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Abstract 15 

Although the generally high fertility of volcanic soils is often seen as an opportunity, short-16 

term consequences of eruptions on natural and cultivated vegetation are likely to be negative. 17 

The empirical knowledge obtained from post-event impact assessments provides crucial 18 

insights into the range of parameters controlling impact and recovery of vegetation, but their 19 

limited coverage in time and space offers a limited sample of all possible eruptive and 20 

environmental conditions. Consequently, vegetation vulnerability remains largely 21 

unconstrained, thus impeding quantitative risk analyses.  22 

Here, we explore how cloud-based big Earth Observation data, remote sensing and interpretable 23 

machine learning (ML) can provide a large-scale alternative to identify the nature of, and infer 24 

relationships between, drivers controlling vegetation impact and recovery. We present a 25 

methodology developed using Google Earth Engine to systematically revisit the impact of past 26 



2 

eruptions and constrain critical hazard and vulnerability parameters. Its application to the 27 

impact associated with the tephra fallout from the 2011 eruption of Cordón Caulle volcano 28 

(Chile) reveals its ability to capture different impact states as a function of hazard and 29 

environmental parameters and highlights feedbacks and thresholds controlling impact and 30 

recovery of both natural and cultivated vegetation. We therefore conclude that big EO data and 31 

machine learning complement existing impact datasets and open the way to a new type of 32 

dynamic and large-scale vulnerability models. 33 

1. Introduction 34 

In 2015, more than 8% of the world’s population lived within 100 km of a volcano that had a 35 

significant eruption during the Holocene (Freire et al., 2019). Current trends indicate that this 36 

exposure will increase with, for instance, the population in the two regions most exposed to 37 

volcanic hazards (i.e. SE Asia and Central America) having doubled since 1975 (Freire et al., 38 

2019). Supporting up to 10% of the world’s population, the fertility of volcanic soils partly 39 

contributes to these increasing demographics (Rampengan et al., 2016, Loughlin et al., 2018). 40 

However, farming systems remain subject to short-term negative impacts from volcanic hazards 41 

(Choumert and Phinélias, 2018; Few et al., 2017; Phillips et al., 2019; Sivarajan et al., 2017). 42 

Recent, modest-sized eruptions over the past decade have illustrated the large numbers of 43 

people affected by volcanic activity, and the losses associated with impacts to agriculture, in 44 

particular the crop subsector. For example, the 2020 VEI 4 (Volcanic Explosivity Index, 45 

Newhall and Self, 1982) eruption of Taal (Philippines) affected ~260,000 people and caused an 46 

estimated 63 million USD impact on agriculture (ReliefWeb, 2020), whereas the 2018 eruption 47 

of Fuego (Guatemala), also a VEI 4, indirectly affected ~1.7 million people and caused ~58 48 

million USD impact on agriculture (The World Bank, 2018). By comparison, a recent study by 49 

Jenkins et al (2022) estimates that on the island of Java in Indonesia only, a VEI 4 eruption has 50 
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a 50% probability of directly affecting ≥5 million people and ~700 km2 of crops, which 51 

increases to ~29 million people and 12,000 km2 of crops for an eruption of VEI 5. 52 

The Food and Agriculture Organisation (FAO, 2018) notes how the absence of a systematic 53 

and in-depth documentation of the impacts of natural hazards on agriculture prevents acquiring 54 

a global understanding of their long-term direct and indirect as well as tangible and intangible 55 

consequences. This is especially true for volcanic risk. Our current knowledge of the 56 

vulnerability of agriculture to volcanic hazards comes from a combination of opportunistic 57 

field-based post-event impact assessments (post-EIA; e.g., Blake et al., 2015; Le Pennec et al., 58 

2012; Magill et al., 2013; Phillips et al., 2019; Stewart et al., 2016; Wilson et al., 2011; Wilson 59 

et al., 2013) and rarer experimental studies (Hotes et al., 2004; Zobel et al., 2022; Ligot et al., 60 

in prep.). However, the generalisation of these empirical lessons is limited by two main aspects. 61 

Firstly, eruptions are relatively infrequent but display a wide range of behaviours, each of which 62 

has specific hazard, hazard characteristics, and impact mechanisms. Secondly, they occur over 63 

a large variety of climates and affect various vegetation types and agricultural practices. 64 

Damage/disruption states (DDS) derived from these data (e.g., Craig et al., 2021; Jenkins et al., 65 

2015; Table 1) have contributed to identifying critical components of vulnerability, but 66 

currently remain too limited in time and space to allow for the development of accurate and 67 

generalised risk models.  68 

Satellite-based Earth Observation (EO) data, on the other hand, provide a data acquisition 69 

framework that is both global in space and consistent in time. Missions such as Landsat, 70 

MODIS or Sentinel now provide decades of global EO data at constantly increasing spatial, 71 

temporal and spectral resolutions. Monitoring of the spectral characteristics of vegetation using 72 

these missions has been used to assess the recovery of vegetation after earthquakes (Chou et 73 

al., 2009; Lu et al., 2012) and droughts (Rembold et al., 2019) or to derive global-scale datasets 74 
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to estimate food security (Meroni et al., 2019). In volcanic contexts, satellite imagery has been 79 

used to capture the impact of eruptions on vegetation (de Rose et al., 2011; De Schutter et al., 80 

2015; Easdale and Bruzzone, 2018; Li et al., 2018; Marzen et al., 2011; Tortini et al., 2017). 81 

Although innovative, these attempts mostly relied on single case studies, simplified 82 

representations of hazards and never systematically investigated the range of factors controlling 83 

the impact and recovery. The dominant limitation behind this latter point is a data processing 84 

issue: despite the availability of an unprecedented variety of data through EO, this big EO data 85 

is associated with new challenges regarding data access, storage and processing. These 86 

challenges have prevented the systematic investigation of the nature and the relationship 87 

between the various processes controlling vulnerability and impact of vegetation to volcanic 88 

hazard from a global remote sensing perspective.  89 

However, the recent advent of cloud-based EO data storage and processing platforms paves the 90 

way for the development of methodologies that can exploit the full potential of big EO data 91 

(Giuliani et al., 2019; Gomes et al., 2020; Mahecha et al., 2020). Beyond providing a framework 92 

for data-intensive research, big EO data platforms contribute to systematically extracting and 93 

processing raw data into information and knowledge (Lehmann et al., 2020; Nativi et al., 2020; 94 

Rowley, 2007). Over the past five years, Google Earth Engine (GEE; Gorelick et al., 2017) has 95 

seen the highest increase in applications reported in the scientific literature. GEE provides 96 

access and a computing power to process big EO data enabling reproducible, global scale 97 

analyses (Tamiminia et al., 2020; Wang et al., 2020). GEE has been applied to aspects of natural 98 

vegetation dynamics (Campos-Taberner et al., 2018; Kong et al., 2019; Zhang et al., 2019), 99 

crop mapping and monitoring (Jin et al., 2019; Liu et al., 2020), land cover-land use 100 

classification (Khanal et al., 2020), food security (Poortinga et al., 2018; Rembold et al., 2019) 101 

and hazard mapping (Crowley et al., 2019; DeVries et al., 2020). In a volcanic context, the use 102 

of GEE remains limited to a few applications (e.g., Biass et al., 2021; Murphy et al., 2017). 103 
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We argue that the advent of open-access cloud-based EO data platforms combined with 107 

increasingly efficient empirical modelling approaches offer an unprecedented opportunity to 108 

investigate the fragility of vegetation, including agricultural crops, to diverse events like 109 

volcanic eruptions, where field studies spanning the large spatial and temporal impact spaces 110 

are typically not possible. Here we lay the foundation of a methodology to extract previously 111 

unexploited knowledge about the impact to, and recovery of, vegetation from past eruptions 112 

recorded in archives of multi-spectral images. In line with the challenges identified by the FAO 113 

(FAO, 2018), this methodology is designed to support a framework to i) unify indirect, global 114 

with direct, in situ observations of impacts and ii) develop an innovative type of evidence-115 

based, EO-driven vulnerability model. Both factors will improve our empirical knowledge 116 

around vegetation impacts and recovery following volcanic eruptions, supporting evidence-117 

based assessments for future eruptions. 118 

Here we focus on the impacts to vegetation caused by the widespread tephra fallout deposits 119 

from the 2011 eruption of Cordon Caulle volcano (Chile). The main steps include i) 120 

reconstructing the relevant hazard impact metrics of the associated tephra fallout deposit using 121 

dedicated numerical models, ii) mapping vegetation impact using time series of MODIS images 122 

retrieved from GEE, iii) identifying and processing selected datasets and variables on GEE to 123 

build up a big EO dataset of proxies capturing the dynamics of vulnerability in space and time, 124 

iv) developing a flexible machine learning (ML) algorithm trained to explain impact as a 125 

function of the covariates and v) interpreting the model’s result to investigate the nature, 126 

importance and relationships between the different hazard and vulnerability proxies using 127 

dedicated libraries. 128 

Table 1 : Damage/disruption states (DS1–5) as a function of the dry deposit thickness as hazard proxy identified 129 
by Jenkins et al., (2014) based on literature review. DDS assume that crops are in the growing stage. Hazard 130 
metrics include the median and interdecile deposit thicknesses inferred from expert judgement and empirical data. 131 
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 133 

