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Abstract. There is a clear and pressing need to improve and update landslide susceptibility models across the 

Philippines. This is challenging, as landslides in this region are frequently triggered by temporally and 

spatially disparate typhoon events, and it remains unclear whether such spatially and/or temporally distinct 

typhoon events cause similar landslide responses, i.e., whether the landslide susceptibility for one typhoon 15 

event is similar for another. Here, we use logistic regression techniques (implemented alongside a LASSO 

(Least Absolute Shrinkage and Selection Operator) for independent variable selection) to develop four 

landslide susceptibility models based on three typhoon-triggered landslide inventories. These inventories are 

of landslides triggered by the 2009 Typhoon Parma (local name Typhoon Pepeng), the 2018 Typhoon 

Mangkhut (local name Typhoon Ompong), and the 2019 Typhoon Kammuri (local name Typhoon Tisoy). 20 

The 2009 and 2018 inventories were mapped across the same 150 km2 region of Itogon in the Benguet 

Province, whilst the 2019 event was mapped across a 490 km2 region of Abuan in the Isabela Province. The 

four susceptibility models produced are for the 2009, 2018 and 2019 inventories separately, and for the 2009 

and 2018 inventories combined. By comparing the susceptibility model outputs across all four models, we 

are then able to assess the similarity in landslide response between the different typhoon events. Furthermore, 25 

using AUROC validation and 30% of the landslide inventories saved for independent testing, we quantify the 

degree to which susceptibility models derived from one event can forecast/hindcast the landslides triggered 

by the other events. The logistic regression approach produced susceptibility models with 65 – 82% 

accuracy, with the 2009, 2018, and combined 2009-2018 models being considerably more accurate (78 – 

82%) than the 2019 model (65%). Furthermore, we find that the three typhoon events caused quite different 30 

landslide responses. Most notably, landslides in Itogon triggered by the 2018 and 2009 typhoons were 

heavily distributed across E/SE/S-facing slopes and at slope angles >30o, whereas landslides in Abuan 
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triggered by the 2019 typhoon occurred across all aspects and slope angles. Finally, the AUROC validation 

shows that using a susceptibility model for one typhoon event to forecast/hindcast another leads to a 6 – 10% 

reduction in model accuracy compared to the accuracy obtained when modelling and validating each event 35 

separately. However, using a susceptibility model for two combined typhoon events (2009 + 2018) to 

forecast/hindcast each typhoon event separately led to just a 1 – 3% reduction in model accuracy. This 

suggests that combined multi-event typhoon triggered landslide susceptibility models will be more accurate 

and reliable for the forecasting of future typhoon-triggered landslides. 

1.0 Introduction 40 

In the Philippines, landslide occurrences and hazards are high (Kirschbaum et al. 2015; Lin et al. 2017; 

Abancó et al. 2021), with hydrological hazards and associated landslides causing thousands of fatalities and 

millions of pesos in damage every year.  Indeed, across Southeast Asia, approximately 46% of all rainfall 

triggered landslides occur in the Philippines, of which 42% are triggered by typhoons (Froude & Petley 

2018). However, despite the pervasiveness of landslides in the Philippines, high quality country-wide 45 

typhoon-triggered landslide susceptibility maps are lacking, thus representing a major resource gap in efforts 

aimed at better managing and mitigating future landslide hazard across the country. For example, whilst 

statistical landslide susceptibility studies have been undertaken in the Philippines (e.g. Oh & Lee 2011; 

Nolasco-Javier & Kumar 2019, 2020), these remain geographically limited, and insufficient for use in 

planning purposes. Indeed, as illustrated by Fig. 1, the susceptibility maps currently held by the Philippines 50 

Mines and Geosciences Bureau (MGB) uses a heuristic approach, and so only shows only very broad 

categorisations of landslide susceptibility. 

 

One of the major challenges in developing improved typhoon-triggered landslide susceptibility models across 

the Philippines is uncertainty around the spatial and temporal heterogeneity in the occurrence of landslide-55 

triggering typhoons.  The problem lies in the fact that it is currently unclear whether spatially and temporally 

distinct typhoons trigger landslides with similar distributions and susceptibilities. I.e., whether typhoon 

triggered landslide susceptibility in the Philippines is spatially and/or temporally dependent. This problem is 

not unique to the Philippines, with studies from other regions showing how landslide susceptibility cannot be 

assumed to be spatially and/or temporally dependent (e.g. Jones et al., 2021). Knowing this is important, as if 60 

landslide susceptibility is spatially and/or temporally dependent, then it will not be appropriate to use 

landslide susceptibility models developed from one typhoon event to forecast landslides triggered by future 

typhoon events or by typhoon events in other regions.  
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Figure 1. Current landslide susceptibility map of the Itogon region held by the Philippines Mines and 65 

Geology Bureau (Mines and Geosciences Bureau (MGB), 2018 ).  
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In the literature, there is growing evidence to suggest that rainfall-triggered landslide spatial distributions and 

susceptibility are indeed spatially and temporally dependent. For example, recent research by Jones et al. 

(2021) shows how landslides triggered by different monsoon seasons and cloud outburst storms in Nepal 

have distinctly different spatial distributions and susceptibility, with several other papers also highlighting 70 

how landslide susceptibility is commonly both spatially and/or temporally dependent (e.g. Gorsevski et al. 

2006; Meusburger & Alewell 2009; Lombardo et al. 2020; Ozturk et al. 2021). However, as stated above, it 

remains unclear whether typhoon-triggered landslides in the Philippines are also spatially and temporally 

dependent. This is a problem as rainfall in the Philippines is predicted to increase by 22 – 32% between 2006 

– 2035 in the Benguet province (Nolasco-Javier et al. 2015), with extreme rainfall projected to increase in 75 

provinces such as Luzon (PAGASA, 2022). Therefore, rainfall triggered landslides are likely to become more 

frequent, and thus it will become increasingly important to be able to understand, forecast and mitigate this 

hazard.  

 

The overall aim of this paper is to use data from multiple typhoon events to assess typhoon-triggered 80 

landslide susceptibility in the Philippines. The specific objectives are as follows: First, to use Binary Logistic 

Regression (BLR) techniques to develop four landslide susceptibility models across two regions (Itogon and 

Abuan; Fig. 2) using data from three typhoon events; the 2009 Typhoon Parma and 2018 Typhoon Mangkhut 

that occurred in Itogon, and the 2019 Typhoon Kammuri that occurred in Abuan. The four models we 

developed are for each typhoon event separately, plus for the 2009 and 2018 Itogon events combined. The 85 

second objective is to assess the similarities and differences between the susceptibility results obtained from 

each model. Finally, the third objective is to use Area Under the Receiver Operator Curve (AUROC) 

validation to quantify whether the models developed for the 2018, 2009, and 2018+2009 models can be used 

to accurately classify (or forecast/hindcast) the landslides triggered by the other individual typhoon event. 

