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Abstract. 

A modelling framework for using regional climate projections to assess flooding hazard has been developed and applied to 

the Gwydir River (catchment 26,600 km2 and floodplain 8,100 km2), NSW, Australia. The model framework uses NSW and 

ACT Regional Climate Modelling version 1.5 projections combined with computationally efficient hydrologic and hydraulic 10 

models. While requiring model management and high-performance computing resources, the modelling framework 

successfully processed 18 regional climate projections into flood projections. Specifically, a six-member set of climate 

model combinations simulating a historical period (1950-2006) and a future period (2006-2100) under two global emission 

pathways (RCP4.5 and RP8.5) were used to predict flood depth and speed. In total, 1,470 continuous years were simulated at 

hourly time step. These flood (depth and speed) projections were analysed to assess the flood hazard changes under future 15 

climate scenarios by estimating changes in the annual probability of occurrence of a range of flood hazard classes. The six-

member ensemble indicates flood hazard in the Gwydir Valley will decrease in the short, medium and long term. There are 

also cases within the ensemble which includes increases in all non-safe flood hazard classification while decreasing the safe 

flood hazard classification. 

 20 

Short summary as a 500-character (incl. spaces) non-technical text. 

Regional climate change modelling output of rainfall and soil moisture have been used to estimate flooding hazard across the 

entire Gwydir River floodplain. 

1 Introduction 

Climate change potentially includes changes in temperature, evaporation, rainfall, and their seasonal patterns. Changes in 25 

rainfall patterns translate to changes in flooding extent, duration, and strength (i.e. flood hazard). Preparing for potential 

future changes in flood hazard can require significant lead times, thus it is critical to incorporate climate change information 

into flood hazard risk assessment and adaptation planning. One way to investigate the nature of potential future flooding 

involves climate model outputs being converted to hydrodynamic outputs (flow depth and speed as a function of time), but 

this is not a trivial task and there is no general agreement on an approach. For example, future climate-related changes in the 30 
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fitted distributions to channel flow estimates have been evaluated using stochastic methods, water balance modelling and 

change factors (Delgado et al., 2014; Hirabayashi et al., 2013; Smith et al., 2014a). On the other hand, the direct application 

of climate model outputs has been discouraged by some (Cloke et al., 2013; Prudhomme et al., 2010). Nevertheless, some 

accelerated models for converting flow rate into floodplain inundation show promise for converting regional-scale climate 

model outputs into continuous flood dynamics for hazard assessment on large and complex floodplains (e.g., Bates et al., 35 

2010; Falter et al., 2013; Ghimire et al., 2013; Lhomme et al., 2009). 

 

Assessing the future flood hazard under climate change directly (i.e. from hazard = depth × speed) at regional or 

jurisdictional scales requires the ability to simulate river flows and floodplain inundation at hourly (or better) time scales 

over many decades and across large areas. The necessary computational efficiency can potentially be achieved by a variety 40 

of physics-based approaches including dynamic wave, partial inertial wave, diffusive wave and kinematic wave models (e.g., 

Montanari et al., 2009; Bates et al., 2010; De Roo et al., 2000; Miller, 1984). These involve simplifying the physics that are 

simulated together with a reduction in detail for one or two of the flow dimensions. For example, the computationally 

efficient LISFLOOD-FP offers options to implement as dynamic wave, partial inertial wave or kinematic wave depending on 

what the environment being modelled demands (Lhomme et al., 2010; Bates et al., 2010; Bates et al., 2005). Decisions are 45 

therefore required on which physical processes can safely be ignored in the river environment of interest. Alternatively, there 

are computationally efficient rules-based models which involve a set of rules that mimic continuity and kinematic limits 

(e.g., Guidolin et al., 2016). The best choice of these two model approaches for undertaking a flood hazard assessment under 

future climate change optimises the trade-off between model accuracy and computational effort with obtaining the necessary 

flood outputs to calculate hazard.  50 

 

Performing hazard risk assessments and developing adaptation strategies for hazards under future climate change generally 

requires regional-scale (or better) climate projections. This involves refinement of global climate models through either 

statistical down-scaling (e.g., Wilby et al., 1998; Schmidli et al., 2006; Timbal and Jones, 2008) or dynamical down-scaling 

(e.g., Laprise, 2008; Giorgi, 2006; Ekström et al., 2015). The Australian NSW and ACT Regional Climate Model 55 

(NARCliM) is one example of this approach and used dynamical downscaling of a global 50 km model grid to a regional 10 

km model grid (Evans et al., 2014; Nishant et al., 2021). Climate models represent the distribution of weather and as such, 

comparisons between climate model predictions and historical measurements are possible by comparing their distributions 

but not by comparing specific historical events. Comparing distributions requires a balance between a measurement and 

model record long enough for such distributions to be appropriately defined while being short enough to limit non-stationary 60 

impacts from the changing climate. For parameters such as daily temperature or average rainfall, a 20-year period is suitable 

given there are many rainfall events per year and every day has a maximum temperature (near continuous variable). For 

parameters with rarer occurrences, such as floodplain inundation, defining their distribution becomes increasingly more 

marginal. For example, defining changes in flood inundation that is exceeded every 100 years using a 20-year simulation 
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period comes with considerable uncertainty. However, we may be able to usefully compare relevant measurements and 65 

model predictions for more frequent events, such as the annual flood hazard classes. 

