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Abstract. Water ponding and pluvial flash flooding (PFF) on roadways can pose a significant risk to drivers. Furthermore,

climate change, growing urbanization, increasing imperviousness, and aging stormwater infrastructure have increased the fre-

quency of these events. Using physics-based models to predict pluvial flooding at the road segment scale requires notable

terrain simplifications and detailed information that is often not available at fine scales (e.g., blockage of stormwater inlets).

This brings uncertainty into the results, especially in highly urbanized areas where micro-topographic features typically govern5

the actual flow dynamics. This study evaluates the potential for flood observations collected from Waze–a community-based

navigation app–to estimate the likelihood of PFF at the road segment scale. We investigated the correlation of the Waze flood

reports with well-known flood observations and maps, including the National Flood Hazard Layer (NFHL), high watermarks,

and low water crossings data inventories. In addition, highly-localized surface depressions and their catchments are derived

from a 1-meter-resolution bare-earth digital elevation model (BE-DEM) to investigate the spatial association of Waze flood re-10

ports. This analysis showed that the highest correlation of Waze flood reports exists with local surface depressions rather than

river flooding, indicating that they are potentially useful indicators of PFF. Accordingly, two data-driven models, Empirical

Bayes (EB) and Random Forest (RF) regression, were developed to predict the frequency of flooding, a proxy for flood suscep-

tibility, for three classes of historical storm events (light, moderate, and severe) in every road segment with surface depressions.

Applying the models to Waze Data from 150 storms in the City of Dallas showed that depression catchment drainage area and15

imperviousness are the most important predictive features. The EB model performed with reasonable precision in estimating

the number of PFF events out of 92 light, 41 moderate, and 17 severe storms with 0.84, 0.85 and 1.09 mean absolute errors,

respectively. This study shows that Waze data provides useful information for highly localized PFF prediction. The superior

performance of EB compared to the RF model shows that the historical observations included in the EB approach are important

for more accurate PFF prediction.20

1 Introduction

This study developed and tested a new data-driven framework for short-term flash flood likelihood estimation at the scale of

road surface depressions based on crowdsourced traffic data. Flash flooding is considered one of the most hazardous natural

disasters that affect people worldwide (Kousky, 2018). Analysis of flash floods over the contiguous United States shows that
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flash flood frequency and property damage have increased in the past two decades (Ahmadalipour and Moradkhani, 2019).25

Pluvial flash flooding (PFF) is defined as localized floods caused by an overwhelmed natural or engineered drainage system

(Carter et al., 2015; Rosenzweig et al., 2018). PFF can reduce the reliability of roadway networks by decreasing capacity,

increasing travel time, reducing safe speed, and increasing accident risks and deaths through lane submersion (Agarwal et al.,

2005; Suarez et al., 2005; Smith et al., 2004).

Most urban flood studies have focused on fluvial and coastal flooding rather than PFF. Rosenzweig et al. (2018) identified30

three reasons for pluvial flooding being less studied: 1—It is assumed that stormwater infrastructure, such as sewers, culverts,

and pumps, are sufficient to prevent pluvial flooding, 2—Pluvial flooding is believed to be a nuisance with minimal impacts,

and 3—Lack of monitoring data to capture short-duration precipitation over small urban watersheds.

In the past, stormwater minor system (curbs, gutters, inlets, pipes, and channels) have been designed to minimize nuisance

hazards associated with a 10-year or less recurrence interval rainfall (U.S. Department of Transportation FHWA, 1979). More35

recent roadway facilities are designed and evaluated for 50-year and 100-year events (Mark and Marek, 2011), but in older

urban areas, undersized conveyance systems remain (Jack et al., 2021). With climate change, growing urbanization, and in-

creasing imperviousness, the frequencies of extreme rainfall events and nuisance flooding are increasing (United Nations.,

2019); Hemmati et al., 2021, 2020), leading to increased risks from pluvial flooding. Mobility disruption is a noticeable conse-

quence of PFF (Douglas et al., 2010; Yin et al., 2016; Coles et al., 2016; Li et al., 2018). For example, Pregnolato et al. (2017)40

estimated that a driver facing 10 cm of standing water must not drive faster than 40 km/hr to maintain safe driving, stopping,

and steering without loss of control. Furthermore, according to the National Weather Service (National Weather Services,

2022) 30 cm of standing water can be sufficient to float most cars.

In order to warn drivers about rapidly changing flash flood conditions, high-resolution predictive models are needed at

navigational scale (road segment and intersection). Simplified terrain models, such as rapid flood spreading model (RFSM)45

(Lhomme et al., 2008), height above nearest drainage model (HAND) (Nobre et al., 2011), and hierarchical filling and spilling

models (Zhang and Pan, 2014; Chu et al., 2013; Wu et al., 2019; Samela et al., 2020) can estimate inundation extent in less

complex terrains where the dynamics of flow, velocity, and momentum are negligible (Teng et al., 2017). Statistical methods are

also able to predict flooding by analyzing historical observations, however, since they learn from the past, updating procedures

are required to make them adaptive to accelerated future changes as they are built upon the assumption that similar conditions50

in the future will cause flooding. A notable advantage of statistical PFF models is their ability to capture impacts of unobserved

variables and uncertainties from historical observations, as well as the ability to rapidly update the models as new data become

available and system dynamics change. Haghighatafshar et al. (2020) suggested that designing stormwater infrastructure based

on storm recurrence intervals is ambiguous while statistical models can provide the basis of a more resilient system by taking

uncertainties of vulnerability and hazard of pluvial flooding into account. Many studies have investigated statistical flood55

modeling to predict flooding by applying statistical and machine learning methods such as classification models, Bayesian

frameworks, and Random Forest models (Tien Bui and Hoang, 2017; Solomatine and Ostfeld, 2008; Tehrany et al., 2013;

Zahura et al., 2020). Other studies have combined deterministic physics-based models with statistical models for forecasting

applications (Li and Willems, 2020; Zhao et al., 2018).
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Empirical and data-driven models require flooding observation data with high spatio-temporal resolution. The average dura-60

tion of flash flooding events in the United States has been 3.5 hours during the last two decades (Ahmadalipour and Moradkhani,