I.e., to assess whether time-independent modelling of typhoon-triggered landslides in the Philippines is 90 

appropriate. This objective essentially operates under the hypothesis that if typhoon triggered landslides are 

time dependent, then in a given region there will be a reduced model accuracy when using a model developed 

from one typhoon event to classify another. As well as allowing the development of improved and updated 

landslide susceptibility maps for two regions of the Philippines, completion of these aims will provide 

important wider insight into the spatial and temporal dependence of landslide susceptibility modelling.  95 
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 100 

Figure 2. Locations of the two study regions, including the three landslide inventories used throughout this 

paper.  

 

2.0 Regional setting 

The climate in the Philippines is controlled by a variety of interacting systems including the south east 105 

monsoon, summer typhoons/cyclones, El Nino and La Nina cycles, and the Inter Tropical Convergence Zone 

(ITCZ) (Nolasco-Javier et al. 2015).  The interplay between these systems typically leads to drier conditions 
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from November to April and wetter conditions from May to October.  As stated above, the focus of this paper 

is on typhoon triggered landslides. As such, the specific sub-regions selected for this study are a group of 

catchments in the Itogon municipality, Benguet province, and a catchment of Abuan, in the Ilagan 110 

municipality, Isabela province (Fig 2). The Itogon region is located along the southern portion of the 

Cordillera Central Mountains. These catchments all drain into the Agno River, which flows broadly N-S 

along the eastern side of the study region. This region is located to the north-east of Baguio City, which has a 

population of ~350,000 people. The Abuan catchment forms the north-east part of the Pinacanauan de Ilagan 

catchment, which is a major tributary of the Cagayan River. The catchment is estimated to have a population 115 

of ~14,000 people and supports large areas of agriculture (Balderama et al. 2016). These regions were 

selected for this study as both have experienced particularly significant landslide-triggered typhoon events 

over the past few decades. Most notably, the 2009 Parma (known locally as Pepeng) and 2018 Mangkhut 

(known locally as Ompong) typhoons in Itogon, and the 2019 Kammuri (known locally as Tisoy) typhoon in 

Abuan. The following paragraphs describe the key characteristics and known landslide information of each 120 

of these three typhoon events, before outlining the geological and geomorphological setting of the Itogon and 

Abuan subregions. 

2.1 Typhoon Parma (Pepeng) 

Typhoon Parma formed on the 27th September 2009 and dissipated on the 14th October 2009. The main 

impacts of this typhoon occurred in northern Luzon, particularly across the Itogon region, between the 3 rd and 125 

9th of October, when the total rainfall reached over 1868 mm (Nolasco-Javier et al. 2015) and wind speeds of 

121 to 150 mph near the centre (NDCC, 2009). The impacts of this typhoon were severe, with some 500 

reported fatalities, over $635 million in damages, and at least 60 damaging landslide occurrences (Nolasco-

Javier et al. 2015; Liou & Pandey 2020). The severity of these impacts was in part due to the simultaneous 

occurrence of typhoon Melor. The interaction between Parma and Melor led to a phenomenon called the 130 

Fujiwhara effect, whereby typhoon Melor caused typhoon Parma to slow, rotate, and loop such that it 

actually made landfall over northern Luzon three times (Shimokawa et al. 2009; Nolasco-Javier et al. 2015; 

Liou & Pandey 2020). Furthermore, these typhoons occurred following several months of El Nino-induced 

higher than average rainfall, including storm Koppu in September (Yumul et al. 2013). This resulted in high 

antecedent rainfall prior to the start of the typhoon season, which likely enhanced the triggering of landslides 135 

(Nolasco-Javier et al. 2015). In terms of specific landslide impacts, at least 60 damaging landslides have been 

reported (National Disaster Coordinating Council 2009). Limited (rapid response) landslide assessment for 

this event has been conducted in the Baguio region, with the predominant observed landslide types being 
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slides, debris flows and earth flows, and a tentative minimum triggering rainfall threshold of 70 mm in 24 

hours (Nolasco-Javier et al. 2015).  140 

2.2 Typhoon Mangkhut (Ompong) 

Typhoon Mangkhut formed on September 6th 2018, made landfall on the Philippines between the 12th – 15th 

of September, and dissipated on September 17th. In terms of rainfall, the highest recorded total precipitation 

was 794 mm at the Baguio City PAGASA (Philippine Atmospheric, Geophysical and Astronomical Services 

Administration) weather station (Abancó et al. 2021). With  maximum winds of 121 - 150 mph when it made 145 

landfall (PAGASA, 2018), the impacts of this typhoon were severe, with extensive reported damage to 

buildings and homes, loss of power, and over 100 reported fatalities (Sassa 2018; Niu et al. 2020). 

Furthermore, Mangkhut is known to have triggered thousands of landslides, including one large complex 

failure that caused 94 casualties alone (Abancó et al. 2021; Kim et al. 2021). Recent research by Abancó et 

al. (2021) presents a detailed inventory of over 1,100 landslides triggered by Mangkhut, most of which 150 

occurred across a region of Itogon affected by 360 mm of rainfall over a 44 hour period, according to 

satellite-based GPM IMERG rainfall records. These landslides were of all different types, though dominated 

by shallow translational landslides and mud and debris flows, with many of the landslides exhibiting complex 

behaviour whereby they initiated as shallow slides before transitioning into flows. Most of these landslides 

occurred on grassland or wooded east- to southeast-facing slopes underlain by superficial clays (Abancó et 155 

al. 2021). Further details of the mapping methodology and characteristics of this inventory are provided in 

section 3.0.  

