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Abstract. When choosing an appropriate hydrodynamic model, there is always a compromise between accuracy and computa-

tional cost, with high fidelity models being more expensive than low fidelity ones. However, when assessing uncertainty, we can

use a multifidelity approach to take advantage of the accuracy of high fidelity models and the computational efficiency of low

fidelity models. Here, we apply the multilevel multifidelity Monte Carlo method (MLMF) to quantify uncertainty by computing

statistical estimators of key output variables with respect to uncertain inputs
::::
input

::::
data, using the high fidelity hydrodynamic5

model XBeach and the lower fidelity coastal flooding model SFINCS
:::::::::
(Super-Fast

::::::::::
INundation

::
of

:::::::
CoastS). The multilevel aspect

opens up the further advantageous possibility of applying each of these models at multiple resolutions. This work represents

the first application of MLMF in the coastal zone and one of its first applications in any field. For both idealised and real-world

test cases, MLMF can significantly reduce computational cost for the same accuracy compared to both the standard Monte

Carlo method and to a multilevel approach utilising only a single model (the multilevel Monte Carlo method). In particular,10

here we demonstrate using the case of Myrtle Beach, USA, that this improvement in computational efficiency allows in-depth

uncertainty analysis to be conducted in the case of real-world coastal environments – a task that would previously have been

practically unfeasible. Moreover, for the first time, we show how an inverse transform sampling technique can be used to accu-

rately estimate the cumulative distribution function (CDF) of variables from the MLMF outputs. MLMF based estimates of the

expectations and the CDFs of the variables of interest are of significant value to decision makers when assessing risk
:::::::::
uncertainty15

::
in

:::::::::
predictions.

1 Introduction

Throughout history, coastal zones have been attractive regions for human settlement and leisure due to their abundant resources

and the possibilities they offer for commerce and transport. Nevertheless, living in coastal zones has always come with the risk

of coastal flooding hazards, for example, from storm surges as well as wave run-up and overtopping. Hydrodynamic models20

can simulate these hazards but estimates of the risk posed by them
:::::
these

:::::::::
predictions

:
are often uncertain (Athanasiou et al.,

2020), due to uncertainties in input data as well as in the hydrodynamic models themselves. Typically this uncertainty is

assessed by computing
:::::::
Standard

:::::::
practice

:::
to

:::::
assess

:::::
these

:::::::::::
uncertainties

::
is

::
to

:::::::
express

:::::
these

::::::::
uncertain

:::::::::::::::
inputs/parameters

:::::
using
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:::::::::
probability

:::::::::::
distributions.

:::
The

::::::::::
uncertainty

:::
can

::::
then

::
be

::::::::
assessed

::
by

::::::::
sampling

::::
from

:::::
these

::::::::::
distributions

::::
and

:::::::::
computing

:::
key

::::::
output

:::::::::
diagnostics

::::
such

::
as
:

the mean and variance of key variables of interest and/or the probability of a hazard event occurring (see25

for example Kalyanapu et al. (2012) and Wang et al. (2017) where they are used to assess long term risk
::::::
impacts

:
from flooding

and hurricanes respectively). These statistics can all be expressed as expectations and can be estimated by computing statistical

estimators. The most straightforward approach to compute such an estimator is to apply the standard form of the Monte

Carlo method. For a given model X and an uncertain input parameter α, the Monte Carlo estimator f̂(X) for the expectation

E[f(X(α))] is given by30

f̂(X) =
1

N

N∑
n=1

f(X(α(n))) (1)

where α(n) are N independent samples taken from the distribution of the uncertain input parameter. However, this method

requires O(ε−2) model runs to achieve an accuracy ε (Caflisch, 1998), which can easily make it prohibitively computationally

expensive, especially given the high computational cost of accurate coastal models. In existing research such as Callaghan et al.

(2013), low fidelity models are used to solve the issue of high computational cost with Monte Carlo methods, but this leads to35

less accurate results.

We take an alternative approach and instead compute statistical estimators using the relatively novel multilevel multifidelity

Monte Carlo (MLMF) method, developed in Geraci et al. (2015), which combines results from a high fidelity and a low fidelity

model. MLMF takes advantage of the accuracy of high fidelity models and the computational efficiency of lower fidelity ones

to produce accurate yet computationally feasible uncertainty analyses. It further improves computational efficiency by using40

the hierarchy of model resolutions approach, similar to that used in the multilevel Monte Carlo method (MLMC) (Giles, 2008).

Research into MLMF is still in its infancy, and this work represents the first application of MLMF in the coastal zone. It has,

however, already been successfully applied in aerospace research (Geraci et al., 2017) and cardiology (Fleeter et al., 2020).

Note that MLMC is also a fairly novel method, but it has already been successfully applied to coastal zones in Clare et al.

(2021), a promising indication that MLMF will be similarly successful in this field.45

MLMF does not aim to improve the accuracy relative to using a standard Monte Carlo method on the high fidelity model,

but to instead use a lower fidelity model to accelerate the approach and thus make uncertainty studies computationally feasible.

Therefore the key to the successful application of MLMF is choosing an accurate high fidelity model and an appropriate lower

fidelity model, which reasonably approximates the high fidelity one. Coastal flood modelling is therefore an ideal field on

which to apply MLMF because there exist a large number of high fidelity but computationally expensive full physics models50

such as XBeach (Roelvink et al., 2009), SWASH
::::::::::
(Simulating

::::::
WAves

:::
till

::::::
SHore)

:
(Zijlema et al., 2011), or MIKE21 (Warren

and Bach, 1992), and lower fidelity computationally cheaper reduced physics models such as SFINCS
:::::::::
(Super-Fast

::::::::::
INundation

::
of

:::::::
CoastS) (Leijnse et al., 2021), LISFLOOD-FP (Bates et al., 2010) or SBeach

::::::::
SBEACH

:::::::::::::
(Storm-Induced

:::::::
BEAch

::::::::
CHange)

(Larson and Kraus, 1989). Furthermore, this work provides an interesting example of a framework for combining lower and

high fidelity models in an area where there is already a lot of research into combining different fidelity models (for example55

Callaghan et al., 2013; Leijnse et al., 2021).
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In our work, we choose the depth-averaged finite-volume based coastal ocean model XBeach as our high fidelity model

because it can parameterise unresolved wave propagation, such as wind-driven wave fields, and has been successfully used

numerous times in the coastal zone to simulate wave propagation and flow including, for example, in Roelvink et al. (2018)

and de Beer et al. (2020). For our lower fidelity model, we use the hydrodynamic model SFINCS (Super-Fast INundation of60

CoastS) because of its ability to simulate the relevant processes for compound coastal flooding (Leijnse et al., 2021). Note that

to maximise computational efficiency, SFINCS does not explicitly solve for short wavelength wind-driven waves internally but

instead these can be provided in the form of a prescribed forcing. The computational efficiency of SFINCS has already been

favourably compared to XBeach in numerous test cases (see Leijnse, 2018; Leijnse et al., 2021), where SFINCS is shown to

be significantly cheaper than XBeach, with acceptable differences in accuracy. Despite this model choice, we emphasise that65

we implement our MLMF algorithm using a model-independent Python wrapper developed in our work, which could easily

be applied to other coastal ocean models in future research. Note further that whilst investigating the accuracy of the specific

models used is beyond the scope of this work, this wrapper approach means that the numerous verification and validation

studies conducted with XBeach and SFINCS still hold for our work (for example McCall et al., 2010; Riesenkamp, 2011;

Roelvink et al., 2018; Leijnse et al., 2021).70

The aim of this work is to explore how MLMF can be applied to complex hydrodynamic coastal ocean models to investigate

within a reasonable timeframe, the impact of a variety of uncertain input parameters, such as wave height and bed slope angle,

whilst maintaining accuracy relative to the standard Monte Carlo method. We apply MLMF to both idealised and real-world

test cases, some of which would have been impractical and unrealistic to run using standard Monte Carlo methods due to huge

computational costs. In many of these test cases, we conduct a valuable spatial uncertainty analysis of the coastal flooding, by75

calculating the expected value of output variables simultaneously at multiple locations. Like other Monte Carlo type methods,

MLMF quantifies uncertainty by computing estimators of the expected value of key output variables with respect to uncertain

input parameters. However, in this work we also modify the inverse transform sampling method from Gregory and Cotter

(2017) to develop a novel method to generate Cumulative Distribution Functions (CDFs) from MLMF outputs. This provides

information allowing practitioners to determine the probability /risk of a variable exceeding a certain value, which can be of80

more interest than the expected value.

The remainder of this work is structured as follows: in Sect.
::::::
Section

:
2 we outline the methodology for applying MLMF

to the coastal flood models and the relevant MLMF theory; in Sect.
::::::
Section 3, we apply MLMF with SFINCS and XBeach

to idealised and real-world test cases to estimate both the expected value and the cumulative distribution function for the

considered output variables;
::
in

::::::
Section

:::
4,

::
we

:::::::
discuss

:::::::::
extensions

::
to

:::
the

:::::::
MLMF

:::::::::::
methodology;

:
and, finally, in Sect.

::::::
Section 5,85

we conclude this work.

2 Methodology: Applying
::
the

:
multilevel multifidelity Monte Carlo methods

::::::
method

:
(MLMF) to determine

:::::
assess

::::::::::
uncertainty

::
in

:
coastal flood risk

:::::::
flooding
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Example illustration of how MLMF’s multifidelity multilevel approach using SFINCS and XBeach models on different grid

resolutions results in computational cost savings.90

In this section, we describe the mathematical theory behind MLMF and how it is applied. MLMF constructs a set-up

like that shown in Figure 1, where fewer samples are conducted at the expensive fine resolutions than at the cheap coarser

resolutions (hence multilevel) and fewer samples are conducted with the high fidelity model than with the low fidelity one

(hence multifidelity) . To describe MLMF, we first outline its two constituent components (multifidelity estimators (Sect. A)

and MLMC(Sect. B)), which leads to the theory behind MLMF (Sect. 2.1). MLMF estimates the expected value
:::
As

::::::::
discussed95

::
in

::::::
Section

::
1,
:::::::::::
Monte-Carlo

::::
type

::::::::
methods

:::
can

:::
be

::::
used

::
to

::::::
assess

:::::::::
uncertainty

:::
by

:::::::::
estimating

:::
the

:::::::::::
expectations

::
of

::::::::
functions

::
of

:::
an

::::
input

:::::::
random

:::::::
variable.

:::
In

:::
our

::::::
model

::::::::
scenario,

:::
the

::::
input

:::::::
random

:::::::
variable

::
is
:::::
some

::::::
source

::
of

::::::::::
uncertainty,

:::::
such

::
as

:::
the

:::::::
friction

:::::::::
coefficient,

:::
and

:::
the

:::::::
function

::::::::
involves

::::::
running

:::
our

:::::::::
numerical

:::::
model

::::
and

:::::::::
computing

:::::
values

:::::
such

::
as

:::
the

:::::
water

:::::::
elevation

::::::
height

::
at

::::::
specific

::::::::
locations,

:::::
from

:::
the

:::::
model

:::::::
output.

:::::
These

::::::::
estimates

:::::
could

::
be

:::::::::
calculated

:::::
using

:::
the

:::::::
standard

::::::
Monte

:::::
Carlo

:::::::::
approach,

:::
but

:::
this

::
is

:::::::::::::
computationally

:::::::::
expensive

:::
due

::
to

:::
the

::::
need

::
to

:::
run

:::::
large

:::::::
numbers

::
of

::::::
model

::::::::::
simulations

::
to

:::::
obtain

:::
an

:::::::::
appropriate

::::::::
accuracy100

:::
(see

::::
Eq.

:
1
::::
and

:::
the

:::::::::
discussion

::::::
below

:::
it).

:::
The

::::::::::::
computational

::::
cost

:::
of

:::::::
running

:::
the

:::::
model

::::
can

::
be

:::::::
reduced

:::
by

:::::
either

::::::::::
coarsening

::
the

::::
grid

:::::::::
resolution

::
or

:::::
using

::
a
:::
less

::::::::
complex

::::::
model,

:::
or,

::
in

:::
the

::::
case

::
of

::::
this

:::::
work,

:::::::
making

:::
use

::
of

::::
both

::::::::::
approaches

:::
by

:::::
using

:::
the

::::::::
multilevel

::::::::::
multifidelity

::::::
Monte

:::::
Carlo

:::::::
method

::::::::
(MLMF).

:::::
Using

:
a
::::::
coarse

::::
grid

:::::
and/or

:::::::
simpler

:::::
model

:::::
gives

::
an

:::::::
estimate

::::::
which

::
is

:::::
cheap

::
to

:::::::
compute

:::
but

::::::
(more)

::::::::
incorrect

:::
and

::::
thus

:::
has

:::
an

::::
error.

::::
This

:::::
error

:::
can

:::
be

::::::::
corrected

:::
by

::::::::
estimating

::::
the

::::::::
difference

:::::::
between

::::
the

:::
low

::::
and

::::
high

::::::
fidelity

::::::
models

::::::
and/or

:::
the

::::::::
different105

:::::::::
resolutions,

::::
and

::::::
adding

::::
these

:::
on

::
to

:::
the

:::::::
cheaply

::::::::
computed

:::::::::::
expectation.

:::
Key

:::
to

:::
the

:::::::
approach

::
is
:::
the

::::::::::
observation

::::
that

:::::::::
estimating

::
the

:::::::::
difference

:::::::
requires

:::::
fewer

:::::::::
simulations

::::
than

:::::::::
computing

:::
the

:::
full

::::::::
estimate,

:::::::
because

:::
the

:::::::
variance

::
of

:::
the

::::::::
correction

::
is
::::::::::
(hopefully)

::::::
smaller

::::
than

:::
the

:::::::
variance

:::
of

:::
the

:::::::
outputs.

:::
For

:::
the

::::::::
different

::::
grid

::::::::::
resolutions,

:::
the

::::::::
correction

::
is
:::::

done
:::
by

:::
the

:::::::::
telescoping

::::
sum

:::
of

::
the

:::::::::
multilevel

::::::
Monte

:::::
Carlo

::::::
method

:::::::::
(MLMC),

:::::
while

:::
for

:::
the

:::::::
different

::::::
fidelity

:::::::
models,

:::
the

:::::::::
correction

::
is

::::
done

:::
by

::::::
control

::::::
variate

::::::::
formulae.

:::
The

::::::::
challenge

::
is
::::::::::
composing

::::
these

::::::::::
approaches

::
so

:::
that

:::
we

::::
can

::
do

:::::
both,

:::::
which

::
is

::::
what

:::::::
MLMF

::::
seeks

:::
to

:::
do.110

:::
The

::::::
theory

:::
for

::::::
MLMF

::
is

:::
the

:::::
focus

::
of

::::::
Section

::::
2.1,

:::::
whilst

::::::
details

:::
on

:::
the

::::::
control

::::::
variate

::::::::::
multifidelity

::::::::::
approaches

:::
and

:::::::
MLMC

:::
can

::
be

::::::
found

::
in

::::::::
Appendix

::
A
::::

and
::
B

:::::::::::
respectively.

::
As

:::::::::
described

::
in

::::::::::::::::
Geraci et al. (2015)

:
,
:::
the

:::::::
standard

:::::::
MLMF

::::::::
approach

::::::
cannot

:::::::
estimate

:::
the

:::::::::
probability of an output variable such as water depth, but the probability of this variable exceeding a certain value

:
.

:::
The

:::::
latter is often also of significant interest and can be determined using CDFs. Previous to this work, MLMF outputs have

not been used to estimate CDFs and thus we outline our novel theory in Sect. 2.2. Finally, the
:::
for

:::::::
flooding

::::::::
problems

:::
and

::::
thus

::
in115

::::::
Section

::::
2.2,

::
we

:::::::
present

:::::
novel

:::::
theory

::
to

::::::
extend

::::::
MLMF

:::
for

:::
the

:::::::::
estimation

::
of

:::::::::::
probabilities.

::::
The implementation and application

of the MLMF method in this work is described in Sect. 2.3
::::
then

::::::::
described

::
in

:::::::
Section

:::
2.3

:::
and

:::
we

::::::::
conclude

::::
this

:::::::::::
methodology

::::::
section

::::
with

:
a
::::
brief

:::::::
remark

::
on

:::::::
different

::::::::
methods

::
to

:::::
assess

::::::::::
uncertainty

::
in

::::::
Section

::
4.

