be simple and easy to understand by the surveyors as well as the
208 respondent, Multiple choice questions are mostly preferred to increase response rate, reduce
209 time and patterned the responses, As much as possible-be concrete and conform to the
210 respondent's perspective, the use of unclear words should be avoided and at last it should
211 meet the Survey logic i.e. There is no further progress or possibility of further correspondence
212 from the respondent, if the logic is flawed. It takes practice and verification to ensure that
213 when considering an option only the next logical question comes to mind (Roopa and Rani,
214 2012).

215 **3.2 Methodology Adopted**

216 To gather beneficial and appropriate information related to multi-hazards in the Himalayan
217 region, careful attention must be given to the design of the questionnaire that covers all the
218 important contributing factors from various identified hazards and fulfills all the gaps identified
219 from the existing survey form and field experience. Designing an effective questionnaire, it
220 takes time, effort, and a variety of stages. The methodology to prepare the Multi-Hazard
221 Survey form for Indian Himalayan Region is shown in Figure 2.

Commented [SS13]: Comment (R1)-11.2: (ii) Write details as per steps of your methodology given in figure 2, in sequence.

Response: We appreciate the reviewer's insightful suggestion. I would like to highlight that the methodology is already explained in section 3.2, and detail of every step is explained in section 4.


Commented [SS14]: Comment (R2)-9: The whole manuscript has inconsistencies in formatting, font size, and unnecessary capitalization of the first letter of the words. While citing the tables and figures in the text, the first letter should be capitalized; for example, in line 170, it can be "Table 2". Also, the quality of the figures and sub-figures require enhancement. The references should be arranged with a consistent formatting style.

Response: We appreciate the reviewer's helpful suggestion. Taking this comment into consideration, (1) We have identified the text (table and figure) and capitalized the first letter as Table and Figure (2) The images with better high quality pixel size is already send as a separate file (3) Referencing style is improved as per journal's guidelines.

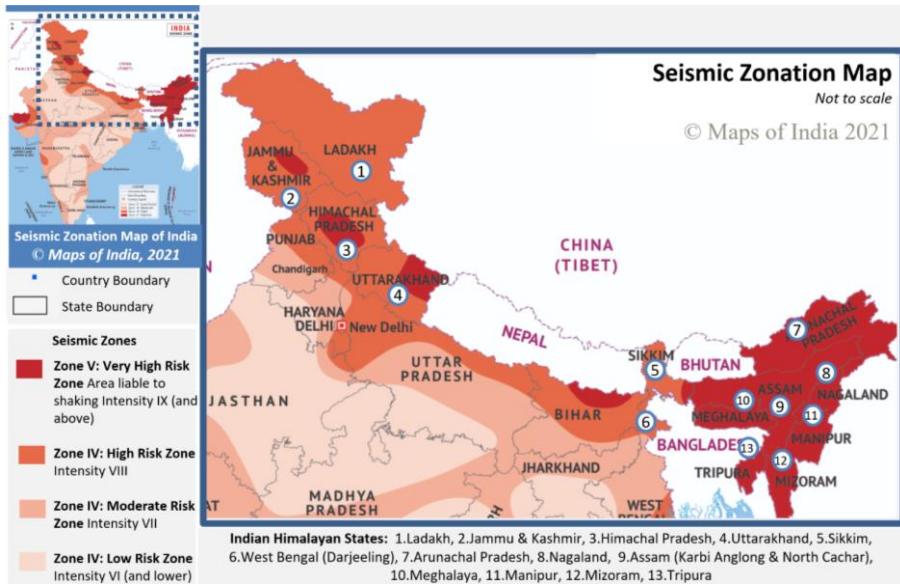
222 A number of Disaster Risk Reduction projects conducted in Indian Himalayan Region provided
223 Author 1 with a rare opportunity to be part of a Data Collection team. As a result of these
224 projects, author has been able to interact on the ground with hill communities and surveyors
225 and learned that there are several gaps in the existing survey forms (Section 3.4) from both a
226 Himalayan and surveyor perspective. MHRA Survey form contains all the gist of data collection
227 experience. This research paper is based on a comprehensive literature review (Section 3.3)
228 as well as field experience.

229 To ensure that the survey form was designed in accordance with Disaster Risk Assessment
230 requirements, Hill specific hazards, important components, question sequence and layout,
231 simple language, disaster sensitization, and two-way information sharing (giving and
232 receiving), some initial considerations were taken into account.

233 We have designed a draft MHRA survey form (Section 4.1) and applied it to some of the
234 buildings in five villages in Uttarakhand (Figure 5). An initial pilot survey has been conducted
235 at 10 schools (section 4.2) using the proposed survey form with content and graphical inputs.
236 The results and observations relating to the Pilot survey are discussed in sections 4.2 and 4.5
237 of this paper.

Figure 2: Methodology adopted *by author*

240 3.3 Existing Multi Hazard Risk Assessment (MHRA) Survey Forms


241 The spread of non-engineering construction, unrecognized construction and planning
 242 practices, reckless developmental activities, and a lack of awareness increase the impact of
 243 disasters. IHR being seismically active, as shown in the seismic zonation map of India, creates
 244 the importance of Risk assessment of existing buildings. Earthquakes are feared because
 245 they are so unpredictable. Yet, as we often hear, "Earthquakes don't kill, Buildings do"
 246 (attributed to Francesca Valli, Change Management Thought-Leader), and as the detailed

Commented [SS15]: Comment (R1)-8.1: (i) Methodology of designing forms is suggested by Author or adopted from somewhere not clear. If adopted reference is required
Response: Taking this point into consideration and for better clarity, we have updated the caption of figure 2 as "Methodology adopted *by author*"

248 assessment is limited to the number of homes and the cost, one of the considering approaches
249 is Rapid Visual Screening (RVS) that is used for seismic vulnerability assessment. Using this
250 methodology, a risk assessment has been conducted for areas subjected to earthquakes
251 (Kumar et al., 2016).

252 3.3.1 Seismic Zonation Map of India

253 The first seismic zoning map of India was published in 1935 by the Geological Survey of India
254 (G. S. I.) (Figure 3) (A. K. Mohapatra, 2010). Based on the damage earthquakes caused in
255 various parts of India, this map has undergone numerous modifications (IS-code1893-1, 2002)
256 (Marcussen, 2017), (Khattri et al., 1984) since its original creation As per Seismic zonation
257 map, India is divided into four distinct seismic risk zones shown here by colour (Dunbar, 2003)
258 in Figure 3 below:

259
260 Figure 3: Seismic Zonation Map of India, Source: adapted from (pp. Map of India, 2021)

261 3.3.2 About RVS

262 Applied Technology Council (ATC) developed the RVS method in the late 1980s and
263 published it in the FEMA: 154 in 1988. In later versions, it was revised in FEMA: 178-1989,
264 1992 (revised), FEMA: 310-1998, and FEMA: 154-1988, 2002 (revised), for rapid visual
265 screening of buildings. (Kumar et al., 2016)

266 Rapid Visual Screening (RVS) avoids the need for structural calculations by using a visual
267 method. An evaluator determines damageability grade by identifying (a) the primary structural

Commented [SS16]: Comment (R1)-8.6: (vi) Figure 3: It is BIS Map as per IS 1893 not GSI. Figure quality needs improvement.

Response: We appreciate the reviewer's insightful suggestion. Taking this point into consideration, we have added all the sources including BIS. All the high quality images has already been send separately.

Commented [SS17]: Comment (R1)-8.6: (vi) Figure 3: It is BIS Map as per IS 1893 not GSI. Figure quality needs improvement.

Response: We appreciate the reviewer's insightful suggestion. Taking this point into consideration, we have added all the sources including BIS. All the high quality images has already been send separately.

268 lateral load resisting system as well as (b) the structural features of the building that can impact
269 seismic performance in combination with that system. The process of inspecting, gathering
270 data, and deciding on the next course of action occurs on site and may last several hours,
271 depending on the size of the building (Arya, 2006; Arya, 2006b).

272 **3.3.2.1 Uses of RVS Results:**

273 The foremost uses of this technique concerning seismic advancement of existing buildings are
274 to assess a building's seismic vulnerability to categorize it further. It is used to determine the
275 structural vulnerability (damageability) of buildings and determine the seismic rehabilitation
276 requirements. In cases where further assessments are not considered necessary or are not
277 feasible, retrofitting requirements are simplified (to a collapse prevention level) (Arya, 2006a;
278 Arya, 2006b).

279 **3.3.3 Multi Hazard Risk Assessment used in India**

280 **3.3.3.1 RVS Methodology Proposed by Prof. Anand S Arya for Masonry Buildings**
281 RVS procedure that was designed for the Indian context, follows a grading system where the
282 screener identifies the primary load-resisting system of the building and determines
283 parameters that may be modified to improve seismic performance of the structure (NDMA,
284 2020)

285 Rapid Visual Screening form of Masonry Buildings developed by Prof. Anand S Arya consist
286 of zoning, according to Indian conditions, and buildings with importance are given
287 consideration. Also, special hazards (liquefiable area, landslide prone area, plan irregularities,
288 and vertical irregularities) and falling hazards are taken into account. Finally, a grading system
289 was performed in the buildings. Refer (Arya, 2006a) for detail RVS survey forms for masonry
290 buildings prepared by Prof. A.S. Arya.

291 **3.3.3.2 RVS Methodology Proposed by Prof. Anand S Arya for RC frame or Steel Frame**
292 The Rapid Visual Screening form of Reinforced Concrete frame and Steel Frame for Seismic
293 Hazards developed by Prof. Anand S Arya has 6 components (i) general information (ii)
294 Building typology based on foundation type, roof, floor, etc. (iii) Structural frame type (iv)
295 Special Hazard (v) Non-Structural building components (vi) Damageable Grades (Arya,
296 2006b).

297 Seismic safety features of RC Frame Buildings consist of parameters like Frame Action,
298 Presence of Soft Storey, Short Column Effect, Concept of Weak Beam Strong Column,
299 Pounding of Buildings, Building Distress and Other important features, Water Seepage,
300 Corrosion of Reinforcement, Quality of Construction, Quality of Concrete and non-structural

Commented [SS18]: Comment (R2)-3: (1) The need and relevance of variety of multi-hazard scenarios and risk assessment thereof for infrastructure in case of India should be highlighted in the introduction. (2) This aspect in the context of, multi-hazard analysis and design guidelines: recommendations for structure and infrastructure systems in the Indian context, which has been discussed earlier—provides basis for further investigation, as being dealt with in the present study. (3) Moreover, the existing strategies of risk assessment of the infrastructures in areas of India subjected to multi-hazard should be mentioned to provide a broad perspective in this research area.

Response: We appreciate the reviewer's suggestion. (1) We agree with the reviewer however the brief about the variety of multi-hazard scenarios and risk assessment used in India is already explained in section 3.3.3 and need of it is explained in section 2.3 of the manuscript. (2) Study of design guidelines and recommendations from Indian context is in itself a huge study. We have planned it to be the part of separate article, as this manuscript focus only on design and application of the proposed survey form. (3) The brief about existing strategies of risk assessment used in India has been already explained in section 3.3.3.

301 falling hazards. Refer (Arya, 2006a; Arya, 2006b) for detailed RVS Survey form for RC and
302 steel buildings prepared by Prof. A.S. Arya.

303 *3.3.3.3 RVS Procedure developed by Dr. Sudhir K Jain*

304 In this method, a checklist for pre-screened buildings is prepared based on Indian conditions.
305 It is one of the first methodologies in India featuring a points system. Performance scores are
306 calculated based on factors such as zone, architectural considerations, structural parameters,
307 and geotechnical characteristics. In India, this method is used in many locations, with the first
308 applications being in Gujarat after the Bhuj earthquake (Jain et al., 2010).

309 *3.3.3.4 RVS form developed by NDMA 2020*

310 In the Disaster Management Act of 2005, a paradigm shift from Relief-centric approach to
311 Mitigation- and Preparedness-centric approach is sought, with continued emphasis on
312 proactive, holistic and integrated Response. With this Act in mind, NDMA initiated a series of
313 discrete, comprehensive, and integrated initiatives. Among the recommended actions was
314 assessing earthquake risk within the existing built environment.

315 NDMA developed this report to make end users aware of RVS's outcomes by presenting RVS
316 in clear and tangible terms. On the basis of discussions with the relevant domain experts,
317 NDMA have developed recommended forms for Pre-Earthquake and Post-Earthquake Level
318 1 Assessments of 7 building typologies (i. Reinforced Concrete Building, ii. Burnt Clay Bricks
319 Building, iii. Confined Masonry Building, iv. Random Rubble Masonry Building, v. Mud House,
320 vi. Dhajji Dewari, vii. Ekra House). A form is developed to categorize the different building
321 attributes into three categories: Red (High Risk), Yellow (Moderate Risk), and Green (Low
322 Risk). Refer (NDMA, 2020) for detailed survey form.

