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Abstract. 

A modelling framework for using regional climate projections to assess flooding hazard has been developed and applied to the 

Gwydir River (catchment 26,600 km2 and floodplain 8,100 km2), NSW, Australia. The model framework uses NSW and ACT 

Regional Climate Modelling version 1.5 projections combined with computationally efficient hydrologic and hydraulic 10 

models. While requiring model management and high-performance computing resources, the modelling framework 

successfully processed 18 regional climate projections into flood projections. Specifically, a six-member set of climate model 

combinations simulating a historical period (1950-20061951-2005) and a future period (2006-2100) under two global emission 

pathways (RCP4.5 and RP8.5) were used to predict flood depth and speed. In total, 1,470 continuous years were simulated at 

hourly time step. These flood (depth and speed) projections were analysed to assess the flood hazard changes under future 15 

climate scenarios by estimating changes in the annual probability of occurrence of a range of flood hazard classes. The six-

member ensemble indicates flood hazard in the Gwydir Valley will decrease in the short, medium and long term. There are 

also cases within the ensemble which includes increases in all non-safe flood hazard classification while decreasing the safe 

flood hazard classification. 
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Short summary as a 500-character (incl. spaces) non-technical text. 

Regional climate change modelling output of rainfall and soil moisture have been used to estimate flooding hazard across the 

entire Gwydir River floodplain. 

A new method was developed to estimate changes of flood hazard under climate change. We use climate projections covering 

New South Wales, Australia, with two emission paths of business as usual and one with reduced emissions. We apply our 25 

method on the lower floodplain of the Gwydir Valley with changes of flood hazard provided over the next 90 years compared 

to the previous 50 years. We find that changes in flood hazard reduces over time within the Gwydir Valley floodplain. 

1 Introduction 

Climate change potentially includes changes in temperature, evaporation, rainfall, and their seasonal patterns. Changes in 

rainfall patterns translate to changes in flooding extent, duration, and strength (i.e. flood hazard). Preparing for potential future 30 
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changes in flood hazard can require significant lead times, thus it is critical to incorporate climate change information into 

flood hazard risk assessment and adaptation planning. One way to investigate the nature of potential future flooding involves 

climate model outputs being converted to hydrodynamic outputs (flow depth and speed as a function of time), but this is not a 

trivial task and there is no general agreement on an approach. For example, future climate-related changes in the fitted 

distributions to channel flowdischarge estimates have been evaluated using stochastic methods, water balance modelling and 35 

change factors (Delgado et al., 2014; Hirabayashi et al., 2013; Smith et al., 2014a). On the other hand, the direct application 

of climate model outputs has been discouraged by some (Cloke et al., 2013; Prudhomme et al., 2010). Nevertheless, some 

accelerated models for converting flow ratedischarge into floodplain inundation show promise for converting regional-scale 

climate model outputs into continuous flood dynamics for hazard assessment on large and complex floodplains (e.g., Bates et 

al., 2010; Falter et al., 2013; Ghimire et al., 2013; Lhomme et al., 2009). 40 

 

Assessing the future flood hazard under climate change directly (i.e. from hazard = depth × speed) at regional or jurisdictional 

scales requires the ability to simulate river flowsdischarge and floodplain inundation at hourly (or better) time scales over 

many decades and across large areas. The necessary computational efficiency can potentially be achieved by a variety of 

physics-based approaches including dynamic wave, partial inertial wave, diffusive wave and kinematic wave models (e.g., 45 

Montanari et al., 2009; Bates et al., 2010; De Roo et al., 2000; Miller, 1984). These involve simplifying the physics that are 

simulated together with a reduction in detail for one or two of the flow dimensions. For example, the computationally efficient 

LISFLOOD-FP offers options to implement as dynamic wave, partial inertial wave or kinematic wave depending on what the 

environment being modelled demands (Lhomme et al., 2010; Bates et al., 2010; Bates et al., 2005). Decisions are therefore 

required on which physical processes can safely be ignored in the river environment of interest. Alternatively, there are 50 

computationally efficient rules-based models which involve a set of rules that mimic continuity and kinematic limits (e.g., 

Guidolin et al., 2016). The best choice of these two model approaches for undertaking a flood hazard assessment under future 

climate change optimises the trade-off between model accuracy and computational effort with obtaining the necessary flood 

outputs to calculate hazard.  

 55 

Performing hazard risk assessments and developing adaptation strategies for hazards under future climate change generally 

requires regional-scale (or better) climate projections. This involves refinement of global climate models through either 

statistical down-scaling (e.g., Wilby et al., 1998; Schmidli et al., 2006; Timbal and Jones, 2008) or dynamical down-scaling 

(e.g., Laprise, 2008; Giorgi, 2006; Ekström et al., 2015). The Australian NSW and ACT Regional Climate Model (NARCliM) 

is one example of this approach and used dynamical downscaling of a global 50 km model grid to a regional 10 km model grid 60 