2.1 Multifidelity estimators
::::::::
Multilevel

:::::::::::
multifidelity

::::::
Monte

::::::
Carlo

:::::::
method

::::::::
(MLMF)

Generally, a multifidelity approach uses a low fidelity model to generate surrogate approximations for the outputs of a120

::::::
MLMF

:::::
seeks

::
to

:::::::
improve

:::
the

:::::::::
efficiency

::
of

::::::::::
uncertainty

:::::::
analyses

:::
by

:::::::
running

:::::
fewer

::::::::::
simulations

::
at

:::
the

:::::
more

::::::::
expensive

:::::
finer

:::::::::
resolutions

::::
than

::
at

:::
the

:::::::
cheaper

::::::
coarser

:::::::::
resolutions

::::
and

::
by

:::::::
running

:::::
fewer high fidelity model . Note that throughout this work,

4



Figure 1.
::::::
Example

:::::::::
illustration

::
of

::::
how

:::::::
MLMF’s

:::::::::
multifidelity

::::::::
multilevel

::::::::
approach

::::
using

:::::::
SFINCS

:::
and

:::::::
XBeach

::::::
models

::
on

:::::::
different

::::
grid

::::::::
resolutions

:::::
results

::
in

:::::::::::
computational

:::
cost

::::::
savings.

::::
Note

:::
the e

::::::
symbol

::::::
indicates

:::
the

::::
order

::
of

::::::::
magnitude

::
of
:::
the

:::::::::::
computational

:::
cost

:::
for

:
a
:::::
single

::::::::
simulation

:::
with

:::
this

:::::
model

::
at
:::
this

::::
grid

:::::::
resolution

:::
i.e. ee

:::::::
indicates

::::::
O(102)

::::::
seconds

:::
for

:
a
:::::
single

:::::::::
simulation.

:::
The

:::::
orders

::
of

::::
time

:::
and

::::::
number

:
of
::::::::

scenarios
::
are

:::::::::::
approximately

::::
those

:::
for

:::
the

:::::
Myrtle

:::::
Beach

:::
test

:::
case

::
in
::::::
Section

:::
3.3.

HF and LF are used to denote the high and low fidelity models, respectively. If applied correctly, the resulting multifidelity

estimator is then as accurate as the equivalent high fidelity one. There exist a number of different multifidelity approaches

(see Peherstorfer et al., 2018). MLMF uses the control variate approachwhich we outline here following Geraci et al. (2015)125

throughout. This approach has the general form

QHF,CVM =QHFM +αF

(
QLFM −E[QLFM ]

)
,

where in our work QHF,CVM represents the expected value of a
:::::::::
simulations

::::
than

:::
low

:::::::
fidelity

::::
ones

:::
(see

::::::
Figure

:::
1).

::
In

:::
this

:::::::
section,

::
we

:::::::
describe

:::
the

::::::
theory

:::
for

:::
the

:::::::
standard

::::::
MLMF

:::::::::
approach,

::::::::
following

:::::::::::::::::
Geraci et al. (2015)

:::::::::
throughout.

::
A

:::::::
pictorial

::::::::::::
representation

::
of

:::
this

::::::::
algorithm

::
is
::::::
shown

::
in

::::::
Figure

:
2
::::
and

:
a
:::
full

::::::::
statement

:::
of

::
the

:::::::::
algorithm

::
is

:::::::
included

::
at

:::
the

:::
end

::
of

:::
the

:::::::
section.130

::
To

:::
fix

:::::
ideas,

:::
we

:::::::
consider

:
a
:::::::::::

hypothetical
::::::::
scenario,

:::::
where

:::
the

:
variable of interest . Furthermore, E[·] denotes expectation, M

indicates the fixed discretisation level, and αF is a scalar determined below in (A2). The multifidelity estimator is unbiased and

5



Figure 2.
::::
Flow

::::
chart

::
of

:::::::::
multi-model

:::::::
approach

::
to
::::::
MLMF

::::
using

:::
HF

::::::::
(XBeach)

:::
and

::
LF

::::::::
(SFINCS).

given by

Q̂HF,CVM,N = Q̂HFM,N +αF

(
Q̂LFM,N −E[QLFM ]

)
,

where αF is a scalar and N is the number of samples. Throughout
::::
water

::::::::
elevation

::::::
height

::
at

:
a
::::::

given
:::::::
location

::::
after

::
a

:::::
given135

::::
time

:::
and

:::
the

::::::::
uncertain

:::::::::
parameter

::
is

:::
the

::::::
friction

:::::::::
coefficient

::::::
which

:::
we

::::::
assume

:::::::
follows

:
a
:::::::
normal

::::::::::
distribution.

::::
The

::::::
desired

::::
grid

::::::::
resolution

::
in

:::
our

::::::
model

::
is

:::::::::::::::::::::
∆x= 5000/210 (≈ 5)m.

::::
Note

::::
that

:::
this

:::::::::::
hypothetical

:::::::
scenario

::
is

::::::
similar

::
to

:::
the

:::::::
example

::::
used

:::
as

:::
the

:::
first

:::
test

::::
case

::
in
::::
this

:::::
work.

:::::::::
Moreover,

:::::::::
throughout

:
this work, we use the standard notation, ·̂, to denote an estimator . The value

of αF is then determined by minimising the variance of Q̂HF,CVM,N and is given by

αF =−ρ

√√√√Var(Q̂HFM,N )

Var(Q̂LFM,N )
,140

where ρ is the Pearson’s correlation coefficient for the HF and LF estimators.
:::
HF

:::
and

:::
LF

::
to
::::::
denote

:::
the

::::
high

:::::::
fidelity

:::::::
XBeach

:::::
model

::::
and

::::
low

::::::
fidelity

:::::::
SFINCS

::::::
model

::::::::::
respectively.

:

Equation (A1) assumes that E
[
QLFM

]
is known, but this is almost never true because we do not know the analytical formula

of the distribution of the
:::
We

::::::
denote

:::
the

::::::
MLMF

::::::::
estimator

:::
for

::
the

:::::
water

:::::
depth

::
at

:::
the

:::::
finest

:::
grid

:::::::::
resolution

:
L
::
as
:::::::::
Q̂HF,CVML

.
::::
Here

:::
the

::::
finest

::::
grid

:::::::::
resolution

:
is
:::
the

::::
grid

:::::::::
resolution

::
we

::::::
would

:::
like

::
to
:::::::
evaluate

::::
our

:::::
model

:::
at;

:::
for

:::
our

::::::::::
hypothetical

:::::::
scenario

:::
the

:::::
finest

::::
grid145
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::::::::
resolution

::
is

::::::::::::::::::::::::::::
∆x=M/2L = 5000/210 (≈ 5)m.

:::::
Note

:::
that

::::::::
following

::::::::
standard

:::::::
notation,

:̂
·
:::::::
denotes

:::
that

::::::::
Q̂HF,CVML ::

is
::
an

:::::::::
estimator.

::
An

::::::::
estimator

:::::::::
represents

:::
the

::::
rule

:::
for

:::::::::
calculating

:::
an

:::::::
estimate

::
of

::
a variable of interest QLFM . Therefore, extra realisations of the

LF model must be conducted in order to estimate this quantity, with its number denoted by ∆LF . Even though we use the same

random numbers for the realisations to construct Q̂HFM,N and Q̂LFM,N (see Figure 2), in the literature the number of realisations

is denoted by NHF . The number of extra realisations for the LF model is then ∆LF = rNHF , where the optimum value of r150

is determined later. Thus, the overall computational cost C of the multifidelity estimator is

C = CHF +CLF (1 + r),

where CHF is the cost of running NHF simulations of the HF model and CLF is
::::
given

::::
data.

::
In
::::

our
::::::::::
hypothetical

::::::::
scenario, the

cost of running NHF simulations of the LF model . Using (A1), the variance ‘Var’ of the multifidelity estimator is

Var
[
Q̂HF,CVM,N

]
= Var

[
Q̂HFM,N

](
1− r

1 + r
ρ2
)
.155

Note that ρ2 is less than one by definition, so r greater than zero means the variance of the estimator is reduced through using

this method.

2.2 Multilevel Monte Carlo method (MLMC)

The multilevel Monte Carlo method (MLMC ) was first introduced in Giles (2008) and successfully applied in the coastal

engineering field in Clare et al. (2021). We refer the reader to those two works for full details of the method and here present a160

brief overview.

MLMC accelerates the Monte Carlo method by considering the problem at different levels of resolution in a multilevel

environment. It then
:::::::
estimator

::
is
:::
the

::::
rule,

:::
the

:::::::
variable

:::
of

::::::
interest

::
is

:::
the

:::::
water

::::::::
elevation

::::::
height,

:::
the

::::
data

:
is
::::

our
:::::
model

::::
runs

::::
and

::
the

::::::::
estimate

:
is
::::
then

:::
the

:::::::::
numerical

::::::::::::
approximation

::
of

:::
the

:::::
mean

:::::
water

:::::::
elevation

::::
that

:::
we

:::::
obtain

:::::
using

:::
our

:::::
model

:::::
runs.

:::
For

:::::::
MLMF,

::
the

::::
rule

:::
for

:::
the

::::::::
estimator

::
is

:
a
:::::::::::
combination

::
of

:::
the

::::::::
multilevel

:::::::
MLMC

::::::::
estimator

::::
(B3)

::::
with

:::
the

:::::::::::
multifidelity

::::::
control

::::::
variate

:::::
(A1).165

:::
The

:::::::::
multilevel

::::
part

::
of

:::
the

::::::::
estimator

:
uses linearity of expectations to transform this multi-resolution expectation to a single

expectation at the finest level, L, using the following formula
::::
(see

::::
(B1))

:::
to

:::::::
construct

:::
the

:::::::::
following

:::::::::
telescoping

::::
sum

E[XL]Q̂HF,CVML
:::::

= E[Xlµ ]Q̂HF,CVMlµ
:::::

+
∑

l=1l=lµ+1
:::::

LE[Xl−Xl−1].

[
Q̂HF,CVMl

−
:::::::

Q̂HF,CVMl−1
:::::

]
, (2)

Here Xl denotes the numerical approximation to the random variable X on level l of the multilevel environment produced by

the model, where in our workX could be the
:::::
where

:::
Ml ::::::

denotes
:::::::
different

::::::::::
resolutions

:
at
::::::
which

:::
the

:::::::
estimator

::
is
:::::::::
evaluated,

::::
with

::
lµ170

::::
being

:::
the

:::::::
coarsest

:::::::::
resolution.

::
In

:::
our

::::::::::
hypothetical

::::::::
scenario,

:::
the

::::::::
estimator

:
is
::::::::
evaluated

::
at

:::::::::
resolutions

::
of

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
[5000/24,5000/25,5000/26,5000/27,5000/28,5000/29,5000/210]m.

:::
Eq.

:::
(2)

::::
finds

:::
the

:::::::::
multilevel

::::::::::
multifidelity

::::::::
estimate

::
of

:
water elevation at a particular location, for example. Thus Xlµ and XL

denote the approximation on the coarsest (lµ) and finest level (L) respectively.Each level l is defined by its grid-size hl, where

hl ∝M−lT,
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Figure 3.
:::::::::
Distribution

::
of

:::::
outputs

::::::::
generated

::
by

::::::
XBeach

:::
for

::
the

::::::::::
hypothetical

::::::
scenario

::
at

::
the

:::::
finest

:::::::
resolution

:::
and

::
at

::
the

::::::
second

::::
finest

::::::::
resolution

::::::::
considered,

::
as

::::
well

::
as

::
the

:::::::::
distribution

::
of

:::
the

:::::::
difference

:::::::
between

::::
these

:::::
output

:::::
values.

::::
Note

:::
that

:::
the

:::::::::
distribution

::
for

:::
the

::::::::
difference

::::::
between

:::
the

:::::
output

:::::
values

:
is
:::::
much

:::::::
narrower,

:::::::
meaning

::::
fewer

:::::::
samples

::
are

:::::::
required

::
to

::
get

::
a
::::
good

::::::
estimate

::
of

:::
the

:::::
mean.

:::
For

:::::::
reference,

::
in
:::
this

::::::::::
hypothetical

::::::
scenario

:::
the

::::::
variance

::
at
::::::::
resolution

:::::::::::::
∆x= 5000/29m

::
is

::::::
0.0587;

::
the

:::::::
variance

::
at

::::::::
resolution

::::::::::::::
∆x= 5000/210m

:
is
::::::
0.0580;

:::
and

:::
the

:::::::
variance

::
of

::
the

::::::::
difference

::::::
between

::::::
outputs

::
at [

:::::::
5000/29,

:::::::
5000/210]

::
is

:::::::
9.82e-06.

and T is the total length of the domain and M the integer factor the grid-size is refined by at each level (following standard175

practice, we useM = 2 throughout). This means that as the level number l increases, the mesh becomes more refined. Trivially,

if the domain is multi-dimensional then T and hl are also multi-dimensional
:::
the

::::
finest

:::::::::
resolution

::
by

::::::::::
calculating

::
the

:::::::::::
multifidelity

:::::::
estimate

::
at

:::
the

:::::::
coarsest

::::::::
resolution

::::::::::
(5000/24),

::::::
adding

::
to

:::
this

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::::::::
multifidelity

::::::::
estimates

::
at

:::
the

:::::::
coarsest

::::::::
resolution

:::::::::
(5000/24)

:::
and

:::
the

::::::
slightly

::::
finer

:::::::::
resolution

::::::::
(5000/25)

::::
etc.,

:::
up

::
to

:::
and

::::::::
including

:::
the

::::::
second

::::
finest

::::
and

:::::
finest

:::::::::
resolutions

:::
pair

::
of

::::::::
5000/29

:::
and

:::::::::
5000/210.

:::
By

:::
the

:::::::
linearity

:::
of

:::::::::::
expectations,

:::
the

::::
sum

::
of

:::::
these

:::::::::
differences

::
is
:::
an

:::::::
estimate

:::
for

:::
the

::::::::
expected180

::::
value

:::
of

:::
the

:::::
water

:::::::
elevation

:::
on

:::
the

:::::
finest

::::::::
resolution

::::
that

::
is

::
as

:::::::
accurate

:::
as

::::::
simply

:::::::::
calculating

:
a
::::::::
standard

:::::
Monte

:::::
Carlo

::::::::
estimate

::
on

:::
the

:::::
finest

:::::::::
resolution.

::::
The

::::::::
advantage

::
is
::::

that
:::::::::
calculating

:::
the

::::::::
estimate

:::::
using

:::
this

::::::::
approach

::
is

::::
less

:::::::::::::
computationally

:::::::::
expensive

:::
than

:::::
using

:::
the

::::::::
standard

::::::
Monte

:::::
Carlo

::::::::
approach

:::::::
because

:::
the

:::::
width

::
of

:::
the

::::::::::
distribution

::
of
::::

the
:::::
model

:::::::
outputs

::
at

::::
each

:::::::::
resolution

::
Xl::

is
:::::
much

::::::
larger

::::
than

:::
the

:::::
width

::
of

::::
the

:::::::::
distribution

:::
of

:::
the

::::::::
difference

:::::::
between

:::
the

::::::
outputs

::::::::::::
(Xl−Xl−1).

::::::
Figure

:
3
:::::::::
illustrates

:::
this

:::
for

:::
two

::::::::::
resolutions

::
of

:::
the

:::::::::::
hypothetical

:::::::
scenario

:::::::::
computed

::::
using

::::::::
XBeach.

::::
The

::::::::
narrower

:::
the

:::::::::
distribution

::
(
::
i.e.

::
the

:::::::
smaller185

::
the

::::::::
variance)

:::
the

::::::
fewer

:::::::
samples

:::
are

::::::
needed

::
to

:::::::
estimate

:::
its

:::::
mean

::::
(see

:::::
Figure

::
9
:::
for

::::::::
example).

:::::
Note

::::
that

:::
the

:::::::::
distribution

:::
of

:::
the

::::::::
difference

::
is

::::
very

::::::
narrow

:::
in

:::
this

::::::::
example;

:::
for

:::::
more

:::::::
complex

:::::
cases

::
it

::::
may

::
be

::::::
wider,

:::::::
although

::
it
::::::
should

::::
still

::::::
remain

::::::::
narrower

:::
than

:::
the

::::::::::
distribution

::
of

:::
the

:::::::::
individual

::::::
outputs.

Equivalently to (B1), the MLMC expectation estimator Ŷ is defined by

Ŷ =

L∑
l=lµ

Ŷl,190
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:::::::::
Combining

:::::::::
multilevel

::::::::
estimators

::::
with

:::
the

:::::::::::
multifidelity

::::::
control

::::::
variate

::::
(A1),

:::
the

::::
full

:::
rule

:::
for

:::
the

::::::
MLMF

::::::::
estimator

::
is
:

Q̂HF,CVML
=

L∑
l=lµ

(
Ŷ HFMl

+αl

(
Ŷ LFMl

− Ê
[
Y LFMl

]))
,

:::::::::::::::::::::::::::::::::::::::::

(3)

where Ŷl is the difference estimator for E[Xl−Xl−1] defined as

Ŷl =

N
−1
lµ

∑Nlµ
i=1 X

(i)
lµ

l = lµ,

N−1l
∑Nl
i=1

(
X

(i)
l −X

(i)
l−1

)
l > lµ.