323 *3.3.3.5 Seismic Vulnerability Assessment by Prof. Ravi Sinha and Prof. Alok Goyal*

324 Prof. Ravi Sinha and Prof. Alok Goyal from Indian Institute of Technology Bombay (IIT-B)
325 prepared a "National Policy for Seismic Vulnerability Assessment of Buildings and Procedure
326 for Rapid Visual Screening of Buildings for Potential Seismic Vulnerability". A key feature of
327 this procedure is that it allows a trained evaluator to conduct a walkthrough of the building to
328 determine vulnerability. It is compatible with GIS-based city databases, and can also be used
329 for a variety of other planning and mitigation tasks.

330 RVS analysed 10 different types of building, based on the materials and construction types
331 most commonly found in urban areas. There were both engineered and non-engineered
332 constructions (built according to specifications) in this category. Refer (Sinha and Goyal, 2001)
333 for detailed survey form.

334 3.3.3.6 *Building Vulnerability form developed by HPSDMA & TARU*
335 A form originally prepared by TARU consultancy and the Himachal Pradesh State Disaster
336 Management Authority (HPSDMA) is shown in the paper titled Rapid visual screening of
337 different housing types in Himachal Pradesh, India. A building is visually examined by an
338 experienced screener as part of RVS to identify features that contribute to seismic
339 performance. This method is known as a 'sidewalk survey.' In this side walk survey, checklists
340 are provided for each of the five types of buildings i.e., RC frames, brick masonry, stone
341 masonry, Rammed Earth, and hybrid (Kumar et al., 2016). Refer (Kumar et.al. 2016) for
342 Building Vulnerability form developed by HPSDMA & TARU.

343 3.3.3.7 *Vulnerability Atlas of India developed by BMTPC*
344 Building Materials and Technology Promotion Council (BMTPC) published the Vulnerability
345 Atlas of India as its first edition in 1997. It was hailed as "useful tool for policy planning on
346 natural disaster prevention and preparedness, especially for housing and related
347 infrastructures". First of its kind, it provided a means for assessing not only district-level
348 hazards, but also the vulnerability and risks of housing stock. It was greatly utilized by State
349 Governments and their agencies in order to develop micro-level action plans on how to reduce
350 the impact of natural disasters since buildings and housing are commonly damaged or
351 destroyed due to natural disasters, resulting in life losses and disruptions to socio-economic
352 activities.

353 The revised Atlas 2019 reflects advances in scientific & technical knowledge, addition of new
354 datasets, results of disasters caused by earthquakes and cyclones, possible damage from
355 landslides, floods, thunderstorms, failures of roads and trains during disasters, changes in the
356 political map of the country, and new statistics on walling and roofing data of houses. (BMTPC,
357 2019). Table 3 and Figure 4 shows different [Housing typologies used in BMTPC](#), based on
358 wall and roof type and material identified in India and also their Damage risk under various
359 hazard intensities.

Commented [SS19]: Comment (R1)-9.1: BMTPC is based on typology /material as per Census of India only this may be included.

Response: Taking this point into consideration, we have updated it in section 3.3.3.7.

Table 3: Damage Risk to various Housing Category identified by BMTPC (BMTPC, 2019)

Category (Type of Wall and Roof)	EQ Intensity MSK				Wind Velocity m/s				Flood Prone
	≥IX	VIII	VII	≤VI	55 & 50	47	44 & 39	33	
A1. Mud wall (All roofs)	VH	H	M	L	VH	H	M	L	VH
A2.a. Unburned Brick Wall (Sloping roofs)	VH	H	M	L	VH	H	M	L	VH
A2.b. Unburned Brick Wall (Flat roofs)	VH	H	M	L	VH	H	M	L	VH
A3.a. Stone Wall (Sloping roofs)	VH	H	M	L	VH	H	M	L	VH
A3.b. Stone Wall (Flat roofs)	VH	H	M	L	H	M	L	L	VH
B.a. Burned Brick Wall (Sloping roofs)	H	M	L	VL	H	M	M	L	H
B.b. Burned Brick Wall (Flat roofs)	H	M	L	VL	M	L	L	VL	H
C1.a. Concrete Wall (Sloping roofs)	M	L	VL	NIL	H	M	M	L	L
C1.b. Concrete Wall (Flat roofs)	M	L	VL	NIL	L	VL	VL	VL	L
C2. Wood Wall (All roofs)	M	L	VL	NIL	VH	H	M	L	H
C3. EKra wall (All roofs)	M	L	VL	NIL	VH	H	M	L	H
X1 GI and other metal sheets (All roofs)	M	VL	NIL	NIL	VH	H	M	L	H
X2 Bamboo, Thatch, Grass, Leaves, etc. (All roofs)	M	VL	NIL	NIL	VH	VH	H	L	VH

Commented [SS20]: Comment (R1)-9.2: Quality of Table 3 requires improvement.

Response: We thank the reviewer's for highlighting this point. This is to inform you that a file with high pixel quality is already send as a separate file.

Housing Category : Wall Types

Category - A : Buildings in field-stone, rural structures, unburnt brick houses, clay houses

Category - B : Ordinary brick building; buildings of the large block & prefabricated type, half-timbered structures, building in natural hewn stone

Category - C : Reinforced building, well built wooden structures

Category - X : Other materials not covered in A,B,C. These are generally light.

Notes: 1. Flood prone area includes that protected area which may have more severe damage under failure of protection works. In some other areas the local damage may be severe under heavy rains and choked drainage.

2. Damage Risk for wall types is indicated assuming heavy flat roof in categories A, B and C (Reinforced Concrete) building

3. Source of Housing Data : Census of Housing, GOI, 2011

Housing Category : Roof Type

Category - R1 : Light Weight (Grass, Thatch, Bamboo, Wood, Mud, Plastic, Polythene, GI Metal, Asbestos Sheets, Other Materials)

Category - R2 : Heavy Weight (Tiles, Stone/Slate)

Category - R3 : Flat Roof (Brick, Concrete)

EQ Zone V : Very High Damage Risk Zone (MSK > IX)

EQ Zone IV : High Damage Risk Zone (MSK VIII)

EQ Zone III : Moderate Damage Risk Zone (MSK VII)

EQ Zone II : Low Damage Risk Zone (MSK < VI)

Level of Risk : VH = Very High; H = High;

M = Moderate; L = Low; VL = Very Low

* Total No. of Houses excluding Vacant/Locked Houses

362 BMTPC Building Materials & Technology Promotion Council Peer Group, MoHUA, GOI

363 Figure 4: Damage Risk and Housing category identified by BMTPC (BMTPC, 2019)

364 3.3.4 Multi Hazard Risk Assessment used Globally

365 3.3.4.1 FEMA 154

366 The FEMA handbook demonstrates how to rapidly identify, inventories, and rank buildings that are at high risk of death, injury, or severe damage in the event of an earthquake. Rapid Visual 367 Screening (RVS) can be carried out with a short exterior inspection, lasting 15 to 30 minutes, 368 by trained personnel using the data collection form in the handbook. The guide is targeted at 369 building officials, engineers, architects, building owners, emergency managers, and citizens 370 who are interested in the topics.

Commented [SS21]: Comment (R1)-9.3: Quality of Figure 4 needs improvement It is part of Table 3 only.

Response: We thank the reviewer's for highlighting this point. This is to inform you that a file with high pixel quality is already send as a separate file.

Commented [SS22]: Comment (R2)-4: Also, the authors mainly talked about multi-hazard risk assessment in the Indian context; however, the study of how the assessment is being otherwise done globally, and associated future challenges can certainly improve the questionnaire, i.e., learning lessons from other parts. Hence, multi-hazard analysis and design of structures: status and research trends, which should provide that kind of global perspective to the readership should be included in the present manuscript.

Response: We agree with the reviewer that further elaborating lesson learnings from other part of the world could provide global perspective to the readers. However, we believe that the Multi-Hazard Risk Assessment executed globally is in itself a huge study (brief of some of it is described in section 3.3.4 of the manuscript) and our manuscript focuses only on the Indian Himalayan Region; thus, we would like proceed as it is.

372 Its purpose was to provide an evaluation of the seismic safety of a large inventory of buildings
373 quickly and inexpensively, with minimal access to the buildings, and to identify those that require more detailed examination. FEMA 154 was developed by ATC under contract to FEMA
374 (ATC-21 Project) in 1988. As with its predecessors, the Third Edition aims to identify,
375 inventory, and screen buildings that present a potential risk. This latest version includes major
376 improvements, such as: updating the Data Collection Form and including an optional more
377 detailed page, preparing additional reference guides, and including additional building types
378 that are common, considerations such as existing retrofits, additions to existing buildings, and
379 adjacency, and many others. (FEMA, 2015). Refer (FEMA, 2015) for detail survey form .
380

381 **3.3.4.2 Flood Vulnerability Assessment survey**

382 The Flood Vulnerability Assessment survey form prepared by the Asian Institute of Technology
383 (AIT) Bangkok and Climate Technology Centre and Network (CTCN) (Peiris, 2015) has 5
384 Sections: (i) General Information (ii) Type of Building (iii) Flood damage and cost (iv) Flood
385 emergency response (v) Effect on livelihood and income, designed for Residential,
386 Institutional, Commercial/Industrial damages and Infrastructure damages. Refer (Singh, 2005)
387 for Flood Vulnerability Assessment Survey form developed by CTCN and AIT

388 **3.3.4.3 Landslide Vulnerability Assessment survey**

389 Scientists and researchers focus more on researching landslide susceptibility and the hazard
390 component rather than assessing the vulnerability of buildings to landslides. Even when the
391 same construction material is used, construction practices vary across the country. Currently,
392 there is no standard method for determining building vulnerability by using indicators.

393 The parts cover by Landslide risk assessment survey forms are (i) General information (ii)
394 Building Function (iii) Vulnerability Indicators like Architectural Features, Material
395 Characteristics, Structural Features, Geographical features, and quality of Workmanship,
396 Construction & maintenance, etc. which are also covered during RVS and has been covered
397 in the proposed survey form CitSci, GIS based data collection app for landslide (Singh et al.,
398 2019).

399 **3.4 Features required for a Multi Hazard Survey Form for IHR**

400 **3.4.1 Gaps Identified in existing survey forms**

401 Existing Survey forms have their strengths & weaknesses. After studying various survey forms
402 for Risk assessment prepared by various national and international authorities, it is observed
403 that hill-specific survey forms that can take care of multiple aspects of risk and sustainability
404 assessment together do not exist. Available forms are complicated, not-so user friendly,
405 consisting of terminologies difficult to communicate and comprehend, no pictorial clues for

Commented [SS23]: Comment (R1)-8.2: (ii) As per figure 2, after MHRA Form application, on 20 schools what modifications have been done in form if any? It may be included.

Response: We appreciate the reviewer's insightful suggestion. I would like to highlight that application on 10 schools (please note its 10 schools) was done with the final proposed survey form. Before application in these schools, the gaps identified in the existing survey forms and observation during preliminary survey are described in section 3.4.1 and 4.2.1 respectively.

406 understanding, involve several rounds of calculations for coherent multi-hazard risk evaluation
407 using the data, and most importantly, they not hill site-specific or designed for the Indian
408 Himalayan region.

409 Hills have their own situation, condition, geography, climate, development trends, construction
410 practices, culture, etc., and they are distinctly different from other regions. RVS is mostly used
411 in India to assess the visual structural vulnerability of the building, as it involves no structural
412 calculations. On the other hand, SVA and DVA are for the detailed structural survey of a
413 building, and therefore more precise and use engineering information along with more explicit
414 data on ground motion. Data filling is not easy enough for the surveyor and requires a very
415 high level of engineering knowledge, skills, and experience. Pictorial explanation from
416 surveyor point of view can ease the communication. Most of the survey forms are focused on
417 single hazard, (mostly for seismic evaluation of a building) irrelevant of multi hazard from
418 Himalayan point of view, and how prone is buildings for its location is from other hazards.
419 Integration between risk understanding and sustainable development is too limited or non-
420 existent. Thus, it has been observed that there is an immense need to design hill-specific
421 questionnaires for multi-hazards risk assessment for Indian Himalayan Region.

422 **3.4.2 Comparative Study of some risk assessment survey forms mostly used in India**
423 Here is the comparative analysis of Risk assessment survey forms developed by various
424 organizations and mostly used in India with the proposed Multi-Hazard RVS. It has been
425 compared on various sections like typology, General Information, History of Disasters, Site
426 Conditions, Building geometry, structural and non-structural component of a building etc.