2019), limiting the applicability of aerial imagery to obtain sufficiently frequent flash flooding observations. To fill this data

gap, there is increasing interest in the application of newer "crowdsourced" data into flood modeling, monitoring, and impact

assessment (Molinari et al., 2018; Gaitan et al., 2016; See, 2019; Assumpcao et al., 2018; Praharaj et al., 2021; Helmrich et

al., 2021; Zhu et al., 2022; Liu et al., 2021; Schnebele et al., 2014). Previous crowdsourced flood data studies have involved65

engaging citizens in collecting four types of data: streamflow or rain gauge readings, videos, text messages, and image post-

ings (Li and Willems, 2020; Assumpcao et al., 2018; Zhu et al., 2022; Liu et al., 2021; Schnebele et al., 2014; Le Coz et al.,

2016; Smith et al., 2017; Cervone et al., 2015; Wang et al., 2018; Pereira et al., 2020; Moy De Vitry et al., 2019). Also,Zhu

et al. (2022) and Liu et al. (2021) applied artificial intelligence techniques to extract flooding waterlogging from microblog

information shared in crowdsourcing apps. A big challenge in using crowdsourced data is identifying the accurate location70

and flood extent from posted pictures, videos, and texts. However, even with the challenges mentioned above, researchers have

concluded that integrating crowdsourced data into flood models improves the overall performance and timeliness of forecasts,

hence increasing flood hazard awareness (Assumpcao et al., 2018; Goodrich et al., 2020).

The majority of studies have implemented crowdsourced data into physics-based models as complementary data for model

setup, calibration, validation, and data assimilation (Zahura et al., 2020; Assumpcao et al., 2018; Smith et al., 2017). However,75

physics-based models can be limited in flood prediction at road segment scales due to highly complex and interconnected

variables that contribute to flooding in urban environments (Coles et al., 2016; Rafieeinasab et al., 2015). Micro topographic

features, steep slopes, and varying surface materials can generate different types of flow regimes at small spatial scales. Dual-

drainage hydrodynamic models that couple equations for the underground sewer system and surface flow, require detailed

layouts of urban drainage systems that can be of varying quality, particularly in older urban areas where PFF is most prevalent80

(Haghighatafshar et al., 2020; Smith et al., 2017; Sadler et al., 2018; Berndtsson et al., 2019). Finally, catchments that drain

into roadways are often very small and ungauged, leading to further uncertainties in estimating road inundation (Versini et

al., 2010). Hence accurate high-resolution real-time physics-based hydrodynamic modeling in urban areas is computationally

extensive and rarely considered feasible (Mignot et al., 2006; Sanders et al., 2020).

In this study, we address these gaps and limitations of PFF probability estimation on roadways by incorporating crowd-85

sourced navigation data from the Waze navigation app as highly localized flood observations into high-resolution data-driven

models that can be updated and implemented rapidly to provide near-real-time navigational warnings. The framework de-

veloped has three steps. In the first step, road surface depressions and their upstream catchments are delineated from a high

resolution digital elevation model using simplified flow-routing and hierarchical fill spill approaches. In the second step, two

statistical and machine learning models—Empirical Bayes (EB) and random forest (RF)— are developed and tested to predict90

PFF frequency using roadway, catchment, depression, and rainfall characteristics. In the third step, probability of roadway

flooding and flood maps are generated that could be disseminated to navigation software. To our knowledge, this study is

the first to develop real-time PFF likelihood maps at road segment scales using data-driven models and crowdsourced traffic
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Figure 1. Methodology framework (basemap from ESRI-2021)

data. With the widespread use of smartphones and crowdsourced applications, this study shows the benefits of integrating

crowdsourced data and statistical modeling approaches into roadway flood awareness and management systems.95

2 Methodology

The three steps of the framework developed are shown in Figure 1. The first step involves data preprocessing to create the

dataset needed for modeling. The second step fits statistical and machine learning models to the historical dataset, and the third

step performs the roadway flooding likelihood estimation for future storms. These steps are described in more detail in sections

below.100

2.1 Step I: Preprocessing

The dataset preprocessing in Step I includes three primary components that are described in detail in the sub-sections below

and depicted in Figure 1. First, road surface depressions and their upstream catchments are delineated. Second, storm events

and their characteristics are determined from continuous rain gauge observations; third and last, flood alerts are assigned to

corresponding depressions and storm events.105
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2.1.1 Depression extraction

The first step of data preprocessing is to find road surface depressions that are prone to PFF. Generally, surface depressions are

defined as the difference between the hydrologically-conditioned digital elevation model (DEM) (Lindsay and Dhun, 2014)

and the raw DEM. In hydrologically-connected DEM elevations of internally draining sinks are raised to form a flat area that

can drain to downstream. Locating surface depressions in a highly urbanized terrain is challenging due to micro-topographic110

and underground features (such as curbs, stormwater inlets, etc.) that determine the actual flow path. In addition, using a high-

resolution DEM (1-meter) introduces hierarchical depressions with different orders of magnitude in spatial scale, from highly

localized (minor pits) to surface depressions that cover more than one neighborhood (residual depressions). Therefore, a nested

hierarchy of depressions must be considered to extract depressions compatible with urban features.

In this paper, the "sink evaluation" tool of the ArcHydro toolbox (Djokic et al., 2011) is utilized to extract a nested hierarchy115

of surface depressions. The sink evaluation tool scans the bare earth DEM (BE-DEM) and characterizes low-lying cells. The

process of local depression extraction is an iterative process that examines each sink, raises the elevation of low-lying cells

to fill the sink, and then reapplies the process on the resulting DEM. This procedure is depicted in Figure 2. In the first sink

evaluation step, Level-1 depressions are delineated and raised (Figure 2-a). In the second step, the DEM resulting from the

first level fill (Figure 2-e, red areas) is evaluated and Level-2 depressions are delineated. This process can be repeated until the120

area is fully hydrologically-conditioned and no higher-level depressions remain. The number of steps required in this process

is dependent on the resolution of the DEM and the complexity of the depressions in the landscape.