195

Ŷ ∗Ml
=

N
−1
lµ

∑Nlµ
i=1 X

(i)
lµ

l = lµ,

N−1l
∑Nl
i=1

(
X

(i)
l −X

(i)
l−1

)
l > lµ,

:::::::::::::::::::::::::::::::::::::

(4)

Here Nl is the number of samples at each level pair (l, l− 1) and Nlµ is the number of samples at the coarsest resolution level

lµ. In this estimator, the same random numbers are used to construct the variables
:::::
where

:::
the

::::::::::
superscript

:
∗
::::
here

::::
can

:::::::
indicate

:::::
results

:::::
from

:::::
either

:::::::
XBeach

::::
(HF)

::
or

::::::::
SFINCS

::::
(LF).

:::
In

:::
our

::::::::::
hypothetical

::::::::
scenario, Xl and

:
is

:::
the

:::::
water

::::::::
elevation

:::::
height

:::::
from

:::
the200

:::::
model

:::
run

:::::
using

::
a

:::
grid

:::::::::
resolution

::
of

:::::::::::::
∆x= 5000/2l

::
m,

::::
with

:
Xl−1 , to ensure strong convergence (E[|Xl−Xl−1|] as the grid

is refined). Independence between the estimators at each level is enforced by using different independent samples at each level

meaning Cov(Ŷi, Ŷj) = 0 if i 6= j and the variance formula can be simplified to

Var[Ŷ ] = Var

 L∑
l=lµ

Ŷl

=

L∑
l=lµ

N−1l Var(Ŷl),

where Var denotes the variance. The error of the estimator (B3) can then be calculated using the following formula for the root205

mean square error (RMSE),

RMSE =

√
E[(Ŷ −E[XL])2] + (E[XL]−E[X])2.

The first term in this formula is equivalent to the variance(B5) and represents the error caused by using a Monte Carlo type

simulation to estimate E[XL]. The second term is the square of the bias and represents the error caused due to numerical

discretisation. A bound on this RMSE is provided by the key complexity theorem for MLMC (Giles, 2008), whose principle210

conditions are that the expectation, variance and cost of the estimator Ŷl must decrease at a rate of 2−αl, 2−βl and 2−γl

respectively as the level number l increases, where α, β and γ are user-determined parameters.

A key factor when using the MLMC estimator is determining the optimum number of samples to run at each level l

denoted by Nl. We want to balance the accuracy achieved at the finer levels with
:::::
being

:::
the

:::::
same

:::
but

:::
for

:
a
::::
grid

::::::::
resolution

:::
of

::::::::::::::
∆x= 5000/2l−1

::
m.

::::
For

::::
each

::::::::
difference

::::
pair,

:::
(i)

:::::::
denotes

:::
that

:::
the

:::::
value

:::::::
sampled

::::
from

:::
the

::::::
normal

::::::::::
distribution

:::
for

:::
the

::::::::
uncertain215
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::::::
friction

:::::::::
coefficient

::
is the computational efficiency achieved by running at coarser levels. This balance is achieved by following

Giles (2008) and using the Euler-Lagrange method to minimize the overall cost C defined by

L∑
l=lµ

NlCl,

with respect to the fixed overall variance ε2/2
:::::
same

::
for

::::
both

:::
the

::::
finer

:::::::::
resolution

:::
Xi
l :::::::::

simulation
:::
and

:::
the

::::::
coarser

:::::::::
resolution

:::::
Xi−1
l

::::::::
simulation. Thus, the optimum number of samples at each level is220

Nl =

 2

ε2

√
Var(Ŷl)
Cl

 L∑
k=lµ

√
Var(Ŷk)Ck

 ,
where Cl is the cost of running the model at level l and ε should be seen as a user-defined accuracy tolerance. Note that when

we are estimating multiple outputs
:::
Ŷ ∗Ml::

is
:::
the

:::::
mean

::
of

::
the

:::::::::
difference

:::::::
between

:::
two

::::::
model

::::
runs

::::::::
conducted

::
at
::::::::
different

:::::::::
resolutions

::::
with

:::
the

::::
same

:::::::
random

::::::
number

:
(i.e. when we consider multiple locations) , we must calculate Nl separately for each location.

In the algorithm, we run maxNl over all locations and then when calculating the estimator (B4) at each location, subsample225

the optimum number for that specific location from the full output.

We have now outlined MLMC and conclude this section with Algorithm 2, which is a statement of the MLMC algorithm

used in this work. Multilevel Monte Carlo MethodStart with L= 0 Estimate the variance Var(ŶL) using an initial estimate for

the number of samples NL Define optimal Nl ::::
value

:::::::
sampled

:::::
from

:::
the

::::::::::
distribution)

::::
used

:::
for

:::::::
friction

:::
for

::::
each

::::
pair.

:::::::::
Moreover,

::
for

::::
each

::::
(i),

:::
the

::::
same

:::::::
random

::::::
number

::
is

::::
used for l = 0, ...,L using (B7) If the optimalNl is greater than the number of samples230

you already have, evaluate the extra samples needed If L≥ 2 test for convergence If L < 2 or the algorithm has not converged

set L := L+ 1 and return to Step 2

2.2 Multilevel multifidelity Monte Carlo method (MLMF)

Although both MLMC and multifidelity approaches can improve computational efficiency compared to the standard Monte

Carlo method, a greater improvement can be achieved by combining these two approaches using MLMF. To derive the MLMF235

estimator, Q̂HF,CVML
, we follow Geraci et al. (2017) and combine the MLMC estimator (B3) with the control variate (A1) to

obtain

E
[
QHF,CVML

]
= E

[
QHF,CVMlµ

]
+

L∑
l=lµ+1

E
[
QHF,CVMl

−QHF,CVMl−1

]
' Q̂HF,CVML

'
L∑
l=lµ

(
Ŷ HFMl

+αl

(
Ŷ LFMl

− Ê
[
Y LFMl

]))
,

10



where

αl =−ρl

√√√√Var(Ŷ HFMl
)

Var(Ŷ LFMl
)
,240

and
:::
the

:::::::
XBeach

::::::
model

:::
pair

::::
and

:::
the

:::::::
SFINCS

::::::
model

::::
pair,

:::
i.e.

:::
the

:::::
same

::::::
random

::::::::
numbers

:::
are

::::
used

::
to

::::::::
construct

::::
both

:::::
Ŷ HFMl ::::

and

:::::
Ŷ LFMl

.
::::
Note

::::::::::
constructing

:::::::::
estimators

::::
like

:::
this

::::::
means

:::
that

:::
the

:::::::
coarsest

:::::
level, lµ is

::
is

:::
left

::::::
without

::
a
::::
pair

:::
and

::::::::
therefore

::::
Ŷ ∗Mlµ::

is
::::
just

::
the

:::::
mean

:::
of

:::
the

:::::
model

:::::
runs

::::::::
conducted

::
at
:

the coarsest resolutionlevel considered. Although .
:::::
Note

::::::
further

::::
that,

::::::::
although not

strictly necessary, here we choose to run both models
::::::
SFINCS

::::
and

:::::::
XBeach at the same resolutionsto ,

:::
as

:
it
::::::
seems

:::::::
sensible

::
to

::::::
assume

:::
that

::::
this

:::
will

:
maximise correlation between the outputs . Note that

:
at

::::
each

:::::
level.

:
245

:::
The

:::::
other

:::::
terms

::
in

:::
(3)

:::::
come

::::
from

:::
the

::::::::::
multifidelity

:::::::::
estimator.

:::
The

:::::::
notation

:
Ê[·] denotes an

::
the

:
estimator for the expectation

throughout this work. The estimators Ŷ LFMl
and Ŷ HFMl

are the MLMC estimators defined by (B3) . Recall also from Sect. B

that Xl and Xl−1 are on the same Brownian path
:::::::
expected

:::::
value

::
–

:::::::::
statistically

::::::::
speaking

:::
we

::::::
cannot

:::::
know

:::
the

:::::
actual

::::::::
expected

::::
value

:::
(E)

:::
of

::::
Y LFMl :::::::

because
::::
this

:::::
would

::::::
require

::::::::
knowing

:::
the

::::
exact

::::::::::
distribution

::
of

:::::
Y LFMl

.
:::::
Thus,

:::
the

::::
best

:::
we

:::
can

:::
do

::
is

:::::::
calculate

:::
an

:::::::
estimate

::
of

:::
the

:::::::
expected

:::::
value

:::::
using

::::
data

::::
from

::::::::
SFINCS

::::
runs

::
at

:::::::
different

:::::::::
resolutions, i.e. we use the same random numbers to250

construct the variables Xl and Xl−1. Additionally, in MLMF, the
::
use

:::
an

::::::::
estimator.

::::
This

:::::::
subtlety

::
is

::::::::
discussed

::
in

:::::
more

:::::
detail

::
in

::::::::
Appendix

::
A.

::::::
Finally

:::
αl::

is
:
a
:::::::::
coefficient

:::::
which

:::::::
weights

:::
the

:::::::
SFINCS

::::::
model

::::::
outputs

::::
and

:
is
:::::::
defined

::
as

:

αl =−ρl

√√√√Var(Ŷ HFMl
)

Var(Ŷ LFMl
)
,

:::::::::::::::::::

(5)

:::::
where

::
ρl::

is
:::
the

::::::::
Pearson’s

:::::::::
correlation

::::::::::
coefficient.

::
In

:::
our

::::::::::
hypothetical

::::::::
scenario,

::
ρl::

is
:::
the

:::::::::
correlation

:::::::
between

:::
the

:::::
water

::::::::
elevation

::::::::
calculated

:::
by

:::::::
XBeach

:::
and

:::
that

:::::::::
calculated

:::
by

:::::::
SFINCS

::
at

::::
each

:::::::::
resolution

:
l.
:::
We

:::::
refer

:::
the

:::::
reader

::
to

:::::::::
Appendix

::
A

::
for

:::::
more

::::::
details255

::
on

:::::::::::
multifidelity estimatorsŶ HFMl

and Ŷ LFMl
are also on the same Brownian path, i.e. the same random numbers are used to

construct both estimators.

For reasons of independence, different independent samples are used at each level (as with MLMC) and hence the
::
To

:::::
make

:::::::::
calculating

:::
the

:::::::
variance

::
of

:::
the

:::::
water

::::
depth

::::::::
estimator

:::::::
simpler,

:::
we

:::::
follow

::::::::
standard

::::::
practice

::::::::::
throughout

:::
and

::::::::::::
independently

::::::
sample

::
the

::::::
values

:::
for

:::
the

::::::
friction

:::::::::
coefficient

:::
for

::::
each

::::
ŶMl

.
::::::
Hence

:::
the variance of the MLMF estimator is260

Var
[
Q̂HF,CVML

]
=

L∑
l=lµ

(
NHF
l

)−1
Var
[
Ŷ HFl

](
1− rl

1 + rl
ρ2l

)
, (6)

where
:::::
using

::::::::::::
independence.

::::
Here

:
NHF
l is the number of HF samples

::::::
XBeach

:::::
(HF)

:::::::::
simulations

:
required at level l to compute

Ŷ HFMl
(which is also the number of LF samples

:::::::
SFINCS

::::
(LF)

::::::::::
simulations required to compute Ŷ LFMl

), and rl is the factor of

extra LF samples
:::::::
SFINCS

::::::::::
simulations

:
required to compute Ê

[
Y LFMl

]
. Note that, throughout this work and for simplicity, we

refer to NHF
l as the number of HF samples

:::::::
XBeach

:::::::::
simulations

:
required, because the total number of LF samples

:::::::
SFINCS265

:::::::::
simulations

:
required is the combined quantity (1 + rl)N

HF
l , and not just NHF

l .
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Equation
::::::
Because

::::::
ρ2l < 1

::
by

:::::::::
definition

::
of

:
a
:::::::::
correlation

:::::::::
coefficient,

:::::::
equation

:
(6) shows that the greater the correlation between

the two models, the greater the reduction in the variance of the estimator, and we .
:::
We

:
thus seek to maximise this correlation.

Geraci et al. (2017) show that, because the multifidelity control variate is unbiased, correlation can be artificially increased by

modifying the estimator Ŷ LFl using270

Y̊ LFl = γlX̂
LF
l − X̂LF

l−1, (7)

where the modification factor γl adds an extra degree of freedom to maximise the correlation. Therefore, instead of (3), we use

Q̂HF,CVML
=

L∑
l=lµ

(
Ŷ HFMl

+αl

(
Y̊ LFl − Ê

[
Y̊ LFl

]))
, (8)

and the new correlation coefficient ρ̊2l is dependent on γl and is equal to275

ρ̊2l = ρ2l

Cov2
(
Ŷ HFl , Y̊ LFl

)
Cov2

(
Ŷ HFl , Ŷ LFl

) Var
[
Ŷ LFl

]
Var
[
Y̊ LFl

] , (9)

where we correct a typographical error in the formula given in Geraci et al. (2017). By differentiating (9) with respect to γl,

we find the correlation is maximised when

γl =
Cov

(
Ŷ HFl ,XLF

l−1

)
Cov

(
XLF
l ,XLF

l−1
)
−Var

[
XLF
l−1
]
Cov

(
Ŷ HFl ,XLF

l

)
Var
[
XLF
l

]
Cov

(
Ŷ HFl ,XLF

l−1

)
−Cov

(
Ŷ HFl ,XLF

l

)
Cov

(
XLF
l ,XLF

l−1
) . (10)

Note that when using the modified estimator (7) the formulae previously stated in this section remain the same but Ŷ LFl and280

ρl are replaced with Y̊ LFl and ρ̊l, respectively, in all formulae.

Finally, using (A3) and (B6), the overall cost of the MLMF algorithm (
:::
i.e.

::::::
finding

:::
the

:::::
water

::::::::
elevation

::
at

::::
grid

::::::::
resolution

:::
L)

is

C =

L∑
l=lµ

NHF
l

(
CHFl +CLFl (1 + rl)

)
. (11)

In order to obtain the optimum values for NHF
l and rl in (6), we minimise this cost with respect to the variance constraint285

Var
[
Q̂HF,CVML

]
< ε2/2. (12)

In mathematical terms, this is equivalent to finding the stationary point of

f(NHF
l , rl,λ) =

L∑
l=lµ

NHF
l

(
CHFl +CLFl (1 + rl)

)
+λ

 L∑
l=lµ

(
NHF
l

)−1
Var
[
Y̊ HFl

](
1− rl

1 + rl
ρ̊2l

)
− ε2

2

 ,

12



with respect to NHF
l and rl, where λ is the Lagrange multiplier. This minimisation

::::
which

:
results in the following optimum

formula for the factor of extra LF samples
:::::::
SFINCS

::::::::::
simulations290

rl =−1 +

√
ρ̊2l

1− ρ̊2l
ωl, (13)

where ωl = CHFl /CLFl is the cost ratio between the HF and LF models
:::
ratio

::
of
:::
the

::::
cost

::
of

:::::::
running

:::::::
XBeach

::::
and

:::::::
SFINCS, and

the following optimum formula for the number of HF samples
:::::::
XBeach

:::::::::
simulations

:

NHF
l =

2

ε2

 L∑
k=lµ

Var
[
Y̊ HFk

]
CHFk

1− ρ̊2l

1/2

Λk(rk)


√√√√

(1− ρ̊2l )
Var
[
Y̊ HFl

]
CHFl

, (14)

where295

Λk(rk) = 1− rk
1 + rk

ρ̊2k, (15)

and as in (B7), ε should be viewed as a user-defined accuracy tolerance. As with the MLMC algorithm, if we

:::::::::
Calculating

::::
(14)

::::::::
requires

::::::::
estimates

::
of

:::
the

::::::::
variance

:::
and

:::::
cost.

:::::::::
Therefore

:::
we

:::
run

:::
50

:::::
initial

::::::::::
simulations

:::
for

:::::
each

::::::
model

::
at

::::
each

::::::::
resolution

::::
(see

::::
Step

::
1
::
of

:::::::::
Algorithm

:::
1)

:::
and

::::
use

:::
the

:::::::
kurtosis

::
to

:::::
check

:::::::
whether

::::
this

:::::::
provides

::
a
:::::
good

::::::
enough

:::::::
estimate

:::
of

::
the

::::::::
variance.