427 *Table 4: Comparative Study of some risk assessment survey forms mostly used in India*

		1	2	3	4	5	6	7
Developed by/for		ARY A	FEMA	NDM A	IIT-B	HPSDM A	BMTP C	MH-RVS (Proposed)
Source		Arya, 2006	FEMA, 2015	NDM A, 2020	Sinha & Goya I, 2004	Kumar et al., 2016	BMTP C, 2019	Author
Typology	A1: Mud & Unburnt Brick			<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>
	A2: Stone Wall	<input type="checkbox"/>		<input type="checkbox"/>				
	B: Burnt Brick	<input type="checkbox"/>						
	C1: Concrete Wall	<input type="checkbox"/>						
	C2: Wood Wall		<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>
	X: Other Materials			<input type="checkbox"/>			<input type="checkbox"/>	<input type="checkbox"/>
	Steel	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>			<input type="checkbox"/>
General Information	About Building and owner	<input type="checkbox"/>		<input type="checkbox"/>				

	Sketch/Photo and drawings	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>			<input type="checkbox"/>
	Occupancy (Day & Night)	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>
	Cost of Construction					<input type="checkbox"/>		
	Construction quality and Maintenance		<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>
Disaster History	Seismic Zone		<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>
	Disaster History and Damage status					<input type="checkbox"/>		<input type="checkbox"/>
	Disaster cause					<input type="checkbox"/>		
	Retrofitting history							<input type="checkbox"/>
Site Condition	Location of building				<input type="checkbox"/>			<input type="checkbox"/>
	Site Condition			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
Building Geometry	Dimension of Building					<input type="checkbox"/>		
	Shape of Building, floors	<input type="checkbox"/>		<input type="checkbox"/>				
	Re-entrant corners					<input type="checkbox"/>		<input type="checkbox"/>
Foundation	Type of Sub-Soil	<input type="checkbox"/>		<input type="checkbox"/>				
	Foundation detail	<input type="checkbox"/>				<input type="checkbox"/>		<input type="checkbox"/>
	Depth of ground water table	<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
Walls	Walls details	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
	Separation of walls at joint			<input type="checkbox"/>				<input type="checkbox"/>
	Wall failure observed			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
Earthquake Bands	Earthquake band details and status			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
Cracks	Cracks details			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	grade of cracks	<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
Openings	Opening(s) details			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	Frames details near opening							<input type="checkbox"/>
Roof and Floor	Type and material	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
	Roof's attachment with walls			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	Failures observed				<input type="checkbox"/>			<input type="checkbox"/>
Pounding effect	Height of building			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	distance from closest building							<input type="checkbox"/>
	Quality of adjacent building	<input type="checkbox"/>	<input type="checkbox"/>		<input type="checkbox"/>			<input type="checkbox"/>
Heavy weight on top	Type and positioning of Heavy weights				<input type="checkbox"/>			<input type="checkbox"/>
	Intact status with structure							<input type="checkbox"/>
Parapet	Parapet material			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	Parapet intact with structure			<input type="checkbox"/>				<input type="checkbox"/>
Overhang	Type of overhangs	<input type="checkbox"/>		<input type="checkbox"/>				
	length and intact status			<input type="checkbox"/>				<input type="checkbox"/>
Staircase	Staircase details	<input type="checkbox"/>			<input type="checkbox"/>			<input type="checkbox"/>
	Lift status							<input type="checkbox"/>
Column and Beam	Column Beam details			<input type="checkbox"/>		<input type="checkbox"/>		<input type="checkbox"/>
	Beam with infill wall		<input type="checkbox"/>					<input type="checkbox"/>
	Connection and continuity	<input type="checkbox"/>	<input type="checkbox"/>					<input type="checkbox"/>

Basement	No. of basement				□		□
	Column and retaining Wall						□
Soft Storey	Soft Storey's details		□	□		□	
High Wind	Potential threat from wind				□		□
Landslide	Position of potential landslide	□	□	□			□
	Stabilized slope status	□	□				□
	Barriers to rockfall		□				□
Industrial	Potential threat from Industrial Hazard						□
Fire	Fire Safety Status				□		□
	Location of potential fire threats						□
Climate Change	Understanding & Concern						□
Non-Structural Elements	Cantilever availability (Chimneys, Balconies, Parapet, Sunshades, claddings)	□	□	□	□	□	□
	Other Non-Structural elements	□	□	□	□	□	□
	No. of unattached Non-structural elements						□

□□: Concern (major/minor)

428

4 IHR Specific MHRA Survey Form Preparation

4.1 Survey Form Preparation

429 The proposed survey form is a modification of the Rapid Visual Screening (RVS) survey questionnaire, i.e., a form used for structural and non-structural components of a building that performs during an Earthquake. In the original RVS questionnaire no other hazards are considered. A building's location on a vulnerable site, its structural condition, and performance can lead to disastrous situations. The other hill-specific hazards are also incorporated into the proposed form to identify the risk components from multi-hazards. Whilst the Himalayan region is prone to earthquakes as per India's Seismic Zonation Map (Figure 3), the proposed survey form also covers other hazards like landslide, flood, industrial explosion/emissions, fire vulnerability, hydro-climatic factors, etc., which will be addressed one by one in this paper.

4.2 Preliminary Survey

430 Before conducting the Pilot survey, a preliminary survey has been conducted to test the proposed form, research methodology, and identifying gaps in the existing survey form.

431 This small assessment also evaluated the RVS form with minor enhancements evaluate its performance and confirm gaps, and to see if it can meet the requirement for risk assessment at other areas with similar geographical characteristics and conditions as experienced in the Indian Himalayan Region.

Commented [SS24]: Comment (R1)-10: In Section 3.3.5, Include some details of Industrial hazard also.

Response: We thank the reviewers for this suggestion. As existing multi-hazard survey forms used in India does not focus on Industrial hazard (table 2), we have not mentioned it in section 3.3.3 and 3.3.4. However, as a value addition of the proposed survey form, we have already mentioned it in table 4 and section 5.2.

Commented [SS25]: Comment (R1)-11.2: (ii) Write details as per steps of your methodology given in figure 2, in sequence.

Response: We appreciate the reviewer's insightful suggestion. I would like to highlight that the methodology is already explained in section 3.2. and detail of every step is explained in section 4.

Commented [SS26]: Comment (R1)-11.1: (i) Line 448: BIS Map not GSI

Response: We appreciate the reviewer's insightful recommendation. Taking this point into consideration we have modified it.

Commented [SS27]: Comment (R1)-13.2: You are considering building related fire vulnerabilities and not forest fire. It may be clarified.

Response: We appreciate the reviewer's insightful opinion from readers point of views. Taking this point into consideration, we have identified all related words and modified it.

447 The Preliminary survey had been conducted at 5 Gram Panchayats of Chinalisaur sub-district
448 in Uttarkashi, Uttarakhand, namely Chinalisaur, Dhanpur, Dharasu, Hidhara, and Bagi, in
449 October and November 2019, using Draft MHRA Survey form. Some of the pictures of the visit
450 are provided in Figure 5.

451
452 *Figure 5: View of Site selected for Pilot Survey*
453 The preliminary survey was conducted to determine (1) Whether the questions are clearly
454 framed? (2) Does it cover all the requirements as per hill communities? (3) Is the wording of
455 the questions correcting enough to lead to the desired outcomes? (4) Is the question as well
456 options for answer suggested is hill specific or not? (5) Is the question positioned is in the most
457 satisfactory order? (6) Surveyors and respondents of all classes understand the questions?
458 (7) The questions and their options are self-explanatory or not? (8) The sections in the survey
459 form cover risk assessment related questions for all identified hazards or not? (9) The
460 questions are as per construction practices and construction materials available on hills or
461 not? (10) Are there any need to add some Questions or specified, or some need to be
462 eliminated so as to mention the flow of the survey session. (11) Does surveyor and
463 Respondent understand the importance of this survey or the objective behind this survey and
464 response in that way?

465 4.2.1 **Observations during Preliminary survey**

466 Feedback from the Preliminary study proved very helpful in determining the key gaps and
467 shortcomings of the form design and in informing improvements to the proposed form design.
468 Specifically (1) The preliminary study showed that a surveyor's observations of a project site,
469 his or her understanding of each question, and his/her strategy for convincing the residents to
470 provide accurate data played a significant role in risk assessment. (2) In some questions, the
471 use of technical terms or difficult words, or questions designed to gather too much data at
472 once, discourage respondent interest in responding further and make the Surveyor
473 uncomfortable to proceed. (3) The questionnaire may not be self-explanatory and requires
474 someone with civil engineering training to fill it out. (4) Building geometric, Construction
475 practices, Construction materials, development trend plays an essential role during any
476 hazard, thus existing building related questions and options must be incorporated. (5) Survey
477 questions are developed primarily from observations made by surveys and engineers as
478 opposed to responses from residents. (6) If the Surveyor is not familiar with the terminologies
479 and aims behind filling that questionnaire, it leads to no response or respondent sometimes
480 loose interest to answer further. (7) An unclear survey vision, study purpose, and inadequate
481 training of the Surveyor will make it difficult to explain the importance of data collection to the
482 respondent, leading to unclear questions and less accurate responses. (8) Surveyors should
483 be trained enough to pick out the correct option from respondents' lengthy responses. (9)
484 Need of pictorial representation of answers/options for better understanding of the Surveyor.
485 (10) Different answers are obtained when questions are arranged inappropriately or answers
486 are arranged incorrectly. (11) Observing the interaction between multiple hazard types in the
487 same area is a challenging aspect of natural hazards risk assessment.

488 4.3 *Proposed MHRA Form*

489 After the Preliminary survey conducted at the Chinalisaur sub-district, significant points were
490 identified/observed that has been incorporated in the Proposed survey form of Multi-Hazard
491 at hill locations will all the simple content and graphical inputs for better understanding. Hence,
492 the modifications from a Multi-hazard risk point of view and surveyors' point of view can be
493 seen in the proposed form (Table 5 and 6).

494 These amendments and the full survey form are presented below.

495 *Table 5a: Proposed MHRA Survey form (Part A)*

Rapid Visual Screening (RVS) form	
SURVEYOR	
1	Name of the Surveyor
2	Mobile no. of Surveyor
3	Inspection Data
4	Inspection Time

Commented [SS28]: *Comment (R1)-8.2: (ii) As per figure 2, after MHRA Form application, on 20 schools what modifications have been done in form if any? It may be included.*

Response: We appreciate the reviewer's insightful suggestion. I would like to highlight that application on 10 schools (please note its 10 schools) was done with the final proposed survey form. Before application in these schools, the gaps identified in the existing survey forms and *observation during preliminary survey* are described in section 3.4.1 and 4.2.1 respectively.

497

GENERAL INFORMATION					
5	Name of Building/Owner				
6	Address				
7	Town/City, District and State				
8	Coordinates				
9	Total No. of Building Blocks present in premises				
10	Name of Block to be surveyed				
11	Draw Sketch of Site Plan				

498

12	Function of Block	Residential (Individual House)		Residential (Apartments)		Residential (Other)
		Educational (School)	Educational (College)	Educational (Institute/ University)		
		Lifeline (Hospital)	Lifeline (Police Station)	Lifeline (Fire Station)	Lifeline (Power Station)	Lifeline (Water/ Sewage Plant)
		Commercial (Hotel)	Commercial (Shopping)	Commercial (Recreational)		Commercial (Other)
		Office (Govt.)		Office (Private)		
		Mixed Use (Residential and Commercial)		Mixed Use (Residential and Industrial)		Mixed Use (Other)
		Industrial (Agriculture)		Industrial (Live Stock)		Industrial (Other)
		13	Occupancy in day time	0 to 10	11 to 50	51 to 100
14	Occupancy in night time	0 to 10	10 to 20	51 to 100	101 to 1000	more than 1000
15	Name of Owner					
16	Name of Contact Person					
17	Contact No. of Contact Person					
18	Year of Construction:					
19	Structural or Construction drawings available?	Yes		No		

499

20	Total built up area (sq.m)					
21	No. of Floors	Low Rise (1 to 3)	Mid Rise (4 to 7)		High Rise (7 and above)	
22	What is the overall Construction quality	Excellent	Good	Average	Poor	Very Poor
23	What is the overall Maintainance Status	Excellent	Good	Average	Poor	Very Poor

Commented [SS29]: Comment (R2)-6: The "mixed use", terminology in the survey form can be replaced with "combined use" for better understanding. There are many sections in the survey form, where the asked information may not be clear, especially for low-skilled engineers or surveyors; therefore, this reviewer recommends providing symbolic figures for better understanding. For instance, Sections 57 and 64 (grade of cracks) can be presented with an illustrative figure. Furthermore, another column can be added in many sections in case of not finding any existing option true; for instance, in Sections 58 and 65, other failures and cracks can be added.

Response: We appreciate the reviewer's insightful observations and suggestion. Taking this point into consideration, we have added symbolic figure in the options of Question 58 – type of wall failures. However, on the other hand, as per [URDPFI Guidelines](#), the terminology used for such Landuse of the building is "Mixed use", thus we would like to remain with the same terminology and this is to highlight that the pictorial explanation of cracks is already given in question 63 and 64 of the proposed survey form (Part-A), however, question 57 does not require pictorial explanation.

DISASTER HISTORY						
24	Seismic Zone	Zone V	Zone IV	Zone III	Zone II	Don't know
25	Did this area faced any Major disaster?:	Yes		No		
26	If Yes in Q.25, Which Disaster?:	Earthquake	Flood	Landslide	Wind	Industrial
27	If Yes in Q.25, in which date/year					
28	If Yes in Q.25, What is the major damage status	No effect	Minimum Effect	Medium Effect	Maximum Effect	
29	Is the building Retrofitted/Renovated ever?	Yes		No		
30	If Yes in Q.29, Year of last renovated?					