 

The purpose of this paper is to describe the successful application of a modelling framework developed to convert climate 

model projections to hydrodynamic outputs, which were then used to assess future changes to present-day regional flood 

hazard. We demonstrate the utility of the approach by applying it to the Gwydir River, a large valley-floodplain system 70 

located in the northern Murray-Darling Basin, Australia. After reviewing candidate numerical models, new methods for 

driving a ROR-style hydrology model and the LISFLOOD-FP hydraulic model with climate projections are described, 

driven by NARCliM1.5 climate projections as an example. Projected future regional flood inundation extents and the spatial 

distribution of flood hazard are presented for two global emission pathways (RCP4.5 and RCP8.5). Challenges associated 

with spatial and temporal sparsity in floodplain inundation and applying conventional extreme value distributions to evaluate 75 

future flood exceedance probabilities are discussed. These confound efforts to answer the question – will present-day flood 

hazard change under future climate projections – and we provide a new approach to answering that question. 

2 Methods 

The objectives in converting climate model outputs to inundation estimates were: i) develop a method for manipulating 

NARCliM 1.5 hydrological variables for application in rainfall-runoff routing models, ii) review the literature to identify 80 

potential flood models suited to application over large spatial and temporal scales, and iii) identify the most suitable flood 

model and apply to a large river valley. To successfully achieve these objectives, a series of principles were adopted to guide 

an iterative development of the model framework which was then stress-tested on the Gwydir River floodplain, New South 

Wales (NSW), Australia. These principles, in no particular order are: i) use NARCliM 1.5 outputs to force models suitable 

for flood inundation estimation; ii) maximise benefit from inundation estimates by simulating the entire NARCliM 1.5 set of 85 

projections; iii) use open datasets, methods, models and mostly automatic approaches; iv) design the framework for 

implementation on high-performance computing resources; and v) the historical period, constrained by measurements, 

determines parameter values applied to the forecast period. The modelling framework that achieves our aim (Figure 1) and is 

consistent with these principles constrains both hydrologic and hydraulic models, takes boundary conditions from climate 

model outputs, simulates them entirely by breaking them into four year windows with two month overlap for warming up the 90 

hydraulic model, develops initial conditions based on low flow conditions, simulated in parallel on high performance 

computing resources and has data management to limit the file size associated with saving inundation depth and speed by 

storing the daily maximum inundated depth and associated flow speed. The various segments are then combined (removing 

the two months overlap) and stored in compressed netCDF files (https://doi.org/10.48610/d7b1654). The hydrologic and 

hydraulic methods used in this framework are discussed in Sect. 2.1 and 2.2. 95 
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2.1 Evaluation of climate model outputs and hydrological model theory 

The NARCliM 1.5 climate model ensemble includes three global climate models (CCCma-CanESM2, CSIRO-BOM-

ACCESS 1-0 and 1-3) with two regional climate models (UNSW-WRF360 J and K) resulting in a set of six model 

combinations (Nishant et al., 2021). Projections for  two epochs (historical 1950 to 2005 and projections 2006 to 2099) using 

two global emission pathway scenarios (RCP 4.5 and 8.5) are available, and include hourly variables of precipitation and 100 

total run off, and bias-corrected daily precipitation. NARCliM 1.5 was applied by matching, as much as possible, measured 

and modelled climate statistics. For catchment runoff, this was done at Gravesend on the Gwydir River, where the measured 

distribution of annual maximum discharge was used to calibrate the hydrologic model. Gravesend (figure 2) is the last 

gauging station before the conversion between water level and river flow rate becomes significantly uncertain (tailwater and 

inundation feedbacks leading to significant hysteresis). Each of the historical river flow projections were calibrated using the 105 

measured distribution of annual maximum discharge at Gravesend. The hydrologic model used the excess precipitation 

(excess rainfall) obtained from NARCliM 1.5 (‘total run off’ code named mrro) in the following manner. The bias corrected 

daily rainfall was used to bias correct daily total run off (or excess daily rainfall), and this was interpolated onto an hourly 

timeframe using the NARCliM 1.5 hourly precipitation for shape. That is 

daily runoff corrected = daily runoff ×
bias corrected daily precipitation

daily precipitation
 (1) 110 

and 

hourly runoff on day 𝑡 =  daily runoff corrected on day 𝑡 ×
hourly rainfall on day 𝑡

∑ hourly rainfal on day 𝑡day t
  (2) 

 

where the last term in equation (2) ranges from zero to unity. 