Due to the complexity of urban terrain, the spatial scale of depressions at each hierarchy level is quite variable and depres-

sions at the same level can be as large as a neighborhood or as small as a pothole. Initially, depressions at all hierarchical levels

were extracted. Since 15 cm of standing water has minimal impact on most cars (National Weather Services, 2022) depressions125

with maximum depth smaller than 15 cm are removed from further analysis. Next, those depressions that best represent and

align with urban topographic features that block flow, such as roadway curbs and gutters, are manually selected as flood-prone

depressions. Flood-prone depressions are then selected by examining overlays of the depressions and Waze flood reports, as

well as the areas of depressions and road surfaces that the depression covers. Heuristics for this procedure are presented in

detail in Section 2.1.5.. Figure 2-e shows 10 depressions (L1-1 to L1-7, L2-1, L2-2, and L3-1) extracted on a road segment130

with three depression levels. Level-1 depressions and L2-2 appear as single cell or too small pits on the road surface to cause

traffic disruption. However, L2-1 aligns with road curbs and gutters and could cause traffic disruptions by covering a large area

and all lanes of the roadway. Therefore, L2-1 is manually selected as the smallest depression that is prone to PFF and could

affect traffic flow on this road segment. (Note that L3-1 includes L2-1, hence it will be filled only after L2-1 has filled and

disrupted traffic flow already. Hence, L3-1 does not need to be included in the model for traffic navigation purposes.)135

2.1.2 Physical depression and catchment descriptors

After delineating road surface depressions, physical descriptors of depressions and their upstream catchments are computed as

follows. Two sets of characteristics, summarized in Table 1, are defined for every depression that is selected in the previous
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Figure 2. Hierarchical filling of surface depressions (basemap from ESRI-2021)

extraction step: physical depression descriptors (PDD) and physical catchment descriptors (PCD)(Kalantari et al., 2014). PDD

features describe the depression topography that is likely to affect water accumulation. These features are area, average depth140

assuming the depression is filled, and the height of road DEM cell elevations above the lowest elevation of the depression

(hereafter called Height Above Lowest Elevation, or HALE). The HALE feature indicates which DEM cells on road surface

would be inundated first and what is the accumulated depth required for flood water to reach that grid cell. Figure 3 shows

a schematic of the HALE and depth features. The PCD features are derived from the upstream catchment that drains into

each depression. The extracted features are average slope, fractions of the upstream catchment with a steep slope (defined as145

steeper than 8%), percentage of imperviousness, and the net log-transformed drainage area, hereafter called net drainage area

(NetDA), which is computed using Equation 1:

NetDA= Log(CA)× I (1)

Where:

CA is the catchment area in m2, and150

I is the percentage imperviousness of the catchment based on the National Land Cover Dataset (NLCD)

Log(CA) was used in this equation reflecting the nonlinear relationship between catchment area and flood likelihood. This

can happen since the larger the drainage area is, the higher are the impacts of infiltration, loss and stormwater drainage that we

are not considering in this analysis.155
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Figure 3. Schematic of HALE and depth features

2.1.3 Traffic exposure

Crowdsourced data are generated by volunteer contributions, which results in more data availability on roads with higher

traffic volumes. Therefore, including a feature in the model that captures roadway traffic exposure to flooded areas is necessary

to consider the likelihood of reporting a flooded depression. For this purpose, two additional variables are included in the

framework (Table 1): (1) the natural logarithm of Annual Daily Traffic (ADT) and (2) the road function as defined by the Texas160

Department of Transportation (TX-DOT).

Table 1. Physical depression/catchment descriptors

Depression descriptor Definition Unit Source

PDD

Depression area The area of the road surface that the depression covers Square meters DEM processing

Average depth The average depth assuming that the depression is filled Meters DEM processing

Maximum depth The maximum depth assuming that the depression is filled Meter DEM processing

Depression volume The volume that fills the depression Cubic meters DEM processing

Minimum volume The volume that generated 6-in depth on the road Cubic meters DEM processing

HALE The average height of the road above the lowest elevation of the depression Meters DEM processing

PCD

Net drainage area Proxy to the runoff generated from the upstream catchment Square meters DEM processing

Upstream imperviousness Average imperviousness fraction of the upstream catchment Percentage NLCD

Upstream steep slope The fraction of the catchment area that has a slope steeper than 8 percent Percentage DEM processing

Average upstream slope The average slope of upstream catchment Degree DEM processing

Road

Log ADT Natural logarithm of the ADT Vehicles/day TX-DOT Inventory

Road function

The function of the road as 1: interstate,

N/A TX-DOT Inventory

2: Freeway and Expressway,

3: Principal Arterial,

4: Minor Arterial,

5: Major Collector,

6: Minor Collector,

7: Local
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2.1.4 Storm event definition and storm clustering

Raw precipitation data are obtained from Automated Surface Observing Systems (ASOS) stations in continuous 5-minute

interval rain pulse observations. To predict the probability of depression flooding during a storm of particular severity, inde-

pendent storm events must be derived from the continuous data. In this study, the Minimum Inter-event Time (MIT) method165

is used to define independent storm events. The MIT approach defines a storm event as rainfall that follows and is followed

by a minimum dry (rainless) period called the Minimum Inter-event Time. The MIT value can be calculated using different

approaches. A reasonable estimate of the MIT value is the lag-time at which the serial autocorrelation between rain pulses

reaches a pre-set low threshold and remains steady(Asquith et al., 2005). In this study, the MIT value is diagnosed using the

correlogram method to visualize the autocorrelation of a rain pulse timeseries to find the lag time that makes a rain pulse in-170

dependent of its preceding rain pulses. After defining independent storm events, storm characteristics, including accumulated

precipitation, duration, average intensity, and maximum 15-minute, 30-minute, and hourly intensities, are calculated.

In similar storm events characteristics, similar locations of depression PFF is likely to occur. To capture this phenomenon,

storms are clustered into classes with similar severity (light, moderate, severe) using the storm characteristics such as intensity,

rainfall depth, and storm duration. For storm clustering, agglomerative hierarchical clustering is applied using a bottom-up175

approach that forms a single cluster for each storm event and successively merges clusters based on Ward’s linkage method.