500

SITE CONDITION					
	Isolated	Internal Corner		End	
31	Location of Building:	House			
32	Slope of Ground:	Flat Terrain	Gentle Slope	Steep Slope	Terraced land
33	Cut & Fill Material:	RCC	Hybrid		Other
34	Is there Visible cracks on the ground	Yes, Many		Yes, few	No
35	Is there any open space in the property?	Yes, more than 1500 sq.ft		Yes, less than 1500 sq.ft	No
36	What is the total area of Open spaces in the campus (in sq.ft) :				

501

Note: RCC: Reinforced Cement Concrete; H: House position

BUILDING GEOMETRY					
	Square	Rectangle (L<=3B)	Narrow Rectangle (L>3B)	Rectangle with courtyard	L-Shaped
37					
	T-Shaped	U-Shaped	E-Shaped with Central courtyard	H-Shaped	Other

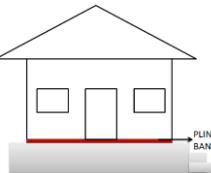
503

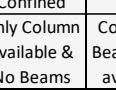
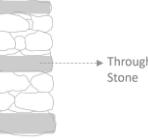
Commented [SS30]: Comment (R2)-8: In addition, there are several editorial mistakes throughout the manuscript, which can and must be corrected. Some of them are mentioned in Points 7 and 8 merely for indicative reference purposes. There is a repetition of the same content and sentences, which can be avoided for better readability. The complete form of abbreviation used, such as MS/SS, should be mentioned.

Response: We appreciate the reviewer's insightful suggestion. In order to strengthen it further, we have done all the modifications including providing the complete full form of the abbreviations in the proposed form after every section where applicable.

38	Shape of building Block in Elevation: No. of Reentrants corner in Plan	Not stepped	Stepped near centre	Stepped near the end	Heavy upper floor
39	No. of Reentrants corner in Plan				
40	Is extra strength available in reentrants corner?	Yes		No	
41	No. of Floors	only G	G+1	G+2	G+3
					$\geq G+4$

504
505


Note: G: Ground floor



FOUNDATION					
	Rock	Gravel or Sand	Soft or Medium	Other	
42	Type of Sub Soil:				
43	Type of Foundation:	Strip	Raft	Isolated	
		Pile	Combined	Other	

506

Commented [SS31]: Comment (R2)-8: In addition, there are several editorial mistakes throughout the manuscript, which can and must be corrected. Some of them are mentioned in Points 7 and 8 merely for indicative reference purposes. There is a repetition of the same content and sentences, which can be avoided for better readability. The complete form of abbreviation used, such as MS/SS, should be mentioned.

Response: We appreciate the reviewer's insightful suggestion. In order to strengthen it further, we have done all the modifications including providing the complete full form of the abbreviations in the proposed form after every section where applicable.

		Adope	Stone	Brick	RCC	Other
44	Basic Construction material of Foundation:					
45	Mortar Material in Foundation:	Dry Masonry	Mud	Lime	Cement	Other
46	Plinth beam available?	Yes	No			
47	Sinking in Foundation?	Yes		Partial		No
48	If Yes or Partial in Q.47, What is the Reason for Sinking?	Cause of nearest water resources		Without any water resources		Other (specify)
507	49 Depth of ground water table					Don't know

WALL						
		Brick	Stone	Confined	RCC	Other
50	Type of Wall:			Only Column available & No Beams	Column & Beam, both available	
51	Is through-stone used in Stone Wall?	Yes	Partial	No		Through Stone
52	What is the Wall material?	Adobe or Mud Wall	River Boulder wall	Quarry Stone wall	Dressed wall	fired brick wall
		hollow concrete block wall			Other	
508						

53	Type of mortar	Dry masonry	Mud	Lime	Cement	Other
	Thickness of interior Wall (in mm):	< 115 mm	115 mm (4.5")	230 mm (9")	230 to 450 mm	> 450 mm
54	Length of longest interior wall (in meter)					
	Max. Height of the wall (in meters)					
55	Thickness of exterior Wall (in mm):	< 115 mm	115 mm	230 mm	230 to 450 mm	> 450 mm
	Length of longest exterior wall (in meter)					
56	Thickness of Mortar (in mm):					
57	How many Separation of walls at T and L junction?					

509

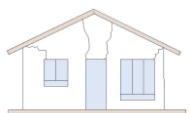
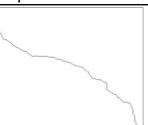
510

511

	Wall Failure type observed:	Bulging of wall	delaminating of wall	tilting of walls	dampness in wall	No failure
58						
	No. of walls with these failures					

Note: RCC: Reinforced Cement Concrete

512



EARTHQUAKE BANDS						
59	Which of the Earthquake bands available?	Plinth Band	Sill Band	Lintel Band	Roof Band	
		Gable Band	Door Band	Window Band	Corner Band	No Band
60	If Bands available in Q.59, What is the Material of Band:	Wood	Reinforced brick	Reinforced concrete	Other (Specify)	
61	If Bands available in Q.59, Thickness of Band (in mm):					
62	If bands available in Q59, Are the bands continuous?	Yes	Partial	No		Don't know

Commented [SS32]: Comment (R2)-6: The "mixed use", terminology in the survey form can be replaced with "combined use" for better understanding. There are many sections in the survey form, where the asked information may not be clear, especially for low-skilled engineers or surveyors; therefore, this reviewer recommends providing symbolic figures for better understanding. For instance, Sections 57 and 64 (grade of cracks) can be presented with an illustrative figure. Furthermore, another column can be added in many sections in case of not finding any existing option true; for instance, in Sections 58 and 65, other failures and cracks can be added.

Response: We appreciate the reviewer's insightful observations and suggestion. Taking this point into consideration, we have added symbolic figure in the options of Question 58 –type of wall failures. However, on the other hand, as per URDPFI Guidelines, the terminology used for such Landuse of the building is "Mixed use", thus we would like to remain with the same terminology and this is to highlight that the pictorial explanation of cracks is already given in question 63 and 64 of the proposed survey form (Part-A), however, question 57 does not required pictorial explanation.

Commented [SS33]: Comment (R2)-8: In addition, there are several editorial mistakes throughout the manuscript, which can and must be corrected. Some of them are mentioned in Points 7 and 8 merely for indicative reference purposes. There is a repetition of the same content and sentences, which can be avoided for better readability. The complete form of abbreviation used, such as MS/SS, should be mentioned.

Response: We appreciate the reviewer's insightful suggestion. In order to strengthen it further, we have done all the modifications including providing the complete full form of the abbreviations in the proposed form after every section where applicable.

CRACKS				
	Type of Cracks:	Structural cracks	Superficial cracks	N/A
63	Note: Superficial cracks are seen in one side of wall, on the other hand structural cracks can be seen on both side of the wall			
64	Type of Structural cracks:	Diagonal cracks	Vertical cracks	Horizontal Cracks
	Specify, No. of Cracks in each case			
	Specify, Length of cracks in each case (in cm)			
	Grade of Cracks	Grade 5	Grade 4	Grade 3
		Grade 2	Grade 1	
513	65 Are there any cracks on	Column	Beam	Near Openings
			Near corner	No cracks

OPENING				
66	Is there any opening(s) larger than 50% of the length of the wall	Yes, all	Yes, few	No
67	Are there any opening close to wall junction or corner or to floor/roof	Yes, all	Yes, few	No
68	Is frames available around the door?:	Yes	Partial	No
69	If Yes/Partial in Q.68, What is the material of Frame used:	Wooden	MS/SS	other (Specify)
70	Is frames available around the window	Yes	Partial	No
71	If Yes/Partial in Q.70, What is the material of Frame used:	Wooden	MS/SS	other (Specify)
72	Is Grills available around the window?:	Yes	Partial	No

514 Note: MS: Mild Steel, SS: Stainless Steel

Commented [SS34]: Comment (R2)-6: The "mixed use", terminology in the survey form can be replaced with "combined use" for better understanding. There are many sections in the survey form, where the asked information may not be clear, especially for low-skilled engineers or surveyors; therefore, this reviewer recommends providing symbolic figures for better understanding. For instance, Sections 57 and 64 (grade of cracks) can be presented with an illustrative figure. Furthermore, another column can be added in many sections in case of not finding any existing option true; for instance, in Sections 58 and 65, other failures and cracks can be added.

Response: We appreciate the reviewer's insightful observations and suggestion. Taking this point into consideration, we have added symbolic figure in the options of Question 58 – type of wall failures. However, on the other hand, as per URDPFI Guidelines, the terminology used for such Landuse of the building is "Mixed use", thus we would like to remain with the same terminology and this is to highlight that the pictorial explanation of cracks is already given in question 63 and 64 of the proposed survey form (Part-A), however, question 57 does not require pictorial explanation.

Commented [SS35]: Comment (R2)-8: In addition, there are several editorial mistakes throughout the manuscript, which can and must be corrected. Some of them are mentioned in Points 7 and 8 merely for indicative reference purposes. There is a repetition of the same content and sentences, which can be avoided for better readability. The complete form of abbreviation used, such as MS/SS, should be mentioned.

Response: We appreciate the reviewer's insightful suggestion. In order to strengthen it further, we have done all the modifications including providing the complete full form of the abbreviations in the proposed form after every section where applicable.

ROOF AND FLOOR					
	Flat Roof	One side slope	two side slope	four side slope	Other (specify)
73	Type of Roof:				
74	Material of Roof:	RCC 	Reinforced brick slab 	Tile or slate 	CGI Sheets
75	Are the roof anchored into the wall	Yes	Partial	No	
76	Type of Roof failures observed	Sagging	Cracks	Dampness	Other
516	77 Type of Flooring	Mud	Stone	Concrete	Wood.bam boo Mosaic floor tile

Note: RCC: Reinforced Cement Concrete; CGI: Corrugated Galvanized Iron

POUNDING EFFECT DETAILS					
78	Height of Structure /Block (in meters)				
79	Is there any adjacent building, which is very close (no gaps) to this building	Yes	with very little gap		No
80	Distance from nearest buildings (in meters)				
518	81 Quality of adjacent building	Very Good	Good	Moderate	Poor
		Very Poor			

HEAVY WEIGHT ON TOP					
	Type of Heavy weight present on the top of the building?	water tank (Concrete)	Water tank (Plastic)	Car Parking on the top of the building	Big hoarding
82					
		Heavy generator/machine	Communication tower	Roof top Garden	Other
					None
83	If Yes in Q.82, What is the Position of Heavy weight?	Centric	Eccentric	Distributed	Corners
519	84 Are the heavy weight intact properly with structure?	Yes	Partial	No	

Commented [SS36]: Comment (R2)-8: In addition, there are several editorial mistakes throughout the manuscript, which can and must be corrected. Some of them are mentioned in Points 7 and 8 merely for indicative reference purposes. There is a repetition of the same content and sentences, which can be avoided for better readability. The complete form of abbreviation used, such as MS/SS, should be mentioned.

Response: We appreciate the reviewer's insightful suggestion. In order to strengthen it further, we have done all the modifications including providing the complete full form of the abbreviations in the proposed form after every section where applicable.

Commented [SS37]: Comment (R2)-7: (1) In the section "Pounding Effects Details" in the survey form, instead of the subsection "Quality of adjacent building" can be replaced with material and number of floors of adjacent building for checking the capacity of the adjacent building. Subsection 79 can appear after the point mentioned in Subsection 80. (2) The definition of short and long columns provided in the survey form needs to be improved for clear understanding. (3) In Table 6a, providing the options of the range of wind speeds can be more helpful than the option of average wind speed. (4) The authors have conducted a pilot survey; however, all necessary details of the site conditions and pictures need to be included.

Response: We appreciate the reviewer's insightful observations and suggestion. Taking this comment into consideration, (1) in section "Pounding Effect details", we have switched the question 79 with question 80 in the proposed survey form. However, quality of adjacent building has already been asked in question 81 with 5 ranges of quality from very good to very bad. However separate analysis of individual adjacent building will be more beneficial. (2) The explanation of short and long column has already been explained in the pictorial manner wherever required, example question 98, 107, 111 of the proposed survey form. (3) Range of wind speed is modified in the proposed survey form. (4) As this manuscript focus on the designing and application of the survey form, the detail of pilot survey is in itself a huge part and can be a separate article. However, taking this point into consideration, we have added the pictures of 10 school buildings in section 4.5.2. In past 1 years, the proposed survey form is applied over 500+ buildings and we are working for the next article on it.