2.3 Typhoon Kammuri (Tisoy) 

Typhoon Kammuri formed on the 24th November 2019, made landfall on the 2nd December, and dissipated on 

the 6th December 2019. When Kammuri made landfall, it was a category 4 storm with wind speeds of up to 160 

70 - 89 mph (Sevieri & Galasso 2020; PAGASA, 2019). Between the 2nd and 4th of December this event 

reportedly damaged or destroyed over 561,000 buildings, caused at least 17 fatalities, and led to economic 

losses in excess of $116 million (LeComte 2020; Sevieri & Galasso 2020). In terms of landslides, initial 

reports from aid groups suggested that landslide-induced damage to roads and other infrastructure was 

widespread (NDRRMC 2019; IFRC 2020). However, there appears to have been no subsequent mapping or 165 

assessment of the landslides triggered by this event.  
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2.4 Geological and geomorphological setting 

The Itogon catchments are dominated by a bedrock geology of Cretaceous and Tertiary quartz diorite and 

andesite/basalt (DENR-MGB, 1995, 2000), with the remainder of the catchment underlain by Quaternary 

sandstone, claystone, and conglomerates. The bedrock is typically overlain by superficial deposits of clays, 170 

silty/sandy loams, and mountain soils, with a landcover dominated by shrub/grass land and open forest. 

Geomorphologically, the hillslopes across the Itogon catchment have a mean elevation of 1140 m, mean and 

maximum hillslope angles of 28o and 71o, an equal distribution of hillslope aspects, and predominantly (60%) 

concave morphologies. The Abuan catchment is almost 100% characterised by Cretaceous and Tertiary 

metamorphosed basic intermediate flows and/or pyroclastics and metamorphosed andesites and basalts 175 

(DENR-MGB, 1991a, 1991b, 1976). These are overlain by superficial deposits of mountain soil and a 

vegetation dominated by open forest. Geomorphologically, the region is dominated by steep uplands and 

rugged hills, with a lower mean elevation than Itogon of 560 m, similar hillslope angle (mean of 23o and max 

of 73o) and aspect distributions, but hillslopes that are dominated (60%) by convex morphologies.  

3.0 Data: landslide inventories and predisposing factors 180 

As outlined in subsequent sections, BLR landslide susceptibility modelling requires data on both landslide 

and predisposing factors (e.g. geology, soil, landcover, topography). The following sections outline the key 

datasets used throughout this paper, including the mapping procedures and key characteristics associated with 

each landslide inventory and descriptions of all predisposing factor datasets (topographical, geological, land 

use etc.).  185 

3.1 Landslide inventories 

This paper uses three landslide inventories (Fig. 2), each associated with one of the typhoons in 2018, 2009 

and 2019. The 2018 Mangkhut inventory is a slightly clipped version of the inventory presented by Abancó 

et al. (2021), whilst the 2009 Parma and 2019 Kammuri inventories are presented here for the first time.  

 190 

The employed mapping procedure was the same for all three inventories. In each case, the landslides were 

initially mapped by one or two mappers and then independently reviewed, checked, and amended as 

appropriate by a different mapper. All landslides were mapped manually via the visual inspection of pre- and 

post- typhoon imagery. The 2009 Parma inventory was predominantly mapped GoogleEarth imagery dated 

31/12/2003  for pre-event images, and 31/12/2009 for post-event images. The 2018 Mangkhut inventory was 195 
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mapped using a combination of 0.5 m WorldView-2, 10 m Sentinel-2, and 3 m Planet Labs imagery, with 

pre-typhoon images dated between 18/02/2018 and 06/09/2019, and post images dated between 19/09/2018 

and 02/03/2019. Finally, the 2019 Kammuri inventory was predominantly mapped using 3 - 5 m resolution 

Planet Labs imagery, with pre-typhoon images dated between 02/10/2019 and 28/10/2019, and post-typhoon 

images dated between 07/01/2020 and 31/03/2020.  For all inventories, the limited availability of cloud-free 200 

imagery resulted in gaps of several months between the pre- and post-typhoon imagery used. As rainfall 

triggered landslides in the Philippines are so common, it is therefore possible that some of the landslides 

visible in the imagery actually occurred before or after the respective typhoon, either due to other rainfall 

events that occurred within the imagery window, or due to human activity such as construction or mining. 

This issue was unavoidable, but mitigated where possible by cross-checking each inventory with other 205 

imagery (e.g. available GoogleEarth images) and by qualitative comparisons with local reports and field 

surveys carried out by the Philippines Mines and Geology Bureau (MGB) (Abancó et al. 2021).  

 

For all inventories, landslides were delineated as polygons that included the scar, deposition, and runout 

zones of each event. Care was taken to avoid landslide amalgamation, e.g., combining multiple overlapping 210 

or contiguous landslides into one unionised polygon (Marc & Hovius 2015), and to avoid the erroneous 

mapping of non-landslide features such as anthropogenic cut-and-fill or road-tip associated mass-wasting and 

processes such as channel bank erosion.  In total, 1912 landslides were in the 2009 Parma inventory, 956 in 

the 2018 Mangkhut inventory, and 1964 in the 2019 Kammuri inventory. In each case, to estimate landslide 

types, the Aspect Ratios (ARs) of all landslides were calculated. ARs give the ratio between the length 215 

(longest) and width (shortest) axis of each landslide. Landslides with AR values between 1 and 2 are more 

isometric, and thus more likely to be slumps or slides, whereas landslides with AR vales > 4 are more likely 

to be long runout flow-type landslides. For these inventories, 30%, 21% and 35% of the landslides in the 

Parma, Mangkhut, and Kammuri inventories respectively had AR values < 2, with 17%, 28% and 13% > 4. 

Unfortunately, due to recent travel restrictions it was not possible to ground truth these inventories and their 220 

estimated characteristics in the field.  

3.2 Predisposing factor datasets 

For both study regions, all topographic data were derived from 5 m resolution Digital Elevation Models 

(DEMs) that were obtained in 2013 using IfSAR techniques and provided by the Philippines Department of 

Environment and Natural Resources -National Mapping and Resource Information Authority (DENR-225 

NAMRIA). Topographic datasets including slope, aspect and curvature were derived from the DEM using 
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the Spatial Analysis toolbox in ArcGIS. Distance to streams was also derived from the DEMs using the 

“STREAMobj” function in the Matlab TopoToolBox (Schwanghart & Scherler 2014). Finally, datasets on 

bedrock geology, soil cover and land-use were obtained from the following sources: 

• Itogon Geology Map: Provided by the Department of Environment and Natural Resources-Mines 230 

and Geosciences Bureau (DENR-MGB). This included the geological maps of the Baguio City 

Quadrangle, Sheet 3169 III (1995), and the Sison Quadrangle, Sheet 3168 IV (2000). 

• Abuan Geology Map: Provided by the Department of Environment and Natural Resources-Mines 

and Geosciences Bureau (DENR-MGB). This included the geological map of the Ilagan 

Quadrangle, Sheet 3371 II (1991), the Tumauini Quadrangle, Sheet 3371 I (1991) and the 235 

Municipality of Ilagan, Isabela, 1:90K Scale (1976).  

