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Abstract.  

The Iberian Peninsula is prone to drought due to the high variability of the Mediterranean climate with severe consequences for 

drinking water supply, agriculture, hydropower, and ecosystems functioning. In view of the complexity and relevance of droughts 

in this region, it is necessary to increase our understanding of the temporal interactions of precipitation, evapotranspiration and 15 

soil moisture that originate drought within the Ebro basin, in northeast Spain, as the study region. Remote sensing and land-surface 

models provide high spatial and temporal resolution data to characterize evapotranspiration and soil moisture anomalies in detail. 

The increasing availability of these datasets has the potential to overcome the lack of in-situ observations of evapotranspiration 

and soil moisture. In this study, remote sensing data of evapotranspiration from MOD16A2ET and soil moisture data from 

SMOS1km as well as SURFEX-ISBA land-surface model data are used to calculate the weekly values of the EvapoTranspiration 20 

Deficit Index (ETDI) and the Soil Moisture Deficit Index (SMDI) for the period 2010-2017. The study compares the remote sensing 

time series of these ETDI and SMDI indices with the ones estimated using the land- surface model SURFEX-ISBA, including the 

Standardized Precipitation Index (SPI) computed at a weekly scale. The study focuses on the analysis of the temporal time lags 

between the indices to identify the synchronicity and memory of the feedbacks anomalies between precipitation, evapotranspiration 

and soil moisture to interpret factors involved in drought onset. Lag analysis results demonstrate the capabilities of the SPI, ETDI 25 

and SMDI drought indices computed at a weekly scale to inform about the mechanisms of drought propagation at distinct levels 

of the land-atmosphere system. Relevant feedbacks both for antecedent and subsequent conditions are identified, with a preeminent 

role of evapotranspiration in the link between rainfall and soil moisture. Both remote sensing and the land-surface model show 

capable capability to characterize drought events, with specific advantages and drawbacks of the remote sensing and land- surface 

model datasets. Results underline the value of analyzing drought with dedicated indices, preferably at a weekly scale, to better 30 

identify the quick self-intensifying and mitigating mechanisms governing drought, which are relevant for drought monitoring in 

semi-arid areas. 

1 Introduction 

Drought is a major natural hazard for the societies in semi-arid climates (Van Loon, 2015) which demands increasing levels of 

adaptation and resilience measures to guarantee water supply (Watts et al., 2012), particularly in water-stressed environments. 35 

Rain-fed agriculture (Tigkas and Tsakiris, 2015), and even the enduring natural vegetation are very exposed to drought, especially 

under climate change, which has long-lasting implications to for the local environment (Gudmundsson et al., 2014). Knowing that 
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complex interactions take place in the land-atmosphere system under drought, the traditional meteorological or hydrologic 

approach may overlook drought-relevant interactions between evapotranspiration and soil moisture (Teuling et al., 2013).  

 40 

This explains why modern drought monitoring combines evapotranspiration, soil moisture and even vegetation anomalies to track 

drought status, such as the Objective Drought Indicator (OBDI) integrated in the U.S. Drought Monitor (Svoboda et al., 2002) or 

the Combined Drought Indicator within the framework of the European Drought Indicator Observatory (Sepulcre-Cantó et al, 

2012). This approach is on the upward trend, since even parsimonious composite drought indices like the probabilistic precipitation 

vegetation index (PPVI) (Monteleone, Bonacorso and Martina et al., 2020) outperform the capabilities of common indices to 45 

characterize drought. Therefore, composite indices facilitate the characterization of drought from multiple perspectives (e.g. 

Meteorological, Hydrological or Agricultural) but can be impractical to explore the mechanisms of drought due to complex 

calculations or missing data. Even though long-term anomalies of rainfall, and other meterologicalmeteorological, hydrological or 

vegetation condition variables evapotranspiration and soil moisture are currently regularly monitored, evapotranspiration and soil 

moisture ones still face challenging monitoring. Not only the indirect nature of these variables’ data but also their limited spatial 50 

and temporal availability limit the number of studies adopting them, even despite andtheir known to play a rolerelevance in the 

recurrence of drought and heat waves (Zampieri et al., 2009; Dasari et al., 2014), often short-term anomalies are overlooked, 

Provided that especially regarding interactions of evapotranspiration and soil moisture operate on short time scales (Teuling et al, 

2018), there is need to address dedicated exploration of their relevance on the evolution of drought at the shortest time scale 

available, which for the soil moisture and evapotranspiration data is currently the weekly scale.  55 

 