:::::::::
Following

:::::::::::
Giles (2008)

:
,
::
if

:::
the

:::::::
kurtosis

::
is

::::
less

::::
than

::::
100,

::::
then

:::
we

::::::::
consider

:::
our

::::::::
estimate

::
of

:::
the

::::::::
variance

::
to

:::
be300

::::
good

:::::::
enough.

:::::
Note

::::::
further

:::
that

::
if
:::
we

:
are interested in the value of the variable of interest at multiple locations, NHF

l must

be calculated separately for each location. In the algorithm, we run maxNl over all locations and then when calculating the

estimator (3) at each location, subsample the optimum number for that specific location from the full output.

2.1.1 MLMF algorithm

Given the theory outlined above, the MLMF algorithm used in this study is summarised in Algorithm 1. A pictorial representation305

of this algorithm is also shown in Figure 2.
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Algorithm 1 Multilevel Multifidelity Monte Carlo method.

1: Estimate the variance and cost of the MLMF estimator, as well as the correlation and cost ratio between the HF and LF

models at user-specified levels using an initial estimate for the number of samples
:::::::::
simulations. The same set of random

numbers must be used for the HF and LF models

2: Start with L= lµ

3: Define optimal NHF
l using (14) and rl using (13) with increased correlation factor (9) when required

4: If the optimal NHF
l is greater than the number of samples

:::::::::
simulations

:
of the HF and LF models from Step 1, evaluate the

extra samples
::::::::::
simulations required

5: If the optimal rlNHF
l is greater than the number of samples

:::::::::
simulations

:
of the LF model after Step 4, evaluate the extra

samples
:::::::::
simulations

:
of LF required

6: If the algorithm has not converged and L < Lmax, set L := L+ 1
:
L

:::::
equal

::
to

:::::
L+ 1

:
and return to Step 3

7: If algorithm converged, or L≥ Lmax, STOP

Flow chart of multi-model approach to MLMF using HF (XBeach) and LF (SFINCS).

2.2 Cumulative distribution functions

The objective of the MLMF framework (and MLMC framework)
::
In

:::
this

:::::::
section

::
so

:::
far,

:::
we

::::
have

::::::::
described

:::
the

:::::::
standard

:::::::
MLMF

:::::::::
framework

:::::::
outlined

::
in

::::::::::::::::
Geraci et al. (2015)

:
,
:::
the

:::::::
objective

:::
of

:::::
which

:
is to find the expectation of the output variable of interest.310

However, the probability /risk of a variable exceeding a certain value is often of significant value in the study of natural hazards.

This probability is complicated to compute
::::::
estimate

:
because MLMF computes very few values at the finest level

::::::::
resolution

from which we could build the distribution.

To resolve this, we use
::
in

::::
this

::::
work

::::
we

:::::::
develop

:::
our

::::
own

:::::
novel

:::::::::
technique

::
to
::::

find
::::

the
:::::::::
cumulative

::::::::::
distribution

::::::::
function

:::::
(CDF)

:::::
from

:::
the

::::::
MLMF

:::::::
outputs,

:::::
using a modified version of the inverse transform sampling method from Gregory and Cotter315

(2017)to generate .
::::
The

:::::
output

::
of

:
a cumulative distribution function(CDF) from the MLMF outputs. This method evaluates the

:
,
:::::::::
P(X ≤ x),

:
is
:::::
some

:::::
value

:::::::
between

:
0
::::
and

::
1.

::::::::
Returning

::
to

:::
the

::::::::::
hypothetical

::::::::
example

::::
used

:::::::::
throughout

:::
this

:::::::
section,

::
X

::
is

:::
the

:::::
water

:::::::
elevation

:::
as

:
a
:::::::
variable

::::
and

:
x
::

is
:::
its

:::::
value.

::::
For

:::::::::
evaluating

::::::::::
uncertainty,

:::
we

:::::
would

::::
like

::
to

:::::
know

:::
the

:::::
value

::
of

::
x
::::::
which

:::
the

:::::
water

:::::::
elevation

::
at

:
a
:::::
given

:::::::
location

::::
after

::
a
:::::
given

::::
time

:
is
::::::
below

::
for

:::::
25%

::
of

:::::
cases,

::::
50%

::
of

:::::
cases

:::
etc.

::
In

:::::
other

::::::
words,

:::
we

::
are

:::::::::
interested

::
in

::
the

:
inverse cumulative distribution function F−1(u), where u∼ U [0,1]

:::
and

:::::::::::::::
F (x) = P(X ≤ x). If F is strictly increasing and320

absolutely continuous, then x≡ F−1(u) is unique. A simple consistent estimate for x can then be found by sorting the samples

:::::
values

:
such that X1 <X2 < ... < XN and then

F̂−1(u) =XdN×ue,. (16)

which, as argued in Gregory and Cotter (2017), is
::
In

:::::
other

::::::
words,

:::::::
suppose

::
in

:::
our

:::::::::::
hypothetical

:::::::
scenario

:::
we

::::
have

::::
100

::::::
values

::
for

:::
the

::::::
water

::::::::
elevation

::
at

:
a
:::::

given
::::::::

location
::::
after

:
a
::::::

given
::::
time.

:::::
Then

::::
this

:::::::::
expression

::::::
simply

::::
says

::::
that

:::
the

:::::
value

::
x
::::::
which

:::
the325

::::
water

::::::::
elevation

::::
does

:::
not

::::::
exceed

::::
25%

::
of

:::
the

:::::
time,

::
is

:::
the

::::
25th

:::::
largest

::::::
value.

::::::::::::::::::::::
Gregory and Cotter (2017)

::::
show

:::
that

::::
this

:::::::
estimate

::
is

14



consistent because it converges in probability to x asN →∞. Note that here converges in probability means that the probability

of XdN×ue being more than a small distance ε from x tends to zero as N →∞. In Gregory and Cotter (2017), they then use

a formula to approximate F−1L (u) from the MLMC outputs. In this work, we modify that formula to make it applicable for

MLMF outputs so that the inverse cumulative distribution function for MLMF is approximated by330

F−1L (u)≈RHF (X)
dNHFlµ ×ue
lµ

+αlµ

(
R̊LF (X)

dNHFlµ ×ue
lµ

− Ê
[
Y̊ LFl

])
+

L∑
l=lµ+1

(
RHF (X)

dNHFl ×ue
l −RHF (X)

dNHFl−1×ue
l−1

)

+
L∑

l=lµ+1

αl

(
R̊LF (X)

dNHFl ×ue
l − R̊LF (X)

dNHFl ×ue
l−1 − Ê

[
Y̊ LFl

])
, (17)

where RHF (X)il and R̊LF (X)il represent the ith order statistic of Xl on each level l of the HF model
:::::::
XBeach and modified

correlation LF model
:::::::
SFINCS

:
(see 7), respectively.

::
In

:::::
other

::::::
words,

::::::
suppose

::::
that

::
in

:::
our

:::::::::::
hypothetical

:::::::
scenario

::
we

:::::
want

::
to

:::::
know

::
the

:::::
value

::
x

:::::
which

:::
the

:::::
water

::::::::
elevation

::::
does

:::
not

::::::
exceed

::::
25%

::
of

:::
the

::::
time.

::::
We

:::
then

::::
pick

:::
the

:::::
lower

:::::::
quartile

:::::
value

:
(
::
i.e.

::
the

:::::
value

:::
not

:::::::
exceeded

:::::
25%

::
of

::
the

::::
time

::
at
::::
each

:::::::::
resolution

:::
for

::::
both

:::::::
models)

:::
and

:::
add

:::::
them

:::::::
together

::::::::
following

:::
the

:::
rule

::
of

:::
the

::::::
MLMF

:::::::::
estimator.335

Note that, unlike with (B1), there cannot be exact cancellation because using this method means the approximations at each

level are no longer unbiased.

2.3 Implementation

In this work, the MLMF algorithm is implemented using
::
we

::::::::
construct our own Python MLMF wrapper constructed around both

SFINCS and XBeach , which
::
to

:::::::::
implement

:::
the

::::::
MLMF

:::::::::
algorithm.

::::
This

:::::::
wrapper

:
can be shared on distributed cores of an HPC340

cluster to increase efficiency. Given the use of distributed cores, any times quoted in this work are the total simulation times

multiplied by the number of cores used. The different steps performed when running the models in the wrapper are illustrated

in the flow chart of Figure 2. Note, in particular, that in this wrapper, the models are run and post-processed separately, meaning

there is no issue with different input or output formats. Therefore, our MLMF wrapper is model-independent meaning it can

be easily applied to other models and applications in further work.345

For the models themselves, we use XBeach version 1.23.5526 from the XBeachX release and use the surfbeat mode to

simulate the waves approaching the beach (Roelvink et al., 2018). SFINCS is not yet released in the public domain, but we use

a version similar to that used in Leijnse et al. (2021).

3 Applying MLMF to coastal zone test cases

We can now apply the outlined MLMF algorithm to both idealised and real-world coastal flooding test cases to calculate the350

expectation of an output variable at multiple locations based on uncertain input data.
::::
Note

:::
that

::::::::::
throughout,

:::
for

:::::::::
simplicity,

:::
we

::::
only

:::::::
consider

:::
one

::::::::
uncertain

:::::
input

::::::::
parameter

:::
per

::::
test

::::
case

:::
(see

:::::::
Section

::
4).

:
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In the first 1D test case, the water level is estimated at various locations as a result of a propagating non-breaking wave

entering a domain under an uncertain Manning friction coefficient (Sect.
::::::
Section

:
3.1). In the second 1D test case, the wave

run-up height is estimated for a simplified linear beach under the uncertainty of the beach slope (Sect.
::::::
Section

:
3.2). In the final355

2D real world case of Myrtle Beach, the maximum water depth due to flooding is estimated at various locations influenced by

an uncertain offshore water level (Sect.
::::::
Section 3.3).

3.1 Non-breaking wave test case

For our first test case, we consider the 1D case of a non-breaking wave propagating over a horizontal plane from Hunter et al.

(2005) and Bates et al. (2010), which has already been simulated using SFINCS and XBeach in Leijnse (2018). The domain360

is initially dry and the wave is generated by imposing a rising water elevation boundary condition and a constant velocity

boundary condition (u(x= 0, t) = 1ms−1) at the inlet. Note that this test case can thus be interpreted as a propagating wet-dry

interface but, following Hunter et al. (2005) and Bates et al. (2010), we refer to it as a wave. In this test case, we evaluate the

uncertainty associated with the spatially uniform Manning friction coefficient, nm, and set this parameter to have a normal

distribution nm ∼N (0.03,0.01) sm−1/3. Note that, as Manning coefficients must be non-negative, any sampled values below365

0 are discarded.
:::
We

::::::
choose

:::
the

::::::::
Manning

:::::::::
coefficient

::
as

::::
our

::::::::
uncertain

::::::::
parameter

:::::::
because

::::::::::::::::
Bates et al. (2010)

:::
note

::::
that

:::
this

::::
test

:::
case

::
is
::::::::::
particularly

:::::::
sensitive

::
to

::::
this

::::::::
parameter

:::
and

::::
thus

::::
this

:
is
::
a
::::
good

:::
test

:::
for

:::
our

:::::::
MLMF

:::::::::
framework.

:
The remaining parameters

are the same as those in Leijnse (2018) and, in particular, we keep the simulated time at 1 h and the length in the x-direction

equal to 5000 m. The quantity of interest is the expected value of the water elevation at the end of the simulation at x= 1000m,

x= 1500m, x= 2000m and x= 2500m.370

The advantage of this test case is that, due to the horizontal slope and the constant velocity condition at the inlet, the inviscid

shallow water equations can be solved analytically with the following result

h(x,t) =

(
−7

3
n2mu

2(x−ut)
)3/7

, (18)

where h is the water level at any given location x and time t, and u the prescribed flow velocity at the boundary. The full

analytical derivation can be found in Hunter et al. (2005), although in (18) we correct a typographical error in that work.375

Following Hunter et al. (2005) and Leijnse (2018), u is set equal to 1 ms−1. Using this analytical result, we can get a good

estimate of the expected value of the true solution. However, we cannot find the ‘true’ expected value because of the uncertainty

in nm and must instead run a Monte Carlo simulation varying nm in (18). Note that evaluating (18) is trivial and therefore the

Monte Carlo simulation on the analytical result is very fast.

Before running the full MLMF algorithm, we run a small test using a spatially uniform Manning friction coefficient of380

0.0364 sm−1/3 to compare the final water elevations from the SFINCS and XBeach models with the analytical result obtained

from (18), and check they all approximately agree. We also check how the output variable varies with grid-size for both models.

Figure 4 shows that the XBeach results agree more closely with the analytical result than SFINCS’, which is to be expected as

XBeach is the HF model. Nevertheless, the SFINCS results are not very different from the analytical result, indicating that it

represents a good choice for the LF model. The effect of using a different resolution in both models is less clear in Figure 4,385
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Figure 4. Comparing the final water elevation from using SFINCS and XBeach at dx= 78m and dx= 156m (corresponding to 64 and 32

elements in the x-direction respectively) with the analytical result for the non-breaking wave test case. A Manning friction coefficient of

0.0364 sm−1/3 is used in all simulations.

probably because there is both model error (here due to the numerical model possessing viscous dissipation while the analytical

result is derived from the inviscid equations) and discretisation error (the error arising from using a finite mesh to solve the

model equations). These two different types of error can, to some extent, cancel each other out if they have opposite signs.

Hence in this example, the observed behaviour may be a consequence of the discretisation error decreasing whilst the model

error stays the same as the resolution becomes finer, leading to an apparent increase in the total error.390

For our MLMF simulation, we use grids with 2l mesh cells in both SFINCS and XBeach, where the coarsest grid-size is l = 4

and the finest is l = 10, and consider nm ∼N (0.03,0.01). Table 1 compares the computational cost of running each of the

models at these levels and shows that SFINCS is always much faster than XBeach. As the level number increases (i.e. the grid

resolution becomes finer), unsurprisingly, the cost of both models increases, and, after level 8, this leads to the cost efficiency

improvement from using SFINCS over XBeach increasing. The latter suggests that computational efficiency improvements395

will increase as the test case complexity increases and indicates that large computational cost improvements can be made by

using MLMF. Before running the full MLMF algorithm (Algorithm 1), we first run Step 1 to determine key MLMF parameter

values at each location. The left panel of Figure 5 shows that using the modified correlation in (9) means that SFINCS and

XBeach are well correlated for almost every output location at every level, with almost perfect correlation at some locations.

The worst correlation is at x= 2500 m, likely because SFINCS struggles with accurately simulating the front of the wave (see400

Figure 4). The impact of using this modified correlation formula is clearly shown in the right panel of Figure 5, which shows

large increases in the modified correlation compared to the original correlation, especially at Level 6.

We can thus proceed to the next steps of the MLMF algorithm and compare our MLMF results to the analytical estimate

(recall this is an estimate of the expected value of the true solution rather than the true expected value because of the uncertainty

in nm). We also compare our MLMF results with those obtained using the MLMC approach with SFINCS and XBeach405
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Average time for single level run (s) Cost ratio

(ωl)

Grid resolution

pair (m)XBeach SFINCS

Level 4 1.72 0.0548 31 5000/(24, )

Level 5 3.85 0.138 28 5000/(25,24)

Level 6 6.98 0.215 32 5000/(26,25)

Level 7 11.8 0.383 31 5000/(27,26)

Level 8 24.8 0.735 34 5000/(28,27)

Level 9 62.2 1.44 43 5000/(29,28)

Level 10 191 2.60 73 5000/(210,29)

Table 1. Summary of average time taken to run SFINCS and XBeach at each level for the non-breaking wave test case. As can be seen from

Eqs. (B4) and (3), at every level (apart from the coarsest level) a pair of simulations at two different resolutions is required. These resolutions

are shown in the ‘Grid resolution pair’ column and we recall that the same resolutions are used in each model.

Figure 5. Comparing the real and modified correlation values between SFINCS and XBeach to find water elevation at specific locations in

the non-breaking wave test case. Note that each colour represents a specific output location. Left: Absolute value of modified correlation (Eq.

9). Right: Difference between absolute value of modified and real correlation.

separately. We initially use an accuracy tolerance of ε= 1× 10−3 in (14) and (B7) to calculate the optimum number of samples

:::::::::
simulations

:
for MLMF and MLMC, respectively. Note that, to calculate both the MLMC and MLMF estimators at level 10 (the

finest level considered in this test case), we require simulations at the previous levels too (see Eqs. (B4) and (3)). Therefore

we can truncate the MLMC/MLMF simulations and directly analyse how the error changes on the addition of each extra level.