 134 

Figure 1: Overview map of the study area. a Isopach (cm) from Dominguez and Baumann (personal 135 
communication) showing lines of equal thickness of the fallout deposit for the month of June 2011. Locations are 136 
those mentioned in Elissondo et al., (2016) as being affected by tephra fall. Background is © Google Maps 2022. 137 
Roads, locations and borders are from © OpenStreetMap contributors 2021. Distributed under the Open Data 138 
Commons Open Database License (ODbL) v1.0. b Mean yearly precipitation (mm) for the period 2006-2011 139 
inferred from ERA5. Note that these values differ from those presented in the text and in Elissondo et al., (2016) 140 
as ERA5 values represent averages over a model grid cell and time step. Background is the Köppen-Geiger climate 141 
classification of Beck et al., (2018). BWk - Arid, desert, cold arid, BSk - Arid, steppe, cold arid, Cfb - Warm 142 
temperate, fully humid, warm summer, Cfc - Warm temperate, fully humid, cool summer, Csb - Warm temperate, 143 
summer dry, warm summer, Csc - Warm temperate, summer dry, cool summer, Dsb - Snow, summer dry, warm 144 
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summer, Dsc - Snow, summer dry, cool summer, ET - Polar, polar tundra. c Landcover classes from the CGLS–147 
LC1000 dataset (Buchhorn et al., 2020). d Dominant soil types in the study area from the SoilGrid dataset (Hengl 148 
et al., 2017) based on the USDA soil taxonomy. All maps are projected using EPSG:32719. 149 

2. Background 150 

2.1. Impact of volcanic hazards on vegetation 151 

Explosive volcanic eruptions produce tephra, a generic term for pyroclasts originating from the 152 

fragmentation of parent magma, the fraction <2 mm diameter of which is referred to as ash. For 153 

sufficiently large eruptions, tephra deposits can alter the hydrology, vegetation cover and soil 154 

properties of entire regions, contributing to the perturbation of their ecosystems for months-155 

years (Major et al., 2016; Pierson et al., 2013; Zobel et al., 2022). Direct negative impacts on, 156 

and the ability of vegetation to recover from eruptions depends on complex interactions 157 

between biotic and abiotic parameters (Ayris and Delmelle, 2012; Arnalds, 2013). Biotic 158 

parameters include the type and composition of the vegetation, the biological legacy related to 159 

previous stresses and the phenological state of the plant at the time of eruption (Jenkins et al., 160 

2014a; Ligot et al., 2022). Abiotic parameters include climate (e.g. rainfall and temperature) 161 

and environmental setting (e.g. elevation, slope, orientation) (Crisafulli et al., 2015; Dale et al., 162 

2005). For crops, impacts also depend on access to technology and mitigation measures (Magill 163 

et al., 2013; Wilson et al., 2013a). Mechanisms of adverse effects of tephra on vegetation are 164 

various, including smothering and burial, breaking and abrasion, reduced photosynthesis, salt-165 

induced stress and limitation of pollination (Arnalds, 2013; Ayris and Delmelle, 2012; Blake et 166 

al., 2015). Critical hazard impact metrics therefore depend on the characteristics of the eruption 167 

(e.g., magnitude, intensity and style) and the properties of the deposit (i.e., thickness, grainsize 168 

distribution, content in water-soluble elements) (Cronin et al., 2014; Stewart et al., 2016).  169 
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2.2. Case study: The Puyehue–Cordón Caulle 2011 eruption 174 

On June 4 2011, a subplinian rhyolitic eruption started at Cordón Caulle volcano (CC; 40.525 175 

S, 72.16 W; Figure 1), part of the Puyehue–Cordón Caulle volcanic complex. The eruption 176 

began with a 24-30 h–long paroxysmal phase that gradually transitioned to low intensity tephra 177 

emissions lasting for several months (Pistolesi et al., 2015). Reported plume heights ranged 178 

from 9–12 km asl for the first 3–4 days, 4–9 km asl for the following week and <4 km asl after 179 

June 14 (Bonadonna et al., 2015; Collini et al., 2013). During the first week, westerly winds 180 

dispersed ~1 km3 of tephra towards Argentina. Published isopach maps describe the deposit 181 

thickness associated with various phases of the eruption (e.g. Bonadonna et al., 2015; Collini 182 

et al., 2013). An unpublished report by Dominguez and Baumann (personal communication), 183 

combining data from Bonadonna et al., (2015) and Pistolesi et al., (2015), shows the spatial 184 

distribution of total deposit thickness for June 4–30 2011 (Figure 1a). The deposit showed  low 185 

to very low concentrations of water-soluble elements potentially harmful to plant leaves (e.g., 186 

fluorine sulphur; Stewart et al., 2016). 187 

The deposit of the CC 2011 eruption impacted three different biogeographical regions: from 188 

west to east, southern Andes, Andean foothills and lowlands (Elissondo et al., 2016). These 189 

roughly correspond to the Warm temperate – fully humid, Warm temperate – summer dry and 190 

Arid climate classifications (Figure 1; Beck et al., 2018), respectively, each characterized by 191 

specific assemblages of vegetation (Easdale and Bruzzone, 2018; Enriquez et al., 2021). 192 

Southern Andes are characterized by a high elevation (mean of 2000 m asl), Valdivian 193 

temperate forest and annual precipitation of 800–2500 mm, mainly occurring in June–August 194 

(Elissondo et al., 2016). Andean foothills are characterized by a gradient of annual precipitation 195 

decreasing from 800 in the west to 300 mm in the east and a vegetation of grasses, shrubs, and 196 

wet meadows covering 5–10 % of the area (Easdale and Bruzzone, 2018; Elissondo et al., 197 

2016). The lowland is characterized by a cold and semi-arid climate with annual precipitation 198 
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of ≤300 mm. During the six years prior to the eruption, this region experienced <160 mm of 210 

precipitation per year, which caused regional drought conditions. Due to water availability, the 211 

rainfall gradient strongly controls the type of farming, with pastoral farming and agriculture in 212 

Andean regions and low intensity goat and sheep farming in the arid lowlands (Stewart et al., 213 

2016). In addition, regions with low precipitation experience wind erosion and remobilization 214 

of loose tephra (Dominguez et al., 2020b; Forte et al., 2017; Wilson et al., 2011).  215 

 216 

Figure 2 : Graphical summary of the model development. Flowchart made with diagrams.net.  217 

3. Material and methods 218 

Figure 2 summarises the conceptual steps of our methodology. The aim is to capture vegetation 219 

impact from multi-spectral satellite images and train a ML model to explain it as a function of 220 

covariates describing hazard and vulnerability. We detail the successive steps of this 221 

methodology, from the quantification of vegetation impact (Section 3.1) and covariates (Section 222 

3.2) to the development, application and interpretation of the ML model (Section 3.3). 223 

Throughout the paper, we refer to metrics of vegetation impact as the target variable, whereas 224 

feature is used as a synonym for co-variate and/or explanatory variable, and instance as a 225 

synonym for a geographic point. 226 
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3.1. Quantifying vegetation impact from remote sensing data 236 

In situ assessment of vegetation (including crops) impact is typically quantified using various 237 

metrics defined depending on the purpose (e.g., percentage of destroyed vegetation or yield 238 

loss; Table 1). We use the Enhanced Vegetation Index (EVI; Huete et al., 2002) as a remote 239 

sensing-based proxy for biomass production (Kong et al., 2019; Poortinga et al., 2018), and 240 

consider impact as a negative deviation of the post-eruption EVI signal. The EVI is retrieved 241 

from MODIS imagery (i.e., the MYD13Q1 and MOD13Q1 V6 products) generated every 16 242 

days at a spatial resolution of 250 m. This MODIS image collection was processed on GEE. 243 

3.1.1. Temporal smoothing 244 

The MODIS EVI image collection is temporally smoothed using the median pixel value over 245 

consecutive time steps (represented by the j index in Equation 1). We test here two-time 246 

windows of 1 and 3 months using the eruption date as a reference point. This approach to 247 

temporal smoothing, used to reduce artefacts, was selected over filtering-based (e.g., Savitski-248 