The excess precipitation was routed through catchment models following the method proposed by Mein et al. (1974), which 115 

is referred to as a ROR-style model with two free parameters, m and k, that are nominally for flow shape and storage, but 

experience with this model indicates their theoretical basis is weak and they are used as free calibration parameters. The 

external catchments draining to the hydraulic model (figure 2) come from Gwydir River, Boggy Creek, Waterloo Creek, 

Curley Creek, Tycannah Creek, Mosquito Creek, North Creek and un-named watershed. Each catchment was broken into 

between five and 13 sub-catchments, yielding an outflow suitable for use in the hydraulic model. The hydraulic model 120 

covers a significant area (9,621 km2) and consequently, runoff onto the hydraulic model is included by associating sub-

catchments with model grid locations. The climate projections have more than one grid cell within sub-catchments in many 

places, with these contributions reduced by the area of each cell from the climate projection overlaps each sub-catchment, 

with these contributions allocated in proportion to the grid cell overlap on the sub-catchment. 

Comparisons with measurements of river flows at Gravesend, on a distribution basis, indicated that using NARCliM 1.5 to 125 

provide excess rainfall and a ROR-style runoff routing model with no losses (initial or continuing) leads to overestimates of 

frequent events and underestimates of infrequent events. This indicates that there is not enough loss of water volume during 
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lighter rainfall events compared to heavier rainfall events with in NARCliM 1.5. There are many on-farm water storages not 

included in the NARCliM 1.5 or catchment hydrologic models used to this point. To include them, we extended the 

hydrology models by adjusting the excess precipitation before it is used for runoff routing. The excess precipitation was 130 

routed through a storage of maximum depth hmax, a surface area of fA (where A is the catchment area) while water within that 

storage was evaporated using monthly mean of measured evaporation rates and a usage rate to model farm use. The storages 

were initially started at half full. If the storage does not overflow during a time step, there will be no excess rainfall. If the 

storage does overflow, then there will be excess rainfall, Pr, to yield runoff. Mathematically, if h is the depth of water in the 

storage, then it will change by 135 

∆ℎ𝑓 = (𝑃 − (𝑒 + 𝑢)𝑓) × ∆𝑡  (3) 

where P is the NARCliM 1.5 excess precipitation, e and u are evaporation and usage rates and Δt is the time increment. This 

adjustment was applied as follows: 

ℎ(𝑡)𝑓 + ∆ℎ𝑓 > ℎ𝑚𝑎𝑥𝑓              {
𝑃𝑟 =

𝑓ℎ+∆ℎ𝑓−ℎ𝑚𝑎𝑥𝑓

∆𝑡

ℎ(𝑡 + ∆𝑡)𝑓 = ℎ𝑚𝑎𝑥𝑓
  

0 ≤ ℎ(𝑡)𝑓 + ∆ℎ𝑓 ≤ ℎ𝑚𝑎𝑥𝑓     {
𝑃𝑟 = 0

ℎ(𝑡 + ∆𝑡)𝑓 = ℎ(𝑡)𝑓 + ∆ℎ𝑓
  (4) 140 

ℎ(𝑡)𝑓 + ∆ℎ𝑓 < 0                       {
𝑃𝑟 = 0

ℎ(𝑡 + ∆𝑡)𝑓 = 0
 

and if f = 0, then the model simplifies to Pr = P. 

2.2 Selection of hydraulic theory and code 

Climate change evaluation at regional scale or larger for flooding hazard and other applications requires fast and accurate 

enough flood modelling. This review seeks to identify hydrodynamic models with proven track records to achieve this 145 

evaluation in a timely manner with limited human resources (automated processes). This assessment is separated into 

physics-based models and rules-based models. 

Physics-based models typically follow Newton II and in particular, the shallow water equation or dynamic wave equation, 

applied in either one or two horizontal dimensions (e.g., 1D or 2DH), to solve for temporal and spatial variation in flow 

depth and speed. There are several well-known approximations of the dynamic wave equation, with kinematic, diffusive, and 150 

partial inertial wave (or long wave) approximations possibly the best known. All physically based methods except dynamic 

wave exclude convective acceleration and hence, momentum changes required to change flow direction. Consequently, 

forces from water surface gradients required to get flow through geometry changes (road embankments across a floodplain) 

is reduced when compared to including convective acceleration. These terms have been found essential in ocean models 

where mean water level gradients are exceedingly small and flow mass exceedingly large (mean ocean depth is ca 4 km). 155 