Figure 6 shows that, in general, the error in both the single model MLMC approaches and the MLMF approach with respect to410

the analytical estimate decreases as the grid resolution becomes finer. Furthermore, Figure 6a shows that the error from MLMC

with XBeach and MLMF are very similar. In contrast, Figure 6b shows that MLMC with SFINCS is significantly less accurate

than either MLMF or MLMC with XBeach, again justifying our choices of HF and LF models.
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(a) Comparing MLMF with MLMC (XBeach). (b) Comparing MLMF with MLMC (SFINCS).

Figure 6. Error (RMSE) with respect to the analytical estimate for the final water elevation at the locations of interest in the non-breaking

wave test case, as the resolution level becomes finer. The x-axis indicates the finest level considered by the MLMC/MLMF estimator for that

error, and both the error from using MLMF and the error from using MLMC with a single model are shown. Here a tolerance of ε= 1× 10−3

is chosen in (Eq. B7) and (Eq. 14) for MLMF and MLMC respectively.

The error to the analytical estimate shown in Figure 6 includes both model error and discretisation error, but the main error

component reduced by MLMC and MLMF is the discretisation error. Thus, we isolate the discretisation error by comparing415

the expected values of MLMF and MLMC to the expected values from using the standard Monte Carlo method with 500,000

simulations of XBeach at the finest resolution considered (1024 mesh cells in the x-direction). Note that to run this Monte

Carlo simulation takes 1000 core days, or almost a month of wall clock time on the 40 core computer we had available. Figure

7 shows that, as the level becomes finer, the error to the Monte Carlo result, (i.e. the discretisation error) decreases uniformly

for both MLMF and MLMC with XBeach, showing MLMF and MLMC are working correctly. Furthermore, as with the total420

error, the MLMF error and the XBeach (MLMC) error are very similar.

All the test case results shown so far in this section use the same accuracy tolerance of ε= 1× 10−3 in (14) and (B7). If

MLMF is working as expected, the error in the MLMF result should decrease as the ε value decreases. Thus to verify this we re-

run the test case using a range of tolerance values. Figure 8 shows that, indeed as ε decreases, both the error in the MLMF result

and the error in the XBeach MLMC result decrease (with respect to the Monte Carlo result). More importantly, the MLMF425

error is of the same order of magnitude as the XBeach MLMC error. Furthermore, Figure 9 shows that MLMF achieves this

accuracy using significantly fewer HF samples
:::::::::
simulations, with generally a difference of one order of magnitude. To do so,

MLMF also requires (rl + 1)NHF
l LF samples

:::::::::
simulations. Figure 10 shows that rl is approximately 10 at all levels for this

test case (i.e. O(10) times more LF simulations are required than HF simulations), a small factor given the computational cost

savings shown in Table 1 from using SFINCS. Figure 9 also shows that the optimum number of XBeach samples
::::::::::
simulations430

required for both MLMC and MLMF does not decrease uniformly, but instead increases at level 10 relative to the coarser level

9 for large ε. However, the number of samples
:::::::::
simulations

:
is so small (less than 10 and also less than the total number of
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Figure 7. Error (RMSE) between the MLMF result and the Monte Carlo (MC) result for the analytical estimate for the final water elevation

at the locations of interest in the non-breaking wave test case, as the resolution level becomes finer. The x-axis indicates the finest level

considered by the MLMC/MLMF estimator for that error. Both the error from using MLMF and the error from using MLMC with a single

model are shown. Here a tolerance of ε= 1× 10−3 is chosen in (Eq. 14) and (Eq. B7) for MLMF and MLMC, respectively.

Figure 8. Error (RMSE) between the MLMF result and the Monte Carlo (MC) result as the tolerance value ε in (Eq. 14) is varied in the

non-breaking wave test case. This is compared to the error (RMSE) when varying ε in (Eq. B7) when using MLMC with XBeach.

processing cores used) that this does not make a significant difference to the computational cost. Thus, overall, Figure 9 and

10 suggest that notable computational cost savings can be made in this test case by using MLMF.

As discussed in Sect.
::::::
Section

:
2.2, we can use the modified inverse transform sampling method (17) to also generate the435

cumulative distribution function (CDF) from the MLMF outputs (here produced using ε= 1× 10−3). These can then be used

to readily assess the risk
::::::::
likelihood

:
of a certain high water level occurring and greatly improve our understanding of the test

case. Figure 11 demonstrates how the CDF generated in this manner agrees qualitatively with the CDF generated using Monte
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Figure 9. Optimum number of XBeach (HF) samples
::::::::
simulations

required by MLMF (Eq. 14) and MLMC (Eq. B7) for the non-

breaking wave test case. The number required by MLMF is always

substantially fewer than that required by MLMC.

Figure 10. Factor of total LF samples
::::::::
simulations (rl + 1) required

by MLMF compared to number of HF samples
::::::::
simulations

:
for the

non-breaking wave test case, where rl is (Eq. 13).

Table 2. L2 error norm and maximum error norm between the MLMF and Monte Carlo CDFs for the non-breaking wave test cases.
::::
Note

::
the

::::
error

:::::
norms

:::
are

::::::
unitless

::::::
because

::
the

:::::
CDFs

:::
are

::::::
unitless.

Test Case L2 Error Norm Max. Error Norm

Non-breaking wave test case – 1000 m 1.5× 10−2 4.5× 10−2

Non-breaking wave test case – 1500 m 1.4× 10−2 4.0× 10−2

Non-breaking wave test case – 2000 m 1.6× 10−2 7.1× 10−2

Non-breaking wave test case – 2500m 9.3× 10−3 3.9× 10−2

Carlo outputs. Using this figure we can determine, for example, that the elevation height at x= 2500m is very certain but at

x= 1000m there is an almost equal probability that it could be less than 1.5 m or more than 2.5 m. In physical terms, this440

means that friction is important for determining the slope of the final water level close to the boundary, but the final wave-front

shape is more stable and less affected by friction. The agreement between the MLMF and Monte Carlo CDFs is quantified in

Table 2 where we calculate the L2 error norm and maximum error norm between them. Note that we evaluate the CDFs at 100

equally spaced points and, therefore, the implementation of the L2 error norm is equivalent to calculating the RMSE between

the two CDFs. The small error norms in Table 2 give us confidence in our new modified inverse transform sampling method’s445

ability to accurately generate CDFs.

Finally, throughout this section, we have assumed that either we can approximate the expected value of the true solution

or we can approximate the expected value of the XBeach simulation by simulating
:::::
using

:::::
Monte

:::::
Carlo

:::::
with large numbers of
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Figure 11. CDFs generated from MLMF outputs using the modified inverse transform sampling method (Eq. 17) compared with those

generated using Monte Carlo (MC) outputs for the non-breaking wave test case.

Monte Carlo samples
:::::::::
simulations at fine resolutions. However, if MLMF is to be of use, we need to apply it to cases where the

‘true’ value is not known. In these cases, the only parameter the practitioner can use to check accuracy is the tolerance value ε450

in the constraint (12), which we recall here is Var
[
Q̂HF,CVML

]
< ε2/2. Figure 12 compares the computational cost required by

MLMF, MLMC and the Monte Carlo method to satisfy this constraint. MLMC and MLMF ensure this through the formulae

for the optimum number of samples
:::::::::
simulations

:
and, thus, for these methods, ε is plotted against the computational cost of

the optimum number of samples
:::::::::
simulations

:
used. For the Monte Carlo method, the value of ε is equal to the square root of

twice the variance calculated after each sample is taken
::::::::
simulation, and is plotted against the time taken to run that number of455

samples
::::::::::
simulations. This is an imperfect measure of accuracy for Monte Carlo, but the best available to us. Figure 12 shows

that, even for this simple test case, MLMF is more than a hundred times faster than Monte Carlo, and on average, five times

faster than MLMC combined with XBeach alone. This is a very promising result for such a simple 1D test case and suggests

that MLMF represents a good method for improving computational efficiency, whilst still achieving accurate results.

3.2 Carrier-Greenspan test case460

For our second test case, we consider the 1D Carrier-Greenspan test case, first introduced in Carrier and Greenspan (1958),

where a harmonic, non-breaking infragravity wave travels over a plane sloping frictionless beach. This test case is more

complex than our first case because it requires the simulation of run-up and run-down, but Leijnse (2018) and Leijnse et al.

(2021) show it can be successfully simulated using both SFINCS and XBeach. Following these works, we generate a wave

train using a varying elevation boundary condition at the inlet, which results in a wave period of 48 s.465

In this section, we evaluate the uncertainty associated with the linear bedslope and assume it has a normal distribution,

slope ∼N (0.04,0.02). Note that any samples below 0.005 (i.e. slope 1:200) are discarded because otherwise the domain

is completely wet.
::
We

::::::
choose

:::
the

:::::
slope

:::
as

:::
our

::::::::
uncertain

:::::::::
parameter

:::::::
because

:
it
:::::::::
represents

::
a

:::::::::
significant

:::::
source

:::
of

::::::::::
uncertainty,
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Figure 12. Comparing the computational cost required to achieve tolerance ε using MLMF, XBeach with MLMC and the Monte Carlo

method for the non-breaking wave test case.

Figure 13. Comparing the maximum elevation height achieved at every point in the domain over the entire simulation when using SFINCS

and XBeach at dx= 2.3m and dx= 4.7m (corresponding to 64 and 32 mesh cells in the x-direction respectively) with the analytical result

for the Carrier-Greenspan test case. A slope of 0.041 is used in all simulations. Note that the water elevation height does not always meet the

bedlevel because the bedlevel is slightly differently defined at the different resolutions.

::
as

::::::::
discussed

::
in
::::::::::::::::

Unguendoli (2018)
:
,
::::::::::
particularly

:::::
when

:::::::::
simulating

::::::
run-up

::::
and

::::::::
run-down

:::
as

::
is

:::
the

::::
case

:::::
here.

:
The remaining

parameters are the same as those used in Leijnse (2018), in particular, the length in the x-direction is 150 m and the simulated470

period is 384 s. An advantage of the Carrier-Greenspan test case is that there exists an analytical result. A full derivation of the

analytical result used in our work is given in Carrier and Greenspan (1958) and is based on solving the dimensionless inviscid

shallow water equations where friction is ignored.
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Average time for single level run (s) Cost ratio

(ωl)

Grid resolution

pair (m)XBeach SFINCS

Level 5 2.86 0.66 4 150/(25, )

Level 6 8.57 1.17 7 150/(26,25)

Level 7 17.3 1.12 15 150/(27,26)

Level 8 35.4 1.15 31 150/(28,27)

Level 9 76.6 1.33 58 150/(29,28)

Table 3. Summary of average time taken to run SFINCS and XBeach at each level for the Carrier-Greenspan test case. As can be seen from

Eqs. (B4) and (3), at every level (apart from the coarsest level) a pair of simulations at two different resolutions is required. These resolutions

are shown in the ‘Grid resolution pair’ column and we recall that the same resolutions are used in each model.

Figure 14. Comparing the real and modified correlation values between SFINCS and XBeach to determine the maximum run-up height in

the Carrier-Greenspan test case.

When a wave runs up a slope, often the quantity of most interest is not the water depth at a particular location in time but,

instead, the (maximum) run-up height. Thus, for this test case, our quantity of interest is the maximum run-up height over the475

whole simulated period. Here we take the run-up height to be the water elevation above a fixed datum in the last wet cell in the

domain (water depths higher than 0.005 m). We first test how the maximum elevation height over the whole domain depends

on the resolution and model used in the simulation. Figure 13 shows that both models at both resolutions underpredict the

run-up height relative to the analytical result and that, whilst the XBeach high resolution result is the most accurate and the

SFINCS low resolution result the least accurate, the high resolution result using SFINCS is better than the low resolution result480

of XBeach, which is a promising outcome.

For our MLMF simulation, we use grids with 2l mesh cells in both SFINCS and XBeach, where the coarsest grid-size is l = 5

and the finest is l = 9. Table 3 compares the computational cost of running each of the models at these levels and shows that,

as with the previous test case, SFINCS is always much faster than XBeach. As the resolution becomes finer, the computational
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(a) Error to the analytical estimate. (b) Error to the Monte Carlo result.

Figure 15. Error (RMSE) in the maximum run-up height as the resolution level becomes finer for the Carrier-Greenspan test case. The x-axis

indicates the finest level considered by the MLMC/MLMF estimator for that error and the errors from using MLMF and from using MLMC

with a single model are both shown. A tolerance of ε= 1× 10−3 is used in (Eq. 14) and (Eq. B7) for MLMF and MLMC, respectively.

cost of XBeach increases but the computational cost of SFINCS remains relatively constant. We hypothesise this is because485

there is always a start-up cost to begin the SFINCS model run and this dominates the overall cost for such a small test case

with a short runtime. As with the previous test case, the cost ratio between SFINCS and XBeach increases as the resolution

becomes finer, which is again a promising indication of the efficiency gains we can expect from using MLMF. Before running

the full MLMF algorithm (Algorithm 1), we determine the values of key MLMF parameters using Step 1. The correlation is of

particular interest and Figure 14 shows that using the modified correlation formula (9) leads to increased correlation between490

the two models at all levels, although this increase is small.

Running the next steps in the MLMF algorithm, we can compare our MLMF results to the analytical estimate and to the

Monte Carlo result estimated using 400,000 samples
:::::::::
simulations

:
of XBeach at the finest resolution (512 mesh cells in the

x-direction) which takes almost 400 days of core time to run. Note that, as in the previous test case, due to the uncertainty

in the slope, the analytical estimate is not the ‘true’ expected value, but instead an estimate of the expected value of the true495

solution. We also run the MLMC algorithm with SFINCS and XBeach separately. Note that we initially choose a tolerance

of ε= 1× 10−3 in (14) and (B7) for MLMF and MLMC, respectively. As in the previous test case, we can truncate the

MLMC/MLMF simulations at intermediate levels and directly analyse how the error changes on the addition of each extra

level. Figure 15a shows that the error to the analytical estimate decreases uniformly for all methods indicating that the error

could be further decreased by using finer levels of resolution. Furthermore the figure shows that the error using MLMF and500

MLMC with XBeach is lower than that using SFINCS. This justifies that XBeach is the HF model for this test case and that

the MLMF approach can achieve the same, or lower, error than using only the HF model. Furthermore, Figure 15b shows a

similar trend for the error to the Monte Carlo result, with the error decreasing uniformly for all methods, and having a similar

value for MLMF and MLMC with XBeach.
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Figure 16. Error (RMSE) between the MLMF result and the Monte Carlo (MC) result for the Carrier-Greenspan test case as the tolerance

value ε in (Eq. 14) is varied. This is compared to the error when varying ε in (Eq. B7) for MLMC with XBeach.

So far in this section we have only considered a single tolerance value. Therefore, we re-run this test case using different505

tolerance values ε in (14) and (B7) for MLMF and MLMC, respectively. Figure 16 shows that the MLMF and XBeach MLMC

errors decrease as the tolerance decreases. Most importantly, this figure shows that MLMF is approximately as accurate as

using MLMC with XBeach. Additionally, Figure 17 shows that the optimum number of HF samples
:::::::::
simulations required by

the MLMF algorithm to achieve this accuracy is always less than that required by MLMC. To achieve this, MLMF also requires

(rl + 1)NHF
l LF samples

::::::::::
simulations and Figure 18 shows that rl is less than 10 at all levels for this test case. Furthermore,510

at level 7 (and, to a lesser extent, level 8), the difference between the optimum number of samples
:::::::::
simulations

:
required is

smaller than at other levels because the correlation between SFINCS and XBeach is lower (see Figure 14), meaning MLMF

and MLMC with XBeach are almost equivalent. This is also reflected in a lower factor of total LF samples
:::::::::
simulations

:
in

Figure 18. This highlights the importance of choosing two closely correlated models to ensure optimum efficiency from using

the MLMF method.515

As in the previous test case, we can apply the modified inverse transform sampling method to the MLMF output (from using

ε= 1× 10−3) to generate a CDF. This CDF can be used to readily assess flooding potential, for example, Figure 19 shows

that the probability the run-up height will exceed 5.48 m is 5%. This information can then be used, for example, to inform

a local authority that it would be unwise to place a permanent building structure below this height, but a temporary beach

structure might be ok. Figure 19 also shows that the CDF generated using MLMF outputs agrees fairly well with the Monte520

Carlo-generated CDF. We have quantified the agreement between the two CDFs in Table 4, where we calculate the L2 error

norm and maximum error norm between them. The maximum error norm is larger here than for the previous test case because

MLMF struggles to represent the steep change in the CDF at around 5.3 m. However, the L2 error norm, which we recall is

equivalent to the RMSE between the two CDFs, is small and indicates that overall the MLMF-generated CDF represents a

good approximation and gives further confidence in our ability to accurately generate CDFs from MLMF outputs.525
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Figure 17. Optimum number of XBeach (HF) samples
::::::::
simulations

required by MLMF (Eq. 14) and MLMC (Eq. B7) for the Carrier-

Greenspan test case. The number required by MLMF is always sub-

stantially fewer than that required by MLMC.