(Evans et al., 2014; Nishant et al., 2021). Climate models represent the distribution of weather and as such, comparisons 

between climate model predictionsprojections and historical measurements are possible by comparing their distributions but 

not by comparing specific historical events. Comparing distributions requires a balance between a measurement and model 

record long enough for such distributions to be appropriately defined while being short enough to limit non-stationary impacts 
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from the changing climate. For parameters such as daily temperature or average rainfall, a 20-year period is suitable given 65 

there are many rainfall events per year and every day has a maximum temperature (near continuous variable). For parameters 

with rarer occurrences, such as floodplain inundation, defining their distribution becomes increasingly more marginal. For 

example, defining changes in flood inundation that is exceeded every 100 years using a 20-year simulation period comes with 

considerable uncertainty. However, we may be able to usefully compare relevant measurements and model 

predictionsprojections for more frequent events, such as the annual flood hazard classes. 70 

 

Recent work investigating projected changes in flood risk under plausible climate futures includes Shrestha and Lohpaisankrit 

(2017) who forced a rainfall runoff model to estimate changes in discharges in the streamwise direction, allowing evaluation 

of changes in future risk. Moreover, Janizadeh et al. (2021) trained a machine learning model to convert basin geometry and 

rainfall into risk, which was used with climate projections to evaluate future risk changes. Finally, Ryu et al. (2022) analysed 75 

adjusted rainfall projections using flood frequency methods to assess risk changes at the basin level. The method here seeks to 

extend these by using a physics-based model to convert runoff into spatially explicit water surface levels and speeds across the 

entire floodplain and throughout the entire climate projection period. This objective overcomes issues around data poor regions 

(i.e., where machine learning methods are not possible), provides flood projections at consistent spatial and temporal 

resolutions across the full extents of the model (both streamwise and cross-stream), and permits application to river systems 80 

with complex hydraulics and discharge patterns (e.g. multiple and parallel channels) which rainfall-runoff models are unable 

to reasonably simulate. 

 

The purpose of this paper is to describe the successful application of a modelling framework developed to convert climate 

model projections to hydrodynamic outputs, which were then used to assess future changes to present-day regional flood 85 

hazard. We demonstrate the utility of the approach by applying it to the Gwydir River, a large valley-floodplain system located 

in the northern Murray-Darling Basin, Australia. After reviewing candidate numerical models, new methods for driving a 

ROR-style hydrologyhydrological flow-routing model and the LISFLOOD-FP hydraulic model with climate projections are 

described, driven byfor rainfall-runoff (or excess rainfall). NARCliM1.5 climate projections are used as an example. Rather 

than using the climate projections to determine key or design events for simulation, we simulate river floodplain hydraulics 90 

for the full climate projection time series. Projected future regional flood inundation extents and the spatial distribution of 

flood hazard are presented for two global emission pathways (RCP4.5 and RCP8.5). Challenges associated with spatial and 

temporal sparsity in floodplain inundation and applying conventional extreme value distributions to evaluate future flood 

exceedance probabilities are discussed. These confound efforts to answer the question – will present-day flood hazard change 

under future climate projections – and we provide a new approach to answering that question. 95 
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2 Methods 

The objectives in converting climate model outputs to inundation estimates were: i) develop a method for manipulating 

NARCliM 1.5 hydrological variables for application in rainfall-runoff routing models that use rainfall less that used by 

infiltration, ii) review the literature to identify potential flood models suited to application over large spatial and temporal 

scales, and iii) identify the most suitable flood model and apply to a large river valley. To successfully achieve these objectives, 100 

a series of principles were adopted to guide an iterative development of the model framework which was then stress-tested on 

the Gwydir River floodplain, New South Wales (NSW), Australia. These principles, in no particular order are: i) use NARCliM 

1.5 outputs to force models suitable for flood inundation estimation; ii) maximise benefit from inundation estimates by 

simulating the entire NARCliM 1.5 set of projections; iii) use open datasets, methods, models and mostly automatic 

approaches; iv) design the framework for implementation on high-performance computing resources; and v) the historical 105 

period, constrained by measurements, determines parameter values applied to the forecast period. The modelling framework 

that achieves our aim (Figure 1) and is consistent with these principles constrains both hydrologic and hydraulic models, takes 

boundary conditions from climate model outputs, simulates them entirely by breaking them into four year windows with two 

month overlap for warming up the hydraulic model, develops initial conditions based on low flow conditions, simulated in 

parallel on high performance computing resources and has data management to limit the file size associated with saving 110 

inundation depth and speed by storing the daily maximum inundated depth and associated flow speed. The various segments 

are then combined (removing the two months overlap) and stored in compressed netCDF files 

(https://doi.org/10.48610/d7b1654). The hydrologic and hydraulic methods used in this framework are discussed in Sect. 2.1 

and 2.2. 

2.1 Evaluation of climate model outputs and hydrological model theory 115 

The NARCliM 1.5 climate model ensemble includes three global climate models (CCCma-CanESM2, CSIRO-BOM-ACCESS 

1-0 and 1-3) with two regional climate models (UNSW-WRF360 J and K) resulting in a set of six model combinations (Nishant 

et al., 2021). Projections for  two epochs (historical 19501951 to 2005 and projections 2006 to 20992100) using two global 

emission pathway scenarios (RCP 4.5 and 8.5) are available, and include hourly variables of precipitation and total run off, 

and bias-corrected daily precipitation.  (corrected to observed precipitation distribution; see e.g. Evans et al., 2021). While 120 

NARCliM 1.0 selected CMIP3 GCMs, NARCliM 1.5 selected CMIP5 GCMs from the unsampled space within NARCliM 

1.0, all with similar temperature increases but spanning the range of precipitation changes from no change to moderate decrease 

to large decrease (Nishant et al., 2021).  