Ward linkage method minimizes the total increase in within-cluster variance (Edelbrock, 1979) caused by merging clusters.

The benefit of using agglomerative clustering is that this algorithm is less sensitive to outliers and avoids creating a large

number of small clusters for extreme storm events (Edelbrock, 1979).

2.1.5 Waze data preprocessing180

Waze is a GPS-based traffic navigation app that collects crowdsourced information about road conditions. The Waze app ag-

gregates traffic incidents reported by its users as traffic alerts. Traffic alerts are geotagged points with two attributes that specify

their lifetime: ’publish date’ and ’last seen’. The Waze app has no pre-qualification for users to post a report, consequently not

all of the flood-labeled alerts are reliable to be used as flood observations. Praharaj et al. (2021) showed that 71% of Waze

flood alerts are reliable in Norfolk, Virginia. To investigate Waze alerts’ authenticity, we matched flood-related alerts to the185

most recent rainfall event and computed the delay between alerts’ publishing and rainfall end-time. A temporal threshold can

be found by analyzing the cumulative distribution of delays that determines whether a flood report is related to a storm event.

In addition to alert timing, we also compared the locations of Waze alerts to publicly available datasets of high-flood-risk

locations, including the National Flood Hazard Layer (NFHL), high watermarks and low water crossings data inventories from

the North Central Texas Council of Government (NCTCOG), and the road surface depressions computed as described in the190

methodology section. The NFHL is a spatial dataset that uses river flood hazard information provided by the Federal Emergency

Management Agency (FEMA) to generate flood hazard maps showing areas at high risk of flooding. We investigated the

proximity of Waze alerts to the high flood risk locations to find the spatial accordance of flood alerts to these locations.
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Figure 4. Alert assignment

One challenge in adopting Waze flood-related alerts as roadway PFF observations is assigning the alerts to the appropriate

flooded location because the coordinates of alert points do not perfectly align with flooded location coordinates. The distance195

between the flooded location and alerts depends on many unknown factors such as drivers’ reaction times, direction, and sight

distance. Posting a flood alert requires Waze users to complete three steps (three selections) in the app while driving or riding

and users can post a flood alert before or after passing the flooded road segment. Hence assigning flood alerts to the proper

depression must be done carefully. Waze data do not provide the direction of travel. However, no constraints regarding the

travel direction have been used for assigning flood alerts to flooded depressions, since depressions can cross both sides of the200

road.

In this study, three independent individuals were each asked to separately visually assess a map of historical flood alerts laid

over surface depressions and assign alerts to depressions using the following criteria: a cluster of more than two flood alerts

should be available near the depression and the depression must be distinct from other nearby surface depressions. Flood alerts

posted from bridges and elevated highways are excluded since BE-DEM does not represent bridge surfaces. Figure 4 shows a205

schematic example of alerts that can be assigned to the depicted depression and some that should remain unassigned because

they are isolated and too far from a depression.

2.2 Step II: Modeling

Pluvial flooding on any given surface depression is a binary variable that can be modeled as a Bernoulli trial of flood failure

(i.e., non-flooded) or success (i.e., flooded). If a depression has one or more Waze flood alerts linked to it, the depression210

is labeled as flooded (success). Assuming that the probability of being flooded is smaller than the non-flooded situation and

that the likelihood of flooding in a particular storm event for each depression only relies on its characteristics and the storm

magnitude (i.e.,is independent of the probability of flooding on other depressions), a random variable yi,j will define the

count of successes (flooding) out of the N trials (N storm events of cluster j) on depression i. The purpose of this study is to

estimate the random variable yi,j using extracted topographic features, road function, and storm severity. Both statistical and215
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machine learning models are implemented to estimate yi,j , namely Empirical Bayes and Random Forest. Table 2 summarizes

the categories of pre-processed independent variables used in the modeling.

Table 2. Count dataset of PFF events

PDD & PCD Road function (categorical) Storm clusters Count of Flooding

Depression ith Topographic Features

Interstate
Light y(i, j = light)

Freeway

Expressway
Moderate y(i, j =moderate)

Principal Arterial

Minor Arterial
Severe y(i, j = severe)

Major Collector

2.2.1 Empirical Bayes model

In a highly urbanized area there are numerous uncertain and unobserved site-specific features that affect localized PFF likeli-

hood, such as storm inlet’s age, capacity, and condition. For example, consider two road surface depressions (A and B) with220

similar PDD, PCD, road type, and ADT that experience the same storm. Suppose Depression A is located in a neighborhood

with lower infrastructure maintenance services, and its drainage system clogs more often. Then, despite similar descriptive

features, higher flood frequency should be expected at depression A. The Empirical Bayes (EB) algorithm, a simplified and

faster version of Bayes theory, takes advantage of the historical count of reported flood events from the Waze data to better

reflect the impacts of these types of uncertain and unobserved variables. The EB approach has previously been implemented225

in many fields to address the impacts of unobserved variables in estimating rare events, including hydrology. The EB method

uses the joint global prior and site-specific counts and produces the posterior probability yi by employing a weighted average

as shown in Equation 2 (Fill and Stedinger, 1998; Kuczera, 1982; Smith et al., 2014; Hauer et al., 2002; Lord et al., 2005;

Strupczewski et al., 2001).

EB(y) = w×µ+(1−w)× y (2)230

Where:

w is the EB weight factor

µ is the expected flood frequency on depressions similar to a given depression, and

y is the number of flood events on a given depression

The expected flood frequency for similar depressions (µ) is the global prior probability distribution from a fitted regression235

model, which in this study is a Negative Binomial regression model. The number of flood events (y) is the historical site-specific

flood event observation from the Waze data.
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2.2.2 Negative Binomial Distribution

Based on Waze flood observations, the variance of flood frequencies on depressions with similar PDD, PCD, road type, and

ADT is assumed to be greater than the average of flood frequencies (i.e. E(y)< V ar(y)). This assumption is appropriate given240

the importance of unobserved variables on the PFF formation on roads such as storm inlet conditions. In other words, among

n similar surface depressions, k depressions, where k≪n experience flooding significantly more than average. This fact leads

to an over-dispersed dataset where E(y)< V ar(y). Studies have shown that in the case of over-dispersed data, yi follows a

Poisson distribution with the rate parameter λi, where λi follows a Gamma distribution with the dispersion parameter ϕ and the

rate parameter ϕ/µi. The resulting distribution is Poisson-gamma, also called the Negative Binomial (NB) distribution (Zou245

et al., 2017). The probability mass function of the NB distribution is given in Equations 3 and 4. Therefore, in this study, the

expected flood frequency on similar depressions in the EB equation (Equation 2), is derived from a Negative Binomial (NB)

regression model that is fit to the count dataset shown in Table 2. NB parameters (ϕ and βi) are estimated using the Maximum

Likelihood Estimation method.