Figure 18. Factor of total LF samples
::::::::
simulations (rl + 1) required

by MLMF compared to number of HF samples
::::::::
simulations

:
for the

Carrier-Greenspan test case, where rl is (Eq. 13).

Figure 19. CDFs generated from MLMF outputs using the modified inverse transform sampling method (Eq. 17) compared with those

generated using Monte Carlo (MC) outputs, for the Carrier-Greenspan test case.

Finally, as discussed in the previous test case, in reality, the ‘true’ value of the quantity of interest is not always known and

the only parameter available to check accuracy is the tolerance value ε. Figure 20 compares the computational cost required

by MLMF, MLMC and the Monte Carlo method to satisfy the constraint (12) which we recall here is Var
[
Q̂HF,CVML

]
< ε2/2.

As before, for MLMC and MLMF, ε is the tolerance and is plotted against the cost required to run the optimum number of

samples
:::::::::
simulations

:
for this ε. However, for Monte Carlo, ε is the square root of twice the variance calculated after each sample530

::::::::
simulation

:
and is plotted against the time taken to run that number of samples

::::::::::
simulations. Thus, Figure 20 shows that using
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Table 4. L2 error norm and maximum error norm between the MLMF and Monte Carlo CDFs for the Carrier-Greenspan test cases.
:::
Note

:::
the

:::
error

:::::
norms

:::
are

::::::
unitless

::::::
because

:::
the

::::
CDFs

:::
are

:::::::
unitless.

Test Case L2 Error Norm Max. Error Norm

Carrier-Greenspan test case 2.7× 10−2 2.3× 10−1

Figure 20. Comparing the computational cost required to achieve tolerance ε using MLMF, XBeach with MLMC and the Monte Carlo

method for the Carrier-Greenspan test case.

MLMF is at least three times as efficient as the Monte Carlo method for the same tolerance, and using MLMC is at least twice

as efficient. Whilst these improvements from using MLMF versus MLMC are not as notable as for the previous test case, they

nevertheless show that even small differences between the number of optimum HF samples
::::::::::
simulations (see Figure 17) are

sufficient for MLMF to be more efficient than MLMC.535

3.3 Myrtle Beach

The test cases considered so far in this work have been relatively simple one-dimensional idealised test cases. For our final

test case, we consider the real-world test case of a dune system near Myrtle Beach, South Carolina, USA (see Figure 21). The

bedlevel data of the specific beach of interest is shown in Figure 22. The goal of this test case is to estimate the maximum water

depth (with respect to the bed level) due to flooding at various locations, influenced by an uncertain
:
.
::::
Over

:::
the

::::::
coming

::::::::
decades,540

::::::
climate

::::::
change

::::
will

::::
lead

::
to

::::::::
changing

:::::
water

:::::
levels

:::
but

:::
the

:::::
actual

:::::::
change

::
at

::::::
specific

::::::::
locations

::
is

:::::::::
uncertain,

:::::
which

::
in

::::
turn

:::::
leads

::
to

:::::::::
uncertainty

::
in

:::
the

::::::
impact

::
of
::::::::

flooding
::::
from

::::::
future

::::::
storms.

:::::
Thus,

::
in

::::
this

:::
test

::::
case,

:::
we

::::::::
consider

:::
the offshore water level

:
to

:::
be

:::::::
uncertain.
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Figure 21. Location of area of interest in the Myrtle Beach test case.

Source: © Google Maps 2021.

Figure 22. Bedlevel data for original non-extended domain of the

Myrtle Beach test case with locations of interest marked with a cir-

cle. The locations are colour-coded and these colours are used to

represent them throughout this section. Note that x and y are the

Universal Transverse Mercator (UTM) co-ordinates for the global

zone that Myrtle Beach is located in (17N).

As in the previous test cases, we use XBeach as the HF model and SFINCS as the LF model in the MLMF algorithm. To

simulate the waves in XBeach we use the surfbeat model mode with the JONSWAP wave spectrum (Hasselmann et al., 1973)545

and set the significant wave height equal to 4 m, the peak wave period equal to 12 s, the peak enhancement factor (used to alter

the spectrum for fetch-limited oceans) equal to 3.3 and the main wave angle perpendicular to the shore equal to 124.3◦. Note

that, as discussed in Sect.
::::::
Section

:
1, SFINCS does not explicitly simulate short-waves (representing here a simplification in

the setup of the LF model) and therefore we do not have to define a wave spectrum for it. In order to accurately model waves

in the HF model of XBeach, we need a long stretch of water before the waves reach the beach, which is not present in the550

domain in Figure 22. Therefore, we extend the domain offshore, as shown in Figure 23, when running XBeach but, for reasons

of computational cost, use the original smaller domain in SFINCS. For the larger XBeach domain, we maintain a uniform

grid spacing in the original domain region (i.e. the region where both SFINCS and XBeach are simulated) so that the grids in

each model are the same in that region. In the extended part of the domain, however, we vary the cross-shore grid resolution

depending on the bedlevel so as to make XBeach more computationally efficient (see Figure 23). The original non-extended555

domain is [0, 1000]m in Figure 23 and the extended part stretches from [-5250, 0]m. Note that we use the cross-shore grid

size of the original non-extended domain as a lower bound for the grid-size in the extended domain. Therefore the grid in the

extended domain also varies at each level, so as to make the cost comparisons between the levels fair. Finally, the grid-size

parallel to the shore is kept constant (10 m) for simplicity and because in this test case we are most interested in cross-shore

changes.560
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Figure 23. Varying cross-shore grid resolution based on the bedlevel in the extended XBeach domain. In the original non-extended domain,

the cross-shore resolution is 2 m and thus a maximum resolution of 2 m is used in the extended domain. For illustration purposes, we show

the cross-shore cross-section at the left-hand side edge of the domain.

As this is a real-world study, we must also consider tides. These tides can have a large impact on coastal flooding and

thus, for this test case, we evaluate the uncertainty in the maximum tide height, htide. In both SFINCS and XBeach, tides are

modelled using a varying elevation height boundary condition at the offshore open boundary and in this test case this boundary

condition follows

tide(t) =


htide
3600 t 0s≤ t≤ 3600s,

htide 3600s< t≤ 7200s,

− htide
3600 (t− 10800) 7200s< t≤ 10800s,

(19)565

which approximates a slightly sped up tidal signal relative to real-world tides, for reasons of computational cost. Note that we

run the simulation for 3 h (10800 s). Due to the presence of a wave component in XBeach, we expect it is simulate overtopping

significantly more accurately than SFINCS. To check whether MLMF still holds for problems with overtopping, we assume

that the maximum tide height has the distribution htide ∼N (5,0.75)m, so as to ensure overtopping of the first row of dunes

which are approximately 4 m high (see Figure 23). The quantity of interest is then the maximum water depth at eight different570

locations in the domain, which are marked with coloured circles in Figure 22. Note that these colours are used to identify these

locations in all figures throughout this section. Figure 24 shows an example of the maximum elevation height (relative to a

fixed datum) computed by an XBeach simulation for this test case overlaid on a satellite image of the beach. The figure shows

that for this particular value of htide (4.97 m), a substantial amount of overtopping occurs.

With the set-up of the test case complete, we now consider the MLMF set-up. For the MLMF simulation, we use grids575

with dψ× 2le mesh cells in the cross-shore direction in the original non-extended domain, where ψ is a user-defined factor

30



Figure 24. Maximum elevation height (relative to a fixed datum) from an example XBeach simulation for the Myrtle Beach test case, showing

overtopping. This has been simulated using the grid resolution from Figure 23 and htide = 4.97m. The maximum elevation height has been

overlaid on a satellite image of the location, to highlight the impact of coastal features on the elevation height.

here set equal to 155/4. The coarsest grid-size is l = 1 and finest grid-size is l = 4. As the cross-shore distance in the original

non-extended domain is 1240 m, this means the coarsest cross-shore resolution is 16 m and the finest one is 2 m. Note that,

throughout this test case, the resolution parallel to the shore is kept constant (10 m) as discussed above. As a first test, we

compare how the values of the variable of interest depend on which model is used and the grid-resolution. In order to be able to580

distinguish between the model results at different locations, Figure 25 shows the maximum water depth (i.e. maximum water

elevation height minus bedlevel) rather than the maximum water elevation height, which is our variable of interest. It shows that

SFINCS results in lower predictions of the maximum water depth compared to XBeach due to the former omitting wave-driven

processes and, to a lesser extent, that the coarser resolution also results in an underprediction in both SFINCS and XBeach.

The difference between the SFINCS and XBeach results is roughly the same at all locations. This simple shift is promising as585

it means that the models are likely to be correlated and MLMF can just adjust for the shift in predicted values. Furthermore,

the maximum water depth in SFINCS and XBeach follows the same pattern between locations, which is a promising result.

Table 5 compares the computational cost of running each of the models at the levels considered and shows that, as with the

previous test cases, SFINCS is substantially faster than XBeach. Unlike with the other test cases, the cost ratio between the

two models decreases as the resolution becomes finer. However, for this test case, the cost ratio is so large that even with this590

decrease, SFINCS is still 400 times faster than XBeach at the finest level. This indicates that substantial computational savings

can be made by using a multifidelity approach in this complex real-world test case.
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Figure 25. Comparing the maximum water depth achieved at the eight locations of interest using SFINCS and XBeach at two different

resolutions, for the Myrtle Beach test case. A maximum tide height of htide = 4.97m is used in all simulations.

Average time for single level run (s) Cost ratio

(ωl)

Grid resolution

pair (m)XBeach SFINCS

Level 1 31,926 14 2236 32(21, )

Level 2 80,115 45 1769 32/(22,21)

Level 3 155,033 178 872 32/(23,22)

Level 4 388,664 963 403 32/(24,23)

Table 5. Summary of average time taken to run SFINCS and XBeach at each level for the Myrtle Beach test case. As can be seen from Eqs.

(B4) and (3), at every level (apart from the coarsest level) a pair of simulations at two different resolutions is required. These resolutions are

shown in the ‘Grid resolution pair’ column and we recall that the same resolutions are used in each model.

As with the previous test cases, before running the full MLMF algorithm, we first analyse the values of key MLMF param-

eters determined in Step 1 of the algorithm (Algorithm 1). Figure 26 shows that the modified correlation (9) between SFINCS

and XBeach generally decreases as the resolution level increases and that, at the finest level, the correlation is very low at some595

locations. The right panel of Figure 26 shows that the modified correlation method is very beneficial in this test case because

it results in a large increase in correlation, especially at level 2. However, at the finest levels, there is almost no increase in

the correlation at several locations. The conclusion from Figure 26 is therefore that, unsurprisingly, the benefits of the more

complete and complex physics implemented in XBeach become greater as the mesh becomes finer.

Before running the full MLMF algorithm, we also consider how to assess the accuracy of the MLMF algorithm for this test600

case. This is a complex computationally expensive real-world problem for which there is no analytical solution and for which

approximating a ‘true’ solution using the standard Monte Carlo method at the finest resolution considered is impractical (each

simulation of XBeach at this resolution takes on average 3 days). Therefore, to assess accuracy, we use the following general

theoretical formula for the root mean squared error (RMSE)

RMSE =

√
E[(Ŷ −E[XL])2] + (E[XL]−E[X])2, (20)605
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Figure 26. Comparing the real and modified correlation values between SFINCS and XBeach to determine maximum water elevation at eight

specific locations in the Myrtle Beach test case. Left: Absolute value of modified correlation (Eq. 9). Right: Difference between absolute

value of modified and real correlation.

where X is the true solution, XL is the solution on the finest level (i.e. level L), and Ŷ can be either the MLMF estimator Q̂HFMl

or the MLMC estimator Ŷ HFMl
. The first term in (20) is the only term affected by whether MLMC or MLMF is used. Therefore

given that the purpose of this work is to verify MLMF, it is not important that the true solution X is unknown. Instead, for this

test case, we use the the first term (the estimator variance) as a proxy for the RMSE and estimate it using the output generated

in Step 1 of the MLMC and MLMF algorithms. As in the previous test cases, we can truncate the MLMC/MLMF simulations610

before the finest level and thus directly analyse how the variance changes on the addition of each extra level. Figure 27 shows

how both the MLMF variance (6) and MLMC variance (B5) vary with level l. For both estimators at all locations, the general

trend is that the variance decreases as the resolution level increases. This is an important result because it means that fewer

samples
:::::::::
simulations

:
are required on the finer levels. The MLMC variance, however, plateaus and then increases slightly at

some locations for the finer resolutions, whereas the decrease in MLMF is more uniform, indicating that MLMF is performing615

better than MLMC for this test case. More importantly, the variance of the MLMF estimator is two orders of magnitude smaller

than that of the MLMC estimator. Thus, using the RMSE formula (20), MLMF is more accurate than MLMC, although this is

difficult to determine without an approximation to the ‘true’ solution. The smaller variance also means that MLMF will require

fewer HF simulations than MLMC and, therefore, be more computationally efficient.

Given these promising results, we can now run the full MLMF algorithm (Algorithm 1) choosing a tolerance of ε= 3× 10−2620

in (14). Figure 28 shows the spatial representation of the final expected value estimated using MLMF at the locations of interest.

It shows that the expected maximum elevation height grows as we move inland, especially as the water gets funneled into the

inlet. This is a physically realistic result and therefore gives us further confidence in the accuracy of our MLMF algorithm.

The optimum number of HF samples
:::::::::
simulations

:
required to estimate the expected values using MLMC and MLMF is shown

in Figure 29 and calculated using (14) and (B7), respectively, with ε= 3× 10−2. The figure shows that, at all locations, this625

number decreases as the resolution level increases for both MLMF and MLMC, which is an important result for computational

33



(a) Variance for MLMF estimator (b) Variance for MLMC estimator using XBeach

Figure 27. Comparing the different rates at which variance of the MLMF estimator (Eq. 6) and the variance of the MLMC estimator for

XBeach (Eq. B5) decrease as the resolution becomes finer. The x-axis indicates the finest level considered by the MLMC/MLMF estimator.

Note the MLMF variance is two orders of magnitude smaller than the MLMC variance.

Figure 28. Spatial representation of the expected value of the maximum elevation height estimated using MLMF with a tolerance of ε=

3× 10−2 in (Eq. 14).

efficiency. An interesting result from Figure 29 is that locations 2 and 8 require the least number of HF samples
::::::::::
simulations in

both the MLMC and MLMF algorithms, whilst locations 4 and 5 require the most. When the locations of interest are offshore,

and locations 2 and 8 are the furthest offshore, the water elevation there is relatively certain. In contrast, locations 4 and 5 are

further inland – at the inlet and behind the dune system – and predicting elevation height at these locations is more uncertain630

because it is dependent on the amount of overtopping that has occurred, hence larger numbers of samples
::::::::::
simulations are

needed to ensure accuracy.
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More significantly, Figure 29 shows that MLMF always requires fewer XBeach (HF) simulations than MLMC, with the

biggest difference being at level 1, where MLMF requires an order of magnitude fewer samples
:::::::::
simulations. This difference

can clearly be seen in Figure 30 which shows the number of HF samples
:::::::::
simulations

:
required by MLMC divided by the635

number of those required by MLMF. As the level becomes finer, the ratio decreases due to the lower correlation between the

two models at the finer levels seen in Figure 26. Nevertheless, even at the finest resolution level, MLMC still requires twice

as many samples
::::::::::
simulations as MLMF, which is particularly significant given how computationally expensive the test case

is at this resolution (see Table 5). MLMF requires fewer samples
:::::::::
simulations

:
because it uses rlNHF

l LF samples
:::::::::
simulations.

Figure 10 shows that rl is large at coarse levels but given the computational cost savings from using SFINCS shown in Table640

5 this is not an issue. Moreover, as the level number increases and the SFINCS computational cost increases, rl decreases and

is much less than 10 at the finest level.