 

NARCliM 1.5 was applied by matching, as much as possible, measured and modelled climate statistics. For catchment runoff, 125 

this was done at Gravesend on the Gwydir River, where the measured distribution of annual maximum discharge was used to 

calibrate the hydrologic model. Gravesend (figure 2) is the last gauging station before the conversion between water level and 
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river flow ratedischarge becomes significantly uncertain (tailwater and inundation feedbacks leading to significant hysteresis). 

Each of the historical river flowdischarge projections were calibrated using the measured distribution of annual maximum 

discharge at Gravesend. The hydrologic model used the excess precipitation (excess rainfall) obtained from NARCliM 1.5 130 

(‘total run off’ code named mrro) in the following manner. The bias corrected daily rainfall was used to bias correct daily total 

run off (or excess daily rainfall), and this was interpolated onto an hourly timeframe using the NARCliM 1.5 hourly 

precipitation for shape. That is 

daily runoff corrected = daily runoff ×
bias corrected daily precipitation

daily precipitation
 (1) 

and 135 

hourly runoff on day 𝑡 =  daily runoff corrected on day 𝑡 ×
ℎ𝑜𝑢𝑟𝑙𝑦 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑜𝑛 𝑑𝑎𝑦 𝑡

∑ ℎ𝑜𝑢𝑟𝑙𝑦 𝑟𝑎𝑖𝑛𝑓𝑎𝑙 𝑜𝑛 𝑑𝑎𝑦 𝑡𝑑𝑎𝑦 𝑡
  (2) 

 

where the last term in equation (2) ranges from zero to unity. 

The excess precipitation was routed through catchment models following the method proposed by Mein et al. (1974), which 

is referred to as a ROR-style model with two free parameters, m and k, that are nominally for flowdischarge shape and storage, 140 

but experience with this model indicates their theoretical basis is weak and they are used as free calibration parameters. The 

external catchments draining to the hydraulic model (figure 2) come from Gwydir River, Boggy Creek, Waterloo Creek, Curley 

Creek, Tycannah Creek, Mosquito Creek, North Creek and un-named watershed. Each catchment was broken into between 

five and 13 sub-catchments, yielding an outflow suitable for use in the hydraulic model. The hydraulic model covers a 

significant area (9,621 km2) and consequently, runoff onto the hydraulic model is included by associating sub-catchments with 145 

model grid locations. The climate projections have more than one grid cell within sub-catchments in many places, with these 

contributions reduced by the area of each cell from the climate projection overlaps each sub-catchment, with these 

contributions allocated in proportion to the grid cell overlap on the sub-catchment. 

Comparisons with measurements of river flowsdischarge at Gravesend, on a distribution basis, indicated that using NARCliM 

1.5 to provide excess rainfall and a ROR-style runoff routing model with no losses (initial or continuing) leads to overestimates 150 

of frequent events and underestimates of infrequent events. This indicates that there is not enough loss of water volume during 

lighter rainfall events compared to heavier rainfall events with in NARCliM 1.5. There are many on-farm water storages not 

included in the NARCliM 1.5 or catchment hydrologic models used to this point. To include them, we extended the hydrology 

models by adjusting the excess precipitation before it is used for runoff routing. The excess precipitation was routed through 

a storage of maximum depth hmax, a surface area of fA (where A is the catchment area) while water within that storage was 155 

evaporated using monthly mean of measured evaporation rates and a usage rate to model farm use. The storages were initially 

started at half full. If the storage does not overflow during a time step, there will be no excess rainfall. If the storage does 

overflow, then there will be excess rainfall, Pr, to yield runoff. Mathematically, if h is the depth of water in the storage, then it 

will change by 

∆ℎ𝑓 = (𝑃 − (𝑒 + 𝑢)𝑓) × ∆𝑡  (3) 160 
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where P is the NARCliM 1.5 excess precipitation, e and u are evaporation and usage rates and Δt is the time increment. This 

adjustment was applied as follows: 

ℎ(𝑡)𝑓 + ∆ℎ𝑓 > ℎ𝑚𝑎𝑥𝑓              {
𝑃𝑟 =

𝑓ℎ+∆ℎ𝑓−ℎ𝑚𝑎𝑥𝑓

∆𝑡

ℎ(𝑡 + ∆𝑡)𝑓 = ℎ𝑚𝑎𝑥𝑓
  

0 ≤ ℎ(𝑡)𝑓 + ∆ℎ𝑓 ≤ ℎ𝑚𝑎𝑥𝑓     {
𝑃𝑟 = 0

ℎ(𝑡 + ∆𝑡)𝑓 = ℎ(𝑡)𝑓 + ∆ℎ𝑓
  (4) 

ℎ(𝑡)𝑓 + ∆ℎ𝑓 < 0                       {
𝑃𝑟 = 0

ℎ(𝑡 + ∆𝑡)𝑓 = 0
 165 

and if f = 0, then the model simplifies to Pr = P. 