P (y) =
Γ(y+ϕ)

Γ(y+1)Γ(ϕ)
(

ϕ

ϕ+µ
)ϕ(

µ

µ+ϕ
)y (3)250

Where:

ϕ is the dispersion parameter of the NB distribution,

y is number of flood events on depression i, and

µ is the expected flood frequency on a given depression based on similar depressions (Equation 4)

µ= exp(
∑

βkxk) (4)255

Where:

βk is the coefficient of kth regressor variable in fitted regression model

xk is the value of kth regressor on a given depression Model selection for the NB regression model is implemented using the

Bayesian Information Criterion (BIC). In model selection, minimizing the BIC to the simplest model with the least number of

exploratory variables is reasonable. Reducing the BIC by adding more explanatory variables increases the risk of overfitting260

and loss of generality. Equation 5 shows the calculation of BIC.

BIC =−2log(L)+K.Ln(n) (5)

L is the maximum likelihood of the model representing the overall fit of the model,

K is the number of model parameters, and

n is the sample size265

It can be shown that the weight in the EB equation based on the NB regression is calculated as ϕ
µ+ϕ , hence we can rewrite

Equation 2 as Equation 6. ϕ is the NB parameter (Equation 3 estimated using Maximum Likelihood Estimation. For more

information regarding the mathematics of deriving the EB weight factor, refer to Zou et al. (2017).

EB(y) =
ϕ

µ+ϕ
µ+

µ

µ+ϕ
y (6)
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Where:270

ϕ is the dispersion parameter of NB distribution

The EB model’s predictive power is estimated using the mean absolute error (MAE). The MAE shows the average error of

the fitted values across the observations. The lower the MAE, the better the EB estimates fit the observations. The MAE is

calculated using Equation 7:

MAE =
1

n

n∑
i=1

|yi − ŷi| (7)275

Where:

n is the sample size

yi is number of flood events on depression i, and

ŷi is the EB predicted number of flood events on depression i

2.2.3 Random Forest280

Random Forest (RF) is a supervised ensemble machine learning algorithm that uses multiple decision tree learners to increase

predictive performance (Pedregosa et al., 2011). A decision tree consists of a hierarchy of nodes, each of which represents a

conditional decision rule that splits the data into different decision paths. The final prediction of RF is the average prediction

of all decision trees; each tree is built from a bootstrap sample of observations and a subset of features. The RF has been

widely used for data-driven modeling in the field of water resources (Sadler et al., 2018). This algorithm can handle large285

and imbalanced datasets and is well known to be easy to train. An important strength of the RF is that its convergence rate is

independent of noise and sparsity in the descriptive variables. RF models are useful for estimating the contribution of features

in the target variable (in this case, flood frequency). The node impurity in each node of the RF is the measure of homogeneity

of the target values at that node, which is the variance of target values in a regression problem. The normalized reduction in

the node impurity achieved by adding a specific feature to a tree defines the importance of that feature. In RF, the average of290

importance of a feature in all trees weighted by the number of samples involved in each split is the overall feature importance.

In this study, RF regression is executed using the Scikit-Learn library in the Python environment (Pedregosa et al., 2011).

The number of decision tree learners in the RF regression is optimized by the algorithm. For hyperparameter tuning and model

selection, a randomized cross-validated grid search is applied on a wide range of model parameters and MAE is used to measure

parameter performance and select the best-performing parameter set. The resulting parameters are then used to estimate the295

frequency of PFF at every depression for each storm class using Equation 8.

RF (y) =RF (PDD,PCD,roadfeatures,stormtype) (8)

Where:

RF (y) is the random forest prediction of number of flood events on a given depression
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2.2.4 Model Evaluation300

To evaluate the performance of the proposed model, the following approaches are used. First, 80% of the historical data,

randomly selected, are used in model training. Model testing is then implemented using the remaining 20% of the data held

out from the training process. The performance of the models is then assessed using the MAE of the predictions. In order to

ensure that the models are stable and their performance does not change with different train-test sets, the models are trained

and evaluated for several randomly chosen training sets and the variation in their performance is considered in selecting the305

best models for the final step of the framework.

Then, to further assess the improvements in PFF event estimation using topographic and historical Waze observations, the

EB and RF models are compared with three simple benchmark models. First, the average model (Equation 9) assumes that the

average PFF counts from historical Waze observations apply to all depressions and all storms without considering storm type

and topographic feature. Second, the storm-based average model uses the average of the PFF count in each storm cluster without310

considering topographic features (Equation 10). Finally, a regression model is used that predicts PFF based on topographic,

road type, and storm features but without implementing EB to update the prior probability (Equation 4).

pi =

n∑
i=1

yi
Nt

(9)

Where:

pi is the likelihood of flooding on depression i315

yi is the number of reported floodings on depression i

n is total number of depressions, and

Nt is number of total storm events

pi,j =

n∑
i=1

yi,j
Nj

(10)

Where:320

pi,j is the likelihood of flooding on depression i and storm type j

yi,j is the number of reported floodings on depression i and storm type j, and

Nj number of total storms of cluster j

2.3 Step III: Flood Probability Estimation

Finally, in Step III, the most accurate model from Step II is used to produce flood probability maps for every storm cluster325

across the region of interest. The probability of flooding is calculated using Equation 11.

pi,j =
ŷi,j
Nj

(11)

Where:

ŷi,j is the predicted number of floodings on depression i and storm type of j

330
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Figure 5. Study area and datasets (basemap from ESRI-2021)

3 Case study background and datasets

The described methodology was evaluated in the city of Dallas, Texas, USA (Figure 5), which is the third-largest city in Texas

with a population of more than 1 million. Dallas elevation ranges from 137 to 168 meters (450 to 550 feet), and it is mostly flat.