Golay filters) or non-parametric statistical (e.g., double logistic function) methods for two main 249 

reasons. Firstly, these methods are sensitive to the density and the signal-to-noise ratio of the 250 

time series (Cai et al., 2017; Li et al., 2021). As volcanoes are vast topographic edifices, 251 

frequent clouds in their vicinity makes the application of such algorithms unstable and 252 

unreliable. Secondly, we focus on the impacts occurring at a medium-term rather than in the 253 

immediate aftermath of an eruption, where a Vegetation Index (VI) can capture signals that do 254 

not record impact (e.g., increase in soil brightness due to tephra deposit). As a result, the median 255 

value over a given time window presents the most stable and conservative smoothing method 256 

around volcanoes.  257 

3.1.2. Anomaly quantification 258 

Multiple approaches have been developed to quantify VI anomalies for purposes ranging from 259 

early warning (e.g. Asoka and Mishra, 2015; Meroni et al., 2019; Rembold et al., 2019) to 260 
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index-based parametric insurance (e.g. Martín-Sotoca et al., 2019). VI anomalies have also been 270 

used to monitor vegetation recovery after natural hazards (e.g. fires, Bright et al., 2019; volcanic 271 

ashfall, De Schutter et al., 2015), cropping intensities (e.g. Liu et al., 2020), long term land 272 

degradation (Gonzalez-Roglich et al., 2019) or changes in vegetation dynamics (Kalisa et al., 273 

2019). We adapt the approach of Poortinga et al. (2018) as a proxy for impact of volcanic ash 274 

on vegetation, hereafter named Cumulative Difference Index (CDI). The CDI is computed as: 275 

𝐶𝐷𝐼!,# = % 𝑉
$,%	∈	(!

𝐼!,$,% − 𝑉𝐼!,$ , 276 

Equation 1 277 

where 𝐶𝐷𝐼!,# is the CDI value for pixel 𝑖 for consecutive j values after the eruption up to time 278 

t, 𝑉𝐼!,$,% is the median VI value for pixel 𝑖 at a post-eruption period j in year k, Nt is a set of 279 

post-eruption periods that includes all j, k indices up to a time t and 𝑉𝐼!$ is the long-term VI 280 

mean over the baseline (averaged over 5 years prior to eruption for pixel 𝑖 and period 𝑗). 𝑉𝐼 is 281 

the vegetation index (here, EVI) and 𝑗 is an arbitrary time window, referring to a subset of a 282 

year. Here, j considers a 1–3-month period and the baseline considers 5 years of pre-eruption 283 

conditions. For the 2011 eruption of CC, the first CDI value (i.e., j=1, k=1, t=1) is simply the 284 

difference between the median VI value for Apr-Jun 2011 and the average of all Apr-Jun VI 285 

values in the period 2006-2010. The second CDI value would sum the differences over the set 286 

N2 (i.e., j=1,2, k=1, t=2).  287 

Whilst most remote sensing indices rely on ratios of pre/post conditions to define a relative 288 

anomaly (e.g., Hope et al., 2012; see section 3.2.2), the CDI relies on an absolute difference. It 289 

is important to note that therefore, by definition, pixels with high EVI values will result in larger 290 

CDI changes. However, the temporal evolution of the CDI offers a new approach to capture 291 
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impact and recovery. Figure 3 illustrates idealized profiles that the CDI can adopt through time. 307 

Following Equation 1, a scenario where the CDI gradient remains negative implies that post-308 

eruption conditions are persistently lower than the baseline (i.e., P1 in Figure 3). A CDI 309 

flattening and reaching a zero gradient indicates a return to pre-eruption conditions (P2 in 310 

Figure 3). If the gradient of the CDI slope becomes positive after the inflection point, the post-311 

eruption biomass production has exceeded pre-eruption conditions. If the CDI curve flattens at 312 

a negative CDI value, the total loss in biomass due to the eruption has been partly compensated 313 

by a temporary increase (P3 in Figure 3). Should the absolute CDI value become positive, the 314 

total biomass loss caused by the eruption has been either compensated or exceeded by the gains 315 

(P4 in Figure 3). The purpose of the model is to explore conditions explaining the magnitude 316 

of impact (i.e., minV in Figure 3) and the duration to reach it (i.e., minT in Figure 3). The shape 317 

of the CDI curve after reaching minV is not considered here, and minV for the case of P1 in 318 

Figure 3 is the minimum value reached after 5 years post-eruption.  319 

 320 

 321 

Figure 3: Illustration of various possible CDI profiles through time. The x axis represents t in Equation 1. minV 322 
represents the minimum CDI value reached by a CDI profile and minT the duration after which minV has been 323 
reached. P1 represents a scenario with a permanent degradation of the EVI. P2 represents a scenario where post-324 
eruption conditions have returned and remain equal to pre-eruption conditions. P3 represents a scenario where 325 
post-eruption conditions have returned and temporarily exceeded pre-eruption conditions without compensating 326 
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for the deficit caused by the eruption. P4 is similar to P3, but with post-eruption conditions sufficiently persisting 338 
to compensate and exceed the deficit caused by the eruption. 339 

Table 2 : Summary of variables used in the model. 340 

3.2. Model features 341 

Co-variates used in the model to predict the impact (Table 2) were chosen to capture the 342 

relevant hazard and vulnerability parameters identified from the literature (Section 2.1). Most 343 

datasets are natively available on GEE, and others have been manually uploaded as assets. Note 344 

that the original covariate dataset contained ~300 features. Here we present the final set of 345 

variables identified based on i) a minimum degree of multicollinearity assessed during the 346 

exploratory data analysis phase and ii) iterations of the process of model optimisation and 347 

computation of feature importance described in section 3.4.3 that allowed identifying and 348 

retaining the most informative variables. 349 

Table 3 : Initial parameters to the Fall3D runs. For the Suzuki plume model, A and l are the shape factor 350 
controlling the mass distribution described by Pfeiffer et al. (2005), where l=2 results in more mass distributed in 351 
the lower portion of the plume. The FPlume approach (Folch et al., 2016) was solved for mass flow rate (MFR, 352 
Degruyter and Bonadonna, 2012). Two total grain-size distributions (TGSD) were tested including a field-based 353 
Gaussian (Md Φ and s Φ of 1.7 and 3.1, respectively; Bonadonna et al., 2015) and a model-based Bi-Weibull 354 
(modes at -3.13 and 4.69 Φ with respective shape factors of 0.73 and 1.1 Φ and a mixing factor of 0.64; Costa et 355 
al., 2016, Folch et al., 2021) distribution. 356 

3.2.1. Deposit properties 357 

Deposit thickness and grain-size distribution are the two of the main physical aspects 358 

controlling the direct impact of ashfall on vegetation (Jenkins et al., 2015). Since available 359 

isopach maps represent only deposit thickness, we reconstructed the grainsize distribution of 360 

the deposit associated with the June 4-30 2011 phase of the CC2011 eruption using Fall3D 361 

v8.0.1 (Folch et al., 2021). The model was initialised using hourly atmospheric conditions 362 

retrieved from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 363 

dataset (Hersbach et al., 2020) and daily mean plume heights reported by Collini et al. (2013). 364 
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We tested several modelling schemes (Table 3) and compared the outputs against the isopach 375 

in Figure 1a. For this, isopachs were interpolated using a generalised additive model and 376 

converted to maps of tephra accumulation using a constant deposit density. We tested densities 377 

of 1000, 2000 and 2200 kg/m2 to provide a range of tephra thicknesses for each point. The 378 

Fall3D NetCDF output was converted to a multiband geotif with each band containing mass 379 

loads for different size fractions. Size fractions computed by Fall3D were grouped into lapilli 380 

(2–64 mm), coarse ash (1-0.25 mm) and fine ash (<0.25 mm). The geotif was uploaded as an 381 

asset to GEE. 382 

3.2.2. Climate 383 

Atmospheric data were obtained from GEE using the ERA5 Land monthly averaged climate 384 

dataset (Hersbach et al., 2020), which provides a global reanalysis of climate variables since 385 

1981 at a spatial resolution of 0.1 x 0.1°. As the nature of the adopted ML model does not allow 386 

for using time series as co-variates (see Section 3.4), we instead retrieve the total precipitation 387 

and the surface air temperature and compute their mean over 1, 2, 3, 6 and 12 months before 388 

the eruption. Each variable is considered both as raw values and anomalies computed as the 389 