2.2 Selection of hydraulic theory and code 

Climate change evaluation at regional scale or larger for flooding hazard and other applications requires fast and accurate 

enough flood modelling. This review seeks to identify hydrodynamic models with proven track records to achieve this 

evaluation in a timely manner with limited human resources (automated processes). This assessment is separated into physics-170 

based models and rules-based models. 

Physics-based models typically follow Newton II and in particular, the shallow water equation or dynamic wave equation, 

applied in either one or two horizontal dimensions (e.g., 1D or 2DH), to solve for temporal and spatial variation in flow depth 

and speed. There are several well-known approximations of the dynamic wave equation, with kinematic, diffusive, and partial 

inertial wave (or long wave) approximations possibly the best known. All physically based methods except dynamic wave 175 

exclude convective acceleration and hence, momentum changes required to change flow direction. Consequently, forces from 

water surface gradients required to get flow through geometry changes (road embankments across a floodplain) is reduced 

when compared to including convective acceleration. These terms have been found essential in ocean models where mean 

water level gradients are exceedingly small and flow mass exceedingly large (mean ocean depth is ca 4 km). 

There are too many examples of successful dynamic wave application in two dimensions or combination of one and two 180 

dimensions to list them all, however the following subset (e.g., Montanari et al., 2009; Ahmadisharaf et al., 2018) highlight 

methods aimed at accelerating applications for flood management including Graphics Processing Unit implementations 

through to careful use of 1D/2DH modelling (resulting in global scale continuous simulations). This approach remains the 

benchmark theory for flood modelling. 

Examples of successfully applied partial inertial wave models are numerous (e.g., Rajib et al., 2020; Sampson et al., 2015; 185 

Bates et al., 2010) and this approach has a proven track record of: statistical evaluations, hazard mapping or Monte Carlo Risk 

evaluations including damage estimations with velocity and depth contributions (e.g., Hoch et al., 2017; Neal et al., 2013), 

large spatial and temporal scale assessments where channels were sub-grid features (O'loughlin et al., 2020; Schumann et al., 

2013), multi-channel assessments (Altenau et al., 2017), temporal scales from minutes to years (e.g., O'loughlin et al., 2020; 

Neal et al., 2011) and on to geological scales (Coulthard et al., 2013), coastal storm surge inundation (Lewis et al., 2011), 190 
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coastal tidal dynamics (Skinner et al., 2015), flooding in urban, rural, remote and limited data applications (e.g., Amarnath et 

al., 2015; Bates et al., 2010; Fewtrell et al., 2011; O'loughlin et al., 2020). While there are notes of caution with this approach 

at large scale (Schumann et al., 2012) and other authors advocating for the diffusive wave (Dottori and Todini, 2013) over 

partial inertial wave, it has the best track record after the dynamic wave equation while being exceptionally quick. The partial 

inertial wave equation has a theoretical limit in that at either high velocity (Froude number exceeding 1) or low frictional force, 195 

the momentum equation becomes unstable. This well-known issue has been noted in the recent literature with respect to 

LISFLOOD.  

The diffusive wave equation has a long track record dating back to when hydraulic modelling using numerical methods in two 

dimensions started in the 1970’s. However, in more recent times where it has been revisited for its light computing load (e.g., 

Mason et al., 2009; Apel et al., 2009; De Roo et al., 2000), it has been the reason for shifting to partial inertial wave equation 200 

(Neal et al., 2012), with only one reference found arguing diffusion over partial inertial wave (Dottori and Todini, 2013) for 

accelerated flood assessments. Further, there is evidence that diffusive wave does not handle urban environments (Costabile 

et al., 2017) but away from these areas and with enhancements, it is accurate enough (Jamieson et al., 2012). The diffusive 

wave model links forces to motion exclusively through the friction model whereas the partial inertia wave model has a 

combination of friction and temporal acceleration. This fixed link through the adopted friction model means uncertainties in 205 

the friction model and spatial and temporal parameter variations are more significant in diffusive wave estimations. As the 

earlier engineers/scientists knew, applying diffusive wave theory to subcritical flow on a two-dimensional horizontal grid is 

often numerically unstable leading to the checkerboard predictions. While some recent authors were seeking to address this 

numerical stability issue using careful spatial and temporal selections and flux gradient limiters, ultimately the decision to 

include the additional temporal acceleration (inertial) term resolved their numerical issues almost entirely. From the balance 210 

of evidence and theorical arguments, it is proposed that diffusive wave is an unacceptable approach when trading-off between 

accuracy and speed. 

The kinematic wave equation has a long track record in modelling supercritical flows (Miller, 1984) with more limited 

application to subcritical flow modelling of prismatic channels (Zheng et al., 2020). When the continuity equation is combined 

with the kinematic wave equation, predictions exclude flow attenuation and actually increase flow ratesdischarge and water 215 

surface slopes (Miller, 1984, page 18). In the case of prismatic channels, the water depth and flow ratedischarge are fixed or 

Q = Q(h), where Q is flow ratedischarge (Henderson, 1966, page 367) and yet numerical models of prismatic channels rarely 

achieve this and degrade to Q increasing with both time (t) and position. Miller (1984, page 20) further indicates that for a 

successful kinematic wave application, ad hoc modifications in how this equation is solved is required and then only on the 

rising limb. Consequently, large errors are expected when using kinematic wave equation in non-prismatic channel systems. 220 

The balance of evidence and theorical arguments indicates that kinematic wave equation is an unacceptable approach when 

trading-off between accuracy and speed. 