There are too many examples of successful dynamic wave application in two dimensions or combination of one and two 

dimensions to list them all, however the following subset (e.g., Montanari et al., 2009; Ahmadisharaf et al., 2018) highlight 
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methods aimed at accelerating applications for flood management including Graphics Processing Unit implementations 

through to careful use of 1D/2DH modelling (resulting in global scale continuous simulations). This approach remains the 

benchmark theory for flood modelling. 160 

Examples of successfully applied partial inertial wave models are numerous (e.g., Rajib et al., 2020; Sampson et al., 2015; 

Bates et al., 2010) and this approach has a proven track record of: statistical evaluations, hazard mapping or Monte Carlo 

Risk evaluations including damage estimations with velocity and depth contributions (e.g., Hoch et al., 2017; Neal et al., 

2013), large spatial and temporal scale assessments where channels were sub-grid features (O'loughlin et al., 2020; 

Schumann et al., 2013), multi-channel assessments (Altenau et al., 2017), temporal scales from minutes to years (e.g., 165 

O'loughlin et al., 2020; Neal et al., 2011) and on to geological scales (Coulthard et al., 2013), coastal storm surge inundation 

(Lewis et al., 2011), coastal tidal dynamics (Skinner et al., 2015), flooding in urban, rural, remote and limited data 

applications (e.g., Amarnath et al., 2015; Bates et al., 2010; Fewtrell et al., 2011; O'loughlin et al., 2020). While there are 

notes of caution with this approach at large scale (Schumann et al., 2012) and other authors advocating for the diffusive 

wave (Dottori and Todini, 2013) over partial inertial wave, it has the best track record after the dynamic wave equation while 170 

being exceptionally quick. The partial inertial wave equation has a theoretical limit in that at either high velocity (Froude 

number exceeding 1) or low frictional force, the momentum equation becomes unstable. This well-known issue has been 

noted in the recent literature with respect to LISFLOOD.  

The diffusive wave equation has a long track record dating back to when hydraulic modelling using numerical methods in 

two dimensions started in the 1970’s. However, in more recent times where it has been revisited for its light computing load 175 

(e.g., Mason et al., 2009; Apel et al., 2009; De Roo et al., 2000), it has been the reason for shifting to partial inertial wave 

equation (Neal et al., 2012), with only one reference found arguing diffusion over partial inertial wave (Dottori and Todini, 

2013) for accelerated flood assessments. Further, there is evidence that diffusive wave does not handle urban environments 

(Costabile et al., 2017) but away from these areas and with enhancements, it is accurate enough (Jamieson et al., 2012). The 

diffusive wave model links forces to motion exclusively through the friction model whereas the partial inertia wave model 180 

has a combination of friction and temporal acceleration. This fixed link through the adopted friction model means 

uncertainties in the friction model and spatial and temporal parameter variations are more significant in diffusive wave 

estimations. As the earlier engineers/scientists knew, applying diffusive wave theory to subcritical flow on a two-

dimensional horizontal grid is often numerically unstable leading to the checkerboard predictions. While some recent authors 

were seeking to address this numerical stability issue using careful spatial and temporal selections and flux gradient limiters, 185 

ultimately the decision to include the additional temporal acceleration (inertial) term resolved their numerical issues almost 

entirely. From the balance of evidence and theorical arguments, it is proposed that diffusive wave is an unacceptable 

approach when trading-off between accuracy and speed. 

The kinematic wave equation has a long track record in modelling supercritical flows (Miller, 1984) with more limited 

application to subcritical flow modelling of prismatic channels (Zheng et al., 2020). When the continuity equation is 190 

combined with the kinematic wave equation, predictions exclude flow attenuation and actually increase flow rates and water 
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surface slopes (Miller, 1984, page 18). In the case of prismatic channels, the water depth and flow rate are fixed or Q = Q(h), 

where Q is flow rate (Henderson, 1966, page 367) and yet numerical models of prismatic channels rarely achieve this and 

degrade to Q increasing with both time (t) and position. Miller (1984, page 20) further indicates that for a successful 

kinematic wave application, ad hoc modifications in how this equation is solved is required and then only on the rising limb. 195 

Consequently, large errors are expected when using kinematic wave equation in non-prismatic channel systems. The balance 

of evidence and theorical arguments indicates that kinematic wave equation is an unacceptable approach when trading-off 

between accuracy and speed. 

The impact cell method is based on rules around how floodplains fill with water during flooding either over defences or by 

defence failure. They use a dynamic wave equation one dimensional model to drive the floodplain filling and while they 200 

appear to be temporal, they are quasi-steady (Lhomme et al., 2009; Gouldby et al., 2008; Hall et al., 2003). The major 

drawback is model development in that it involves a combination of physical and probabilistic input, which have no apparent 

automatic techniques for their estimation. There is a lack of track record around estimating velocities from the water level 

gradients this style of model predicts. 