Well-known drought indices such as the standardized precipitation index (SPI) (McKee, Doesken and Kleist, 1993) and the Palmer 

drought severity index (PDSI) (Palmer, 1965), primarily defined at on the monthly scale, can lack detail to identify short-term 

anomalies of temperature, wind or radiation originating “flash droughts” (Otkin et al., 2013). Rain-fed agriculture and natural 

vegetation are particularly sensitive to quickly evolving droughts in specific moments of the growing season (Saini and Westgate, 60 

1999), which subsequently generates evapotranspiration and soil moisture anomalies of short and long-term impact (Jimenez et 

al., 2011). Recently, there is more interest on in using drought indices with high temporal resolution for short-term drought 

monitoring, such as the SPI and other indices at the weekly scale (Otkin et al., 2015). Indices with this short-term time scale include 

the weekly-scale evapotranspiration deficit index (ETDI) and the soil moisture deficit index (SMDI) (Narasimhan & Srinivasan, 

2005). The ETDI and SMDI indices are variable-specific enabling full characterization of anomalies at specific levels of the 65 

atmosphere-surface system. This is especially useful in the Mediterranean climates where not only rainfall anomalies originate 

drought (Vicente-Serrano et al., 2004). 

 

This study focuses in on the Ebro basin, which is an important Mediterranean river basin of the Iberian Peninsula (IP). In view of 

the increase in the frequency of drought events (Sousa et al., 2011) and in the number of consecutive dry spells (Turco and Llasat, 70 

2011) identified in the area, we can expect consequences in the long-term environmental state and the balance between water 

availability and demands. Furthermore, being placed in a semi-arid climate where most of the rainfall evaporates (68%, Table 15, 

of “Libro blanco del agua” (MMA, 2000)), the Ebro basin represents an example of how important natural water demands are, 

particularly in the headwaters where runoff decrease due to reforestation (López-Moreno et al., 2014). Rainfed agriculture 

dominates the rest of the un-forested areas and represents the other big consumer of water in the basin. However, despite the 75 

relevance of rainfed agriculture its analysis is often overshadowed by irrigation, the biggest anthropogenic demand in the basin 

(Hoerling et al., 2012). Due to the importance of these water demands and others such as hydropower and energy, the Ebro River 
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Basin Agency operates a dense hydrologic monitoring network, but the lack of dedicated soil moisture and evapotranspiration 

monitoring jeopardizes drought characterization (Seneviratne et al., 2010). Fortunately, the increasing availability of remote 

sensing (RS) products enables distributed, precise, and frequent monitoring of these coarsely observed variables (Martínez-80 

Fernández et al., 2016). 

 

Space agencies have released multiple remote sensingRS products in the last decades facilitating the distributed analysis of drought 

(AghaKouchak et al., 2015). Optical spectrometry of the atmospheric (rainfall, temperature, water vapor) and surface (vegetation 

reflectance) variables have often been the basis for distributed characterization of drought indicators. Surface vegetation indices 85 

such as the widespread NDVI (Liu and Kogan, 1996) pioneered the application of RS data to assess the impacts of drought, but 

thereafter the increasing availability of RS data for multiple meteorological variables has increased its usage on drought indices 

(West et al., 2019), While even common indices like the SPI can now rely on RS data (Sahoo et al, 2015), the many advantages of 

RS data facilitate integrating multiple data sources into the increasingly operative composite drought indices for weekly drought 

monitoring (USDM, Svovoda et al., 2002; CDI, Sepulcre-Cantó et al., 2012) even below the weekly scale (Monteleone et al., 90 

2020). Beyond precipitation, temperature and other directly observable meteorological variables, evapotranspiration and soil 

moisture represent components of the land-atmosphere system which are difficult to measure on the ground, and consequently 

suitable for the focus of RS. Recent years have seen a rise in the availability of RS-based evapotranspiration databases such as the 

global dataset included in GLEAM (Miralles et al., 2011; Martens et al, 2017) or the soil moisture global database CCI (Dorigo et 

al., 2017), that despite their coarse spatial resolution of these global datasets for regional scale analysis, ease the path to processes 95 

understanding. Aiming to gain insight into interactions, the availability of datasets focused on such relevant variables of the land-

atmosphere facilitates the use of single-variable drought indices such as the SPI, ETDI and SMDI which is particularly 

advantageous to analyze the mechanisms of interaction during droughts. 