The impact cell method is based on rules around how floodplains fill with water during flooding either over defences or by 

defence failure. They use a dynamic wave equation one dimensional model to drive the floodplain filling and while they appear 
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to be temporal, they are quasi-steady (Lhomme et al., 2009; Gouldby et al., 2008; Hall et al., 2003). The major drawback is 225 

model development in that it involves a combination of physical and probabilistic input, which have no apparent automatic 

techniques for their estimation. There is a lack of track record around estimating velocities from the water level gradients this 

style of model predicts. 

The cellular automata method is based on a set of rules that mimic continuity and kinematic limits, which from limited testing 

(e.g., Jamali et al., 2019; Guidolin et al., 2016; Nicholas et al., 2006) is able to simulate urban areas, multi-channel systems, 230 

and hydraulic structures within a gridded domain. Various versions do include storage attenuation. There is, however, no track 

record around estimating velocities from the water level gradients this style of model predicts. 

There are other rules-based methods including rating curve GIS models (e.g., Zheng et al., 2018; Apel et al., 2008) through to 

dynamic and rule based combined models (Bernini and Franchini, 2013; Jamieson et al., 2012). These have not been considered 

as they exclude flow routing. 235 

The trade-off between accuracy and computational effort and seeking flood hazard information thereby requiring reasonable 

flow speed estimates, leads to the selection of partial inertial wave equation (LISFLOOD) and the cellular automata 

(WCAD2D). These two hydraulic models were testedcompared in both steady and unsteady test and evaluated for speed and. 

While estimates of flood levels from the two models were similar, LISFLOOD was found to be 2 to 2.5 times faster when 

tested on large floodplains such as the Gwydir River. This led to the selection of LISFLOOD. 240 

2.3 Implementation of LISFLOOD hydraulic model  

The LISFLOOD model was limited to the region covering the Gywdir River Floodplain of 8,100 km2. LISFLOOD could have 

been applied across the entire catchment, removing the need for including a hydrology model. While this may be useful in 

particular situations, for the present case study that would require a LISFLOOD model grid covering 2.8 times more area, 

unnecessarily increasing the burden on computational resources. Consequently, the ROR-style hydrology model with flow 245 

routing provides a trade-off between computational resources and framework complexity. 

Surface roughness (using Manning's n) for the LISFLOOD model developed here was obtained from existing calibrated 

hydraulic models for the Gwydir River. There are three models forming the NSW Department of Planning and Environment 

Gwydir River hydraulic model with 1D links (channel links without hydraulic structures) and 2D grids with resolutions from 

20 m to 50 m using MIKE FLOOD (Anonymous, 2015) (NSW Department of Primary Industries, Water 2015). After balancing 250 

resolution with file size and run times, a 100 m resolution was selected. These three models were combined to develop the 100 

m DEM with extents to enclose Binniguy to Moree, Moree to Barwon and Thalaba Creek MIKE FLOOD hydraulic models 

(colour shaded area in figure 2). The origin was set so that the 100 m DEM collocated with every second grid point of the 

Moree to Barwon model. Crest features (usually roads, but any feature that could either act as a weir or dam that changes 

flowdischarge distributions) were extracted out of Binniguy to Moree, Moree to Barwon and Thalaba Creek DEMs, and put 255 

onto the 100 m DEM. This was achieved in a two-step process, first a smooth version of each existing DEM was subtracted 

from the new 100 m DEM and differences below 0.2 m removed. The resulting features showed crests as well as other 
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differences related to waterways. The crest features alignments were then determined, and the crests extracted. Waterways 

removed from Binniguy to Moree were put back in using survey DEM, missing areas were filled in using Shuttle Radar 

Topography Mission data and finally, streams were hydraulically connected (figure 2). 260 

The three hydraulic models forming the Gwydir River Hydraulic model by NSW government was used to constrain (to 

previously calibrated hydraulic models) the LISFLOOD model, using their 2012 calibration runs, performed in MIKE FLOOD. 

There are complications in that those NSW government models included 1D elements, had finer resolution (20 m and 50 m) 

and were separated into three domains, one run in steady state (southern region) and the other two using dynamic simulations 

with varying simulation periods; compared with the one encompassing LISFLOOD model, which had a coarser resolution 265 

(100 m) and no 1D elements. To rationalise these comparisons, locations where the NSW government models had reported 

inundation were used to constrain the LISFLOOD model. The first calibration series ran 100 incremental model topographies 

from largest main channels possible from survey to no channels, and inflows taken directly from the NSW government models. 

The channel geometry was selected to obtain the best match to these calibrated models. 