The cellular automata method is based on a set of rules that mimic continuity and kinematic limits, which from limited 205 

testing (e.g., Jamali et al., 2019; Guidolin et al., 2016; Nicholas et al., 2006) is able to simulate urban areas, multi-channel 

systems, and hydraulic structures within a gridded domain. Various versions do include storage attenuation. There is, 

however, no track record around estimating velocities from the water level gradients this style of model predicts. 

There are other rules-based methods including rating curve GIS models (e.g., Zheng et al., 2018; Apel et al., 2008) through 

to dynamic and rule based combined models (Bernini and Franchini, 2013; Jamieson et al., 2012). These have not been 210 

considered as they exclude flow routing. 

The trade-off between accuracy and computational effort and seeking flood hazard information thereby requiring reasonable 

flow speed estimates, leads to the selection of partial inertial wave equation (LISFLOOD) and the cellular automata 

(WCAD2D). These two hydraulic models were tested for speed and LISFLOOD was found to be 2 to 2.5 times faster when 

tested on large floodplains such as the Gwydir River. This led to the selection of LISFLOOD. 215 

2.3 Implementation of LISFLOOD hydraulic model  

Surface roughness (using Manning's n) for the LISFLOOD model developed here was obtained from existing calibrated 

hydraulic models for the Gwydir River. There are three models forming the NSW Department of Planning and Environment 

Gwydir River hydraulic model with 1D links and 2D grids with resolutions from 20 m to 50 m using MIKE FLOOD 

(Anonymous, 2015) (NSW Department of Primary Industries, Water 2015). After balancing resolution with file size and run 220 

times, a 100 m resolution was selected. These three models were combined to develop the 100 m DEM with extents to 

enclose Binniguy to Moree, Moree to Barwon and Thalaba Creek MIKE FLOOD hydraulic models (colour shaded area in 

figure 2). The origin was set so that the 100 m DEM collocated with every second grid point of the Moree to Barwon model. 

Crest features (usually roads, but any feature that could either act as a weir or dam that changes flow distributions) were 
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extracted out of Binniguy to Moree, Moree to Barwon and Thalaba Creek DEMs, and put onto the 100 m DEM. This was 225 

achieved in a two-step process, first a smooth version of each existing DEM was subtracted from the new 100 m DEM and 

differences below 0.2 m removed. The resulting features showed crests as well as other differences related to waterways. The 

crest features alignments were then determined, and the crests extracted. Waterways removed from Binniguy to Moree were 

put back in using survey DEM, missing areas were filled in using Shuttle Radar Topography Mission data and finally, 

streams were hydraulically connected (figure 2). 230 

The three hydraulic models forming the Gwydir River Hydraulic model by NSW government was used to constrain the 

LISFLOOD model, using their 2012 calibration runs, performed in MIKE FLOOD. There are complications in that those 

NSW government models included 1D elements, had finer resolution (20 m and 50 m) and were separated into three 

domains, one run in steady state (southern region) and the other two using dynamic simulations with varying simulation 

periods; compared with the one encompassing LISFLOOD model, which had a coarser resolution (100 m) and no 1D 235 

elements. To rationalise these comparisons, locations where the NSW government models had reported inundation were 

used to constrain the LISFLOOD model. The first calibration series ran 100 incremental model topographies from largest 

main channels possible from survey to no channels, and inflows taken directly from the NSW government models. The 

channel geometry was selected to obtain the best match to these calibrated models. 

2.4 Climate Projection to flood simulations 240 

NARCliM 1.5 includes six historical projections and 12 future projections providing 18 periods for simulating, covering a 

total physical time of 1,470 years. Such simulations require high performance resources and careful selection of outputs and 

model resolution to ensure simulations are obtained within a reasonable timeframe. Within storage resources available, 

output from LISFLOOD was hourly and then postprocessed to daily information of maximum inundation depth and the flow 

speed at that maximum depth. This, with several storage techniques to minimise file sizes (netCDF with compression and 245 

finite data resolution), reduced required storage from ca 10 TB to 100 GB. Applications involving steeper catchments and 

floodplains may warrant storage of hourly rather than daily outputs. To further enhance model throughput, simulations were 

broken into four-year segments, with an additional two-month warmup period using initial conditions taken from a low flow 

simulation developed from measurements and average evaporation. The two-month warmup period was confirmed to not 

impact predictions by comparing predictions from the end of a segment with the predictions (after warmup) at the start of the 250 

following segment. The model grid was selected after initial testing of four resolutions of 50 m, 75 m, 100 m and 150 m. 