 

Fortunately, Iin parallel to the remote sensingRS missions, the development of processing techniques has improved the 100 

applicability of RS -derived data products (Wagner et al., 2007). On this basis, there are soil moisture datasets of increasing high 

resolution available from the combination of passive microwave sensors such as those from SMOS and SMAP missions (Kerr et 

al., 2010; Entekhabi et al., 2010; respectively) and active microwave sensors such as ASCAT or Sentinel-1 (Bartalis et al., 2007; 

Hornacek et al., 2012; respectively). This is the case of the high-resolution soil moisture and evapotranspiration products 

SMOS1km (Merlin et al., 2013; Molero et al., 2016, Escorihuela and Quintana-Seguí., 2016; Escorihuela et al., 2018) which have 105 

been tested in the area and shown to outperform ASCAT and ASMR-E due to its lack of roughness and vegetation effects. SMAP 

and Sentinel-1 options or similar resolution to SMOS1km but while accurate in the study area (Dari et al., 2021) are of a much 

shorter series length and consequently not selected. Similarly, high-resolution RS evapotranspiration products such as and the 

MODIS16A2 ET (Mu et al., 2013) used in this study are currently available. Therefore, it is worth exploring the capabilities and 

limitations of high-resolution RS evapotranspiration data for drought monitoring at the regional scale. High-resolution RS data are 110 

therefore best suitable for analysis at the basin scale where the resolution of alternative reanalysis or modelled datasets such as 

ERA5-Land (Muñoz-Sabater et al., 2021) or LISFLOOD (Van der Knijff et al., 2008) GLEAMv3 (Miralles et al., 2011; Martens 

et al, 2017) lack detail. Both remote sensingRS products represent components of the land-atmosphere system which are difficult 

to measure on the ground, particularly under extreme conditions such as drought (Miralles et al., 2019). To date, relatively few 

works have used satellite high-resolution data for drought analysis in the Iberian PeninsulaIP (Vicente-Serrano, 2006; Scaini et al, 115 

2015, Martínez-Fernández et al., 2016; Sánchez et al., 2016; Ribeiro et al., 2019), especially at the spatial and temporal resolution 

of this study (Pablos et al., 20192017).  
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Another source of high-temporal and spatial resolution data is land-surface models (LSM). Used in atmospheric models to simulate 

the interactions between soil, vegetation and the atmosphere, LSMs represent a suitable alternative to RS to evaluate the surface 120 

water and energy balances at regional to local scales. LSMs initiated their development with one-layer models such as the TOPUP 

(Schultz et al., 1998) or the PROMET (Mauser and Schadlich, 1998) were developed. Avissar and Pielke (1989) inaugurated the 

mosaic approach, applying just one-layer models to the different fractions of land-use type. One of the mosaic models able to 

distinguish between soil evaporation and transpiration is the Météo-France developed model SURFEX (Masson et al., 2013), which 

fed by the atmospheric analysis SAFRAN (Durand et al., 1999) uses the ISBA scheme for natural surfaces (Noilhan and Mahfouf, 125 

1996). SURFEX has been improved to study the continental water cycle in applications such as SIM and SIM2 (Habets et al., 

2008; Le Moigne et al., 2020), often in combination with the hydrologic model MODCOU (Ledoux et al., 1989). The modelling 

chain called SASER (SAFRAN-SURFEX-Eaudyssée-RAPID) used in this study has been applied to Spain before (Barella-Ortiz 

and Quintana-Seguí., 2019; Quintana-Seguí et al, 2020) and gives the values required for SPI and SMDI. Despite the limitations 

of this LSM when applied as an offline model, it has been validated in the area before and successfully reported providing useful 130 

evaluations of water resources in the area of study (Escorihuela and Quitana-Seguí, 2016; Barella-Ortiz and Quintana-Seguí, 2019) 

and in the nearby areas like Portugal and France (Nogueira et al., 2020; Le Moigne et al., 2020). 

 

This study aims at evaluating the suitability of high-resolution remote sensingRS (SMOS1km and MODIS16A2ET) and LSM 

(SURFEX-ISBA) data generating rainfall (SPI), soil moisture (SMDI) and evapotranspiration (ETDI) drought (single-variable) 135 

indices to better understand the mechanisms behind the temporal evolution of drought in semi-arid climates. The comparison of 

RS and LSM data is a main aim of the study to detect the factors impacting RS and LSM performance. The study further evaluates 

the advantage of the barely explored weekly temporal scale to capture the short-term anomalies of evaporation and soil moisture 

decisive to drought in semi-arid areas. The study has an agricultural scope focused on drought of in rain-fed environments given 

its importance on the land-atmospheric feedbacks (Herrera-Estrada et al., 2017) and to the regional socioeconomic sustainability. 140 

2 Study area 

The study area is the Ebro basin, located in the north-east of the Iberian Peninsula (IP). Placed in between Atlantic and 