• Soil cover (both regions): Provided by the Department of Agriculture-Bureau of Soils and Water 

Management (DA-BSWM) (Carating 2013).  

• Land cover (both regions): Department of Environment and Natural Resources-National Mapping 

and Resource Information Authority (DENR-NAMRIA). Data from 2015.  240 

4.0 Methods 

The first objective of this section is to use Binary Logistic Regression (BLR) techniques to develop four 

typhoon-triggered landslide susceptibility models and maps for two regions of the Philippines using landslide 

data from three different typhoon events. The third objective is to use Area Under the Receiver Operator 

Curve (AUROC) validation to quantify whether each model can be used to accurately forecast/hindcast 245 

independent landslides triggered by each other typhoon event. The following sections will therefore describe 

the relevant BLR and AUROC methodologies used throughout this paper.  

4.1 Binary Logistic Regression (BLR) modelling 

BLR models can be understood as classification algorithms that are used to classify the binary outcome (0 or 

1) of a dependent (or response) variable (e.g., landslide absence / presence in a given grid cell) given a set of 250 

independent predictor variables (e.g., landslide predisposing factors such as elevation, geology etc.). The key 

BLR equation to be used in this paper is given in equation 1, which essentially describes how the probability 

of landsliding (π; the dependent variable) is linked to a model intercept (β0) and combinations of regression 

coefficients (βi) and independent variables (Xi): 

 255 
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𝜋 =  
1

1+10(𝛽0 + 𝛽1𝑥1+ 𝛽𝑖𝑥𝑖)   Equation 1 

 

BLR models are commonly used within the literature to assess landslide susceptibility (Pourghasemi et al. 

2018; Reichenbach et al. 2018). As such, the mathematics behind equation 1 are well described elsewhere 

(e.g. Appendix A of Lombardo & Mai 2018) and will not be re-described here. In this paper, we use the 260 

glmnet package (Hastie & Qian 2014) in the statistical software, R, to develop BLR models that are 

implemented alongside a LASSO (Least Absolute Shrinkage and Selection Operator) (e.g., Lombardo & Mai 

2018; Jones et al. 2021) for variable selection.   

 

The LASSO is an algorithm that automatically determines which independent predictor variables are most 265 

important for classifying the response of the dependent variable. Full mathematical descriptions of the 

LASSO can be found in Friedman et al. (2010), Hastie & Qian (2014) and Lombardo & Mai (2018) so will 

not be repeated here. However, in effect, the LASSO works by cycling through different combinations of 

increasingly more independent variables by systematically setting different independent variables to zero 

until it converges on a user-defined optimal solution (Friedman et al. 2010). In this case, the optimal solution 270 

was to maximise the model success as defined by the AUROC (Area Under the Receiver Operator Curve; see 

section 4.2), i.e., the success at that model in classifying the data used to train the model. The advantage of 

this methodology is that it provides objective information on which combinations of independent variables 

are having the most dominant influences on landslide occurrence, as well as the usual information on 

independent variable regression coefficients.  275 

 

Before running the glmnet BLR models, data sets of combined landslide and predisposing factor data were 

obtained using the following steps: 

1. Divide each study region into 5x5 m grids (2.4x107 cells in Itogon, 3.9x107 cells in Abuan) 

2. Take each landslide inventory and convert the polygons to “highest points” at the assumed 280 

triggering location of each landslide. Then, combine the 2018 and 2009 high points so that we 

now had four inventories of high points. One each for 2018, 2009, 2019 and 2018+2009. 

3. Using each of the four inventories, we then assign each cell in the relevant study region a value 

of 1 if it observed a landslide high point (landslide presence cell), and a value of zero if not 

(landslide absence cell). 285 

4. For each region, we then use the datasets described in section 3.2 to also assign each cell in 

each study region a value for each predisposing factor of interest. In total, there were nine 
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predisposing factors, of which three were categorical (geology, soil type and landuse) and the 

rest were continuous.  

5. For each case, we then extract 50 random balanced training sub-datasets, where each subset 290 

includes a random selection of 70% all of the landslide presence data plus an equal number of 

randomly selected landslide absence cells. Note, 50 sub-datasets were used for each model to 

get an appreciation of error and uncertainty within each model. 

6. Finally, 50 random balanced testing sub-datasets were also extracted for each case, where the 

testing subsets included the 30% of landslides not selected for the training sets plus an equal 295 

number of randomly selected landslide absence cells. These testing sets were used for the 

model AUROC validation, see section 4.2.  

 

Once the 50 subsets per model had been obtained, there were also several processing steps that had to be 

completed before running the models: 300 

7. To ensure that the final regression coefficients assigned to the different independent variables 

were objectively comparable, all continuous variables were scaled using zero-mean unit 

variance (e.g., Lombardo & Mai 2018). 

8. As the models were to include several continuous independent variables, it was possible that 

some variables would actually be collinear. This is potentially problematic, as inter-variable 305 

collinearity can make regression models unstable and inaccurate (Zuur et al. 2010). 

Consequently, we tested for collinearity between all continuous variables in all 200 sub-

datasets (50 per model) using the Variance Inflation Factor (VIF) functions of Zuur et al. 

(2010). VIFs are a commonly used approach to quantifying collinearity. VIFs were calculated 

for every continuous variable of interest, where a VIF value > 5 suggests that the associated 310 

variable is collinear with at least one other variable in the model and so should be removed. 

However, in this case, no variables had VIFs > 2, suggesting that none of the independent 

variables were collinear.  

 

With these data sub-setting and processing steps completed, the 50 datasets per case were run through the 315 

glmnet model. The resulting intercept values, LASSO selection percentages, and associated regression 

coefficients were then averaged for each case based on the 50 respective model-runs. These averaged values 

were then inputted into Equation 1 alongside the relevant predisposing factor datasets (the x i parts of 

equation 1) and applied across the entirety of the respective study regions to obtain the final landslide 

susceptibility maps for each case. This was done using the ArcGIS raster calculator.   320 
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4.2 AUROC validation 

The Area Under the Receiver Operator Curve (AUROC) is a commonly used method to assess the accuracy 

and validity of landslide susceptibility maps (Pourghasemi et al. 2018; Reichenbach et al. 2018). In this 

paper, AUROC methods are used to assess the initial accuracy of each susceptibility model, as well as to 

investigate how well one model can classify independent landslide data from the same or other typhoon 325 

events. A Receiver Operator Curve (ROC) is a probability curve obtained by plotting the True Positive Rate 

(TPR), or sensitivity, against the False Positive Rate (FPR), or 1 – specificity. Where in this case the TPR is 

the proportion of landslide presence cells correctly classified as landslide presence cells by a model, and the 

FPR is the proportion of landslide absence cells incorrectly classified as landslide presence cells by a model.  