According to the Texas Department of Transportation (TXDOT), almost 20 percent of crashes, equal to 248 vehicle crashes

in the City of Dallas in 2018, happened on either standing water or wet road surface conditions. According to an analysis335

conducted by the First Street Foundation, flooding can expose 1841 miles of Dallas roadways (out of 6064 miles) to the risk of

becoming impassable (F. S. Foundation, 2020)). However, currently available fire-rescue dispatch software, including that used

by the Dallas Fire-Rescue Department (DFRD), assumes empty and dry roads for routing rescue vehicles. This has resulted in

rescue delays and occasional loss of life on flooded roadways, which provided the motivation for this study.
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Figure 6. a:Distribution of NFHL flood zone areas across the study region, b: Flood alerts in NFHL flood zones

For this case study, several datasets were used. First, a 1-meter resolution Bare Earth Digital Elevation Model (BE-DEM)340

was obtained from the North Central Texas Council of Government (NCTCOG), which was derived from a Quality Level 2

Lidar survey performed by Digital Aerial Solutions, LLC, in 2018, under contract with the Unites States Geological Survey

(USGS)/ National Resources Conservation Services (NRCS). The BE-DEM dataset’s name is TX Pecos Dallas 2018 D19, with

horizontal accuracy of +/-0.682 meters at a 95% confidence level and non-vegetated vertical accuracy (NVA) of 0.196 meters.

For rainfall, 15-minute precipitation observations were obtained from the USGS ASOS station at Dallas Love Field Airport345

(DAL) (Figure 5). Precipitation observations from January 1st 2017 to March 1st 2020 were used. Next, the US Department of

Agriculture’s (USDA) National Land Cover Database (2016) (Homer and Fry, 2012) is used to extract catchment impervious-

ness. The imperviousness raster over Dallas has a 30-meter resolution and ranges from 0 to 100%, with a mean of 33.87% and

standard deviation of 32.98%.

Waze alerts were obtained from the NCTCOG, which is a Waze partner in the Waze Connected Citizen Program (CCP). The350

NCTCOG granted us access to the Waze data for the period of 2018-04-21 (the start of NCTCOG’s Waze partnership) to 2020-

03-20. Waze alerts are classified into seven main categories: accident, jam, construction, miscellaneous, hazard or weather

(hazard-weather), road-closure, and others. The "hazard-weather" data itself is divided into several subcategories. Alerts in the

"flood" subcategory and ones which have any form of the word "flood" in their report description, such as "right lane flooded,"

are potentially flood-related and were included in this study, resulting in 5652 Waze alerts.355

The locations of these Waze alerts were shown in Figure 5, along with the NFHL river flood zones. Figure 6a shows that the

majority (around 70%) of alerts during the study period were posted in areas with minimal river flood hazard, which comprise

approximately 76% of the study area (Figure 6-b). Another 18% of the alerts were posted in areas of reduced river flood risk

due to levees, which were not breached during the study period. This indicates that PFF is likely the cause of most Waze alerts.

To further investigate the potential causes of Waze flood alerts, the high-water marks inventory and low-water crossing dataset360

were obtained from the Texas Natural Resources Information System (TNRIS). The high-water marks inventory contains

historic high water level reports from flooded water bodies or structures at 334 locations across the city of Dallas (Figure

5). The low-water crossing dataset includes 175 locations where surface water has crossed roads during high-flow conditions
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Figure 7. Cumulative density of alert distances to closest high-water mark and low-water crossing

(Figure 5). Analyzing Waze alert distances to the nearest high-water mark and low-water crossing shows that the vast majority

of alerts are more than 200 meters from both low-water crossings and high-water marks (Figure 7). These findings show how365

complementary flood observations such as Waze data are needed to assess roadway conditions more comprehensively than

available official datasets. Thus, in order to predict local roadway PFF, it is necessary to consider local surface depressions as

low-lying areas where surface runoff can accumulate during storms.

4 Data Pre-Processing Results

4.1 Depression Extraction370

Following the procedure explained in the methodology, almost 380,000 surface depressions were extracted over the city of

Dallas. Only 315 depressions are located on roads and deeper than 6 inches. Among these 315 depressions, 191 depressions

were proximal to reliable Waze flood alerts more than twice. To consider only chronically flooding areas, the rest of this

analysis is focused only on these 191 surface depressions.

4.2 Storm Event Definition375

As can be seen in Figure 8, the autocorrelation coefficient of rain pulses first reaches a low value and remains steady at a lag

time of 9 hours; accordingly, MIT = 9 hours is chosen to convert the continuous precipitation data into independent storm

events. Using MIT=9 hrs, 236 independent storm events are extracted from January 1st, 2017 to March 1st, 2020. Storm

characteristics are then tested for their utility in generating independent storm clusters with comparable storms. The maximum

15-minute interval intensity and the total accumulated precipitation were found to generate the most comparable storms with380

agglomerative clustering. Figure 9 shows the dendrogram that illustrates how clustering the storms into three groups captures

acceptable dissimilarity between storms severity, which are defined as light, moderate, and severe storms. The vertical axis of
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Figure 8. Autocorrelation of rain pulses

Figure 9. Tree-based dendrogram of agglomerative clustering, green, red, and purple lines represent within-cluster dissimilarities in light,

moderate, and severe storms respectively

the dendrogram depicts the dissimilarity between storms, and the horizontal axis represents storms. The position of each split

on the vertical axis shows the dissimilarity of the two clusters on sides of the split. Table 3 shows summary statistics for the

three storm clusters.