These tests indicated that simulation times, from finest to coarsest grids was 55, 16, 7 and 2.5 days per decade respectively, 

while mean biases from the 50 m resolution were 1 cm, 5 cm and 12 cm for the 75 m, 100 m and 150 m resolutions grids. 

The 100 m grid was a reasonable balance between output size, simulation speed and model performance for resources 

available. That is, a reasonable balance between loss of accuracy cf 50 m and 75 m resolution when compared with eight- 255 

and two-fold decrease in computational resources. The LISFLOOD version implemented was the latest available at the time 
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(February 2021), compiled with the 2018 version of Intel C++ and ran on CentOS version 7. These simulations took several 

weeks using high performance computing resources where between 160 to 480 threads were available. 

2.5 Flood hazard classes 

The flood hazard classification shown in figure 3 (Smith et al. (2014b) is recommended for use in emergency planning and 260 

management within Australia (Ball et al., 2019) and has been applied here. The classification has six classes, starting with 

the safe classification H1 (generally safe for vehicles, people and buildings) through to H6 (unsafe for vehicles and people 

and all building types considered vulnerable to failure).  In applying these flood hazard classifications, one additional hazard 

classification was added to capture flood hazards exceeding the maximum class (H6). Additionally, regions with no 

inundated areas over the analysis period were assigned to the safe hazard class H1. 265 

2.6 Bernoulli's trial to assess flood hazard class changes 

The assessment of climate changes on flood hazard classification had to deal with a range of climate model projections 

spanning dry through to wet which have significantly different flood projections and associated flood hazards. Consequently, 

each flood hazard classification was treated separately, and assessments were done on an annual basis for a historical epoch 

of 1980 to 1999, and projected epochs of 2020-2039 for near-term, 2050-2069 medium-term and 2080-2099 for long-term 270 

comparisons. The occurrences of each flood hazard classification are then the number of times it occurs divided by 20, the 

number of years within these epochs, which is a maximum likelihood estimate of the occurrence probability given 20 

independent binomial (Bernoulli's) trials. Once occurrence probabilities are known for each epoch in each flood projection, 

they are averaged or ensembled across the flood projections from the six climate model combinations before estimating 

changes between epochs. 275 

3 Results 

3.1 Calibration of hydrologic model 

The hydrologic model calibration to annual maximum discharge at Gravesend (figure 4) was achieved using the same m 

(nominally stream shape, which is expected) and different kc (channel storages) and the same small catchment storage 

parameters (f = 0.0005, hmax = 0.2 m and u = 80 mm/day) across the six historical climate projections available in NARCliM 280 

1.5. Uncertainty remains with the adopted calibration, which is minimised for inundation hazard assessment by focusing 

calibration on rarer events. 
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3.2 Calibration of hydraulic model 

The hydraulic model, LISFLOOD, was calibrated by varying the main channel depths until it matched previous models, 

MIKE FLOOD, that had been calibrated to historical floods. The hydraulic model with channel depth at 19% of the 285 

maximum channel depth had mean flood level differences of less than 1 mm (figure 5, top left panel) while also being near 

the lowest standard deviation of flood level difference. As LISFLOOD and MIKE FLOOD models had different resolutions 

and consequently different ground surface elevations, comparing depths bring in two changes, one related to hydraulic 

performance and another related to ground surface elevation interpolation differences (figure 5, bottom left panel). 

Alternatively, comparing water surface levels (figure 5, top right panel) removes this ground surface elevation interpolation 290 

aspect, however, for models with large vertical variation (e.g., Gwydir River has 100 m vertical change over its 167 km 

length), this vertical variation overpowers water level differences when plotted. Nevertheless, comparing differences of both 

depth and water surface level together with an overall water level difference map (figure 5, bottom right panel), provides a 

visual assessment of model calibration. 

3.3 Flood hazard classification and changes under RCP 4.5 and RCP 8.5 295 

The occurrence probabilities under both RCP 4.5 and 8.5 (figure 6, table S1) for flood hazard classification H1 (generally 

safe for people, vehicles and buildings) are predicted to increase while higher hazard classifications (generally dangerous for 

people, vehicles and buildings) are predicted to reduce in the long-term (comparing 2080—2099 with 1980—1999) for the 

NARCliM 1.5 ensemble. Within this ensemble, the H1 occurrence probability changes for RCP 4.5 vary from no change to 

an increase of 0.3 and for the RCP 8.5 increases from 0.06 to 0.39 (figures S1-S6), indicating high likelihood of a reduction 300 

in flood hazard at the valley scale. This longer-term assessment outcome does not apply for the near- or medium-term 

(2020—2039 or 2050—2069, table S1). The change expected in the near-term are very slight (increase in H1 by 0.01 to 

0.02) but the ensemble includes projections where the H1 occurrence probability is reduced by 0.09. These decreases in H1 

come with increases in H2 through to H4 of between 0.03 to 0.13. The medium-term comparison period is a transition 

between the other two with RCP 8.5 always increasing H1 and decreasing H2 through to H4 and RCP 4.5 having both 305 

increases and decreases of H1 through to H4 within the ensemble. 