PARAPET WALL				
85	Is Parapet wall present at roof	Yes	Partial	No
86	If Yes or Partial in Q.85, What is the Material of Parapet Wall?	Lightweight (Wooden, MS/SS)	Heavy weight (RCC, Brick)	Remark
87	Intact with structure	Yes	Partial	No

520
521

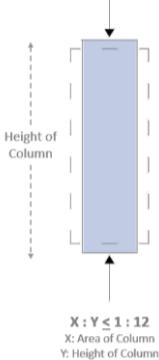
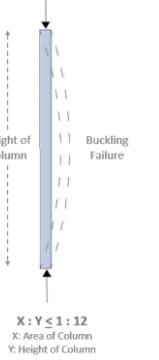
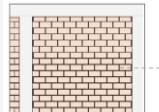
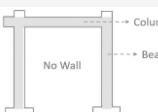
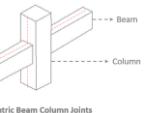
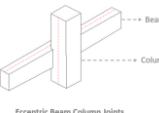
Note: MS: Mild Steel, SS: Stainless Steel, RCC: Reinforced Cement Concrete

OVERHANGS			
88	Overhangs present	Yes	No
89	Length of overhangs (meters)		
90	Overhangs with structural	Yes	No
91	Overhangs with Brackets /beam	Yes	No

522

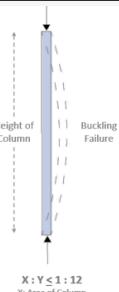
STAIRCASE				
92	Staircase present	Yes	No	
93	Staircase placed at symmetrical location in plan of the bulding	Symmetrical		Un-symmetrical
94	If Yes in Q.92, What is the Material of Staircase?	RCC	Brick	Wooden
95	If Yes in Q.68, Is Staircase intact with building structure?	Yes		No
96	Lift Status?	Intact	Not Intact	Not Available

523
524







Note: MS: Mild Steel, SS: Stainless Steel, RCC: Reinforced Cement Concrete

Commented [SS38]: Comment (R2)-8: In addition, there are several editorial mistakes throughout the manuscript, which can and must be corrected. Some of them are mentioned in Points 7 and 8 merely for indicative reference purposes. There is a repetition of the same content and sentences, which can be avoided for better readability. The complete form of abbreviation used, such as MS/SS, should be mentioned.

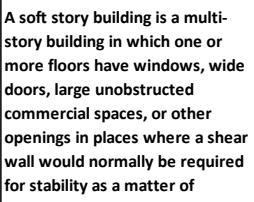
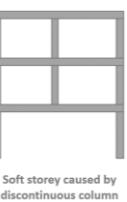
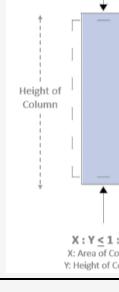
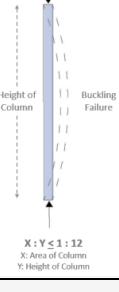
Response: We appreciate the reviewer's insightful suggestion. In order to strengthen it further, we have done all the modifications including providing the complete full form of the abbreviations in the proposed form after every section where applicable.



Commented [SS39]: Comment (R2)-8: In addition, there are several editorial mistakes throughout the manuscript, which can and must be corrected. Some of them are mentioned in Points 7 and 8 merely for indicative reference purposes. There is a repetition of the same content and sentences, which can be avoided for better readability. The complete form of abbreviation used, such as MS/SS, should be mentioned.

Response: We appreciate the reviewer's insightful suggestion. In order to strengthen it further, we have done all the modifications including providing the complete full form of the abbreviations in the proposed form after every section where applicable.

COLUMN					
97	Column available?	Yes		No	
		Short Column		Long Column	
98	If yes in Q.97, What is the type of Column?				
525	99 Material of Column	Concrete	Masonry (Brick/ Stone)	Wood	Steel Other
BEAM					
100	Beam available?	Yes		No	
101	If Yes in Q.100., Beam with infill walls available?				
102	If Yes in Q.100., Beam – Column connections?				
103	Beam -Beam Connection?	Centric		Eccentric	
526	104 If Yes in Q.100., Material of Beam	Concrete	Masonry (Brick/ Stone)	Wood	Steel Other

Commented [SS40]: Comment (R2)-7: (1) In the section "Pounding Effects Details" in the survey form, instead of the subsection "Quality of adjacent building" can be replaced with material and number of floors of adjacent building for checking the capacity of the adjacent building. Subsection 79 can appear after the point mentioned in Subsection 80. (2) The definition of short and long columns provided in the survey form needs to be improved for clear understanding. (3) In Table 6a, providing the options of the range of wind speeds can be more helpful than the option of average wind speed. (4) The authors have conducted a pilot survey; however, all necessary details of the site conditions and pictures need to be included.





Response: We appreciate the reviewer's insightful observations and suggestion. Taking this comment into consideration, (1) in section "Pounding Effect details", we have switched the question 79 with question 80 in the proposed survey form. However, quality of adjacent building has already been asked in question 81 with 5 ranges of quality from very good to very bad. However separate analysis of individual adjacent building will be more beneficial. (2) The explanation of short and long column has already been explained in the pictorial manner wherever required, example question 98, 107, 111 of the proposed survey form. (3) Range of wind speed is modified in the proposed survey form. (4) As this manuscript focus on the designing and application of the survey form, the detail of pilot survey is in itself a huge part and can be a separate article. However, taking this point into consideration, we have added the pictures of 10 school buildings in section 4.5.2. In past 1 years, the proposed survey form is applied over 500+ buildings and we are working for the next article on it.

BASEMENT			
105	Is Basement Available?	Yes No	
106	If Yes in Q.105, No. of Basement		
		Short Column	Long Column
107	Effective height of column in basement?	<p>$X : Y \leq 1 : 12$ X: Area of Column Y: Height of Column</p>	<p>$X : Y \leq 1 : 12$ X: Area of Column Y: Height of Column</p>
108	Retaining wall available ?	Yes No	
109	If Yes in Q.108, What is the Material of the retaining wall ?	RCC Brick Stone Other	

527

528

Note: RCC: Reinforced Cement Concrete

SOFT STOREY			
	<p>Stiff and Strong upper floors due to masonry infills</p>	<p>The columns in one storey longer than those above</p>	<p>Soft story caused by discontinuous column</p>
110	Soft Storey available ?	Yes No	
		Short Column	Long Column
111	Effective height of column in basement?	<p>$X : Y \leq 1 : 12$ X: Area of Column Y: Height of Column</p>	<p>$X : Y \leq 1 : 12$ X: Area of Column Y: Height of Column</p>

529

Commented [SS41]: Comment (R2-7: (1) In the section "Pounding Effects Details" in the survey form, instead of the subsection "Quality of adjacent building" can be replaced with material and number of floors of adjacent building for checking the capacity of the adjacent building. Subsection 79 can appear after the point mentioned in Subsection 80. (2) The definition of short and long columns provided in the survey form needs to be improved for clear understanding. (3) In Table 6a, providing the options of the range of wind speeds can be more helpful than the option of average wind speed. (4) The authors have conducted a pilot survey; however, all necessary details of the site conditions and pictures need to be included.

Response: We appreciate the reviewer's insightful observations and suggestion. Taking this comment into consideration, (1) in section "Pounding Effect details", we have switched the question 79 with question 80 in the proposed survey form. However, quality of adjacent building has already been asked in question 81 with 5 ranges of quality from very good to very bad. However separate analysis of individual adjacent building will be more beneficial. (2) The explanation of short and long column has already been explained in the pictorial manner wherever required, example question 98, 107, 111 of the proposed survey form. (3) Range of wind speed is modified in the proposed survey form. (4) As this manuscript focus on the designing and application of the survey form, the detail of ...

Commented [SS42]: Comment (R2-8: In addition, there are several editorial mistakes throughout the manuscript, which can and must be corrected. Some of them are mentioned in Points 7 and 8 merely for indicative reference purposes. There is a repetition of the same content and sentences, which can be avoided for better readability. The complete form of abbreviation used, such as MS/SS, should be mentioned.

Response: We appreciate the reviewer's insightful suggestion. In order to strengthen it further, we have done all the modifications including providing the complete full form of the abbreviations in the proposed form after every section where applicable.

Commented [SS43]: Comment (R2-7: (1) In the section "Pounding Effects Details" in the survey form, instead of the subsection "Quality of adjacent building" can be replaced with material and number of floors of adjacent building for checking the capacity of the adjacent building. Subsection 79 can appear after the point mentioned in Subsection 80. (2) The definition of short and long columns provided in the survey form needs to be improved for clear understanding. (3) In Table 6a, providing the options of the range of wind speeds can be more helpful than the option of average wind speed. (4) The authors have conducted a pilot survey; however, all necessary details of the site conditions and pictures need to be included.

Response: We appreciate the reviewer's insightful observations and suggestion. Taking this comment into consideration, (1) in section "Pounding Effect details", we have switched the question 79 with question 80 in the proposed survey form. However, quality of adjacent building has already been asked in question 81 with 5 ranges of quality from very good to very bad. However separate ...

530	112	Is shearwall available in Soft Storey?	Yes	Partially	No
	113	Retaining wall available ?	Yes		No
	114	If Yes in Q.113, What is the Material of the retaining wall ?	RCC	Brick	Stone
					Other

531 Table 6a: Proposed MHRA Survey form (Part B)

MULTI HAZARD SURVEY FORM					
FLOOD					
1	Is the site low lying or prone to water logging?	Yes		No	
2	Is there any water body near the site?	Yes		No	
3	What is the type of water body and whether it is prone to flooding?	Lake, flood prone	Lake, not flood prone	River, flood prone	River, not flood prone
4	What is the distance from the nearest water body?	0 - 250 M	250 - 500 M	500 - 1000 M	1 KM - 2 KM
5	What is the potential damage level due to the expected duration of flooding?	Very High	High	Medium	Low
6	Is the plinth made up of non-erodible material?	Yes		No	
7	What is the height of the plinth? (in meters)				
HIGH WIND					
8	What is the average wind speed in this location	Maximum Speed	Minimum Speed		
9	Are there trees and/or towers too close to the building that may fall on it during high wind/cyclone?	can stop building from functioning		threat can damage building but not hamper functioning	No threat
10	Do the door and windows have a good and accessible latch?	if neither doors or windows have accessible and good latches.		If some of the doors and windows have accessible and good latches	If both doors and windows have accessible and good latches
11	Is there a covered walkway for building to building connection?	no covered walkway		weak covered walkway	strong covered walkway

533

Commented [SS44]: Comment (R2)-7: (1) In the section "Pounding Effects Details" in the survey form, instead of the subsection "Quality of adjacent building" can be replaced with material and number of floors of adjacent building for checking the capacity of the adjacent building. Subsection 79 can appear after the point mentioned in Subsection 80. (2) The definition of short and long columns provided in the survey form needs to be improved for clear understanding. (3) In Table 6a, providing the options of the range of wind speeds can be more helpful than the option of average wind speed. (4) The authors have conducted a pilot survey; however, all necessary details of the site conditions and pictures need to be included.

Response: We appreciate the reviewer's insightful observations and suggestion. Taking this comment into consideration, (1) in section "Pounding Effect details", we have switched the question 79 (part A) in the proposed survey form with question 80. However, quality of adjacent building has already been asked in question 81 with 5 range of quality from very good to very bad. However separate analysis of individual adjacent building will be more beneficial. (2) The explanation of short and long column has already been explained in the pictorial manner wherever required, example question 98, 107, 111 of the proposed survey form-Part A). (3) Range of wind speed has been modified in the proposed survey form. (4) As this manuscript focus on the designing and application of the survey form, the detail of pilot survey is in itself a huge part and can be separate article. So, we would like to go as it is.

534

LANDSLIDE						
12	Is there any hills near to the building, which can cause damage due to landslide	Yes				No
13	If Yes in Q.12, what is the distance of the base off the Hill from building?	Less Than 30 M	30 M - 100 M	100 - 250 M	250 - 500 M	More than 500 M
14	Is the slope near the building stabilized?	Yes				No
15	Are there any large rocks or potential falling hazards near the building?	Yes				No
16	Are there barriers to rockfall ?	Yes				No

535

INDUSTRY						
17	Is there any industry near to the building, which can cause damage due to industrial hazard, fire etc.	Yes				No
18	If Yes in Q.17, how many active industries are there?	Yes				No
19	What is the distance of nearest Industry from building?	0 - 100 M	100 - 250 M	250 - 500 M	500 - 1000 M	More than 1 km
20	What is the distance of nearest Petrol Pump from building?	0 - 100 M	100 - 250 M	250 - 500 M	500 - 1000 M	More than 1 km

536

FIRE						
21	Are the access roads from main street wide enough to allow one fire engine to reach, reverse and return to the main road?	two or more such access roads		one such access road		No access road
22	Are there potential fire threats within 30 meters of the building such as petrol pump, electrical substation, combustible materials store, etc.?	Yes			No	
23	Is there adequate open assembly area for people during any emergency?	enough space	inadequate open space (1-4 square feet per student)		negligible	
24	Is main meter box and switch box located in the staircase/ entrance lobby/ passage/ corridor?	Yes			No	

Commented [SS45]: Comment (R2-5): The manuscript has mainly focused on the natural hazards in the manuscript. However, multi-hazards can include manmade (/accidental) hazards, such as blast, explosion, fire outbreak, etc. which can cause extensive risk to communities and infrastructures, even in the area of question in the present manuscript. Therefore, a section needs to be added to the questionnaire regarding such manmade hazards.