The area under the ROC (the AUROC value) indicates the accuracy with which a given binary model was 330 

able to correctly classify the observed classes (in this case the landslide presences and absences). An 

AUROC value of 1 means that a model was 100% accurate, whilst an AUROC value of 0.5 indicates that a 

model has zero classification capacity (i.e., is no better than a random guess). An AUROC value < 0.5 

indicates that a model is actively inverting the classification (i.e., classifying landslide presences as absences 

and vice versa), whilst values of 0.7 – 0.75 are generally taken to represent a good model, and values > 0.8 a 335 

very good model (e.g., Marjanović 2013; Vakhshoori & Zare 2018; Jones et al. 2021). In this paper, all 

AUROC values were calculated using 10-fold cross-validation, whereby 100 AUROC validations between 

the 50 models developed for a given inventory and the 50 independent testing sets from a given inventory 

were used to calculate an average AUROC value and associated standard deviation.  

5.0 Results 340 

5.1 BLR modelling 

As outlined in the methods, four BLR models were developed. Three for the Itogon region based on the 2018 

inventory, 2009 inventory, and combined 2018+2009 inventory, and one for the Abuan region based on the 

2019 inventory. The key outputs from the BLR models are the average intercepts, average regression 

coefficients, LASSO selection percentages, and initial model accuracies (as determined by AUROC 345 

analysis), as well as the resulting landslide susceptibility maps.  

 

Table 1 summarises the average intercepts, regression coefficients, LASSO selection percentages and initial 

model accuracies of each model.  The regression coefficients and LASSO selection percentages essentially 

describe the influences of each independent factor on the model. A larger magnitude coefficient and higher  350 
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Table 1. Summary of the BLR-LASSO results obtained for each of the four developed models.  All numbers 

are the mean of the 50-runs undertaken for each model. The AUROC value is the accuracy of the model at 

classifying the landslide data used to train the model.  355 
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selection percentage suggests that a factor is more dominant in controlling landslide occurrence, with a 

negative regression coefficient meaning a factor is making landsliding less likely, and a positive regression 

coefficient meaning a factor is making landsliding more likely. The regression coefficients and LASSO 

selections highlight several similarities and differences between the landslides triggered by each typhoon 360 

event. In terms of similarities, the landslides triggered by all three typhoon events have similar relationships 

with distance to channels, planform curvature, profile curvature and elevation, all of which were consistently 

selected factors by the LASSO. Increasing distance to channels and planform curvature is found to make 

landslides slightly more likely to occur, whilst increasing elevation and profile curvature makes landslides 

less likely to occur. It is unclear why increasing distance from channels makes landslides more likely, but this 365 

could be related to rainfall distributions or slopes being steeper further from channels. Future work should 

consider this result in more detail. However, it should be noted that the regression coefficient for elevation 

during 2019 was notably larger (-0.28 compared to -0.06 and -0.09), and thus more dominant, than it was in 

2018 and 2009.  

 370 

For the other topographical factors included in the modelling, it is evident that their impacts on landsliding 

are similar in 2018 and 2009, but different in 2019. For example, in 2018 and 2009, higher slope angles made 

landslides more likely (as expected). However, in 2019 slope angle was not found to be a dominant control 

on landsliding, with less than 30% of the model runs selecting slope as an important factor, and those that did 

assigning it a coefficient value near zero (i.e., it has little to no effect on landsliding). Though landslides were 375 

still unlikely at slopes lower than 10 degrees. Similarly, the control of aspect on landsliding is relatively 

consistent between 2018 and 2009. For example, in both cases, north, northwest, and west facing slopes were 

consistently selected by the LASSO and found to make landslides less likely, whilst east, southeast, and 

south facing slopes were also consistently selected and found to make landslides more likely. However, in 

2019, the regression coefficients for all aspects were near zero, suggesting that aspect was not exerting a 380 

dominant control on landsliding in 2019. This result is highlighted in Fig. 3, which graphically displays the 

aspect regression coefficient and LASSO selection results presented in Table 1.  
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 385 

Figure 3. Graphical display of the aspect regression coefficients presented in Table 1. Red line shows the 

“zero line” for the regression coefficients, black markers show the regression coefficients and associated +/- 

1SDs, and the bars show the selection percentages.  
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For the categorical model factors (geology, soil type and land cover), the influences on landsliding are less 390 

consistent across each typhoon event. One of the few similarities is that mountain soil and barren land both 

had > 50% LASS0 selection rates and negative regression coefficients in 2018 and 2009, though neither 

factor were selected by the LASSO in 2019. The only other similarity between events was that 

shrub/grassland had high selection rates and positive regression coefficients in 2019 and 2009, though again 

was not selected in 2019. In fact, the only categorical factors to be selected consistently by the LASSO in 395 

2019 were andesite/basalt, and open forest, which had strong positive coefficients, and limestone, which had 

a strong negative coefficient.  Other notable results are that in 2018 the clay unit and silty/sandy loam units 

had 100% LASSO selection rates, with the former making landslides more likely and the latter making them 

less likely, whilst in 2019, the sandstone/claystone/conglomerate unit had 100% selection rates and made 

landslides less likely.  400 

5.2 Landslide susceptibility maps 

Fig. 4 shows the final landslide susceptibility maps resulting from the model parameters presented in Table 1. 

As shown in table N, these maps had initial accuracies (i.e., the accuracies at classifying the data used to train 

them) of 68 - 83%. However, to properly validate the accuracies of these maps it was necessary to use 

AUROC analysis to assess how well each model could classify independent testing data from each of the 405 

respective events. The resulting AUROC curves and AUROC values are shown in Fig. 5, which show that 

the independently tested accuracies of each model are 65 - 82%. As highlighted in section 4.2, these AUROC 

values suggest that the three Itogon models are good to very good (accuracies of 78 – 82%), but that the 

Abuan model is poor (accuracy of 65%).  