Table 3. summary statistics of storm clusters

Storm cluster Number of storms Mean of Maximum 15-min intensity

(in/15 min)

Mean of total precipitation

(in)

Mean of duration

(hours)

Light 142 0.05 0.12 4.08

Moderate 70 0.29 0.85 8.89

Severe 24 0.72 2.99 18.59

385
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Figure 10. Distribution of delay in alert posting from storm end

4.3 Waze Data Preprocessing

Potential flood-related alerts posted in the timespan of 2018-04-21 to 2020-03-20 are matched to their preceding storm. Figure

10 gives the distribution of delays between alert’s published time and storm end. Figure 10 shows that more than 90% of

Waze flood alerts are posted within 5 hours of storms. Therefore, potential flood-related alerts posted later than 5 hours after

storms were considered outliers (noise) and removed from the analysis. This process left 4,996 flood-related alerts out of the390

initial 5,652 alerts. The number of flood alerts posted per storm event ranged from 0 to 375, with the distribution depicted in

Figure 11. During the study period, 150 storms occurred but only 98 storms caused Waze flood alerts. On average, each storm

event had ten flood alerts. The process of flood alert assignment explained in the methodology section was performed for the

4,996 flood alerts in the Dallas case study by three independent individuals. With the given criteria, where more than four

alerts were clustered around a depression, 100% agreement between the annotators was observed in the assignment of alerts395

to depressions. Disagreement between annotators in alert o depression assignment were observed in locations where less than

four alerts are clustered around a depression. The first author reviewed alerts that indicated disagreement, and if the specified

criteria for making the assignment were not met, alerts were removed from the analysis. Among the 4,996 flood alerts that were

filtered, 2,665 alerts were assigned to 191 independent surface depressions using the approach described in the methodology

section (Section 2.1.5).400

5 Modeling Results

The performance of the proposed framework in estimating flood frequency is evaluated using both the Empirical Bayes (EB)

and Random Forest (RF) models and compared to the baseline models. Results from the best-performing model, EB, are then

examined in more detail in the following sections.

5.1 Model Parameters and Performance405

Parameters for the fitted NB model (Equation 4) are presented in Table 4. The dispersion parameter of the fitted NB regression

model (ϕ of Equation 3) is 2.943. A value of ϕ > 1 demonstrates that the over dispersion assumption is valid, whereas ϕ < 1

18



Figure 11. Total number of flood-related alerts per storm

shows an under-dispersed dataset. The MAE value achieved from fitting the NB distribution is 1.74, which shows that the flood

frequencies fit to the prior probability distribution have an average error equal to 1.74 flood events out of 150 storms. The EB

estimate of the fitted NB regression model, computed based on Equation 6, reduces the MAE on the training set to 0.88 flood410

events.

Table 4. NB model estimation results

Variable Coefficient Standard Error Z value P-value

Constant -9.30E+01 3.17E-01 -295.3 0.000***

Moderate storm 5.10E+01 2.10E-02 3.1 0.000***

Severe storm 7.60E+01 2.40E-04 3.3 0.000***

Net DA 8.10E-03 1.20E-01 445.9 0.001**

Average slope 6.30E-02 1.10E-01 686.2 0.003**

Log ADT 8.20E-02 2.70E-02 3 0.003**

Goodness of fit

BIC 1836.31

MAE 1.74

*** significant with more than 99% confidence

** significant with more than 95% confidence

For the RF model, hyperparameter tuning is implemented using a 3-fold cross-validated randomized search in the Scikit-

Learn library in Python programming environment. The best-performing model is found to have ten trees. The features with
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the highest importance (based on impurity-based feature importance calculated by the Scikit-Learn library) in the RF model

are severe storms, maximum depth, average upstream slope, logADT, and the net drainage area. The MAE of RF estimates on415

the training set is 0.73.

The predictive power of both models is evaluated on the held-out test dataset. The EB approach predicts the number of flood

events for unseen situations with MAE=0.92, while the RF model’s evaluation MAE is considerably higher, with MAE=2.1.

To minimize the impact of particular train-test datasets on the model’s performance, the dataset is randomly split 50 times and

the model performance statistics are re-evaluated for each split. The EB model has an average MAE of 0.89, as opposed to the420

average MAE of 1.92 attained by the RF model. EB’s predictive capability is also more stable across the 50 runs than the RF

model, with standard deviation of MAEs attained from different runs being 0.11 and 0.18, respectively. Figure 12 shows the

prediction power of the models on the train and test datasets.

Figure 12. Prediction of number of roadway PFF events
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It can be seen that the RF model is a better fit on the training dataset but its lower performance on the test set shows that it

is overfitting on the training set while the EB approach has more consistent performance on both datasets. The superiority of425

the EB model shows that the unobserved features play a significant role in PFF formation on road segments and a Bayesian

approach is more successful in capturing the effects of these features.

Next, the EB model that is found superior to the RF model is compared with the simple benchmark models given in the

methodology section. Figure 13 demonstrates how the flood counts will be predicted on the test dataset using each benchmark

model, NB regression, and EB model. Table 5 summarizes the performance of the EB approach, NB regression, and benchmark430

models. It can be seen that the MAE for both training and testing sets improves by adding storm clusters to the average model.

This increase is more noticeable in light storms (almost 50% improvement for both training and testing dataset).

However, adding topographic and observed flooding variables, as in the EB model, increases the accuracy of PFF count

estimation for severe storms more than moderate and light storms. This shows that topographic features are more important in

the formation of PFF when storms are more severe. Also, if PFF is observed at a particular location, then it is more likely to be435

observed at that depression again.

Table 5. Summary performance of models

MAE of train set MAE of test set

Light Moderate Severe Total Light Moderate Severe Total

Total average 1.88 2.01 2.53 2.14 2.19 1.93 3.04 2.37

Storm cluster based average 0.95 1.97 2.52 1.82 1.16 1.86 2.72 1.89

NB regression 0.94 1.91 2.37 1.74 1.16 1.65 2.75 1.82

Empirical Bayes 0.69 1.01 0.93 0.88 0.84 0.85 1.09 0.92

Random Forest 0.68 0.98 0.91 0.86 1.34 1.66 2.76 1.92

5.2 Flood Likelihood Estimation

The EB approach is superior in predicting the total number of flood events; hence, this approach is used to estimate flood

likelihoods from the frequency of PFF events (Equation 11). Figure 14 shows a higher PFF likelihood during severe storms

compared to light and moderate storms. Generally, we can see that flood likelihoods are higher when flooding has been posted.440