Stand Regeneration Index (SRI; Hope et al., 2012). As for CDI, we used a 5-years pre-eruption 390 

baseline and normalized the closest pre-eruption value 𝑉!,$,% by the mean value over the same 391 

period in the baseline 𝑉!,$: 392 

𝑆𝑅𝐼!,$,% =	
𝑉!,$,%
𝑉!,$

 393 

Equation 2 394 

For instance, a 3-months precipitation anomaly <1 suggests that the trimester before the 395 

eruption was characterized by relatively lower rainfall compared to the same period of the year 396 

in the 5-years baseline. By considering both raw values and anomalies, we explore the relevance 397 
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of each variable and potential pre-existing climatic stresses whilst also investigating what time 404 

windows are relevant for vegetation impact. The model also includes the wind velocity at the 405 

time of the eruption from the ERA5 Land dataset. 406 

In addition to atmospheric variables, the model includes the updated 1-km version of the 407 

Köppen-Geiger climate classification by Beck et al., (2018). The study area spans three of the 408 

five main categories (Arid, Warm temperate and Polar), with two sub-types of the Arid (i.e. 409 

Desert – hot arid and Steppe – hot arid) and four sub-types of the Warm temperate (fully humid 410 

– warm summer, fully humid – cold summer, summer dry – warm summer, summer dry – cool 411 

summer). 412 

3.2.3. Terrain 413 

Terrain data were obtained from the Shuttle Radar Topography Mission (SRTM; Farr et al., 414 

2007) using the NASA’s SRTM V3 product at a resolution of ~30 m. Elevation, slope, aspect, 415 

eastness and northness (sine and cosine of aspect, respectively) were retrieved from GEE and 416 

used as features. 417 

3.2.4. Landcover 418 

Landcover was obtained from Copernicus Global Land Service (CGLS) Dynamic Land Cover 419 

map (CGLS-LC1000, Buchhorn et al., 2020), available on GEE at a spatial resolution of 100 m 420 

yearly from 2015-2019. The landcover type is retrieved from the discrete_classification band 421 

for the closest year to the eruption (here 2015, acknowledging that the 2015 dataset possibly 422 

includes a long-term change in landcover caused by the 2011 eruption). To test the impact of 423 

tephra on various types of vegetation, we extracted the Cultivated and managed 424 

vegetation/agriculture class as a proxy for cropland and the Shrubs, Sparse and Herbaceous 425 

vegetation classes (i.e., values 40, 20, 60 and 30, respectively). In addition, we extracted a 426 

composite Forest class comprising all classes tagged with Forest. In the study area, present 427 
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forest classes include Evergreen broad leaf, both Closed (112) and Open (122), Deciduous 435 

broad leaf, both Closed (114) and Open (124) as well as Closed forest, mixed (115) and Forest, 436 

not matching any of the other definitions (116 and 126).  437 

3.3. Point sampling 438 

In the study area, the vegetated landcover classes defined above account for 96% of the total 439 

landcover, with the classes Shrubs (38%), Sparse (26%) and Herbaceous (17%) dominating the 440 

total count. The Forest class (17%) dominates the Andean part of the study area whereas crops 441 

represent about 1% of the region. 5000 instances were randomly sampled for each landcover 442 

class. The target variables and covariates for all points were downloaded from GEE and stored 443 

as a GeoPandas dataframe in Python. 444 

3.4. Setting up the machine learning model 445 

We developed an interpretable ML model able to process big EO data to identify the most 446 

important variables and how they interact to cause the impact on vegetation. This amounts to a 447 

(supervised learning) regression task; the EO data, for training and testing, include the 448 

environmental, atmospheric, and geophysical features described above, as well as the target 449 

variables consisting in the impact metrics. The main objective is to investigate and describe the 450 

nature of the processes, performing out-of-sample predictions (i.e., model generalisation) is 451 

outside of the scope of this paper. This section introduces the ML algorithm, its optimisation 452 

and its interpretation processes. All computations are performed using Python 3.9 on the Gekko 453 

cluster of NTU’s Asian School of the Environment, both using CPUs and GPUs. 454 

3.4.1. ML algorithm 455 

The main modelling challenge is to approximate complex functions mapping both minV and 456 

minT to the various investigated features. Decision trees and related methods form a general 457 

class of models suitable for such regression tasks. We opt for Gradient Boosted trees, a category 458 
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of decision trees that use an ensemble of so-called weak learners built sequentially to improve 461 

prediction accuracy (Müller and Guido, 2015) and capable of handling multicollinearity (Cheng 462 

et al., 2018). Gradient Boosted trees have successfully been applied on EO problems (e.g., 463 

Hengl et al., 2017). Here, we used the XGBoost v.1.4.2 library, which provides an optimised 464 

and distributed implementation of gradient boosted trees (Chen and Guestrin, 2016).  465 

3.4.2. Hyperparameter optimisation 466 

Gradient-Boosted trees rely on a range of hyperparameters governing the model’s bias-variance 467 

trade-off. Selected hyperparameters (Section 4.4.1) were tuned by minimising the out-of-468 

sample mean absolute error (MAE) computed through a 5-fold cross-validation scheme using 469 

Scikit-learn’s RepeatedKFold and 10,000 trees. We used the Optuna library (Akiba et al., 2019) 470 

optimised on a single GPU.  471 

3.4.3. Model interpretation 472 

Gradient-Boosted trees can accommodate non-linear effects and interactions but, as for many 473 

modern ML algorithms, come at the cost of limited interpretability. Model-agnostic 474 

interpretation methods shedding light on black-box models are actively being developed and, 475 

when applied on big EO data, provide a novel framework to identify and constrain the processes 476 

driving changes through time in Earth Sciences (Batunacun et al., 2021; He et al., 2020; Sulova 477 

and Arsanjani, 2021). Amongst these, the Shapley additive explanations (SHAP) method of 478 

Lundberg et al., (2020), based on Shapley values (Shapley, 1956) and coalitional game theory, 479 

decomposes any prediction from a given model as a sum of the individual effects from each 480 

variable (Molnar, 2021). The method computes SHAP values, which quantify how a given 481 

feature act to change a model’s mean prediction. We use here SHAP values to identify drivers 482 

of vegetation vulnerability in two ways. Firstly, the mean absolute SHAP value of a variable 483 

across all instances indicates a relative importance amongst all features. Secondly, individual 484 

SHAP values for a given feature and all instances provide insights into how a feature’s value 485 
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influences predictions. As this study does not attempt to perform out-of-sample predictions, 486 

SHAP values are computed on the full dataset. We use the TreeExplainer method of the SHAP 487 

library (Lundberg et al., 2020) to explain XGBoost’s prediction. 488 

Unlike SHAP values, permutation feature importance ranks features based on their direct 489 

impact on model performance (Breiman, 2001; Fisher et al., 2019). We use it as a 490 

complementary approach to SHAP values. Permutation importance is also computed on the full 491 

dataset using Scikit-learn’s permutation_importance function using 10 permutations of each 492 

variable and computing the change in the coefficient of determination 𝑅). 493 

3.4.4. Modeling scheme 494 

A model is trained separately for each landcover class defined in Section 3.3, with one 495 

additional model trained on all landcover classes jointly and using the landcover class as a 496 

feature. Since XGBoost does not support multi-output regressions, each dataset is used as an 497 

input for two models trained using either minV or minT as a target variable (Figure 3). To 498 

include some dependence between the two impact metrics, the model predicting minV is trained 499 

with minT removed from the features, whereas the model predicting minT is trained with minV 500 

in the list of features. 501 
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4. Results 504 

 505 

Figure 4 : Relationship between the tephra accumulation modelled with Fall3D and inferred from isopach for the 506 
various modelling schemes (Table 3). Colours consider various densities used to convert deposit thickness to mass 507 
loads. Figure sub-labels follow Table 3. The black line shows a hypothetical 1:1 relationship. 508 

4.1. Deposit reconstruction 509 

To select the best Fall3D run shown in Table 3, 10,000 points were randomly sampled in space 510 

and used to retrieve both the modelled tephra load and the thickness obtained from interpolated 511 

isopach (Figure 4). Although all model runs are capturing the general trend, mismatches can 512 

be attributed to modelling issues (e.g., limitation in describing sedimentation from the plume 513 

margin or aggregation processes; Bagheri et al., 2016; Poulidis et al., 2021) and isopach 514 

interpolation using a bulk density. In the perspective of these limitations, we adopted run b (i.e., 515 