5.3 Cross-model AUROC validation 410 

To assess the temporal dependency of typhoon-triggered landslides, we used cross-model AUROC validation 

to investigate how well one model could predict independent landslide testing data from the other typhoon 

event(s). I.e., we assessed the AUROC for the 2018+2009 model’s ability to classify independent landslide 

data from the 2018, 2009 and 2019 typhoon events (Fig. 6)., the AUROC for the 2018 model’s ability to 

classify the 2009 and 2019 events (Fig. 7a - b), and the AUROC for the 2009 model’s ability to classify the 415 

2018 and 2019 events (Fig. 7c - d). Note, as the 2019 model had low initial accuracy even when trying to 

classify the landslides used to train it, we did not cross-validate this model against the 2018 or 2009 landslide 

data.  
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 420 

Figure 4. The final susceptibility maps produced from: a) the 2018 landslide inventory, b) the 2009 landslide 

inventory, c) the combined 2018 and 2009 inventories, and d) the 2019 inventory. Where a - c) correspond to 

the Itogon region, and d) to the Abuan region.  

 

 425 

 

 

https://doi.org/10.5194/nhess-2022-88
Preprint. Discussion started: 25 May 2022
c© Author(s) 2022. CC BY 4.0 License.



19 

 

 

 

Figure 5. Receiver Operator Curves (ROCs) showing the success of a) the 2018 model classifying the 430 

independent 2018 testing data, b) the 2009 model classifying the independent 2009 testing data, c) the 2019 

model classifying the independent 2019 testing data, and d) the 2018+2009 model classifying the 

independent 2018+2009 testing data. In each case the reference ROC for a “random” model with 50% 

accuracy is shown, as is the mean Area Under the Receiver Operator Curve (AUROC) value for all ROCs 
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 435 

 

Figure 6. Receiver Operator Curves (ROCs) showing the success of the 2018+2009 model at classifying 

independent testing data from a) 2018, b) 2009, c) 2019. In each case the reference ROC for a “random” 

model with 50% accuracy is shown, as is the mean Area Under the Receiver Operator Curve (AUROC) value 

for all ROCs.  440 
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Figure 7. Receiver Operator Curves (ROCs) showing the success of a) the 2018 model classifying 

independent testing data from 2009, b) the 2018 model classifying independent testing data from 2019, c) the 

2009 model classifying independent testing data from 2018, and d) the 2009 model classifying independent 445 

testing data from 2019. In each case the reference ROC for a “random” model with 50% accuracy is shown, 

as is the mean Area Under the Receiver Operator Curve (AUROC) value for all ROCs. 
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This shows that the 2018 and 2009 are 6 - 10% worse at classifying the other individual typhoon events 

compared to the models developed specifically for those events (e.g., Fig. 5). Conversely, the 2019 model is 450 

32-33% worse at classifying the 2018 and 2009 models compared to the models developed specifically for 

those events, with AUROC values > 0.6 in both cases.  Finally, the 2018+2009 model is 8% worse at 

classifying the 2019 event compared to the model developed specifically for 2019, but only 1 - 3% worse at 

classifying the 2009 and 2018 events compared to the models developed specifically for those events. 

6.0 Discussion 455 

6.1 Landslide susceptibility modelling 

The first and second aims of this paper were to develop new and updated susceptibility models and maps for 

two regions of the Philippines using three typhoon-triggered landslide events, and to assess the similarities 

and differences between the susceptibility results of the different models. As shown by the AUROC values, 

in the Itogon region this aim has been met, with three models developed with good to very good AUROC 460 

values of 78 – 82%. Furthermore, these maps can be compared to the existing susceptibility map (Fig. 1) held 

by the MGB for this region. By comparing the existing and new maps, it is evident that these maps agree on 

the broad scale susceptibility classification, i.e., that much of the Itogon region has high to very high 

landslide susceptibilities. However, the new maps have much more slope-scale detail, whereby it is possible 

to distinguish differential susceptibility across different topographical characteristics of the landscape. 465 

Indeed, as also highlighted by the regression coefficients (Table 1), it is clear that typhoon-triggered landslide 

in susceptibility in Itogon is highest at E/SE/S aspects, slope angles of 30 – 40o, convex curvatures, clay soil, 

and shrub/grass land use, but lower at W/NW/N aspects, slope angles < 30o, concave curvatures and 

mountain soil. These results are unsurprising given the observations of Abancó et al. (2021) who found 

similar topographical and geological relationships between the landslides associated with the 2018 Mangkhut 470 

typhoon. As such, due to the increased detail and information provided, the new Itogon maps should be much 

more useful for the purposes of hazard zonation and management than the existing MGB map.  

 

Conversely, the model developed for the Abuan region is significantly less accurate, with AUROC values of 

just 65- 68%. Unfortunately, the MGB do not currently hold landslide susceptibility maps for this region. So, 475 

at the most fundamental level, on the assumption that some information is better than no information, the 

Abuan model produced here is a step forward. However, it is clear that the model developed for Abuan is not 
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as accurate as the models developed for Itogon. This raises several questions that will be considered in the 

following paragraphs.  

 480 

First, why is the Abuan model so much less accurate than those developed for Itogon? One explanation is 

that the model inaccuracies are due to biases and incompleteness in the 2019 Kammuri landslide inventory. 

Work by Steger et al. (2016, 2017, 2021) outlines how inconsistent, biased, incomplete, or otherwise 

inaccurate landslide inventories can lead to the development of statistical susceptibility models with incorrect 

or unfeasible regression coefficients. It is difficult to quantify whether this issue is relevant in this case. 485 

However, given that the 2019 inventory was mapped, checked, and reviewed by four different people, and 

mapping was conducted using the same methodology as was used for the 2018 and 2009 inventories, it seems 

unlikely that mapping error can explain the significant model inaccuracies.  Furthermore, whilst the 

inventories were based on imageries with slightly varying resolutions, the numbers of landslides mapped for 

the Abuan case suggests that this did not affect the completeness or accuracy of the landslides in the 490 

inventory.  