Response: We appreciate the reviewer's insightful suggestion. We would like to highlight here that the proposed survey form consists of questions related to man-made hazards like Industrial hazard (Part B, question no. 17 to 20), Fire vulnerability (Part B, question no. 21 to 35) and non-structural risk (Part B, question no. 40 to 42). However other man-made hazards are beyond the scope of this research.

Commented [SS46]: Comment (R2-5): The manuscript has mainly focused on the natural hazards in the manuscript. However, multi-hazards can include manmade (/accidental) hazards, such as blast, explosion, fire outbreak, etc. which can cause extensive risk to communities and infrastructures, even in the area of question in the present manuscript. Therefore, a section needs to be added to the questionnaire regarding such manmade hazards.

Response: We appreciate the reviewer's insightful suggestion. We would like to highlight here that the proposed survey form consists of questions related to man-made hazards like Industrial hazard (Part B, question no. 17 to 20), Fire vulnerability (Part B, question no. 21 to 35) and non-structural risk (Part B, question no. 40 to 42). However other man-made hazards are beyond the scope of this research.

25	Are the main meter box and switch box enclosed in a metallic box?	Yes		No	
26	Is there more than 1 staircase which can be used as a fire escape staircase ideally at maximum distance from the other staircase?	Yes		No	
27	In case of Public building or Life line building, Are there proper signages in the campus for Emergency Exit, Fire equipment etc.?	Yes		No	
28	Is the kitchen located at a safe distance from classrooms, staircase, passage corridor?	Yes, beyond 50 m	Yes, within 20-50 m	Yes, within 10-20 m	adjacent Kitchen Not Available
29	Is the ceiling material safe from fire?	Yes		No	
30	What is the status of fire safety equipment in the building?	100% - Fire extinguisher in each floor of each block	75% - Fire extinguisher in 3/4 th of all floors	50% - Fire extinguisher in half of all floors	25% - Fire extinguisher in 1/4 th of all floors 0% - No Equipment

537

31	Is the transformer too close to the compound wall or inside the building?	Yes		No	
32	Are there overhead cables running through or near premises/building?	Yes		No	
33	If there is a forest area near the building?	Yes		No	
34	What is the distance of the tree line from the building?				
35	Is there any combustible construction material present in the building?	Yes		No	

538

539

CLIMATE CHANGE					
	Very Likely	Likely	Neutral	Unlikely	Very Unlikely
36	How much do you think climate change threatens your personal				
	Climate change/Global Warming	Poverty	Over-population	Un-employment	Crime
37	Which issues are of more concern in your opinion? (On the scale of 10, more marks to most concerned)	Infectious Diseases	Economic Situation	Unplanned Infrastructure	Deforestation
					Air pollution
	Water pollution	Tourism growth	Poor Waste Management	Extinction of species	Traffic
38	In your opinion, What is the reason that the temperature on earth has been rising over the past decade?	Human Activities	Natural Causes	No Change	Don't know
					Other
39	How much do you think the following has contributed to global climate change? (on scale of 10, more marks to most contributer)	Deforestation	Overpopulation	Tourist growth	Landuse Landcover
					Greenhouse gases
	Industrialization	Melting of Ice	Warming of water surface	Other	Don't know

540

Non Structural Risk/ Falling Hazard							
		Element	Need Attention	Number	Element	Need Attention	Number
		Fan			Wooden Frame at Roof		
		Tubelight			Door		
		Electrical Wires			Window Frames		
		AC			Heavy Machinaries		
		Open Shelve (Glass)			Cylinder in Open space		
		Open Shelve (Iron)			Board		
		Wardrobe (Wooden)			Ventilator		
		Wardrobe (Iron)			Fire Extinguisher		
		Heavy Table			Cantilever Chimneys		
		Heavy Frames			Cantilever Balconies		
		Heavy Furnitures			Cantilever Sunshades		
		Heavy weight on top of almirah			Other		
41	No. of Exits in the Room:	GOOD	OK	POOR			
42	What is the status of Electrical Safety in the Room						

Commented [SS47]: Comment (R2)-5: The manuscript has mainly focused on the natural hazards in the manuscript. However, multi-hazards can include manmade (/accidental) hazards, such as blast, explosion, fire outbreak, etc. which can cause extensive risk to communities and infrastructures, even in the area of question in the present manuscript. Therefore, a section needs to be added to the questionnaire regarding such manmade hazards.

Response: We appreciate the reviewer's insightful suggestion. We would like to highlight here that the proposed survey form consists of questions related to man-made hazards like Industrial hazard (Part B, question no. 17 to 20), Fire vulnerability (Part B, question no. 21 to 35) and non-structural risk (Part B, question no. 40 to 42). However other man-made hazards are beyond the scope of this research.

541

542 **4.4 Risk Score Computation**

543 After all the parametric studies from various Indian Standard codes and Reports (NDMA, 544 2020), (URDPFI, 2015); IS-13828 (1993); IS-4326 (1993); IS-1893-1 (2016); IS-13935, 2009; 545 IS-15988 (2013)) on ideal building parameters and weak components of a building from 546 designing, construction, site condition, surrounding condition, location and hazard etc. point 547 of views, risk scores were decided on an average basis on 24 components separately (refer 548 section 4.5 of this paper) for better judgment and understanding. Risk scores were derived 549 from the proposed survey form by appropriately weighing the data points against a risk number 550 chart with higher weightage given to higher risk (Chouhan et al., 2022b). The data was then 551 aggregated on a scale of ten (Table 7). For example, if a building answers all weighted MCQs 552 with the highest risk option, it will be scored 10/10 and similarly for low risk and moderate risk. 553 All questions in the questionnaire were not weighted; those with ambiguous risk consequences 554 were left un-weighted to be studied objectively. The risk scores intend to give a relative idea 555 of where the risk lies within a building and among building to enable prioritization during risk 556 mitigation planning.

557

Table 7: Risk Score Computation, Source adapted from (Chouhan et al., 2022b)

Risk Score	0 to 2	2.1 to 4	4.1 to 6	6.1 to 8	8.1 to 10
Color Code					
Risk Status	Very low	Low	Moderate	High	Very high
Building Status	Very Safe	Safe	Moderately safe	Unsafe	Very Unsafe
Recommendation	Need Maintenance	Need Attention and Maintenance	Need Attention and SVA	Required DVA and Retrofitting	Required Retrofitting urgently

559 **4.5 Pilot Survey**

560 After finalization of the proposed MHRA Survey form, Pilot survey has been conducted at 10 561 schools of Uttarakhand state. The results of Building level survey and campus level survey 562 has been shown below in section 4.5.1. and 4.5.2.

563 **4.5.1 Result of Rapid Visual Screening Survey**

564 As per IS Code 13935 (2009), the key goal of seismic reinforcement is to improve a weakened 565 building's seismic resilience as it is being repaired, making it stronger in the event of potential 566 earthquakes. The individual results of 17 components of RVS are elaborated, which highlights 567 the weaker part that needs attention in a building.

568 Table 8: Result of RVS of 10 schools through Proposed form

SN	Risk Status	Very Low Risk	Low Risk	Moderate Risk	High Risk	Very High Risk	Total

Commented [SS48]: Comment (R1)-8.4: (iv) One relevant code to assess seismic vulnerability IS15988 is missing

Response: Taking this point into consideration, we have added IS-15988 (2013) in section 4.4.

Commented [SS49]: Comment (R1)-8.5: (v) Please change the IS 1893-2002 to IS 1893-2016

Response: We appreciate the reviewer's insightful suggestion. I would like to highlight that IS-1893-2016 is already mentioned in section 4.4. However, taking this point into consideration, we have removed IS-1893-2002.

Commented [SS50]: Comment (R1)-13.1: If wind hazard is done as per IS code give reference. Similarly for hazards other than seismic give references which you must have referred in case not included.

Response: Considering this point we have added all the references in section 4.4

Commented [SS51]: Comment (R2)-7: (1) In the section "Pounding Effects Details" in the survey form, instead of the subsection "Quality of adjacent building" can be replaced with material and number of floors of adjacent building for checking the capacity of the adjacent building. Subsection 79 can appear after the point mentioned in Subsection 80. (2) The definition of short and long columns provided in the survey form needs to be improved for clear understanding. (3) In Table 6a, providing the options of the range of wind speeds can be more helpful than the option of average wind speed. (4) The authors have conducted a pilot survey; however, all necessary details of the site conditions and pictures need to be included.

Response: We appreciate the reviewer's insightful observations and suggestion. Taking this comment into consideration, (1) in section "Pounding Effect details", we have switched the question 79 with question 80 in the proposed survey form. However, quality of adjacent building has already been asked in question 81 with 5 ranges of quality from very good to very bad. However separate analysis of individual adjacent building will be more beneficial. (2) The explanation of short and long column has already been explained in the pictorial manner wherever required, example question 98, 107, 111 of the proposed survey form. (3) Range of wind speed is modified in the proposed survey form. (4) As this manuscript focus on the designing and application of the survey form, the detail of pilot survey is in itself a huge part (brief of pilot survey in section 4.5) and can be a separate article. However, taking this point into consideration, we have added the pictures of 10 school buildings in section 4.5.2. In past 1 years, the proposed survey form is applied over 500+ buildings and we are working for the next article on it.

1	Site Condition	54%	13%	29%	2%	2%	100%
		32	8	17	1	1	59 blocks
2	Building Geometry	34%	27%	14%	20%	5%	100%
		20	16	8	12	3	59 blocks
3	Foundation	27%	22%	51%	0%	0%	100%
		16	13	30	0	0	59 blocks
4	Wall	36%	37%	27%	0%	0%	100%
		21	22	16	0	0	59 blocks
5	Earthquake Bands	0%	0%	7%	10%	83%	100%
		0	0	4	6	49	59 blocks
6	Cracks	2%	83%	0%	0%	15%	100%
		1	49	0	0	9	59 blocks
7	Openings	63%	17%	19%	1%	0%	100%
		37	10	11	1	0	59 blocks
8	Roof	7%	3%	10%	78%	2%	100%
		4	2	6	46	1	59 blocks
9	Pounding Effect	25%	0%	5%	39%	31%	100%
		15	0	3	23	18	59 blocks
10	Heavy Weight on top	95%	0%	2%	0%	3%	100%
		56	0	1	0	2	59 blocks
11	Parapet	93%	0%	7%	0%	0%	100%
		45	0	4	0	0	59 blocks
12	Overhang	53%	0%	15%	0%	32%	100%
		31	0	9	0	19	59 blocks
13	Staircase	80%	0%	3%	12%	5%	100%
		47	0	2	7	3	59 blocks
14	Column	51%	0%	12%	0%	37%	100%
		30	0	7	0	22	59 blocks
15	Beam	32%	2%	7%	7%	52%	100%
		19	1	4	4	31	59 blocks
16	Basement	100%	0%	0%	0%	0%	100%
		59	0	0	0	0	59 blocks
17	Soft Storey	100%	0%	0%	0%	0%	100%
		59	0	0	0	0	59 blocks

569

570 4.5.2 Result of Other Multi-Hazard Survey

571 The survey was conducted by considering the campus of the school as one unit. It primarily
 572 focuses on the location of school premises under a vulnerable zone or not, if yes, to which
 573 kind of hazard. It solves the question of how the school campus is prepared. [The result of](#)
 574 [multi-hazard survey is shown in the figure 6 below:](#)

575	Flood Risk Assessment				Total 100% 10 Schools
	10%	50%	30%	10%	
	1 s	5 schools	3 schools	1 s	

576

Wind Risk Assessment				Total
	70%	20%	10%	100%
	7 schools	2 schools	1 s	10 Schools

577

Landslide Risk Assessment				Total
	100%			100%
	10 schools		10 Schools	

578

Industrial Risk Assessment				Total
	100%			100%
	10 schools		10 Schools	

579

Fire Risk Assessment				Total
	20%	60%	20%	100%
	2 schools	6 schools	2 schools	10 Schools

580

Non-Structural Risk Assessment				Total
	80%	20%		100%
	8 schools		2 schools	

581 Figure 6: Graphical presentation of the results of Multi-hazards risk

582 The photos of the 10 schools where pilot survey was conducted is shown in the figure below:

584 Figure 7: Photo of the 10 schools

5 Discussion:

5.1 Pilot Survey

587 The IHR requires effective and standardised Multi-Hazard Risk Assessment, and for that purpose a customized designed Survey Form has been designed to capture the unique characteristics of hill communities and assets. The proposed form performed reasonably well. Effectiveness & data collection is comfortable from both ends i.e., Respondents & Surveyor. The questions are properly framed in various sections, the language is simple and it is easy to interpret. The pictorial explanation makes it easy for surveyors to correct input data, as its explanation is self-explanatory. The objective behind the data collection is well clear to the Respondents and Surveyor.

Commented [SS52]: Comment (R2)-7: (1) In the section "Pounding Effects Details" in the survey form, instead of the subsection "Quality of adjacent building" can be replaced with material and number of floors of adjacent building for checking the capacity of the adjacent building. Subsection 79 can appear after the point mentioned in Subsection 80. (2) The definition of short and long columns provided in the survey form needs to be improved for clear understanding. (3) In Table 6a, providing the options of the range of wind speeds can be more helpful than the option of average wind speed. (4) The authors have conducted a pilot survey; however, all necessary details of the site conditions and pictures need to be included.