Suzuki plume model with a bi-Weibull grain-size distribution; Table 3) as it generally shows a 516 

minimum spread across the 1:1 line and provides a conservative scenario (Figure 4). Figure 5 517 
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a compares the modelled load for the selected run with the isopach. The model captures both 527 

the general extend of the deposit as well as the various lobes generated as a function of variable 528 

wind conditions throughout the eruptive phase.  529 

 530 

Figure 5 : a Modelled load using Fall3D run b (kg/m2; Table 3) overlain with isopach (cm). b Spatial distribution 531 
of minV. Numbered orange diamonds are referenced in the text. c Spatial distribution of minT. d Dataset of points 532 
sampled in GEE coloured by their landcover class. When not specified, legend items follow Figure 1. Background 533 
is © Google Map 2022. 534 
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 539 

Figure 6 : Time series of EVI (a, c, e, g) and monthly CDI (b, d, f, h) for the four points described in Section 4.2 540 
and located in Figure 5. Black dots are raw (i.e., non-composited) MODIS data whereas green and orange lines 541 
are composited collections using a kernel of 1 and 3 months, respectively, as described in Section 3.1. On the left 542 
plots, the vertical black dashed line indicates eruption time. On the right plots, the horizontal black dashed line 543 
indicates a neutral budget (Figure 3). Coloured dotted lines indicate the location of minV and minT. 544 

4.2. Anomaly quantification 545 

Figure 6 shows an illustration of time series of EVI and associated monthly CDI for four 546 

representative points in the study area (Figure 5 b) chosen to represent the spread in tephra 547 

accumulation and vegetation/climate types, and using compositing windows of 1 (green) and 3 548 

(orange) months. Seasonal EVI patterns, with high values in the summer reflecting active 549 
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growth and low values in the winter reflecting plant dormancy, indicate that the eruption 554 

occurred during a period of low growth (Elissondo et al., 2016). Point 1 (Figure 6 a, b), located 555 

23 km southeast of the vent, is characterized by herbaceous vegetation and a modelled tephra 556 

load of 330 kg/m2 (thicknesses of 165–330 mm when converted with deposit densities of 2000 557 

and 1000 kg/m3, respectively). The sharp drop in EVI after the eruption and the following 558 

persistent lower values compared to the pre-eruption baseline translate into a CDI profile 559 

showing a negative slope, which indicates that the system did not return to pre-eruptive 560 

conditions. This observation agrees with existing DDS (Table 1), where accumulations ≥150 561 

mm result in substantial vegetation destruction. Point 2, located 45 km southeast of the vent 562 

and 7 km from Villa La Angostura consists of closed, evergreen broadleaf forest. With 40 kg/m2 563 

of tephra accumulation (thickness of 20–40 mm for the same densities as Point 1), EVI values 564 

show a slight decrease compared to pre-eruption conditions lasting for a couple of years, after 565 

which a general trend is observed leading to larger EVI values than the baseline (Figure 6 c). 566 

This translates into CDI profiles showing a negative trend for two years after the eruption, after 567 

which a positive trend indicates better conditions compared to the baseline (Figure 6 d). When 568 

compared to existing DDS for forestry (Table 1), the modelled thickness spans damage classes 569 

0–3, ranging from no impact to minor productivity loss. Point 3 is 112 km from the vent in the 570 

vicinity of San Carlos de Bariloche. Classified as crops by the CGLS landcover and looking 571 

like pastoral grazing fields from high resolution satellite imagery, it was affected by 7 kg/m2 of 572 

tephra (thickness of 3.5–7 mm; damage classes 0–3; Table 1). Both compositing time windows 573 

show a reduction in EVI values for at least one season after the eruption (Figure 6 e, f). Finally, 574 

Point 4 is located 240 km southeast of the vent close to Ingeniero Jacobbaci and was affected 575 

by 10 kg/m2 of tephra (i.e. 5–10 mm). Classified as herbaceous vegetation in the CGLS dataset 576 

but looking like farmland with a mixture of pasture and crops on high-resolution satellite 577 
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imagery, both EVI and CDI profiles indicate a return to pre-eruption conditions after ~3 years, 587 

after which a positive CDI slope indicates temporary better conditions (Figure 6 g, h).  588 

Figure 6 illustrates the differences in quantifying minV and minT when using time windows of 589 

1 and 3 months in Equation 1. A 1-month window closely follows local trends and results in 590 

irregular CDI curves, whereas a 3-months window over-smooths local variations. Although 591 

both approaches commonly result in similar results, Point 3 illustrates how the two windows 592 

can induce different interpretations. We adopt a 3-months kernel for two main reasons. Firstly, 593 

the visual comparison of the spatial distribution of minV and minT on a map shows that such 594 

differences occur locally whilst preserving the general spatial distribution. Secondly, points 595 

displayed in Figure 6 are not heavily affected by cloud coverage, and the 1-month kernel does 596 

not reflect the typical effects that clouds can induce when using such a small compositing time 597 

window (e.g., sparse time-series, artefacts, etc.). This is generally not the case, either around 598 

Cordon Caulle volcano where the region closer to the vent suffers too much cloud coverage to 599 

be resolved by a 1-month kernel, or around most volcanoes around the world where large and 600 

high edifices are often cloudy. Therefore, the 3-months kernel provides a more conservative 601 

approach and enables reproducibility to other case studies. 602 

4.3. Impact mapping 603 

Figure 5 b displays the spatial distribution of minV in the study area. The region with the 604 

minimum minV value extends up to 25 km southeast of the vent and corresponds to 605 

accumulations of ~550 kg/m2. Although conspicuous, it is impossible to unequivocally attribute 606 

this impact to tephra fallout in proximal area where other hazards can occur (e.g., pyroclastic 607 

density currents, lahars). Except for this region, the impact within the first 80 km east of the 608 

vent is relatively limited, beyond which a sharp, north-south oriented decrease in minV values 609 

occur. This rapid change corresponds to a change in rainfall amount, a transition from well-610 
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developed andosols to very weakly-developed regosols and a region dominated by forests to 616 

one dominated by shrubs and herbaceous vegetation (Figure 1; Section 2.2). In this region, 617 

minimum minV values are ~-0.5 and the spatial distribution of minV reflects the spatial 618 

distribution of tephra fallout. Negative minV values extend eastwards beyond the town of Los 619 

Menucos, suggesting that impact occurred with accumulations ≤2 kg/m2. Due to the use of a 3-620 

months kernel, minT is a discrete rather than a continuous dataset (i.e., a minT value of 4.5 621 

months suggests that minV was reached between 3–6 months after eruption onset). The spatial 622 

distribution of minT (Figure 5 c) generally reflects minV and the pattern of tephra accumulation. 623 

Note that artefacts related to non-vegetated areas are ignored (e.g., bare rock and snow-covered 624 

mountains in the S). 625 

Figure 5 d shows the distribution of sampled points by landcover and selected relationships are 626 

plotted in Figure 7. Although Figure 7 a displays a general negative relationship between minV 627 

and the tephra load, a simple linear relationship fails to accurately capture the variability of 628 

impact. For minT, Figure 7 b and c show how minT is distributed around three main modes of 629 

tephra load and minV. Landcover classes that are most impacted by long minT values are Forests 630 

and Herbaceous, which are the two classes the most exposed to heavy loads (Figure 5). Plotting 631 

minT shows a distribution centred around three modes of about 400, 1000 and 1700 days 632 

(Figure 7 b). High minV and tephra loads generally result in larger minT values. 633 
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Figure 7 : Relationship between a minV and the total tephra load, b minT and the total tephra load and c minV and 648 
minT as a function of the landcover class. The marginal axes contain a kernel density estimate of the underlying 649 
population for each landcover class. For readability all forest sub-groups are grouped. 650 

4.4. ML model 651 

Table 4 : Summary of the trained models. The Optimisation columns group reports the hyperparameter values 652 
obtained with the optimisation process. Max depth is the maximum depth of each tree;  ETA is the learning rate; 653 
alpha and lambda are the L2 regularisation terms; Min Child Weight controls the minimum number of observations 654 
required in each node. See the XGBoost documentation for further details (Chen and Guestrin, 2016). The Model 655 
metrics columns group reports the mean absolute error (MAE) and the 𝑟" coefficients on both training and test 656 
datasets. The mean and the standard deviation (Std) were obtained by 5-fold cross validation with three repeats.  657 

4.4.1. Model performance 658 

Table 4 presents the results of the optimization of hyperparameters on the dataset shown in 659 

Figure 5 d and the associated model metrics. The MAE and 𝑅) were computed on both training 660 

and testing datasets using a cross-validation with five folds and three repeats. We compare 661 

training and testing prediction error as an indication of the degree of overfitting of the model. 662 

As expected, model metrics obtained on test datasets were lower than those using training data. 663 

Based on the 𝑅) of the testing data and minV, models trained on all landcover classes and on 664 

herbaceous vegetation performed well (𝑅)>0.9), followed by forests (𝑅)>0.8) and crops 665 