4 Discussion 

The increases in H1 occurrence coupled with decreases in H2—H4 (figure 6, table S1 and figures S1-S6) indicates that flood 

hazard is decreasing in the long term under projected climate changes (all cases in the ensemble and both RCP 4.5 and 8.5) 

in the region modelled (figure 2). The near-term changes are more uncertain as there are cases in the ensemble that both 310 

increase and decrease flood hazard (table S1). Comparing near-, medium-, and long-term, RCP 8.5 shows more certain 

decrease in flood hazard compared with RCP 4.5, however, in both scenarios, the most likely outcome is a decrease in flood 

hazard with all members of the ensemble forecasting this. 
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The inference that flood hazard is decreasing in this region with projected climate change comes with several key 315 

limitations. Hydrology models were calibrated to best represent infrequent events across the historical period. Consequently, 

these models overestimate the catchment runoff from frequent events by different amounts for each member of the ensemble 

(figure 4). These differences come from the climate models themselves where the rainfall runoff is estimated using different 

approaches leading to different outcomes across the one historical period. That is, the distribution of runoff of each member 

of the ensemble for the historical period, in the absence of epistemic uncertainty, should be similar. Whereas these 320 

distributions are different and consequently, add to the uncertainty of inundation depth and speed projections, both used to 

assess flood hazards. The hydraulic model, which was constrained reasonably given the differences between resolution and 

modelling approaches (figure 5), is less an issue compared with hydrologic uncertainty. However, there is still differences 

between estimates (figure 5) from various flood projections that may lead to different conclusions spatially. Finally, when 

estimating changes in flood hazard, this would usually involve estimates of flood hazard under extreme conditions. 325 

However, the assessment provided used an alternative method for reasons discussed in the following paragraphs. 

 

Conventional extreme value analysis for flood hazard assessments involves establishing a link between flow discharges and 

exceedance probabilities. This relationship then can be used to assign exceedance probabilities either to historical events or 

synthetic events that represent historical events, which are simulated, and the spatially varied maximum flood hazard 330 

obtained. This approach would work for systems that are driven by one major inflow and have flooded area relatively small 

compared to the rainfall systems that excite flooding. However, the floodplain being assessed has a large catchment area 

compared to the spatial size of rainfall events and while it has one major inflow, there are several others, and those combined 

with the floodplain itself, makes breaking continuous simulations into a series of events where the probability is constant 

across the floodplain inundated area, a subjective (or arbitrary) assessment. 335 

 

Another issue in using conventional extreme value analysis for flood hazard assessments is the balance between projection 

period and ability to establish reasonable extreme value estimates. For example, one can do a simple numerical experiment 

in which the two distributions are constructed with a fixed increase in all extremes (simplest case), and then draw one 

sample, the estimated extreme values, obtained from fitting to this sample, can be both an increase or decrease compared 340 

with that assumed and this is due to sampling error when the analysis period is smaller than the extreme value return period 

being estimated. To robustly estimate an extreme value, using a one-off sample, the analysis period usually needs to be many 

times its return period (rule-of-thumb, 10 or more). Without this, the sampling error overwhelms any changes and thus any 

changes that are within the confidence limits are statistically insignificant. 

 345 

The final issue in using conventional extreme value analysis comes from the differences in inundation extents and frequency 

across the climate model predictions that span dry through to wet conditions. This led to significant areas which were 
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inundated in the wettest projections that remained dry in the driest projection. Consequently, the members within the 

ensemble would vary spatially, making uncertainties difficult to understand and communicate.  

 350 

Applying extreme value theory to individual grid inundation flood hazard (i.e., linking exceedance probability directly to 

flood hazard, after applying either block maxima or peak over threshold approach on independent and identical distributed 

events to determine extreme events), as opposed to the conventional method of linking probabilities through event peak 

discharge, is that the number of extreme events changes from many events along deep watercourses to approaching zero near 

the edge of maximum inundation. This variation of number of extreme events lead to reasonably consistent spatial 355 

predictions along deep watercourses to inconsistent spatial predictions across the floodplain were number of extreme events 

approaches zero at the edge of inundation. These spatially inconsistent predictions were obtained for a range of extreme 

value approaches and fitting methods. Furthermore, near the edge of maximum inundation, the extreme value models 

themselves broke down as the number of events approaches zero. The net result being very limited consistency in linking 

exceedance probabilities to flood hazard across the floodplains, particularly near the edge of maximum inundation. 360 

 

Our approach (sections 2.5 and 2.6), where we estimate changes in annual probability of occurrence of flood hazard classes 

overcomes issues with conventional and grid based extreme value analysis.  