Response: We appreciate the reviewer's insightful observations and suggestion. Taking this comment into consideration, (1) in section "Pounding Effect details", we have switched the question 79 with question 80 in the proposed survey form. However, quality of adjacent building has already been asked in question 81 with 5 ranges of quality from very good to very bad. However separate analysis of individual adjacent building will be more beneficial. (2) The explanation of short and long column has already been explained in the pictorial manner wherever required, example question 98, 107, 111 of the proposed survey form. (3) Range of wind speed is modified in the proposed survey form. (4) As this manuscript focus on the designing and application of the survey form, the detail of pilot survey is in itself a huge part and can be a separate article. However, taking this point into consideration, we have added the pictures of 10 school buildings in section 4.5.2. In past 1 years, the proposed survey form is applied over 500+ buildings and we are working for the next article on it.

595 5.2 Key features of the proposed MHRA survey form

596 The key features of the proposed form are it is specially designed for data collection in the
597 Indian Himalayan region with risk of Earthquake, Flood, High Wind, Industrial hazard, Non-
598 Structural Risk, fire vulnerability and Climate change awareness. As the value addition, the
599 proposed survey form consist of questions related to climate change also, as the promotion of
600 self-mobilisation and action is enhanced by awareness; it increases enthusiasm and support.
601 It is therefore crucial to raise awareness about climate change adaptation in order to manage
602 the impacts of climate change, increase adaptive capacity, and reduce overall vulnerability.

603 The proposed survey form is very useful for any type of study related to Hazard Risk
604 assessment in hills. Time taken to complete the questionnaire, i.e. the length of the
605 questionnaire is good enough i.e. 10 minutes for the trained civil engineer and 17 minutes for
606 the trained non-engineering background surveyor. With practice, the surveyor can reduce
607 time. The language of the form is simple and specific, i.e. One answer on one dimension is
608 required, it considers all possible contingencies when determining a response, It is designed
609 in a way that it collects more & more accurate information in less time. Questionnaires permit
610 the collection and analysis of quantitative data in a standardized manner, ensuring their
611 internal consistency and coherence. The question sequence is clear and smooth moving. By
612 sequencing questions properly, the chances of misinterpreting individual questions are greatly
613 reduced. The pictorial options make it comfortable for the surveyor to fill the answer by looking
614 at the building.

615 The survey form is divided into sections so that only one thought can be conveyed at a time.
616 It is the advanced version of RVS that covers risk status for foundation, wall, roof, openings,
617 beam, column, site conditions, etc. of a building. It is covering all the points required for
618 building analysis in RVS. It covers questions related to all identified hazards that are directly
619 indirectly contributing to risk factors. It covers all the required Questions as per hill condition,
620 situation, climate, geography, construction practices, construction materials, etc. The format,
621 including the font and layout, is good enough to read by the surveyor. Before going into the
622 field, the surveyor must require a reading of the full survey form carefully with all terminologies
623 clear. It covers the non-structural risk survey form. The safety of occupants in a building
624 following an incident can be at risk due to reduced capacity of structural components or
625 damage to non-structural components. This hill-specific MHRA questionnaire survey may act
626 as a risk sensitization tool.

Commented [SS53]: Comment (R1)-13.2: You are considering building related fire vulnerabilities and not forest fire. It may be clarified.

Response: We appreciate the reviewer's insightful opinion from readers point of views. Taking this point into consideration, we have identified all related words and modified it.

Commented [SS54]: Comment (R1)-13.3: Climate change has been addressed in form. It has to be included in text also.

Response: We appreciate the reviewer's suggestion. Taking this point into consideration, we have made the addition in section 5.2.

627 5.3 *Result of Pilot Survey*

628 It can be seen that the detailed multi-hazard risk assessment will help the schools to identify
629 the potential threats presented in the building as well as premises and the steps to retrofit the
630 structure.

631 Due to the region's strong earthquake zonation, RVS and NSRA data suggest high structural
632 and non-structural vulnerability in almost all the 10 schools ([figure 7](#)), which assumes greater
633 significance. On the other hand, Schools need to improve its fire safety measurement and
634 trainings on the same. The high wind and flood pose a prominent moderate to high risk.
635 Industry and landslides, on the other hand, pose no risk. The risk of fire arises from a shortage
636 of fire safety equipment and structural issues such as the absence of an alternate staircase,
637 the incorrect placement of fire-risk properties, etc. Fire disasters have the potential to be
638 catastrophic, but this should be a top priority as we advance. The wind is a significant concern
639 in this region because it is vulnerable to frequent windstorms. High-speed winds pose a risk
640 in the form of hazard trees/ towers, flying objects weakly latched doors/windows.

641 Heavy furniture (tables, almirah) and hanging electrical items/wire products face a
642 considerable risk of falling in the case of a tragedy in different rooms and labs. Falling hazards
643 can obstruct escape routes and injure people as they collide with them during minor seismic
644 shaking/earthquakes. When a disaster strikes, it's crucial for students and workers to have as
645 little disruption as possible during the critical reaction time. Mitigation measures primarily
646 involve simple fixes of non-structural elements with the structural element (wall and floor) and
647 are hence, for the most part, low-cost solutions.

648 Overall, the total risk is rated moderate on the risk scale considered by the authors after
649 structural and non-structural factors.

650 6 Conclusion

651 The Indian Himalayan region is facing disaster every year with significant loss of life and
652 property, as it is very prone to multi-hazards. Thousands of studies, research, and projects
653 are funded nationally and internationally to minimize the loss and prepare the community to
654 face the upcoming disaster.

655 A questionnaire is the backbone for any survey, which is the base for all types of research
656 work for better accuracy. This article describes why there is a need for a hill-specific survey
657 form that focuses on the multi-hazards in hills and hill's existing scenarios. It then described
658 the steps of how a Hill-specific Multi-Hazard Risk Assessment Survey form was developed,
659 validated through pilot survey, and tailored specifically for hill communities.

660 This article identifying gaps in the existing survey form used in India for risk assessment and
661 highlights the problem faced by the surveyors on ground while filling these survey forms. The
662 proposed form is a self-explanatory, pictorial, simple, easy to understand, covers hill specific
663 important components and it addresses several hazards such as earthquakes, floods, high
664 wind, landslides, industrial hazard, fire vulnerability and non-structural risk in the building.

665 The proposed survey form is designed and applied under this study will help all the
666 stakeholders to collect better information from the field and made it easy for the surveyors to
667 understand even for non-technical person. This form will also identify the weak components
668 of a building, construction practices, their development trend, and vulnerability of the location,
669 so that future construction can be planned, considering the risk factors and vulnerable zones.
670 Most of the assessment criteria for multi-hazard risks are met by the proposed survey form.
671 The more accurate the data, and the better will be its results.

672 The preliminary survey conducted at Chinyalisaur district of Uttarakhand validates the
673 questionnaire and survey form, and provided invaluable feedback now incorporated in to the
674 final survey form design. Through preliminary and pilot survey it has been observed that the
675 proposed form is designed in a way that it can collect more accurate information in less time.
676 Questionnaires permit the collection and analysis of quantitative data in a standardized
677 manner, ensuring their internal consistency and coherence. The language and sequence of
678 questions is designed for clear and easy communication. Pictorial explanations of questions,
679 the unique feature, provides easy flow of information between the respondents and surveyors.
680 Thus, this hill-specific MHRA questionnaire survey may act as a risk sensitization tool.

681 The survey form is divided into various sections that covers firstly building specific questions
682 as building plays crucial role during any hazard and secondly location specific questions that
683 covers vulnerability of building towards other hazards. The result of pilot survey highlights risk
684 status for various components of a building which will help further in utilizing the retrofitting
685 and renovation budget in fruitful and planned way. On the other hand, result of pilot survey
686 also shows location wise vulnerability i.e., vulnerability of the building towards other hazards
687 that can help further in decision making related disaster reduction, preparedness and planning
688 strategies at that location for that particular identified hazard. It will also help to understand
689 the development trend in that particular location and take action for future development
690 strategies.

691 The suggested form is a proposed version of Rapid Visual Screening (RVS), which can assess
692 the risk of any structure and includes all structural and non-structural components that respond
693 during a seismic event. It also includes information about the building's sensitivity to possible
694 danger zones such as landslides, floods, wind, and industrial hazards. Research is being

Commented [SS55]: Comment (R1)-13.2: You are considering building related fire vulnerabilities and not forest fire. It may be clarified.

Response: We appreciate the reviewer's insightful opinion from readers point of views. Taking this point into consideration, we have identified all related words and modified it.

Commented [SS56]: Comment (R1)-2: In line 35, It's researcher's work, so it should be clear what hazards have been considered. Do not use term etc. Name hazards which you are considering in particular.

Response: We appreciate the reviewer for pointing this out. Taking this comment into consideration, we have revised this line.

695 undertaken to develop more accurate hill-specific risk assessment survey form that requires
696 less time, marginal effort. identify deficiencies and, most important suggest a site-specific
697 Multi-Hazard Survey form for hills.

698 This study has the huge scope of application in other Asian countries with Himalayas like
699 Nepal, Bhutan, China and Pakistan. Its international application will enhance the survey form
700 and have scope for future research. The proposed survey form will not only act as self-
701 sensitization for the building owners at micro level but will also have huge scope at regional
702 level i.e. macro level, when results of all the buildings will be on single screen. The data
703 collected using this form can be used in any study related to Multi-Hazard Risk Assessment.
704 It can be used by civil engineers as well as non-civil engineering background people. People
705 can self-assess their building. To do this effectively, it is crucial to reinforce the networks of
706 science, technology, and decision-makers and create a sustainable technological outcome for
707 disaster risk reduction.

708 Acknowledgment

709 This research was supported by National Mission for Himalayan Studies (NMHS), Project
710 Grant No. NMH_1334_DMC and CoPREPARE, Project Grant no. IGP2020-24/COPREPARE
711 – funded by UGC. We are indebted to the local residents who actively participated in the
712 household survey. The authors are grateful to Mr. Tom Burkitt, from DHI, for supporting
713 editorial and proofreading.

714 Data availability Statement

715 This article is part of doctoral research and the data collection has been done by the first
716 author physically on-site. The data is available from the authors on the request basis.

717 Disclosure statement

718 No potential conflict of interest was reported by the authors.

719 References

720

721 Allen, S. K., Rastner, P., Arora, M., Huggel, C., and Stoffel, M.: Lake outburst and debris flow
722 disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic
723 predisposition, *Landslides*, 13(6), 1479–1491. doi:10.1007/s10346-015-0584-3, 2015.

724 Aksha, A. K., Resler, L. M., Juran, L., and Carstensen, L. W.: A geospatial analysis of multi-
725 hazard risk in, *Geomatics, Nat. Hazards Risk*, 11(1), 88–111. doi:

Commented [SS57]: Comment (R1)-1: In line 23-29, If it has some international application in some other countries, give some names or suggest in brief what modifications can be made to convert them for international use specifically in some Asian countries.

Response: We appreciate the reviewer, for bringing out attention to this point. We agree with you about its scope in other Asian countries with Himalayas, however our paper has applied only in Indian Himalayan region till now and focus on the same. Taking your suggestion into consideration, addition have been made in the conclusion section.

Commented [SS58]: Comment (R1)-13.4: It seems you have plan to assess seismic vulnerability of structure and superimpose all vulnerabilities together on regional plan in future if so, describe it in end as future research in progress.

Response: We appreciate the reviewer's futuristic suggestions. In order to strengthen it further, we have made the modifications in the conclusion section.

726 10.1080/19475705.2019.1710580, 2020.

727 Arya, A. S.: Rapid Visual Screening of RCC Buildings, Prepared Under GOI – UNDP Disaster
728 Risk Management Programme, Ministry of Home Affairs, India, pp 14 pp., 2006a

729 Arya, A. S.,: Rapid Visual Svreening of Masonry Buildings, *GOI – UNDP Disaster Risk*
730 *Management Programme*, 13935, 17–41 pp., 2006b

731 BMTPC.: Vulnerability Atlas of India: 3rd edition, Ministry of Housing and Urban Affairs,
732 Government of India, India, 478 pp., <https://vai.bmtpc.org/>, 2019

733 Buck, Kyle. D., and Summers, J. Kelvin.: Application of a multi-hazard risk assessment for
734 local planning local planning, Geomatics, Nat. Hazards Risk., 11(1), 2058-2078,
735 <https://doi.org/10.1080/19475705.2020.1828190>, 2020.

736 Chandel, V. B. S., and Brar, K. K.: Seismicity and vulnerability in Himalayas : the case of
737 Himachal Pradesh, India, Geomatics, Nat. Hazards Risk., 1(1), 69-84, doi:
738 10.1080/19475701003643441, 2010.