(𝑅)>0.7). The particularly low 𝑅) value for sparse vegetation can be attributed to the presence 666 

of <10% vegetated cover in this class, which is dominated by bare soil or rock. The 𝑅) values 667 

of minT are consistently lower than those for minV and never exceed 0.6, which we partly 668 

attribute to its discrete nature. 669 

Overall, the comparison of error metrics between testing and training sets reveal that models 670 

trained on the various datasets have various degrees of generalisation ability, with the caveat 671 

that the validity of the insights provided by the different models should be considered in the 672 

perspective of their respective performances. The broadest dataset considering all landcover 673 

classes and minV results in high training (0.94) and testing (0.91) 𝑅) values. We use this good 674 
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performance and similarity between both values as an indication that the model is likely not 682 

overfitting and yields good generalisation.  683 

Table 5 : Ranking of feature importance computed using mean absolute SHAP values and permutation importance 684 
for all landcover class and impact metrics. A darker cell colour indicates a stronger importance. For each column, 685 
the 3 most important features are in bold and the 10 most important features are in red. 686 

4.4.2. Feature importance 687 

Table 5 summarizes feature importance for each landcover class using the mean absolute SHAP 688 

value and permutation importance. Although some differences exist, both methods yield similar 689 

results, thus implying that features that contribute the most to predictions (SHAP importance) 690 

also improve the model’s generalization error (permutation importance). Unless specified, this 691 

section focuses on SHAP importance. 692 

EVI and elevation are the two features that consistently rank in the top 10 of the most important 693 

variables across impact and landcover. For minT, minV is the most important variable, which 694 

suggests that both impact metrics are dependent. EVI ranks especially high, which indicates 695 

that the mean EVI value computed over the year before the eruption provides an important 696 

background level to the model. This result is a consequence of the cumulative sum of absolute 697 

differences behind the CDI, which implies that pixels with higher EVI values are prone to larger 698 

CDI impacts (section 3.1.1). The variable Lapilli is the most important for minV for all 699 

landcover classes but crops (SHAP value) and sparse (permutation importance) and ranks high 700 

when predicting minT for all and the forest landcover classes.  701 

For forests, minV is best predicted, in decreasing order, by lapilli, EVI and elevation, which are 702 

respectively a deposit, a proxy for a biotic and an abiotic parameter. Note that using permutation 703 

importance instead of SHAP importance suggests that the 3rd most important variable is surface 704 

temperature, which is correlated to elevation. In parallel, minT is driven by minV, lapilli, 705 

elevation and EVI, which indicates that the duration of impact is dominantly proportional to the 706 
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magnitude of impact and the tephra load. In comparison, the minV of herbaceous vegetation is 708 

controlled by lapilli, EVI and the 6-months precipitation, which indicates the same hierarchy 709 

of importance of deposit, biotic and abiotic parameters as for forests, whereas minT is controlled 710 

by minV, EVI, the 3-months precipitation and fine ash. Interestingly, this suggests that impact 711 

duration does not primarily depend on any deposit variable, the most important of which (i.e., 712 

fine ash) is different to the parameter controlling the magnitude of impact (i.e., lapilli). As a 713 

final example, no deposit property ranks in the top 3 variables controlling the minV values of 714 

crops, which include climate, EVI and the 3-months precipitation anomaly. The first deposit 715 

parameter, fine ash, ranks 4th, which indicates that the vulnerability of crops to ash fallout is 716 

dominantly constrained by biotic and abiotic parameters. Fine ash ranks 5th for minT, which is 717 

mainly driven by minV, EVI and the slope, and illustrate how abiotic parameters can potentially 718 

dominantly control impact magnitude and duration. 719 

4.4.3. SHAP dependence plots 720 

SHAP dependence plots (Fig. 8) display, for each instance in the dataset (i.e., a point in Figure 721 

5 d), the SHAP value of a given variable as a function of its actual value. For a given instance 722 

and a given variable, a negative SHAP values implies that the variable contributed to reducing 723 

the predicted value compared to the mean prediction of the model. Therefore, a negative SHAP 724 

value for minV implies a contribution to increase the magnitude of impact, whereas a negative 725 

SHAP value for minT implies a contribution to decrease the duration of impact. 726 

Impact of deposit on minV predictions 727 

Figure 8 a is the dependence plots for lapilli. With loads ≤ 60 kg/m2 of lapilli, SHAP values 728 

are contained within 0±0.1, but drastically drop for larger loads. Lapilli being dominantly 729 

impacting the vicinity of the volcanic source, <4% of all instances are affected by 730 

accumulations >60 kg/m2 with those areas dominantly consisting of forests with additional 731 

vegetation classified as shrubs and herbaceous (Figure 1 c). Despite limited points, Figure 8 a 732 

Deleted: , with additional biotic and abiotic controls733 
Deleted: (Arnalds, 2013) This suggests that forests are 734 
potentially more resilient to moderate accumulations of ash 735 
and might rather be prone to direct, physical impact from 736 
heavy accumulations.737 

Deleted: Figure 5738 

Deleted: Figure 8739 

Formatted: English (UK)

Deleted: Figure 1740 
Deleted: Figure 8741 



28 

suggests stepwise decreases in SHAP values for lapilli loads of ~60, 230 and 550 kg/m2. Using 742 

a deposit density of 1000 kg/m3, thicknesses of 60, 230 and 550 mm span the D1–D4 damage 743 

states for forestry (Jenkins et al., 2014; Table 1). Using the pastoral class of Table 1 as an 744 

analogue for shrubs and herbaceous vegetation, these accumulations suggest that, for crops, 745 

substantial to major land rehabilitation is required before recovery. These observations confirm 746 

the relationships between minV, minT and the deposit load shown in Figure 7: points affected 747 

by high lapilli loads result in minT values larger than ~1300 days and an impact that persisted 748 

for years after the eruption. These high impact metrics explain why lapilli is the most important 749 

variable to predict minV. Lapilli is likely to cause a direct, physical impact from the high kinetic 750 

energies (e.g., Blake et al., 2015; Osman et al., 2019), breakage from a static load and burial 751 

(Arnalds, 2013; Ayris and Delmelle, 2012), which is captured as a strong anomaly by our 752 

method and results as the most important variable. Plotting the dependence plot of lapilli for 753 

the model trained on the generic forest landcover class (Figure 8 b) indicates that the 2-months 754 

precipitation anomaly contributes to further explaining the influence on the SHAP value, with 755 

points with an anomaly <0.85 displaying lower SHAP values. 756 
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 761 

Figure 8: SHAP dependence plots illustrating the effect of deposit on the minV value predicted by the models for 762 
a lapilli using all landcover classes, b lapilli on the forest subclass and c-j coarse and fine ash for selected landcover 763 
classes. The hue of the points is related to additional explanatory variables. For a, e and f, the colour scheme 764 
follows Figure 1. Negative SHAP values contribute to decreasing minV and therefore increase impact. 765 Deleted: Figure 1766 
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Dependence plots for coarse and fine ash (Figure 8 c, d) display similar – although less 767 

conspicuous – drops in SHAP values for accumulations of 12 and 1.7 kg/m2, respectively, with 768 

SHAP values on average one order of magnitude smaller than for lapilli. Considering that fine 769 

deposits are denser than coarser ones, a density range of 1000–2000 results in thicknesses of 6–770 

12 and 0.9–1.7 mm for coarse and fine ash, respectively, which cover the D1–D3 damage 771 

classes for Horticultural/Arable and Pastoral agriculture (Table 1). Note that these thicknesses 772 

should be regarded as minimum values as we convert here individual size fractions to total 773 

deposit thickness. Figure 8 e–j also shows the effect of ash for models trained on specific 774 

landcover classes. For crops (Figure 8 e-f), coarse and fine ash are the 10th and the 4th most 775 

important variables, respectively. Coarse ash seems to induce drops in SHAP values for loads 776 

of 2, 4 and 10 kg/m2. There is clearly an effect of fine ash on SHAP values but the oscillatory 777 

pattern is difficult to explain for loads ≤0.5 kg/m2, especially for the Csb climate class where 778 

most crops are found (i.e., Warm temperate, summer dry, warm summer), and probably depends 779 

on additional variables not accounted for in the model (e.g., geographic distribution of plant-780 

specific effects such as ash retention as a function of leaf morphology). Beyond 1 kg/m2, SHAP 781 

values are consistently negative. Coarse and fine ash are the 4th and the 14th most important 782 

variables for minV for herbaceous vegetation. The coarse ash shows more negative SHAP 783 

values when associated with fine ash. Fine ash is generally beneficial for herbaceous vegetation 784 