As in previous test cases, we can apply the modified inverse transform sampling method to the MLMF outputs (here produced

using ε= 3× 10−2) to generate a CDF. As already mentioned, it is impractical to run a Monte Carlo simulation for this test case

and thus, we cannot compare the MLMF-generated CDF with the Monte Carlo-generated CDF as done previously. However645

the small error norms in Tables 2 and 4 give confidence in the accuracy of the MLMF-generated CDFs for this test case. Figure

32 shows the CDFs for this test case at all eight locations and greatly improves our understanding of the test case. For example,

the figure informs that there is a small but significant probability of the maximum elevation height at the inlet (location 5)

exceeding 10 m. This is despite the fact that the expected value is only 6.66 m (see Figure 28), which might have led the local

authority to believe that they were safe from a 10 m elevation height. This illustrates how important it is for the assessment of650

the risk
::::::
impact of extreme flooding that our MLMF algorithm can accurately and efficiently calculate both the expected values

and CDFs of output variables.

Finally, we also consider how different tolerance values ε in (14) affect our expectation results. The trend in the optimum

number of HF samples
:::::::::
simulations

:
at each ε (not shown here for brevity) follows that seen in Figure 29: MLMF always

requiring fewer samples
:::::::::
simulations

:
than MLMC. Figure 33 shows that the difference in the optimum number of HF samples655

:::::::::
simulations

:
required translates to MLMF being more than three times as efficient as MLMC for the same level of accuracy.

For such a complex real-world test case, this is a notable result. Although it is impractical to conduct a full analysis using

the Monte Carlo method, we have run a Monte Carlo simulation for approximately 3× 108 s (1100 simulations). This allows

us to conclude that, for the same tolerance, MLMF is over six times faster than Monte Carlo (calculating ε as
√

2Var[·] as

in the previous test cases). Although this is not a large factor, given the high computational cost, this means that achieving a660

tolerance of 0.03 takes an estimated 40 years of computational time using the Monte Carlo method compared to only 6 years

of computational time using MLMF. Furthermore, unlike MLMC and MLMF, Monte Carlo must always be run for longer

than strictly necessary to ensure convergence (see Sect.
::::::
Section 3.1 and 3.2). Therefore, this test case concretely demonstrates

that applying MLMF means we can conduct uncertainty analysis of complex real-world problems in an accurate and efficient

manner that would have been unfeasible using the standard Monte Carlo method.665
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Figure 29. Optimum number of XBeach (HF) samples
::::::::
simulations

required by MLMF (Eq. 14) and MLMC (Eq. B7)
::
for

:::
the

:::::
Myrtle

::::
Beach

::::
test

:::
case.

:::
Here

::::::::::
ε= 3× 10−3

:::
in

:::
(Eq.

:::
14)

::::
and

:::
(Eq.

::::
B7)

::
for

:::::
MLMF

:::
and

:::::::
MLMC,

:::::::::
respectively.

Figure 30. Optimum number of XBeach (HF) samples
::::::::
simulations

required by MLMC divided by the optimum number required by

MLMF
::
for

:::
the

:::::
Myrtle

:::::
Beach

:::
test

::::
case.

:::
Here

:::::::::::
ε= 3× 10−3

::
in

:::
(Eq.

::
14)

:::
and

::::
(Eq.

:::
B7)

:::
for

:::::
MLMF

:::
and

:::::::
MLMC,

:::::::::
respectively.

Figure 31. Factor of total LF samples
::::::::
simulations

:
(rl+1) compared

to number of HF samples
::::::::
simulations, where rl is (Eq. 13)

:::
for

::
the

:::::
Myrtle

:::::
Beach

:::
test

:::
case.

::::
Here

::::::::::
ε= 3× 10−3

::
in

:::
(Eq.

:::
14)

:::
and

:::
(Eq.

:::
B7)

::
for

::::::
MLMF

:::
and

::::::
MLMC,

::::::::::
respectively.

Comparing the optimum number of XBeach (HF) samples required

by the MLMF and MLMC estimators for the Myrtle Beach test

case. Here ε= 3× 10−3 in (Eq. 14) and (Eq. B7) for MLMF and

MLMC, respectively.

4
::::::::::
Discussion:

::::::
Future

::::::::::
Extensions

::
to

:::
our

:::::::
MLMF

::::::::::::
methodology
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Figure 32. CDFs generated from MLMF outputs using the modified inverse transform sampling method (Eq. 17).

Figure 33. Comparing the computational cost required to achieve tolerance ε at all locations using MLMF, XBeach with MLMC and Monte

Carlo for the Myrtle Beach test case

::::
This

:::::
works

::::
aims

::
to

::
be

::
a

::::::::::::::
proof-of-concept

:::::::::::
demonstrating

::::
that

::::::
MLMF

:::
can

:::
be

::::
used

::
for

::::::
coastal

::::::::
flooding.

:::::
Thus,

:::::
whilst

::
in

:::::::::
real-world

::::
cases

:::::
there

:::
will

:::
be

::::
more

::::
than

:::
one

::::::::
uncertain

:::::
input,

::
to

::::
meet

::::
this

:::
aim

::
it

::
is

:::::::
sufficient

::
to
::::::::
consider

::::
only

:::
one

::::::::
uncertain

::::
input

:::::::::
parameter

:::
per

:::
test

::::
case.

::::::
Adding

:::::
more

::::::::
uncertain

:::::
inputs

::::::
would

::::::
increase

:::
the

:::::::
variance

:::
of

::
the

:::::::
outputs

:::
and

::::
thus

::
all

:::::::
methods

::::::
would

::::::
require

:::::
larger

:::::::
numbers

::
of

::::::::::
simulations

::::
and

::
be

:::::
more

:::::::::::::
computationally

:::::::::
expensive.

:::::
Note,

::::::::
however,

::::
that

:::
the

:::::::::::
methodology

:::::::
outlined

::
in
:::::::

Section
::
2670

::::::
remains

:::
the

:::::
same

::::::::::
irrespective

:::
of

:::
the

::::::
number

:::
of

::::::::
uncertain

::::::
inputs

:::
and

::::
thus

::::::::::
considering

::::::::
multiple

::::::::
uncertain

:::::
inputs

::::
will

:::
be

:::
the

::::::
subject

::
of

:::::
future

:::::
work.

:

::::::::::
Furthermore,

:::
for

:::
all

:::::::
methods

::
in

::::
this

:::::
work,

::
we

::::::
assess

:::
the

::::::
impact

::
of

::::::::
uncertain

::::
input

::::::::::
parameters

::
by

::::::::
randomly

::::::::
sampling

::::::
values

::::
from

:
a
::::::::::
user-chosen

::::::::::
distribution

:::
and

::::
then

:::::::
running

::
the

:::::::
models

::::
with

::::
these

:::::::::
parameter

::::::
values.

::::
This

::::
again

:::::
meets

:::
the

::::
aim

::
of

:::
this

:::::
work

:::
but

:
is
:::
the

:::::::
simplest

::::::::
sampling

::::::::
approach.

:::::::::::
Nevertheless,

:::
the

::::::::
flexibility

::
of

:::::::
MLMC

:::
and

:::::::
MLMF

:::::
means

:::
that

::::
they

:::
can

::::
also

::
be

:::::::::
combined675
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::::
with

::::
other

:::::
more

:::::::::::
sophisticated

::::::::
sampling

:::::::::
techniques

::::
that

::::
can

::::::
further

::::::
reduce

:::
the

:::::::
number

::
of

::::::
model

:::::::::
simulations

:::::::
needed.

::::::
These

:::::::
complex

:::::::::
techniques

:::
are

:::
out

::
of

:::::
scope

::
for

::::
this

::::
work

:::
but

:::
we

::::::
remark

::::::
briefly

::::
upon

::::
them

:::::
here.

:::
One

::::
such

:::::::::
technique

:
is
:::::
Latin

:::::::::
hypercube

:::::::
sampling

::::::::::::::::::
(McKay et al., 2000)

:::::
which

:::::
splits

::
the

::::::::::
distribution

::::
into

:
n
:::::
equal

::::::::
partitions

::::::
(where

::
n

:
is
:::
the

:::::::
number

::
of

:::::::
samples

::::::::
required)

:::
and

:
a
:::::::
sample

:
is
::::

then
:::::

taken
:::::
from

::::
each

::::::::
partition.

::::
This

::::::::
sampling

::::::::
approach

:::
has

::::
been

::::::
shown

::
to

:::::::
improve

::::::::::::
computational

:::::::::
efficiency

::::
when

:::::
used

::::
with

::::
both

::
a
::::::::
standard

:::::
Monte

::::::
Carlo

::::::
method

::::::::::::::::::
(McKay et al., 2000)

:::
and

:::::
with

::::::
MLMC

:::::::::::::::::
(Xiong et al., 2022).

::::::::
Another680

::::::::
technique

::
is

::::::::::
evolutionary

::::::::::
algorithms

::::::::::::
(Vikhar, 2016),

::::::
which

:::
are

:::::::::::
optimisation

:::::::::
algorithms

:::::::
inspired

::
by

:::::::::
biological

::::::::
evolution

::::
that

:::
start

::::
with

:::
an

:::::
initial

:::
set

::
of

:::::::
samples

::::::::::
(population)

:::
and

::::::
evolve

:::::::
towards

::
an

:::::::
optimal

:::
set.

:::::
These

::::
have

::::
also

::::
been

::::::::::
successfully

:::::::::
combined

::::
with

::::::
MLMC

::
in

::::::::::::::::::
Pisaroni et al. (2019)

::
to

:::::
further

::::::::
improve

::::::::
efficiency.

:

:::::
There

:::
are

:::
also

:::::
other

:::::::
common

:::::::::
techniques

::
to

:::::::
improve

:::
the

::::::::
efficiency

:::
of

:::::::
assessing

::::::::::
uncertainty

::::
such

::
as

:::
the

:::::::
Markov

:::::
Chain

::::::
Monte

::::
Carlo

:::::::
method

::::::::
(MCMC)

::::
and

::::
using

::::::::
machine

:::::::
learning

:::::::::
techniques

::
as

:::::::::
emulators.

:::
As

::::
with

:::
the

:::::::::::
sophisticated

::::::::
sampling

::::::::::
techniques,685

::::
these

:::
can

::::
also

::
be

:::::::::
combined

::::
with

:::::::
MLMC

:::::
and/or

:::::::
MLMF

::
to

:::::::
improve

:::
the

:::::::
methods

::::::
further:

::::
both

:::::::::
multilevel

:::::::
Markov

:::::
Chain

::::::
Monte

::::
Carlo

::::::::::
algorithms

::::::::::::::::::
(Dodwell et al., 2019)

:::
and

:::::::::
combining

:::::::::::
multifidelity

:::::::
samples

::::
with

:::::::
transfer

:::::::
learning

::
to

::::
train

::::::::
machine

:::::::
learning

::::::::
emulators

:::::::::::::::::
(Chakraborty, 2021)

:::
are

:::
fast

:::::::
growing

:::::
areas

::
of

::::::::
research,

::::::
making

:::::
them

:
a
:::::::::
promising

::::::
avenue

:::
for

:::::
further

::::::
work.

:::
We

:::::::
conclude

::::
this

::::::
section

::
by

:::::::::
observing

::::
that,

:::::::
although

:::::
there

:::
are

::::
more

:::::::::::
sophisticated

:::::::::
techniques

::
to
::::::
assess

:::::::::
uncertainty

::::
than

::::
that

::::::
applied

::
in

::::
this

:::::
work,

:::
the

::::::::
flexibility

:::
of

:::
the

::::::
MLMF

:::::::::
algorithm

:::::
means

::::
that

::
it

:::
can

:::::
easily

:::
be

:::::::::
combined

::::
with

::::
other

:::::
more

::::::::
complex690

::::::::
statistical

::::::::::
approaches,

::::::::
leveraging

:::
the

::::::::::
advantages

::
of

::::
both

::::::::::
approaches.

::::::
Whilst

::::
these

:::::::::
combined

:::::::::
approaches

:::
are

:::::::
beyond

:::
the

:::::
scope

::
of

:::
this

:::::
work,

:::::
using

:::::
these

:::::::::
techniques

::
on

::::::
coastal

::::::::
problems

::
is

::
an

:::::::::
interesting

::::
and

::::::::
promising

::::::
avenue

:::
for

::::::
further

::::::::
research.

5 Conclusions

In this work, we have presented the first successful application of MLMF in the coastal engineering field and one of the first

successful applications of this method in any field. Using both idealised and real-world test cases, we have shown that MLMF695

can significantly improve the computational efficiency of flood risk assessment
:::::::::
uncertainty

:::::::::::
quantification

:::::::
analysis

:::
in

::::::
coastal

:::::::
flooding for the same accuracy compared to the standard Monte Carlo method. In particular, we have demonstrated that this

enables uncertainty analysis to be conducted in real-world coastal environments that would have been unfeasible with the

statistical methods previously applied in this field. Using our new modified inverse transform sampling technique, we are also

able to accurately generate the cumulative distribution function (CDF) for the output variables of interest, which is of great700

value to decision makerswhen assessing risk. Furthermore, the expected values and CDFs of output variables can be computed

at multiple locations simultaneously with no additional computational cost, demonstrating the flexibility of MLMF. In future

work, this will enable the construction of large-scale risk maps showing the expected value and CDF of variables of interest

at all locations in the domain, facilitating accurate and timely decision-making. Finally
::::::::::
Furthermore, we have highlighted the

benefits of using a multifidelity approach and shown that using SFINCS as an LF model and XBeach as a HF model makes705

MLMF notably more computationally efficient than MLMC for the same or higher accuracy. Multifidelity approaches thus

represent a very rewarding avenue for further research and our new model-independent easily applicable MLMF wrapper

written as part of this work will greatly facilitate this research.
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::::::
Finally,

:::
this

:::::::
efficient

::::::::::
uncertainty

:::::::::::
quantification

:::
can

:::
be

::::
used

::
in

:::
the

:::::
future

:::
for

:::
risk

::::::::::
estimation.

:::
The

:::::
latter

:::::::
assumes

:::
that

:::
the

:::::
same

:::::::
scenario

:::::::
happens

::::::::
repeatedly

::::
over

::
a

::::
given

::::
time

::::::
period

::::
(e.g.

:::
rain

::::::
events

::::
over

:
a
:::::
year)

:::
and

:::::::
requires

::::::::
frequency

::::::::::
information

::::
(e.g.

::::
how710

::::
many

:::::
times

::::
does

:::::::
location

::
X
:::
get

:::::::
flooded

:::
per

::::
time

:::::::
period).

:::::
Thus,

:::
the

::::::::::
information

:::::::
gathered

:::
by

:::::
using

::::::
MLMF

::
to

::::::::::::::
probabilistically

:::::::
quantify

:::
the

:::::::::::::::::
variation/uncertainty

::
in

:::
the

:::::::
different

::::::::
scenarios

::::
(e.g.

::::::
rainfall

:::::::
events),

:::
can

::
be

::::
used

::
in
::::::
future

::::
work

:::
for

:::
risk

::::::::::
estimation.

Code availability. The relevant code for the MLMF framework presented in this work is stored at https://github.com/mc4117/MLMF_

coastal.715
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Appendix A:
:::::::::::
Multifidelity

:::::::::
estimators

::::::::
Generally,

::
a
::::::::::
multifidelity

::::::::
approach

::::
uses

::
a
:::
low

:::::::
fidelity

:::::
model

:::
to

:::::::
generate

::::::::
surrogate

:::::::::::::
approximations

:::
for

:::
the

:::::::
outputs

::
of

::
a

::::
high

::::::
fidelity

::::::
model.

::
If

:::::::
applied

::::::::
correctly,

:::
the

::::::::
resulting

:::::::::::
multifidelity

::::::::
estimator

::
is

::::
then

:::
as

:::::::
accurate

:::
as

:::
the

:::::::::
equivalent

::::
high

:::::::
fidelity

:::
one.

::::::
There

::::
exist

:
a
:::::::
number

::
of

::::::::
different

::::::::::
multifidelity

::::::::::
approaches

::::::::::::::::::::::::
(see Peherstorfer et al., 2018).

:::::::
MLMF

::::
uses

:::
the

::::::
control

::::::
variate

:::::::
approach

::::::
which

:::
we

::::::
outline

::::
here

::::::::
following

:::::::::::::::::
Geraci et al. (2015)

:::::::::
throughout.

::::
The

:::::::::::
multifidelity

::::::::
estimator

::
is

:::::::
unbiased

::::
and

:::::
given730

::
by

:

Q̂HF,CVM,N = Q̂HFM,N +αF

(
Q̂LFM,N −E[QLFM ]

)
,

::::::::::::::::::::::::::::::::::::

(A1)
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:::::
where

::::::::
Q̂HF,CVM,N ::

is
:::
the

::::::::
estimator

::
of

:::
the

:::
the

::::::::
expected

:::::
value

::
of

:
a
:::::::
variable

:::
of

:::::::
interest,

:::
E[·]

:::::::
denotes

::::::::::
expectation,

:::
M

::::::::
indicates

:::
the

::::
fixed

:::::::::::
discretisation

:::::
level,

:::
and

:::
αF ::

is
:
a
:::::
scalar.