2.4 Climate Projection to flood simulations 270 

NARCliM 1.5 includes six historical projections and 12 future projections providing 18 periods for simulating, covering a total 

physical time of 1,470 years. Such simulations require high performance resources and careful selection of outputs and model 

resolution to ensure simulations are obtained within a reasonable timeframe. Within storage resources available, output from 

LISFLOOD was hourly and then postprocessed to daily information of maximum inundation depth and the flow speed at that 

maximum depth. This, with several storage techniques to minimise file sizes (netCDF with compression and finite data 275 

resolution), reduced required storage from ca 10 TB to 100 GB. Applications involving steeper catchments and floodplains 

may warrant storage of hourly rather than daily outputs. To further enhance model throughput, simulations were broken into 

four-year segments, with an additional two-month warmup period using initial conditions taken from a low flow simulation 

developed from measurements and average evaporation. The two-month warmup period was confirmed to not impact 

predictionsprojections by comparing predictionsprojections from the end of a segment with the predictionsprojections (after 280 

warmup) at the start of the following segment. The model grid was selected after initial testing of four resolutions of 50 m, 

75 m, 100 m and 150 m. These tests indicated that simulation times, from finest to coarsest grids was 55, 16, 7 and 2.5 days 

per decade respectively, while mean biases from the 50 m resolution were 1 cm, 5 cm and 12 cm for the 75 m, 100 m and 

150 m resolutions grids. The 100 m grid was a reasonable balance between output size, simulation speed and model 

performance for resources available. That is, a reasonable balance between loss of accuracy cf 50 m and 75 m resolution when 285 

compared with eight- and two-fold decrease in computational resources. The LISFLOOD version implemented was the latest 

available at the time (February 2021), compiled with the 2018 version of Intel C++ and ran on CentOS version 7. These 

simulations took several weeks using high performance computing resources where between 160 to 480 threads were available. 
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2.5 Flood hazard classes 

The flood hazard classification shown in figure 3 (Smith et al. (2014b) is recommended for use in emergency planning and 290 

management within Australia (Ball et al., 2019) and has been applied here. The classification has six classes, starting with the 

safe classification H1 (generally safe for vehicles, people and buildings) through to H6 (unsafe for vehicles and people and all 

building types considered vulnerable to failure).  In applying these flood hazard classifications, one additional hazard 

classification was added to capture flood hazards exceeding the maximum class (H6). Additionally, regions with no inundated 

areas over the analysis period were assigned to the safe hazard class H1. 295 

2.6 Bernoulli's trial to assess flood hazard class changes 

The assessment of climate changes on flood hazard classification had to deal with a range of climate model projections 

spanning dry through to wet which have significantly different flood projections and associated flood hazards. Consequently, 

each flood hazard classification was treated separately, and assessments were done on an annual basis for a historical epoch of 

1980 to 1999, and projected epochs of 2020-2039 for near-term, 2050-2069 medium-term and 2080-2099 for long-term 300 

comparisons. These future epochs correspond to those typically used for near, mid and far future horizons in government 

planning. The occurrences of each flood hazard classification are then the number of times it occurs divided by 20, the number 

of years within these epochs, which is a maximum likelihood estimate of the occurrence probability given 20 independent 

binomial (Bernoulli's) trials. Once occurrence probabilities are known for each epoch in each flood projection, they are 

averaged or ensembled across the flood projections from the six climate model combinations before estimating changes 305 

between epochs. 

3 Results 

3.1 Calibration of hydrologic model 

The hydrologic model calibration to annual maximum discharge at Gravesend (figure 4) was achieved using the same m 

(nominally stream shape, which is expected) and different kc (channel storages) and the same small catchment storage 310 

parameters (f = 0.0005, hmax = 0.2 m and u = 80 mm/day) across the six historical climate projections available in NARCliM 

1.5. Uncertainty remains with the adopted calibration, which is minimised for inundation hazard assessment by focusing 

calibration on rarer events. 

3.2 Calibration of hydraulic model 

The hydraulic model, LISFLOOD, was calibrated by varying the main channel depths until it matched previous models, MIKE 315 

FLOOD, that had been calibrated to historical floods. The hydraulic model with channel depth at 19% of the maximum channel 

depth had mean flood level differences of less than 1 mm (figure 5, top left panel) while also being near the lowest standard 
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deviation of flood level difference. As LISFLOOD and MIKE FLOOD models had different resolutions and consequently 

different ground surface elevations, comparing depths bring in two changes, one related to hydraulic performance and another 

related to ground surface elevation interpolation differences (figure 5, bottom left panel). Alternatively, comparing water 320 

surface levels (figure 5, top right panel) removes this ground surface elevation interpolation aspect, however, for models with 

large vertical variation (e.g., Gwydir River has 100 m vertical change over its 167 km length), this vertical variation overpowers 

water level differences when plotted. Nevertheless, comparing differences of both depth and water surface level together with 

an overall water level difference map (figure 5, bottom right panel), provides a visual assessment of model calibration. 