with low EVI values (Figure 8 h). For herbaceous vegetation, the most negative SHAP values 785 

are found for high-EVI with accumulations ≤1 kg/m2. Incidentally, such accumulations also 786 

correspond to the highest SHAP values. Since no co-variate satisfactorily explains this 787 

contrasting behaviour, this is either due to a model artefact or to variables that are not accounted 788 

for in the model. For shrubs (Figure 8i-j), coarse and fine ash are respectively the 7th and 12th 789 

most important variables. Coarse ash suggests a decrease in SHAP values for loads of ~6 kg/m2, 790 
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beyond which the magnitude of the negative effect increases with the lapilli load. Fine ash 803 

doesn’t show any trend or sharp break. 804 

 805 

Figure 9: a–e SHAP dependence plots illustrating the effect of various variables on the prediction of minV. a–b 806 
Effect of EVI (a) and elevation (b) on the SHAP value as a function of the coarse ash load. c Violin plot showing 807 
the distribution of SHAP values for each landcover class with a box-and-whisker plot overlain. d Effect of wind 808 
speed on the SHAP values as a function of climate. e Effect of the 3-months precipitation anomaly on the SHAP 809 
value as a function of landcover. f Spatial distribution of 3-months precipitation anomaly SHAP values. Map tiles 810 
by Stamen Design CC BY 3.0, map data © OpenStreetMap contributors. 811 

Impact of other features on the prediction of minV 812 

Figure 9 shows SHAP dependence plots for variables other than the deposit. Figure 9 a 813 

confirms the importance of EVI on minV, where all points with EVI<0.1 result in positive 814 

SHAP values and all points with EVI>0.3 result in negative SHAP values. This observation is 815 
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partly a consequence of the use of Equation 1, where the value of 𝑉𝐼!$% − 𝑉𝐼!$ is generally larger 818 

for higher EVI values. Figure 9 a also suggest a dependence of this relationship on the load of 819 

coarse ash, which slightly increases SHAP values for low EVI, but decreases them for higher 820 

values. Elevation is the 3rd important feature for predicting minV and shows a breakpoint at an 821 

altitude of ~1000 m asl (Figure 9 b), below which SHAP values are dominantly negative. 822 

Above this elevation, SHAP values are generally positive, regardless of the intensity of ash 823 

accumulation. Landcover, the 7th most important feature, indicates that crops dominantly 824 

contribute to increasing impact in the model (Figure 9 c). Sparse vegetation also has a negative 825 

but less pronounced effect on SHAP values, whereas shrubs and herbaceous vegetations have 826 

a neutral effect. The SHAP values of forests tend to reduce the impact, which corroborates the 827 

higher resilience of trees to tephra fallout (Table 1).  828 

Wind and precipitation partly control the residence time of ash on leaves and therefore the 829 

impact (Ayris and Delmelle, 2012). Although variables used here only consider pre-eruption 830 

atmospheric conditions, they are indirectly used as indicators for post-eruption patterns. The 831 

impact of wind speeds on SHAP values suggests breakpoints at 0.2 and 1.2 m/s. SHAP values 832 

are strongly negative below 0.2 m/s, generally positive up to 1.2 m/s and generally negative 833 

above (Figure 9 d). This supports the idea that wind contributes to reducing the residence time 834 

of ash on leaves, but the aeolian remobilization of ash at higher wind speeds can negatively 835 

impact vegetation (e.g., Arnalds, 2013; Craig et al., 2016b; Elissondo et al., 2016; Wilson et al., 836 

2011). Although depending on additional parameters (e.g., surface roughness, ash properties, 837 

soil humidity, rainfall intensity), an empirical value for onset of remobilization of 0.4 m/s has 838 

been used in the literature and agrees with our results (e.g., Folch et al., 2014; Liu et al., 2014). 839 

Leadbetter et al., (2012) observed that ash resuspension is suppressed if precipitation rates 840 

exceed 0.01 mm/h, and our model indicates that most negative SHAP values occur for relatively 841 

dry climates. The most important precipitation variable for predicting minV with all landcover 842 
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classes is the precipitation anomaly computed over 3 months before the eruption, which mostly 851 

shows a negative anomaly (i.e., anomaly<1; Table 5; Figure 9 e). This precipitation anomaly 852 

shows a clear break at a value of 0.87, for which SHAP values are dominantly negative below 853 

and positive above. Above a value of 1, SHAP values increase. Figure 9 e shows a negative 854 

peak in SHAP values between an anomaly of 0.85–0.87 across all landcover classes but stronger 855 

for crops. Plotting SHAP values on a map (Figure 9 f), the spatial clustering of negative SHAP 856 

values corresponds to the location of crops between San Carlos de Bariloche and Comallo  857 

(Figure 1). No variable unequivocally explains this spatial clustering. 858 

 859 

Figure 10: SHAP dependence plots for minT showing the effect on the SHAP value from a minV as a function of 860 
EVI; b EVI as a function of minV; c 1-month precipitation anomaly as a function of minV and d wind speed as a 861 
function of climate. Negative SHAP values contribute to decreasing minT and therefore decrease impact the 862 
duration for reaching minV. 863 

Features driving minT 864 

With a mean absolute SHAP value >7 times larger than any other variable, minV is by far the 865 

most important for predicting minT (Figure 10 a), with a cut-off between positive (i.e., 866 

increasing the value of minT) and negative (i.e., decreasing minT) at a minV value of ~0.15. The 867 
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effect of EVI on minT is the opposite of minV (Figure 9 a): although high EVI values tend to 872 

increase the impact magnitude (lower minV), they generally contribute to reducing the impact 873 

duration (i.e., Figure 10 b). Interestingly, this trend disappears as minV increases. This can be 874 

explained by the fact that points affected by high minV values in Figure 10 b are associated with 875 

relatively high minT values (Figure 7; Figure 10 a). These points are associated with damage 876 

classes suggesting land retirement, and their recovery is therefore independent of the pre-877 

eruption EVI level. The 1-month precipitation anomaly is the 5th most important variable for 878 

minT (Figure 10 c), and SHAP values are mostly positive below an anomaly of 0.3 and mostly 879 

negative above 0.5. As for EVI, high minV values are less sensitive to the general trend. Finally, 880 

Figure 10 d shows the effect of the wind speed at the time of eruption on minT as a function of 881 

the climate. Wind speeds >4 m/s considerably increase minT, especially in an arid climate (i.e., 882 

BWk) where the vegetation is mostly shrubs, herbaceous and sparse. Points with positive SHAP 883 

values at wind speeds >4 m/s are characterized by accumulations of fine ash >0.5 kg/m2. In 884 

contrast, points with minimum SHAP values between wind speeds of 1.8–2.8 m/s correspond 885 

to crops close to Piedra del Aguila and show fine ash loads <0.5 kg/m2.  886 

5. Discussion and perspectives 887 

The proposed methodology provides a new framework to systematically assess the vulnerability 888 

of vegetation to tephra fallout as a dynamic, multi-variate problem. Its application to the CC 889 

2011 eruption highlights how big EO datasets and interpretable machine learning could help 890 

acquiring a new knowledge from tens to hundreds of understudied eruptions recorded in 891 

archives of multispectral images. This approach aligns with FAO’s objective of gaining a global 892 

understanding of vegetation vulnerability through the systematic study of their impacts and, in 893 

turn, contributes to various Sustainable Development Goals (SDGs 2.4, 13.1, 15.3). Specific to 894 

volcanic risk, this is the first effort to provide a large scale, quantitative basis to estimate the 895 
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impacts of explosive volcanic eruptions on food production. On a longer time-scale and large 898 

spatial scale, this is the first step towards tackling the unaddressed black elephant event that is 899 

the risk of future large eruptions on food security (Lin et al., 2021). 900 

Validation and causal inference  901 

Our methodology attempts to highlight impact mechanisms either occurring from the direct 902 

action or arising from interactions between physical properties. Since we neglect the impact 903 

from water leachable elements (e.g., Stewart et al., 2020), the approach is more suited to 904 

dominantly magmatic events rather than eruptions with a significant hydrothermal component. 905 

Impact patterns captured by our methodology are corroborated by lessons learned from 906 

empirical post-EIA and experiments. For CC 2011, the model suggests that, except for points 907 

subjected to destruction from large tephra loads, various biotic and abiotic variables tend to 908 

have a more critical control on both impact magnitude and impact duration than deposit 909 

properties (Table 5). SHAP dependence plots for deposit properties (e.g., Figure 8 a–e) identify 910 

similar tephra thresholds as those in existing DDS (Table 1). Nevertheless, numerous evidences 911 

reported in post-EIA as well as controlled experiments outline the dependency of impact 912 

mechanisms to size distribution, ranging from physical impact for large lapilli to a reduction of 913 

light interception from fine ash leading to a decrease in photosynthesis (e.g., Ligot et al., 2022). 914 