However, as discussed in the methodology section, true negative situations cannot be identified with voluntary crowdsourced

data (i.e. there could be flooding that no Waze user has reported). Figure 14-a shows an example of a flood probability map for

severe storms, along with historical flood-related alerts and traffic jams reported by Waze during one particular severe storm

that occurred on September 22nd, 2018. Figures 14-b and 14-c show the same information during the same time and day of the

week for the following and preceding weeks. Waze traffic jam reports include severity and congestion levels ranging from 1445

(lowest) to 5 (highest), which denote the level of traffic slow down or complete shutdown. Negligible, low, moderate, and high

flood probabilities are defined as less than 10%, less than 30%, less than 50%, and higher than 50%, respectively. In Figure

14-a, high traffic levels (Waze jam levels of 5) can be seen near a depression with high PFF probability (more than 50%).
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Figure 13. Prediction of number of PFF using benchmark models and EB

Figure 14 indicates that traffic jams during severe storm are noticeably higher than at similar time intervals before and after

the storm. These maps suggest that the traffic jam on the storm date, which agrees with the flood likelihood, is likely to be an450

anomaly relative to typical traffic conditions at this intersection. This finding is consistent with the flood alerts and predictions

of severe flooding at this location during the storm.

6 Discussion

The EB model is superior compared to the RF and benchmark models in predicting the number of flood events; hence this

model is used to estimate flood probabilities for storm clusters. The distribution of estimated flood probabilities (Figure 14455

and Table 5) are plausible given the magnitude of the storms. For example, the light storms have average duration of 4 hours

and average total precipitation of 0.1 inches, which is quite low and flooding would not be expected during these storms.

Flood-related alerts that are posted during these rainfall events can be assumed to be noise and disregarded for future studies.
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Figure 14. Distribution of flood likelihoods in reported versus non-reported floods

Figure 15. PFF probability map versus flood alerts and traffic jams at 1:00 PM to 5:00 PM on a. Friday, September 22nd with severe storm,

b. Friday, September 29th, 2018, rainless. and c. Friday, September 15th, 2018, rainless

Based on the NB regression line that is fitted to the count of observed flood events, we expect to see 7.6 and 5.2 times more

flood events in moderate and severe storms, respectively, compared to light storms. The NB model also shows that increases in460

the upstream net drainage area and average slope increase the probability of flooding, as would be expected. Furthermore, log

ADT has a direct relationship with the probability of observing a PFF event because frequently-traveled roads are more likely

to have Waze postings. This finding shows the limitations of estimating flood events from crowdsourced Waze datasets that

tend to neglect flood events on less-traveled roads. The superior performance of the EB approach shows the significant impact

of unobserved site-specific features such as stormwater inlet conditions in predicting the likelihood of PFFs on roadways. By465
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using historical observations, the EB approach better identified frequently-flooded locations (road surface depressions), perhaps

due to site-specific features such as under-sized stormwater inlets. Data were not available on these features for this study. In

highly urbanized areas, these types of uncertainties in engineered structures, particularly in older areas of the city where

recordkeeping can be poor, add to temporal uncertainties such as changing climate and land use that can affect flood formation.

Despite these limitations, this study showed that localized traffic-related flood alerts are helpful in estimating PFF probabilities470

over a three-year period. For longer periods, periodically retraining the model to account for changes in infrastructure and

climate is recommended.

To make effective use of crowdsourced traffic data, extensive preprocessing is needed to evaluate the reliability of the data

and map flood alerts, which are not necessarily posted at the exact location of the flooding, to plausible nearby depressions. This

process, which was done manually in this study, can introduce errors and bias to the analysis. With more data and integration475

of other data sources (e.g., flood sensors and stormwater inlets), an automated mapping process could be developed that could

potentially reduce these errors.

Furthermore, the approach taken in this study only considers flood-prone locations reported by Waze users. Numerous

parameters affect human exposure to flooded locations, such as the number of Waze users that pass a road segment, road

type, road function, day of week, and time of day. Hence, a similar flood extent on the road can cause significantly different480

magnitudes of traffic disruption at different times and locations, and, therefore, different flood reports. Data-driven models also

have limitations due to the previously discussed dataset constraints.

The EB model accounts for heterogeneity by utilizing historical frequencies. However, because of the bias and uncertainty

in the Waze data, as discussed in Section 2.1.5, the EB model estimates will be skewed and less accurate for depressions

situated on local and less-traveled routes. While major routes are more important than minor routes for minimizing exposure485

to roadway PFF, these limitations must be acknowledged. It is possible that, with more data, an approach to extrapolating

findings on major roads to minor roads could be developed. To develop a more unbiased flood prediction model, we suggest

that crowdsourced data be used as complementary data in conjunction with other data sources and models to account for less

frequently traveled areas and times (e.g., during the Covid-19 pandemic, which was not included in this study when traffic was

significantly reduced).490

7 Conclusion

This analysis is a first step in exploring approaches to implement crowdsourced data from the Waze app into flash-flood

prediction. For this case study, Waze flood alerts were primarily posted in areas outside of mapped river flood hazards and

low water crossings, suggesting the need for and importance of modeling rainfall-induced or pluvial flash flooding (PFF). The

statistical and ML models implemented in this study demonstrated the feasibility of modeling PFF in terrain depressions based495

on storm, catchment, and road properties. The EB approach is found to be superior in terms of predictive power compared

to RF. This shows the importance of unobserved site-specific features on roadway PFF, which the EB approach captures by

incorporating historical site-specific PFF observations to produce posterior probability. Both statistical and machine learning
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models achieve smaller MAEs for severe storms compared with moderate and light storms. This shows that the modeled

depression and catchment descriptors are more explanatory in severe storms when infiltration is reduced and drainage systems500

are more likely to be overwhelmed. The high accuracy of the proposed methodology in the Dallas case study shows that

crowdsourced traffic data has value for high spatio-temporal resolution flash flood prediction. Stakeholders and decision-

makers could benefit from the developed model for identifying locations that require stormwater utility maintenance or capital

investment. Further research is needed to fully exploit crowdsourced data applicability as a complementary data source using

more authoritative data sources and physics-based models.505
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