5 Summary 

A modelling framework for estimating projected flood hazards from regional climate model projections has been presented 365 

including a different approach to assessing flood hazard changes. The modelling framework was applied to Gwydir River 

(Australia) using New South Wales and Australian Capital Territory Regional Climate Modelling version 1.5 projections 

with computationally efficient hydrologic and hydraulic models. This included six historical and 12 future regional climate 

projections. The simulations were continuous and totalled 1,470 years, requiring high-performance computing resources for 

timely completion. The climate projections included spatially varied rainfall runoff, allowing the implementation of a 370 

hydrological modelling approach that only required flow routing as soil dynamics were included in the regional climate 

models. The hydrology model was constrained by measured distributions of runoff. The hydraulic modelling approach was 

selected after an extensive evaluation and testing phase of modelling types with proven track records of computational 

efficiency, leading to the selection of the partial inertial wave equation as implemented in LISFLOOD over the other family 

of efficient approaches under the cellular automata umbrella. This hydraulic model was constrained by modifying the main 375 

channel geometry until it matched more detailed and calibrated hydraulic models using the dynamic wave equation. The 

simulations resulted in spatially varied daily maximum flow depth and flow speeds at those depths across the 18 regional 

climate projections, allowing flood hazard assessments. 
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Changes in flooding hazard were assessed by estimating changes in the annual probability of occurrence of a range of flood 380 

hazard classes, with the first class, H1, being a safe class and all other classes having various levels of flooding hazard. This 

approach was taken to overcome several barriers in using conventional flood hazard assessment techniques where flooding 

hazards are estimated at various extreme values. These barriers included variable number of hazard events across the 

floodplain, the ability to determine an extreme value where the underlying processes are changing through to regional 

climate projections ranging from dry to wet leading to significant differences in inundation extents. Changes in annual 385 

probability of occurrence in the long-term are consistently, across the ensemble for both RCP 4.5 and 8.5, indicating a 

reduction of flooding hazard across Gwydir River region modelled. This was demonstrated as increased probability of 

occurrence of the safe class (H1) and decreased probability in all the unsafe classes. The outcomes are more mixed in the 

near-term, with the ensemble indicating minor decreases in flooding hazard albeit with ensemble members having both 

increases and decreases. The medium-term projections are transitional between the near- and long-term, however, there 390 

remains ensemble members with increased flooding hazard.  
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 550 

Figure 1: Proposed framework for converting climate model outputs to flood model outputs. 
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Figure 2 Catchments and waterways flowing through the Gwydir Valley with the location within New South Wales (NSW), 555 
Australia shown in the bottom left inserts. Hydraulic model extents shown by colour shaded area representing ground elevation in 

metres above mean sea level (colour bar) with the main source of inflows from the Gwydir River, which has a gauging station at 

Gravesend (●). The 133 watershed boundaries within the hydraulic model and sub-catchments within each waterway not shown 

for clarity. 

 560 
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Figure 3 A flood hazard classification scheme from H1 (safe) to H6 (dangerous) recommended for use in Australia. Flood hazard 

class H7 is additional to the recommended classifications. 
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 565 

Figure 4 Comparisons between modelled discharge at Gravesend (figure 2) with measurements for all global (rows) and regional 

(columns) climate model combinations. Model discharges includes additional evaporation via local storages (f = 0.0005, hmax = 

0.2 m and u = 80 mm/day). Hydrology model parameter m = 0.5 for all cases and kc is indicated in each panel. The black line 

indicates perfect agreement, the solid-coloured line and corresponding shaded region are mean and 95% confidence of measured 

distribution when resampled to compare with modelled discharges. Difference colours indicate different kc. 570 
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Figure 5 Gwydir River hydraulic model (LISFLOOD) calibration to existing MIKE FLOOD hydraulic models by NSW 

Environment & Heritage. Top left panel, selection of schematised channel depth (zero means no channels and 100% means largest 575 
main channels possible from survey) with the black lines showing selected channel depth. Top right panel, a comparison between 

flood levels across the entire model (blue dots) with perfect fit (black line). Bottom left panel, a comparison between flood depth 

across the entire model. Bottom right, difference map between models. 
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Figure 6 Gwydir Valley Flood hazard historical (1980—1999) classification occurrences and their changes under RCP 4.5 and 580 
RCP 8.5 (2080—2099) for the NARCliM 1.5 ensemble. The mean of occurrence probability changes, δ, shown in each panel. For 

brevity, flood hazard historical classifications H5 to H7 are not shown as they are limited to within river and creek channels. 
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