::::
The

:::::
value

::
of

::
αF::

is
::::::::::
determined

::
by

::::::::::
minimising

:::
the

:::::::
variance

::
of

::::::::
Q̂HF,CVM,N :::

and
::
is

:::::
given

::
by

:
735

αF =−ρ

√√√√Var(Q̂HFM,N )

Var(Q̂LFM,N )
,

:::::::::::::::::::

(A2)

:::::
where

:
ρ
::
is
:::
the

::::::::
Pearson’s

::::::::::
correlation

::::::::
coefficient

:::
for

:::
the

:::
HF

::::
and

::
LF

::::::::::
estimators.

:::::::
Equation

::::
(A1)

::::::::
assumes

:::
that

::::::::
E
[
QLFM

]
::
is

::::::
known,

:::
but

:::
this

::
is
::::::
almost

:::::
never

::::
true

::::::
because

:::
we

:::
do

:::
not

:::::
know

:::
the

::::::::
analytical

:::::::
formula

::
of

:::
the

::::::::::
distribution

::
of

:::
the

:::::::
variable

::
of

:::::::
interest

:::::
QLFM .

:::::::::
Therefore,

::::
extra

::::::::::
simulations

::
of

:::
the

:::
LF

::::::
model

::::
must

:::
be

:::::::::
conducted

::
in

:::::
order

::
to

:::::::
estimate

:::
this

::::::::
quantity,

::::
with

::
its

:::::::
number

::::::
denoted

:::
by

:::::
∆LF .

:::::
Even

::::::
though

::
we

::::
use

:::
the

::::
same

:::::::
random

:::::::
numbers

:::
for

:::
the

::::::::::
simulations740

::
to

:::::::
construct

::::::
Q̂HFM,N::::

and
:::::
Q̂LFM,N::::

(see
::::::
Figure

:::
2),

::
in

:::
the

::::::::
literature

:::
the

::::::
number

:::
of

:::::::::
simulations

::
is
:::::::
denoted

:::
by

:::::
NHF .

::::
The

::::::
number

:::
of

::::
extra

::::::::::
simulations

:::
for

::
the

:::
LF

::::::
model

::
is

::::
then

::::::::::::
∆LF = rNHF ,

::::::
where

:::
the

::::::::
optimum

::::
value

:::
of

:
r
::
is

:::::::::
determined

:::::
later.

:::::
Thus,

:::
the

::::::
overall

:::::::::::
computational

::::
cost

::
C

::
of

:::
the

:::::::::::
multifidelity

::::::::
estimator

::
is

C = CHF +CLF (1 + r),
::::::::::::::::::::

(A3)

:::::
where

:::::
CHF :

is
:::
the

::::
cost

::
of

:::::::
running

:::::
NHF::::::::::

simulations
::
of

:::
the

:::
HF

::::::
model

:::
and

::::
CLF::

is
:::
the

::::
cost

::
of

:::::::
running

:::::
NHF ::::::::::

simulations
::
of

:::
the745

::
LF

::::::
model.

::::::
Using

::::
(A1),

:::
the

::::::::
variance

::::
‘Var’

::
of

:::
the

:::::::::::
multifidelity

::::::::
estimator

:
is
:

Var
[
Q̂HF,CVM,N

]
= Var

[
Q̂HFM,N

](
1− r

1 + r
ρ2
)
.

::::::::::::::::::::::::::::::::::::::

(A4)

::::
Note

:::
that

:::
ρ2

::
is

:::
less

::::
than

::::
one

::
by

:::::::::
definition,

::
so

::
r

::::::
greater

::::
than

::::
zero

:::::
means

:::
the

:::::::
variance

:::
of

::
the

::::::::
estimator

::
is
:::::::
reduced

:::::::
through

:::::
using

:::
this

:::::::
method.

Appendix B:
::::::::
Multilevel

::::::
Monte

::::::
Carlo

:::::::
method

::::::::
(MLMC)750

:::
The

:::::::::
multilevel

::::::
Monte

:::::
Carlo

:::::::
method

::::::::
(MLMC)

::::
was

::::
first

:::::::::
introduced

::
in
::::::::::::

Giles (2008)
:::
and

::::::::::
successfully

:::::::
applied

::
in

:::
the

:::::::
coastal

:::::::::
engineering

::::
field

:::
in

:::::::::::::::
Clare et al. (2021).

:::
We

::::
refer

:::
the

::::::
reader

::
to

:::::
those

:::
two

:::::
works

:::
for

::::
full

:::::
details

::
of

:::
the

:::::::
method

:::
and

::::
here

::::::
present

::
a

::::
brief

::::::::
overview.

::::::
MLMC

::::::::::
accelerates

:::
the

::::::
Monte

:::::
Carlo

:::::::
method

::
by

::::::::::
considering

::::
the

:::::::
problem

::
at

::::::::
different

:::::
levels

::
of

:::::::::
resolution

::
in
::

a
:::::::::
multilevel

:::::::::::
environment.

:
It
::::
then

::::
uses

:::::::
linearity

:::
of

::::::::::
expectations

::
to

:::::::::
transform

:::
this

:::::::::::::
multi-resolution

::::::::::
expectation

::
to

::
a
:::::
single

::::::::::
expectation

::
at

:::
the755

::::
finest

:::::
level,

:::
L,

::::
using

:::
the

:::::::::
following

::::::
formula

:

E[XL] = E[Xlµ ] +

L∑
l=1

E[Xl−Xl−1].

::::::::::::::::::::::::::::::

(B1)

::::
Here

:::
Xl ::::::

denotes
:::
the

:::::::::
numerical

::::::::::::
approximation

::
to

:::
the

:::::::
random

:::::::
variable

::
X

::
on

:::::
level

:
l
::
of

:::
the

:::::::::
multilevel

::::::::::
environment

::::::::
produced

:::
by

::
the

:::::::
model,

:::::
where

::
in

:::
our

:::::
work

::
X

:::::
could

:::
be

:::
the

:::::
water

::::::::
elevation

::
at

:
a
::::::::
particular

::::::::
location,

:::
for

::::::::
example.

::::
Thus

::::
Xlµ:::

and
::::
XL::::::

denote
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::
the

:::::::::::::
approximation

::
on

:::
the

:::::::
coarsest

:::
(lµ)

::::
and

:::::
finest

::::
level

:::
(L)

:::::::::::
respectively.

::::
Each

::::
level

::
l
:
is
:::::::
defined

::
by

:::
its

:::::::
grid-size

:::
hl,:::::

where
:

760

hl ∝M−lT,
::::::::::

(B2)

:::
and

::
T

::
is

:::
the

::::
total

::::::
length

::
of

:::
the

:::::::
domain

:::
and

:::
M

:::
the

::::::
integer

:::::
factor

:::
the

::::::::
grid-size

::
is

::::::
refined

:::
by

::
at

::::
each

::::
level

:::::::::
(following

::::::::
standard

:::::::
practice,

:::
we

:::
use

::::::
M = 2

::::::::::
throughout).

::::
This

::::::
means

:::
that

::
as

:::
the

::::
level

:::::::
number

:
l
::::::::
increases,

:::
the

:::::
mesh

:::::::
becomes

:::::
more

::::::
refined.

::::::::
Trivially,

:
if
:::
the

:::::::
domain

:
is
::::::::::::::::

multi-dimensional
::::
then

::
T

:::
and

::
hl:::

are
::::
also

::::::::::::::::
multi-dimensional.

::::::::::
Equivalently

::
to

:::::
(B1),

:::
the

::::::
MLMC

::::::::::
expectation

::::::::
estimator

::
Ŷ

::
is

::::::
defined

:::
by765

Ŷ =

L∑
l=lµ

Ŷl,

:::::::::

(B3)

:::::
where

::
Ŷl::

is
:::
the

::::::::
difference

::::::::
estimator

:::
for

::::::::::::
E[Xl−Xl−1]

::::::
defined

:::
as

Ŷl =

N
−1
lµ

∑Nlµ
i=1 X

(i)
lµ

l = lµ,

N−1l
∑Nl
i=1

(
X

(i)
l −X

(i)
l−1

)
l > lµ.

:::::::::::::::::::::::::::::::::::

(B4)

::::
Here

:::
Nl::

is
:::
the

:::::::
number

:::
of

::::::::::
simulations

::
at

:::::
each

::::
level

::::
pair

:::
(l,

:::::
l− 1)

::::
and

::::
Nlµ::

is
:::
the

:::::::
number

:::
of

::::::::::
simulations

::
at

:::
the

::::::::
coarsest

::::::::
resolution

::::
level

:::
lµ.

:::
In

:::
this

:::::::::
estimator,

:::
the

:::::
same

::::::
random

::::::::
numbers

:::
are

::::
used

:::
to

::::::::
construct

:::
the

::::::::
variables

:::
Xl :::

and
::::::
Xl−1,

::
to

::::::
ensure770

:::::
strong

:::::::::::
convergence

:::::::::::::
(E[|Xl−Xl−1|]::

as
:::
the

::::
grid

::
is

:::::::
refined).

::::::::::::
Independence

:::::::
between

:::
the

:::::::::
estimators

::
at

::::
each

:::::
level

::
is

:::::::
enforced

:::
by

::::
using

::::::::
different

::::::::::
independent

:::::::
samples

::
at

::::
each

::::
level

::::::::
meaning

:::::::::::::
Cov(Ŷi, Ŷj) = 0

::
if

::::
i 6= j

::::
and

:::
the

:::::::
variance

:::::::
formula

:::
can

::
be

:::::::::
simplified

::
to

Var[Ŷ ] = Var

 L∑
l=lµ

Ŷl

=

L∑
l=lµ

N−1l Var(Ŷl),

::::::::::::::::::::::::::::::::::::

(B5)

:::::
where

:::
Var

:::::::
denotes

:::
the

:::::::
variance.

:
775

:
A
::::

key
:::::
factor

::::::
when

:::::
using

:::
the

:::::::
MLMC

::::::::
estimator

::
is

::::::::::
determining

::::
the

::::::::
optimum

::::::
number

:::
of

::::::::::
simulations

::
to

::::
run

::
at

::::
each

:::::
level

:
l
:::::::
denoted

::
by

:::
Nl.::::

We
::::
want

::
to

:::::::
balance

:::
the

::::::::
accuracy

:::::::
achieved

::
at
:::
the

:::::
finer

:::::
levels

::::
with

:::
the

::::::::::::
computational

:::::::::
efficiency

:::::::
achieved

:::
by

::::::
running

::
at

::::::
coarser

::::::
levels.

::::
This

::::::
balance

::
is

:::::::
achieved

:::
by

::::::::
following

:::::::::::
Giles (2008)

:::
and

:::::
using

::
the

:::::::::::::
Euler-Lagrange

:::::::
method

::
to

::::::::
minimize

::
the

::::::
overall

::::
cost

::
C

:::::::
defined

::
by

:

L∑
l=lµ

NlCl,

::::::::

(B6)780

::::
with

::::::
respect

::
to

:::
the

::::
fixed

::::::
overall

:::::::
variance

:::::
ε2/2.

:::::
Thus,

:::
the

::::::::
optimum

::::::
number

:::
of

:::::::::
simulations

::
at

::::
each

:::::
level

::
is

Nl =

 2

ε2

√
Var(Ŷl)
Cl

 L∑
k=lµ

√
Var(Ŷk)Ck

 ,
:::::::::::::::::::::::::::::::::::::

(B7)
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:::::
where

::
Cl::

is
:::
the

::::
cost

::
of

:::::::
running

:::
the

:::::
model

::
at

:::::
level

:
l
:::
and

:
ε
::::::
should

:::
be

::::
seen

::
as

:
a
:::::::::::
user-defined

:::::::
accuracy

::::::::
tolerance.

:

::::::::
However,

:::
this

::::::::
formula

:::::::
requires

:::::
initial

:::::::::
estimates

::
of

:::::::
Var(Ŷl)::::

and
:::
Cl :::

and
::::

thus
::::

we
::::::
follow

:::::::::::
Giles (2008)

:::
and

:::
run

:::
50

::::::
initial

:::::::::
simulations

::::
(see

:::::
Step

:
2
:::

of
:::::::::
Algorithm

:::
2).

::
To

::::::
ensure

::::
this

::::::::
provides

:
a
:::::

good
::::::::
variance

::::::::
estimate,

:::
we

::::
also

:::::::
calculate

::::
the

:::::::
kurtosis785

::::
(still

::::::::
following

:::::::::::
Giles (2008)

:
).

:::::::::
Following

:::::::
standard

:::::::
practice,

::
if
:::
the

:::::::
kurtosis

::
is
::::::
greater

::::
than

:::::
100,

:::
this

::::::::
indicates

:::
that

:::
the

::::::::
variance

:::::::
estimate

::
is

::::
poor

::::
and

:::
that

:::
the

:::::::
number

::
of

::::::
initial

::::::::::
simulations

::::
used

::
is

::::::::::
insufficient.

::
In

::::
this

:::::
work,

:::
we

::::
find

:::
50

::
is

::::::
always

::::::::
sufficient

:::
but

:::
for

::::
more

::::::::
complex

::::
test

:::::
cases,

::
a

::::::
greater

:::::::
number

::::
may

::
be

::::::::
required.

:::
In

:::
our

:::::::::::::
implementation

:::
of

:::
this

:::::::::
algorithm,

:::::
these

::::::
initial

:::::::::
simulations

:::
are

::::::
stored

:::
and

:::::
used

::
as

::::
part

::
of

:::
the

:::::::
optimal

::::::
number

:::
of

:::::::::
simulations

:::
in

:::
the

::::
final

::::::::
estimator

:::
and

::::
thus

:::
the

:::::
total

:::
cost

:::
of

::::::
running

:::
the

::::::::
algorithm

::
is
:::::::::
unaffected

:::
by

::::
these

:::::
initial

::::::::::
simulations

::::
(see

::::
Step

:
4
:::
of

::::::::
Algorithm

:::
2).

:
790

::::
Note

::::::
further

:::
that

:::::
when

:::
we

:::
are

:::::::::
estimating

:::::::
multiple

::::::
outputs

::
(
::
i.e.

::::
when

:::
we

:::::::
consider

:::::::
multiple

:::::::::
locations),

:::
we

::::
must

::::::::
calculate

:::
Nl

::::::::
separately

:::
for

::::
each

::::::::
location.

::
In

:::
the

:::::::::
algorithm,

:::
we

:::
run

:::::::
maxNl ::::

over
::
all

::::::::
locations

:::
and

::::
then

:::::
when

::::::::::
calculating

:::
the

::::::::
estimator

::::
(B4)

:
at
:::::
each

:::::::
location,

:::::::::
subsample

:::
the

::::::::
optimum

::::::
number

:::
for

::::
that

::::::
specific

:::::::
location

:::::
from

::
the

::::
full

::::::
output.

:::
We

::::
have

::::
now

:::::::
outlined

:::::::
MLMC

:::
and

::::::::
conclude

::::
with

:::::::::
Algorithm

::
2,

::::::
which

::
is

:
a
::::::::
statement

:::
of

:::
the

::::::
MLMC

:::::::::
algorithm

::::
used

::
in

::::
this

:::::
work.795

Algorithm 2
::::::::
Multilevel

::::::
Monte

:::::
Carlo

:::::::
Method

1:
::::
Start

::::
with

:::::
L= 0

:

2:
:::::::
Estimate

:::
the

:::::::
variance

:::::::
Var(ŶL)

:::::
using

:::
an

:::::
initial

:::::::
estimate

:::
for

:::
the

::::::
number

::
of

::::::::::
simulations

:::
NL:

3:
:::::
Define

:::::::
optimal

:::
Nl ::

for
::::::::::
l = 0, ...,L

::::
using

:::::
(B7)

4:
:
If
:::
the

:::::::
optimal

:::
Nl :is::::::

greater
::::
than

:::
the

:::::::
number

::
of

::::::::::
simulations

:::
you

:::::::
already

::::
have,

::::::::
evaluate

::
the

:::::
extra

::::::::::
simulations

::::::
needed

5:
:
If
::::::
L≥ 2

:::
test

:::
for

::::::::::
convergence

:

6:
:
If
::::::
L < 2

::
or

:::
the

::::::::
algorithm

:::
has

:::
not

:::::::::
converged

:::
set

::
L

::::
equal

::
to
:::::
L+ 1

::::
and

:::::
return

::
to

::::
Step

::
2
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