739 Chouhan, S., Narang, A., and Mukherjee, M.: Multi-Hazard Risk Assessment of Schools in
740 Lower Himalayas: Haridwar District, Uttarakhand, India, EGU General Assembly 2022,
741 Vienna, Austria, 23–27 May 2022, EGU22-4333, <https://doi.org/10.5194/egusphere-egu22-4333>, 2022a.

743 Chouhan, S., Narang, A., and Mukherjee, M.: Multihazard risk assessment of educational
744 institutes of Dehradun, Uttarakhand, Int. J. Disaster Resil. Built Environ., ISSN: 1759-5908,
745 <https://doi.org/10.1108/IJDRBE-08-2021-0091>, 2022b.

746 COI-Census of India: <https://censusindia.gov.in/census.website/>, last access: 16 July 2022.,
747 2011

748 Disasters in Himalayan Region: <https://library.oapen.org/handle/20.500.12657/22932>, last
749 access: 16 July 2022., 2007.

750 Dunbar, P.K., Bilham, R.G., and Laituri, M.J.: Earthquake Loss Estimation for India Based on
751 Macroeconomic Indicators, Risk Science and Sustainability, Edited by: Beer, T., Ismail-Zadeh,
752 A., NATO Science (Vol 112), Springer, Dordrecht, 163-180, https://doi.org/10.1007/978-94-010-0167-0_13, 2003.

754 FEMA.: Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook: 3rd
755 edition, Federal Emergency Management Agency, Washington, 388 pp., 2015.

756 Gerlitz, J. Y., Macchi, M., Brooks, N., Pandey, R., Banerjee, S., and Jha, S. K.: The
757 Multidimensional Livelihood Vulnerability Index – an instrument to measure livelihood
758 vulnerability to change in the Hindu Kush Himalayas, *Clim. Dev.*, 9(2), 124-140, doi:
759 10.1080/17565529.2016.1145099, 2016.

760 Goodrich, C. G., Prakash, A., and Udas, P. B.: Gendered vulnerability and adaptation in Hindu-
761 Kush Himalayas: Research insights, *Environ. Dev.*, 31, 1-8,
762 <https://doi.org/10.1016/j.envdev.2019.01.001>, 2018.

763 Gautam, M. R., Timilsina, G. R., and Acharya, K.: Climate Change in the Himalayas: Current
764 State of Knowledge, World Bank Policy Research Working Paper No. 6516, SSRN, 64 pp.,
765 2013.

766 Gaur, V. S., and Kotru, R.: Sustainable Tourism in the Indian Himalayan Region, Report of
767 Working Group II, NITI Aayog-Government of India, India, 100 pp., 2018.

768 Hackl, J., Adey, B. T., and Heitzler, M.: An Overarching Risk Assessment Process to Evaluate
769 the Risks Associated with Infrastructure Networks due to Natural Hazards,
770 *Int. J. Perform. Eng.*, 11(2), 153-168, doi: 10.23940/ijpe.15.2.p153.mag, 2015.

771 IS-code13828-1993: Indian Standard Improving Earthquake Resistance of Low Strength
772 Masonry Buildings-Guidelines, Indian Standard Codes- guidelines, Bureau of Indian
773 Standards, New Delhi, 22 pp., <https://archive.org/details/gov.law.is.13828.1993>, 2008.

774 IS-code13935-2009: Indian Standard Seismic Evaluation, Repair And Strengthening Of
775 Masonry Buildings-Guidelines (First Revision), Indian Standard Codes- guidelines, Bureau of
776 Indian Standards, New Delhi, 44 pp., <https://archive.org/details/gov.in.is.13935.2009>, 2009.

777 IS-code1893(1)2002: Indian Standard Criteria for Earthquake Resistant Design of Structures
778 Part 1 General Provisions and Buildings (Fifth Revision), Indian Standard Codes- guidelines,
779 Bureau of Indian Standards, New Delhi, 45 pp.,
780 <https://archive.org/details/gov.in.is.1893.1.2002>, 2002.

781 IS-code1893(1)2016: Indian Standard Criteria for Earthquake Resistant Design of Structures
782 Part 1 General Provisions and Buildings (Fifth Revision), Indian Standard Codes- guidelines,
783 Bureau of Indian Standards, New Delhi, 44 pp., <https://archive.org/details/1893Part12016>,
784 2016.

785 IS-code4326-1993: Indian Standard Earthquake Resistant Design and Construction of
786 Buildings - Code of Practice (Second Revision), Indian Standard Codes- guidelines, Bureau

788 of Indian Standards, New Delhi, 41 pp., <https://archive.org/details/7.ls.4326.1993>, 1993.

789 Jain, S. K., Mitra, K., Kumar, M., and Shah, M.: A Rapid Visual Seismic Assessment Procedure

790 for RC Frame buildings in India, in: Proceedings of the 9th U.S. National and 10th Canadian

791 Conference on Earthquake Engineering, Toronto, Ontario, Canada, 25-29 June 2010,

792 Paper No 972, doi: 10.13140/2.1.2285.0884, 2010.

793 Kala, C. P.: Deluge , disaster and development in Uttarakhand Himalayan region of India-

794 Challenges and lessons for disaster management, Int. J. Disaster Risk Reduct., 8, 143-152,

795 doi: 10.1016/j.ijdrr.2014.03.002, 2014.

796 Khattri, K. N., Rogers, A. M., Perkins, D. M., and Algermissen: 'A seismic hazard map of india

797 and adjacent areas', Tectonophysics, 108(1-2), 93–108, 111–134. doi:

798 [https://doi.org/10.1016/0040-1951\(84\)90156-2.](https://doi.org/10.1016/0040-1951(84)90156-2.), 1984.

799 Kumar, S. A., Rajaram, C., Mishra, S., Kumar, R. P., and Karnath, A.: Rapid visual screening

800 of different housing typologies in Himachal Pradesh, India, Nat Hazards, 85(3), 1851-1875,

801 doi: 10.1007/s11069-016-2668-3, 2016.

802 Mohapatra, A. K., and Mohanty, W. K.: An Overview of Seismic Zonation Studies in India, in:

803 Indian Geotechnical Conference, GEOTrendz, 16–18 December 2010, 175-178, 2010.

804 Marcussen, E.,: Explaining the 1934 Bihar-Nepal Earthquake : The Role of Science , Astrology

805 , and “ Rumours” In: Schenk, G. (eds) Historical Disaster Experiences. Transcultural

806 Research – Heidelberg Studies on Asia and Europe in a Global Context. Springer, Cham.,

807 241-266, doi: 10.1007/978-3-319-49163-9, 2017.

808 Map of India: <https://www.mapsofindia.com/maps/india/seismiczone.htm>, last access: 16

809 January 2022., 2021.

810 MHA-Ministry of Home Affairs: https://www.mha.gov.in/division_of_mha/disaster-management-division, last access: 16 July 2022., 2011.

811 Mouri, G., Minoshima, D., Golosov, V., Chalov, S., Seto, S., Yoshimura, K., Nakamura, S.,

812 and Oki, T.: Probability assessment of flood and sediment disasters in Japan using the Total

813 Runoff-Integrating Pathways model, Int. J. Disaster Risk Reduct., 3, 31-43,

814 <https://doi.org/10.1016/j.ijdrr.2012.11.003>, 2013.

815 NDMA: A Primer on Rapid Visual Screening (RVS) Consolidating Earthquake Safety

816 Assessment Efforts in India, Manual and Guidelines, National Disaster Management Authority,

817 Government of India, India, 75 pp., 2020.

819 NITI Aayog: Report of Working Group II Sustainable Tourism in the Indian Himalayan Region
820 https://www.niti.gov.in/writereaddata/files/document_publication/Doc2.pdf. Last access: 25
821 January 2022., 2018.

822 NMHS- National Mission on Himalayan Studies: <https://nmhs-himal.res.in/login.php>, last
823 access: 16 July 2022., 2019.

824 Parajuli, A., Gautam, A. P., Sharma, S. P., Bhujel, K. B., Sharma, G., Thapa, P. B., Bist, B. S.,
825 and Poudel, S.: Forest fire risk mapping using GIS and remote sensing in two major
826 landscapes of Nepal, Geomatics, Nat. Hazards Risk., 11(1), 2569-2586,
827 <https://doi.org/10.1080/19475705.2020.1853251>, 2020.

828 Pathak, R., Negi, V. S., Rawal, R. S., and Bhatt, I. D.: Alien plant invasion in the Indian
829 Himalayan Region: state of knowledge and research priorities, Biodivers. Conserv., 28(12),
830 3073-3102, <https://doi.org/10.1007/s10531-019-01829-1>, 2019.

831 Peiris, T. A.: Flood Risk Assessment for Dungsum Chu Basin in Samdrup Jonkhar, Data
832 Collection Report, Climate Technology Centre and Network (CTCN) and Asian Institute of
833 Technology (AIT), Bhutan, 33 pp., 2015.

834 Rehman, A., Song, J., Haq, F., Mahmood, S., Ahamad, M. I., Basharat, M., and Mehmood, M.
835 S.: Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and
836 Frequency Ratio Techniques in the Northwest Himalayas, Pakistan, Int. J. Remote Sens,
837 14(3)-554, 1-31, <https://doi.org/10.3390/rs14030554>, 2022.

838 Roopa, S., and Rani, M.: Questionnaire Designing for a Survey, Journal of Indian Orthodontic
839 Society, 46(4), 273-277, doi: 10.1177/0974909820120509s, 2012.

840 Sanam, K. A., Lynn, M. R., Luke, j., and Laurence, W. C. Jr.: A geospatial analysis of multi-
841 hazard risk in Dharan, Nepal, Geomatics, Nat. Hazards Risk., 11(1), 88-111,
842 <https://doi.org/10.1080/19475705.2019.1710580>, 2020.

843 Sarkar, S., Kanungo, D. P., and Sharma, S.: Landslide hazard assessment in the upper
844 Alaknanda valley of Indian Himalayas, Geomatics, Nat. Hazards Risk., 6(4), 308-325,
845 <http://dx.doi.org/10.1080/19475705.2013.847501>, 2015.

846 Sekhri, S., Kumar, P., Fürst, C., and Pandey, R.: Mountain specific multi-hazard risk
847 management framework (MSMRMF): Assessment and mitigation of multi-hazard and climate
848 change risk in the Indian Himalayan Region, Ecol. Indic., 118, 106700, doi:
849 10.1016/j.ecolind.2020.106700, 2020.

850 Sharma, S., Roy, P. S., Chakravarthi, V., Srinivasarao, G., and Bhanumurthy, V.: Extraction
851 of detailed level flood hazard zones using multi-temporal historical satellite data-sets – a case
852 study of Kopili River Basin , Assam , India', *Geo Nat Hazards Risk.*, 13(1), 2227-2251, doi:
853 10.1080/19475705.2016.1265014, 2017.

854 Siddique, M. I., Desai, J., Kulkarni, H., and Mahamuni, K.: Comprehensive report on Springs
855 in the Indian Himalayan Region, Report number: ACWA/Hydro/2019/H88, Advanced Center
856 for Water Resouces Development and Management, India, 198 pp., doi:
857 10.13140/RG.2.2.12104.06408, 2019.

858 Singh, J. S.: Sustainable development of the Indian Himalayan region: Linking ecological and
859 economic concerns, *Current Science*, 90(6), 784–788, <http://www.jstor.org/stable/24089189>,
860 2005.

861 Singh, A., Kanungo, D. P. and Pal, S.: Physical vulnerability assessment of buildings exposed
862 to landslides in India, *Nat Hazards*, 96(2), 753–790. doi: 10.1007/s11069-018-03568-y. 2019.

863 Sinha, R., and Goyal, A.: A National Policy for Seismic Vulnerability Assessment of Buildings
864 and Procedure for Rapid Visual Screening of Buildings for Potential Seismic Vulnerability,
865 Report, Indian Institute of Technology Bombay, Mumbai, 12 pp., 2001.

866 Srivastava, H. N., Verma, M., Bansal, B. K., and Sutar, A. K.: Discriminatory characteristics of
867 seismic gaps in Himalaya, *Geomatics, Nat. Hazards Risk.*, 6(3), 224-242,
868 <http://dx.doi.org/10.1080/19475705.2013.839483>, 2015.

869 Srivastava, V., Srivastava, H. B., and Lakhhera, R. C.: Fuzzy gamma based geomatic modelling
870 for landslide hazard susceptibility in a part of Tons river valley, northwest Himalaya, India.
871 *Geomatics, Nat. Hazards Risk.*, 1(3), 225–242. doi:10.1080/19475705.2010.490103, 2010.

872 UNDRR.: <https://www.undrr.org/terminology#R>, last access: 30 January 2022.

873 URDPFI.: Urban and Regional Development Plans formulation and implementation (URDPFI)
874 Guidelines, 1, Town and Country Planning Organization, Ministry of Urban Development,
875 Government of India, 447 pp., 2015.

876 Wester, P., Mishra, A., Mukherji, A., & Shrestha, A. B. (Eds).: *The Hindu Kush Himalaya*
877 *Assessment*, Springer Nature, Nepal, 627 pp., <https://doi.org/10.1007/978-3-319-92288-1>,
878 2019.