DDS must therefore consider other hazard impact metrics than only tephra thickness, and Fig. 915 

8–10 are the first attempt towards this objective. The method is also able to capture impacts 916 

arising from interaction between other parameters than deposit properties. For instance, Figure 917 

9 d suggests that the model captures the general relationship between presence of ash, 918 

precipitation (inferred from climate) and wind speed in controlling the impact from aeolian 919 

remobilisation. This demonstrates the ability of the model to identify complex and dynamic 920 

processes, and cross-validating thresholds inferred from the model with values from existing 921 

post-EIA and experiments provides a systematic framework to generalize observations made at 922 
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different scales (Dominguez et al., 2020a; Forte et al., 2017; Leadbetter et al., 2012; Liu et al., 933 

2014). 934 

Despites these observations, methodologies for interpretable ML should be carefully used when 935 

attempting to infer causality from correlations/associations. Suggestions of causality are 936 

currently restricted to effects that rely on phenomena that have been either witnessed in the field 937 

or experiments. Other variables considered in our dataset show conspicuous and complex 938 

patterns that we are unable to explain (e.g., Figure 8 f, Figure 9 e). Such patterns have two 939 

possible explanations (or a combination of both): either the model fails to accurately capture 940 

the underlying relationship between feature and target variable, or the relationship is 941 

complicated by other factors (e.g., feature interactions, confounding variables), including 942 

unobserved ones. Investigating which association captures true causality therefore requires the 943 

development of synergies between various relevant disciplines (e.g., physical volcanology, 944 

ecology, soil sciences, disaster risk reduction). The development and adaptation of existing 945 

causal inference methods in Earth Sciences to investigate a system’s causal interdependencies 946 

is an active topic of research (Runge et al., 2019).  947 

Towards a model for agricultural crops and food production 948 

The methodology currently relies on the CGLS-LC100 land cover dataset do distinguish 949 

between natural vegetation and agriculture. We focus here on agricultural crops which, despite 950 

representing ~1% of the study area, show the highest vulnerability to tephra fall (Figure 9). 951 

Note that although pastoral crops are included in the Herbaceous vegetation class in CGLS-952 

LC100, it is impossible to distinguish between natural and managed grassland (Buchhorn et al., 953 

2020). Post-EIA on agricultural impacts have demonstrated how agriculture vulnerability 954 

depends on various factors that are not included in our model, including some of socio-955 

economic nature (Blake et al., 2015; Ligot et al., 2022; Magill et al., 2013; Phillips et al., 2019; 956 

Wilson et al., 2013a, 2007) that reflect specific challenges associated with different farming 957 
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activities (e.g.,  pastoral versus horticultural, intensive versus subsistence farming). Although 961 

future evolutions of the CGLS-LC100 dataset will possibly include finer sub-definitions of the 962 

crops class (e.g., irrigated versus rainfed cropland, farm size; Buchhorn et al., 2020), the 963 

methodology currently considers all agricultural crops as a uniform system. 964 

Despite this limitation, the proposed methodology nevertheless follows impact mapping 965 

techniques implemented in several other approaches for vegetation and food security mapping 966 

and monitoring (e.g., Meroni et al., 2019; Poortinga et al., 2018; Rembold et al., 2019), but 967 

differ in their fundamental purposes. To our knowledge, we provide here the first attempt to 968 

combine numerical modelling, big EO data and ML into a framework to re-analyse and extract 969 

new knowledge from data recorded in decades of remote sensing images as the basis for a new 970 

type of evidence-based vulnerability model. However, several steps are required for future 971 

evolutions of our approach to inform quantitative risk assessments on food production and 972 

security. Amongst them, future iterations of the methodology will focus on achieving: 973 

1. More applications of the model to various types of climates, eruptions and sampling 974 

different relationship between eruption date and phenological cycle in order to improve 975 

its generalisation; 976 

2. Comparison, validation and scaling of the EVI-based impact metrics with other impact 977 

estimates, either based on field interviews (e.g., yield loss), mapping (e.g., percentage 978 

of destroyed or damage vegetation) or other indirect proxies for physical processes (e.g., 979 

Gross and Net Primary Productivity); 980 

3. The inclusion of parameters describing the recovery of vegetation (i.e., the shape of the 981 

CDI curve after reaching minV/minT; Figure 3). 982 

Caveats and future research 983 

Below are future challenges and possible improvements of the method.  984 

Deleted: .985 



38 

1. The methodology takes advantage of datasets available on GEE (Table 2) and combines 986 

datasets of different nature, spatial and temporal resolutions. This discrepancy affects 987 

the accuracy of the model, and future development will explore a balance between the 988 

spatial and temporal resolutions of all datasets. Specifically ERA5 data will be 989 

reanalysed using mesoscale atmospheric models (e.g., Skamarock et al., 2019) at a 990 

resolution consistent with other datasets; 991 

2. An inherent and inevitable dependency exists between the various datasets; some are of 992 

ecological nature (e.g., multicollinearity between elevation, climate, landcover, 993 

precipitation and temperature) whereas other are geographic coincidences (e.g., lapilli 994 

dominantly affect the Cfb climate class, Figure 1). Further work is necessary to explore 995 

how these dependences influence model prediction and interpretability; 996 

3. The methodology currently attempts to capture impact as a function of pre-eruption 997 

variables (e.g., rainfall anomaly for various time steps before the eruption). In order to 998 

capture post-eruptive processes in impact modelling, future applications of the model 999 

will include post-eruption variables in the training process (e.g., wind speed and 1000 

precipitation after the eruption to capture ash residence on vegetation surface); 1001 

4. Despite providing a satisfactory accuracy, other algorithms and models than gradient 1002 

boosted regression trees allowing multi-output predictions must be explored to model 1003 

minV and minT jointly; 1004 

5. The CDI was designed as a proxy for the long-term post-eruption evolution of the 1005 

biomass production expressed by the EVI. Unlike more frequently used anomaly indices 1006 

relying on a ratio between post- and pre-eruption conditions, the CDI aims at 1007 

quantifying a budget between losses and gains. Although this implies a correlation 1008 

between EVI and CDI (section 3.1.2), this approach allows defining indices similar to 1009 

minV and minT to capture recovery and investigate potential gains in biomass 1010 
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production following eruptions. Future work, along with accounting for post-eruption 1021 

variables and multi-output predictions, will consider aspects of recovery in the model; 1022 

6. ML models used in EO applications rarely accommodate spatial (and spatio-temporal) 1023 

dependence. Accounting for these is necessary for reliable (causal) inference and 1024 

uncertainty quantification. We plan to investigate the use of Gaussian processes, among 1025 

others, to capture any residual spatial dependence. 1026 

6. Conclusion 1027 

We developed a methodology to remotely quantify impact through a combination of big EO 1028 

data, interpretable ML and physical volcanology as a first step towards the development of a 1029 

framework to identify, quantify and generalize key variables driving the impact of vegetation 1030 

after an eruption. The methodology is designed to provide a high-level and complementary 1031 

perspective to dedicated studies of the various disciplines involved in the characterization of 1032 

the vulnerability and impact of vegetation and crops to natural hazards beyond tephra fallout, 1033 

and has the potential to enhance the development of new synergies between the different actors 1034 

and stakeholders involved in this specific facet of risk management. 1035 

Based on the application of the methodology to the 2011 eruption of Cordon Caulle, the main 1036 

conclusions are: 1037 

- Both the magnitude and the duration components of impact captured by the processing 1038 

of MODIS satellite imagery reflect the geometry of the deposit (Figure 5); 1039 

- The methodology provides a systematic approach to identify the nature of the most 1040 

important variables controlling the final impact metrics. The forest landcover class is 1041 

mostly controlled by deposit properties (e.g., lapilli accumulation), whereas the crops 1042 

landcover class predominantly depends on biotic and abiotic parameters; 1043 
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- Interpretable machine learning methods provide insights into the nature of impacts. For 1045 

instance, forests appear to be impacted by a direct physical impact caused by heavy 1046 

accumulations; 1047 

- Across landcover classes present in the study area, SHAP dependence plots suggest that 1048 

forest and crops are the most and the least resilient vegetation classes to tephra 1049 

accumulation, respectively (Figure 9 c); 1050 

- The interpretation of SHAP dependence plots for deposit properties of the different 1051 

landcover classes (Figure 8) are in good agreement with thresholds for existing DDS 1052 

inferred from post-event impact assessments (Table 1), which further reinforces the 1053 

validity and usefulness of our approach. 1054 
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