 

Another explanation for the reduced accuracy of the 2019 model could lie in the input data. For the Itogon 

region, the categorical inputs for geology, soil, and landcover included multiple classes, with landslides 

occurring within several of these classes (Fig. 8a - c). However, in the Abuan region, these inputs were of a 495 

lower resolution, with near-homogenous classes across the entire region, and almost all landslides just 

occurring in one class of each variable (Fig. 8a - c). Indeed, in Abuan there is only one soil type, “mountain-

type soil”, so it is impossible for the regression model to use soil as an input type (hence why there are no 

regression coefficient values for soils in Abuan in Table 1). Consequently, there was far less input data 

available for the BLR model to use in the Abuan case compared to the Itogon case. Indeed, the Itogon region 500 

has several soils, which will all likely have different geotechnical characteristics (e.g. shear resistance etc.), 

which may aid the model in differentiating landslide susceptibility classes. Similarly, it is evident that the 

landslides included in the 2019 inventory had significantly different distributions to the landslides associated 

with the 2018 and 2009 typhoons. Whilst the 2018 and 2009 landslides were preferentially distributed at 

certain aspects and slope angles (e.g. Fig. 8d - e), with these factors proving very important for the BLR 505 

model classifications, the 2019 landslides occurred across the whole landscape, with no preferential 

occurrence at any aspects or slope angles (E.g. Fig. 8d - e). This, combined with the homogenous categorical 

input data, meant that there was very little spatial information for the BLR model to use when attempting to 

classify landslide occurrence and non-occurrence.  

 510 
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Figure 8. The distributions of each study region and of different landslide datasets with respect to a) 

geology, b) soil, c) land use, d) hillslope angle, and e) hillslope aspect.  

 

 515 

However, whilst this may offer an explanation as to why the 2019 model was inaccurate, it raises the 

question of why the landslides in 2019 were so evenly distributed across the landscape. One potential 

explanation is based on the landslide storm cell model proposed by Crozier (2017). This model describes 

how patterns of landsliding associated with atmospheric storms cells, whereby landslides are assumed to 

occur in a circular pattern radiating from the storm centre. The model defines three main zones. The core 520 

zone, where a storm has maximum rainfall totals and intensity (typically >500 mm of total rainfall) and 

associated landslides that are distributed at all landscape locations regardless of variations in land use, 
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geology, and topography. The middle zone, with enough rainfall to trigger widespread landsliding, but only 

where the landscape is particularly susceptible to failure due to factors such as higher slope angles, and more 

failure-prone lithologies, land-use, and soil cover. And the peripheral zone, where landslide occurrence is 525 

restricted by insufficient rainfall, and therefore only limited landsliding occurs in portions of the landscape 

where rainfall can accumulate. In this case, if the Abuan catchment occurred within the core zone of the 

Kammuri typhoon, then this could explain why the landslides occurred across all portions of the landscape. 

To test this, daily PERSIANN-CCS rainfall data for the 2019 Kammuri typhoon in Abuan and the 2018 

Mangkhut and 2009 Parma typhoons in Itogon were obtained. These data show that the maximum daily 530 

rainfall across Abuan during the 2019 Kammuri typhoon was actually lower than that which occurred across 

Itogon during both the 2018 and 2009 typhoons (78 mm compared to 97 and 108 mm). This suggests that 

either the PERSIANN-CDR data are significantly underestimating the 2019 event rainfall, which such 

satellite-derived rainfall products are prone to doing (Zhu et al. 2016; Jiang et al. 2017), or that particularly 

intense rainfall is not the cause of the observed landslide distributions. Given that the Abuan region was 535 

never in the centre of the path of the Kammuri typhoon (where you would expect the core zone to occur), the 

latter is potentially more likely. 

 

Another possible explanation for the 2019 landslide distributions could be the directionality of the 2019 

typhoon. It has been proposed that the direction of storm wind circulations influences the aspects at which 540 

landslides occur (e.g. Gorokhovich & Vustianiuk 2021). As such, if the 2019 Kammuri typhoon changed 

direction several times, and thus wind circulations changed orientation, then this could explain why 

landslides occurred at all aspects and slope angles. However, for several reasons this explanation also seems 

unlikely. First, rainfall analysis by Abancó et al. (2021) found that typhoon rain and wind direction could not 

explain the aspect response of the 2018 Mangkhut landslides, suggesting that typhoon directionality is not as 545 

important a process as might be expected. Second, we could find no evidence that the 2019 typhoon changed 

direction, with it seemingly following a relatively constant east to west path.  

 

As such, overall, it is suggested that the inaccuracies in the 2019 model are due to a combination of poor 

input data and the fact that the 2019 Kammuri landslides were distributed evenly across the landscape 550 

(therefore giving little spatial correlation for the BLR method to use for classification). However, it remains 

unclear why the landslides triggered by the 2019 typhoon were distributed like this, with the rainfall in 2019 

being no more intense than the other events, and no obviously strange directional behaviour of the Kammuri 

typhoon. Future work should investigate this issue further, with a particular focus on an analysis of the 2019 
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event rainfall, as understanding why certain typhoon events may trigger unpredictable landslides has 555 

important implications for the forecasting and managing of future landslide hazard.  

 

The second question raised by the inaccuracies of the 2019 Abuan model, is a general point about whether it 

is better to have no susceptibility map or a poor susceptibility map? Instinct may be to assume a mantra of 

“something is better than nothing”. However, in reality, this is unlikely to be the case. Susceptibility maps are 560 

commonly used for important hazard management purposes. As such, inaccurate landslide susceptibility 

maps could lead to ineffective, inappropriate, or insufficient hazard management strategies being 

implemented. Not only is this likely to waste resources, but it could also present a danger to life and 

development. For example, if regions incorrectly classified as low susceptibility are subsequently built on, 

then human and infrastructure vulnerability could be increased.  565 

6.2 Landslide time dependency 

As described in the aims, the final objective of this paper is to provide insight into the potential time-

dependent nature of typhoon-triggered landslide susceptibility in the Philippines.  This objective essentially 

operates under the hypothesis that if typhoon triggered landslides are time dependent, then in a given region 

there will be a reduced model accuracy when using a model developed from one typhoon event to classify 570 

another. In this case, we tested this by using AUROC cross-validation to compare the 2018, 2009 and 2018-

2009 typhoon-triggered landslide susceptibility models. It should be noted that we do not consider 2019 

Abuan model here as this event occurred in a different region, which would therefore introduce issues of 

spatial dependency, which are not the focus of this paper.  

 575 

As outlined in the results, we see a 9 – 10% reduction in model accuracies when using the single event 

models from 2018 or 2009 to classify independent landslide data from the other typhoon event compared to 

the accuracies obtained when training/testing using each typhoon event separately (Figs. 5 and 7). This 

therefore supports out initial hypothesis, suggesting that, as observed in other regions and landslides (e.g., 

monsoon-triggered landslides in Nepal: Jones et al. 2021), there is some degree of time-dependency in the 580 

susceptibility of typhoon-triggered landslides. But what are the implications of this for landslide hazard 

management? It is well described that landslide susceptibility models are regularly used for purposes that 

involve the forecasting of future landslide events (Reichenbach et al. 2018; Palau et al. 2020). Consequently, 

in the Philippines, issues of time-dependency mean that a hazard manager cannot be confident that a 

landslide susceptibility model developed from a single past typhoon event will actually be accurate and 585 
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reliable when forecasting landslides associated with a future typhoon. This is clearly a problem, as it 

fundamentally affects the use of susceptibility models for their primary (or at least common) application. So 

what are the solutions to this problem? 