3.3 Flood hazard classification and changes under RCP 4.5 and RCP 8.5 325 

The occurrence probabilities under both RCP 4.5 and 8.5 (figure 6, table S1) for flood hazard classification H1 (generally safe 

for people, vehicles and buildings) are predicted to increase while higher hazard classifications (generally dangerous for 

people, vehicles and buildings) are predicted to reduce in the long-term (comparing 2080—2099 with 1980—1999) for the 

NARCliM 1.5 ensemble. Within this ensemble, the H1 occurrence probability changes for RCP 4.5 vary from no change to an 

increase of 0.3 and for the RCP 8.5 increases from 0.06 to 0.39 (figures S1-S6), indicating high likelihood of a reduction in 330 

flood hazard at the valley scale. This longer-term assessment outcome does not apply for the near- or medium-term (2020—

2039 or 2050—2069, table S1). The change expected in the near-term are very slight (increase in H1 by 0.01 to 0.02) but the 

ensemble includes projections where the H1 occurrence probability is reduced by 0.09. These decreases in H1 come with 

increases in H2 through to H4 of between 0.03 to 0.13. The medium-term comparison period is a transition between the other 

two with RCP 8.5 always increasing H1 and decreasing H2 through to H4 and RCP 4.5 having both increases and decreases 335 

of H1 through to H4 within the ensemble. 

4 Discussion 

The increases in H1 occurrence coupled with decreases in H2—H4 (figure 6, table S1 and figures S1-S6) indicates that flood 

hazard is decreasing in the long term under projected climate changes (all cases in the ensemble and both RCP 4.5 and 8.5) in 

the region modelled (figure 2). The near-term changes are more uncertain as there are cases in the ensemble that both increase 340 

and decrease flood hazard (table S1). Comparing near-, medium-, and long-term, RCP 8.5 shows more certain decrease in 

flood hazard compared with RCP 4.5, however, in both scenarios, the most likely outcome is a decrease in flood hazard with 

all members of the ensemble forecasting this. 

 

The inference that flood hazard is decreasing in this region with projected climate change comes with several key limitations. 345 

Hydrology models were calibrated to best represent infrequent events across the historical period. Consequently, these models 

overestimate the catchment runoff from frequent events by different amounts for each member of the ensemble (figure 4). 

These differences come from the climate models themselves where the rainfall runoff is estimated using different approaches 
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leading to different outcomes across the one historical period. That is, the distribution of runoff of each member of the ensemble 

for the historical period, in the absence of epistemic uncertainty, should be similar. Whereas these distributions are different 350 

and consequently, add to the uncertainty of inundation depth and speed projections, both used to assess flood hazards. The 

hydraulic model, which was constrained reasonably given the differences between resolution and modelling approaches (figure 

5), is less an issue compared with hydrologic uncertainty. However, there is still differences between estimates (figure 5) from 

various flood projections that may lead to different conclusions spatially. Finally, when estimating changes in flood hazard, 

this would usually involve estimates of flood hazard under extreme conditions. However, the assessment provided used an 355 

alternative method for reasons discussed in the following paragraphs. 

 

Conventional extreme value analysis for flood hazard assessments involves establishing a link between flow discharges and 

exceedance probabilities. This relationship then can be used to assign exceedance probabilities either to historical events or 

synthetic events that represent historical events, which are simulated, and the spatially varied maximum flood hazard obtained. 360 

This approach would work for systems that are driven by one major inflow and have flooded area relatively small compared 

to the rainfall systems that excite flooding. However, the floodplain being assessed has a large catchment area compared to the 

spatial size of rainfall events and while it has one major inflow, there are several others, and those combined with the floodplain 

itself, makes breaking continuous simulations into a series of events where the probability is constant across the floodplain 

inundated area, a subjective (or arbitrary) assessment. 365 

 

Another issue in using conventional extreme value analysis for flood hazard assessments is the balance between projection 

period and ability to establish reasonable extreme value estimates. For example, one can do a simple numerical experiment in 

which the two distributions are constructed with a fixed increase in all extremes (simplest case), and then draw one sample, 

the estimated extreme values, obtained from fitting to this sample, can be both an increase or decrease compared with that 370 

assumed and this is due to sampling error when the analysis period is smaller than the extreme value return period being 

estimated. To robustly estimate an extreme value, using a one-off sample, the analysis period usually needs to be many times 

its return period (rule-of-thumb, 10 or more). Without this, the sampling error overwhelms any changes and thus any changes 

that are within the confidence limits are statistically insignificant. 

 375 

The final issue in using conventional extreme value analysis comes from the differences in inundation extents and frequency 

across the climate model predictionsprojections that span dry through to wet conditions. This led to significant areas which 

were inundated in the wettest projections that remained dry in the driest projection. Consequently, the members within the 

ensemble would vary spatially, making uncertainties difficult to understand and communicate.  

 380 

Applying extreme value theory to individual grid inundation flood hazard (i.e., linking exceedance probability directly to flood 

hazard, after applying either block maxima or peak over threshold approach on independent and identical distributed events to 
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determine extreme events), as opposed to the conventional method of linking probabilities through event peak discharge, is 

that the number of extreme events changes from many events along deep watercourses to approaching zero near the edge of 

maximum inundation. This variation of number of extreme events lead to reasonably consistent spatial predictionsprojections 385 

along deep watercourses to inconsistent spatial predictionsprojections across the floodplain werewhere number of extreme 

events approaches zero at the edge of inundation. These spatially inconsistent predictionsprojections were obtained for a range 

of extreme value approaches and fitting methods. Furthermore, near the edge of maximum inundation, the extreme value 

models themselves broke down as the number of events approaches zero. The net result being very limited consistency in 

linking exceedance probabilities to flood hazard across the floodplains, particularly near the edge of maximum inundation. 390 

 

Our approach (sections 2.5 and 2.6), where we estimate changes in annual probability of occurrence of flood hazard classes 

overcomes issues with conventional and grid based extreme value analysis.  