 

One solution could be to ensure that typhoon-triggered landslide susceptibility models are always developed 590 

using landslide data from multiple typhoon events. As shown in Fig. 6, the susceptibility model developed 

using the training landslide data from the 2018 and 2009 events combined had higher overall accuracies 

when classifying the independent data from each event separately. Indeed, the 2018+2009 model was only 

1% less accurate at classifying the 2009 data than the 2009 model was, and only 4% less accurate at 

classifying the 2018 data than the 2018 model was. Statistically, this result is logical, as, in effect, the 595 

combined 2018+2009 model coefficients will be an average of the optimum coefficients that would be 

obtained when modelling each event in isolation, and therefore the multi-event model has a more generalised 

ability to classify both events. In contrast, the single event model coefficients are very specific to one event, 

and therefore are notably less accurate when used to classify a different event. This suggests that whilst a 

single event model will likely be more accurate at classifying the specific event used to train that model, a 600 

multi-event model will be more generalizable and thus appropriate for forecasting an unknown future 

typhoon event. Furthermore, it would be logical to assume that the more events combined in the training of a 

susceptibility model, the more generalizable that model will be. This idea is corroborated by several other 

studies. For example, Ozturk et al. (2021) find that susceptibility model accuracy increases with increasing 

landslide inputs until a saturation point occurs when a large enough portion of a study region has observed a 605 

landslide and been included in the model training. Similarly, Jones et al. (2021) found that monsoon-

triggered susceptibility model accuracy increased significantly as you moved from using a single monsoon 

season of data to using approximately 10 monsoon seasons of data, with a levelling off of the accuracy as you 

added more seasons of landslide data beyond this. In this case, it is therefore reasonable to assume that given 

more typhoon triggered landslide data, the generalisability and overall forecasting reliability of the multi-610 

event model could be improved. This of course requires robust testing in future work when more typhoon-

triggered landslide data become available.  

7.0 Conclusions 

In conclusion, using BLR techniques we have developed new and updated susceptibility maps for the Itogon 

and Abuan regions of the Philippines, with the 2009, 2018, and combined 2009-2018 models being 615 

considerably more accurate (78 – 82%) than the 2019 model (65%). We find that the three typhoon events 
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caused quite different landslide responses. Most notably, landslides in Itogon were heavily distributed across 

E/SE/S-facing slopes and at slope angles >30o, whereas landslides in Abuan occurred across all aspects and 

slope angles. The uniform distribution of 2019 landslides across all parts of the landscape combined with 

homogenous input datasets for geology, soil and landcover is likely to be the cause of the lower accuracy of 620 

the 2019 model.  Finally, the AUROC validation shows that using a susceptibility model for one typhoon 

event to forecast/hindcast another leads to a 6 – 10% reduction in model accuracy compared to the accuracy 

obtained when modelling and validating each event separately. This suggests that typhoon-triggered 

landslides in the Philippines display some degree of time-dependency. However, using a susceptibility model 

for two combined typhoon events (2009 + 2018) to forecast/hindcast each typhoon event separately led to 625 

just a 1 – 3% reduction in model accuracy. This suggests that combined multi-event typhoon-triggered 

landslide susceptibility models will be more accurate and reliable for the forecasting of future typhoon-

triggered landslides. 

Data and code availability  

The landslide inventory will be publicly available at the end of the SCaRP project (NE/S003371/1), 630 

currently scheduled for April 2022. It will be accessible at the NERC Environmental Information Data Centre 

(EIDC) deposit: https://eidc.ac.uk/ (Environmental Information Data Centre). No custom developed code is 

used in this research, all code used was derived directly from the existing glmnet package:  

https://cran.r-project.org/web/packages/glmnet/glmnet.pdf 
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Figure and table captions 

Figure 1. Current landslide susceptibility map of the Itogon region (Mines and Geosciences Bureau, (BGB), 

2018).  770 

 

Figure 2. Locations of the two study regions, including the three landslide inventories used throughout this 

paper.  

 

Table 1. Summary of the BLR-LASSO results obtained for each of the four developed models.  All numbers 775 

are the mean of the 50-runs undertaken for each model. The AUROC value is the accuracy of the model at 

classifying the landslide data used to train the model.  

 

Figure 3. Graphical display of the aspect regression coefficients presented in Table 1.  

 780 

Figure 4. The final susceptibility maps produced from: a) the 2018 landslide inventory, b) the 2009 landslide 

inventory, c) the combined 2018 and 2009 inventories, and d) the 2019 inventory.  

 

Figure 5. Receiver Operator Curves (ROCs) showing the success of a) the 2018 model classifying the 

independent 2018 testing data, b) the 2009 model classifying the independent 2009 testing data, c) the 2019 785 

model classifying the independent 2019 testing data, and d) the 2018+2009 model classifying the 

independent 2018+2009 testing data. In each case the reference ROC for a “random” model with 50% 

accuracy is shown, as is the mean Area Under the Receiver Operator Curve (AUROC) value for all ROCs. 
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Figure 6. Receiver Operator Curves (ROCs) showing the success of the 2018+2009 model at classifying 790 

independent testing data from a) 2018, b) 2009, c) 2019. In each case the reference ROC for a “random” 

model with 50% accuracy is shown, as is the mean Area Under the Receiver Operator Curve (AUROC) value 

for all ROCs.  

 

Figure 7. Receiver Operator Curves (ROCs) showing the success of a) the 2018 model classifying 795 

independent testing data from 2009, b) the 2018 model classifying independent testing data from 2019, c) the 

2009 model classifying independent testing data from 2018, and d) the 2009 model classifying independent 

testing data from 2019. In each case the reference ROC for a “random” model with 50% accuracy is shown, 

as is the mean Area Under the Receiver Operator Curve (AUROC) value for all ROCs. 

 800 

Figure 8. The distributions of each study region and of different landslide datasets with respect to a) geology, 

b) soil, c) land use, d) hillslope angle, and e) hillslope aspect.  
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