5 Summary 

A modelling framework for estimating projected flood hazards from regional climate model projections has been presented 395 

including a different approach to assessing flood hazard changes. The modelling framework was applied to Gwydir River 

(Australia) using New South Wales and Australian Capital Territory Regional Climate Modelling version 1.5 projections with 

computationally efficient hydrologic and hydraulic models. This included six historical and 12 future regional climate 

projections occupying the plausible future climate space with similar temperature and drier conditions. The simulations were 

continuous and totalled 1,470 years, requiring high-performance computing resources for timely completion. The climate 400 

projections included spatially varied rainfall runoff, allowing the implementation of a hydrological modelling approach that 

only required flow routing as soil dynamics were included in the regional climate models. The hydrology model was 

constrained by measured distributions of runoff. The hydraulic modelling approach was selected after an extensive evaluation 

and testing phase of modelling types with proven track records of computational efficiency, leading to the selection of the 

partial inertial wave equation as implemented in LISFLOOD over the other family of efficient approaches under the cellular 405 

automata umbrella. This hydraulic model was constrained by modifying the main channel geometry until it matched more 

detailed and calibrated hydraulic models using the dynamic wave equation. The simulations resulted in spatially varied daily 

maximum flow depth and flow speeds at those depths across the 18 regional climate projections, allowing flood hazard 

assessments. 

 410 

Changes in flooding hazard were assessed by estimating changes in the annual probability of occurrence of a range of flood 

hazard classes, with the first class, H1, being a safe class and all other classes having various levels of flooding hazard. This 

approach was taken to overcome several barriers in using conventional flood hazard assessment techniques where flooding 

hazards are estimated at various extreme values. These barriers included variable number of hazard events across the 
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floodplain, the ability to determine an extreme value where the underlying processes are changing through to regional climate 415 

projections ranging from dry to wet leading to significant differences in inundation extents. Changes in annual probability of 

occurrence in the long-term are consistently, across the ensemble for both RCP 4.5 and 8.5, indicating a reduction of flooding 

hazard across Gwydir River region modelled. for the climate futures evaluated. This was demonstrated as increased probability 

of occurrence of the safe class (H1) and decreased probability in all the unsafe classes. The outcomes are more mixed in the 

near-term, with the ensemble indicating minor decreases in flooding hazard albeit with ensemble members having both 420 

increases and decreases. The medium-term projections are transitional between the near- and long-term, however, there 

remains ensemble members with increased flooding hazard.  
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Figure 1: Proposed framework for converting climate model outputs to flood model outputs. 
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Figure 2 Catchments and waterways flowing through the Gwydir Valley with the location within New South Wales (NSW), Australia 

shown in the bottom left inserts. Hydraulic model extents shown by colour shaded area representing ground elevation in metres 

above mean sea level (colour bar) with the main source of inflows from the Gwydir River, which has a gauging station at Gravesend 605 
(●). The 133 watershed boundaries within the hydraulic model and sub-catchments within each waterway not shown for clarity. The 

white areas within the hydraulic model grid are areas surrounded by levees and are unavailable to convey water. 
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Figure 3 A flood hazard classification scheme from H1 (safe) to H6 (dangerous) recommended for use in Australia. Flood hazard 610 
class H7 is additional to the recommended classifications. 
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Figure 4 Comparisons between modelled discharge at Gravesend (figure 2) with measurements for all global (rows) and regional 

(columns) climate model combinations. Model discharges includes additional evaporation via local storages (f = 0.0005, hmax = 0.2 m 615 
and u = 80 mm/day). Hydrology model parameter m = 0.5 for all cases and kc is indicated in each panel. The black line indicates 

perfect agreement, the solid-coloured line and corresponding shaded region are mean and 95% confidence of measured distribution 

when resampled to compare with modelled discharges. Difference colours indicate different kc. 
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Figure 5 Gwydir River hydraulic model (LISFLOOD) calibration to existing MIKE FLOOD hydraulic models by NSW 

Environment & Heritage. Top left panel, selection of schematised channel depth (zero means no channels and 100% means largest 

main channels possible from survey) with the black lines showing selected channel depth. Top right panel, a comparison between 

flood levels across the entire model (blue dots) with perfect fit (black line). Bottom left panel, a comparison between flood depth 625 
across the entire model. Bottom right, difference map between models. 
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Figure 6 Gwydir Valley Flood hazard historical (1980—1999) classification occurrences and their changes under RCP 4.5 and RCP 630 
8.5 (2080—2099) for the NARCliM 1.5 ensemble. The mean of occurrence probability changes, δ, shown in each panel. For brevity, 

flood hazard historical classifications H5 to H7 are not shown as they are limited to within river and creek channels. 

 

 