Mediterranean climatic influences, the vast area (85534 km2) of the basin (Fig. 1a) has a complex topography (Fig. 1c) which 

defines a wide range of climatic conditions (Fig. 1d) of distinct spatial and temporal patterns of precipitation, evapotranspiration 

and soil moisture. The northern border has humid cool climates typical of the Atlantic-exposed Cantabric coastline, while the 145 

southeast border enjoys a warm Mediterranean climate. The southwest and north-eastern border are dominated by the Iberian and 

Pyrenees mountains which together with the Cantabric and Mediterranean ranges restrict the oceanic influence on the central part 

of the basin. Soil types (e.g. gypsum, limestones) intensify the aridity of certain areas of the basin (Fig. 1b). The combination of 

semi-arid climatic conditions and unfavorable soil types to vegetation development determine extreme regimes of rainfall, soil 

moisture and evapotranspiration, prone to drought. The basin is densely populated and supplies a wide range of water demands, 150 

especially for agriculture and energy. The vast network of irrigated areas, located mostly in the arid central depression, is vulnerable 

to hydrological drought risks. 
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3 Data  

3.1 Land-Surface Model Data 155 

SURFEX, the land-surface modelling platform originally developed and currently maintained by Météo-France (Mason et al., 

2013; Le Moigne, 2020), has been chosen to perform the LSM model simulation used in this study. Simulation for the Iberian 

PeninsulaIP and Balearic Islands developed within the HUMID project have 5km spatial resolution, with the forcing provided by 

the Iberian application (Quintana-Seguí et al., 2008; 2016; 2017) of the SAFRAN meteorological analysis system (Durand et al, 

1999). This is a modelling chain whose offline mode operates using the atmospheric forcing of SAFRAN to feed the land-surface 160 

modelLSM SURFEX-ISBA and simulate even the hydrology with Eaudyssée-RAPID (David et al. 2011).  

 

ISBA (Noilhan and Mahouf, 1996) is the SURFEX module in charge of simulating natural surfaces. There are different versions 

of ISBA, in this study, we have used the diffusion version (ISBA-DIF; Boone, 1999; Decharme et al., 2011), which performs better 

in the study area than the simpler 3-layer force restore version (Quintana-Seguí et al., 2020). In this version of ISBA, the LAI has 165 

a prescribed annual cycle (constant every year), which may limit the ability of the model to reproduce the long-term effects of 

drought on vegetation. The model simulates the soil column, but it is unable to simulate groundwater, which despite its impact on 

soil moisture memory is fortunately not very relevant in the Ebro basin. SURFEX-ISBA requires additional physiographic 

information that is incorporated from the ECOCLIMAP II land cover database (Faroux et al., 2013) which includes topographic, 

soil and land cover information at high-resolution.  170 

 

The available SAFRAN forcing data allows us to simulate the period 1979-2017, but the period used for this study is restricted by 

remote sensingRS data due to the relatively short length of SMOS data (2010-present) compared to the model. To ensure the 

comparability of RS-based and LSM-based drought indices, the study period is 2010-2017, for which both remote sensingRS and 

land-surface modelLSM data is are available. To ensure that the RS and the LSM soil moisture is are comparable, we have averaged 175 

three first soil layers of the model according to their discretization in the first 5 cm of the soil (1, 3 and 10 cm of depth respectively). 

The simulation is performed using a regular 5 km resolution grid based on a custom Lambert Conical Conformal projection.  

3.2 Remote Sensing Data 

3.2.2 Evapotranspiration 

To evaluate evapotranspiration, barely measured in on the ground and not directly measurable from space, we adopt a product 180 

based on multiple evaporation-related variables observed by MODIS (Moderate Resolution Imaging Spectroradiometer on NASA's 

Terra satellite): the MOD16A2-ET dataset. This is a level 4 product providing 8-day evapotranspiration (ET) and potential 

evapotranspiration (PET) based on daily meteorological forcing and 8-day remote sensingRS data of vegetation dynamics from 

MODIS (Mu et al., 2013). The datasets of MOD16A2-ET are published in a sinusoidal projection at a resolution of 500 m (Running 

et al., 2017). In this study, we have re-projected and interpolated all remote sensingRS products to the same 5 km grid that the 185 

LSM simulations use. After the re-gridding step, the temporal step of the datasets is rearranged from the original 8-day 

accumulation period to a more practical 7-day accumulation period which is more suitable for weekly analysis. Values are linearly 

weighted depending on their contribution to each week-year for the 52 weeks of a year. We also calculate the monthly means of 

the ETevapotranspiration product in order to evaluate the impact of the time resolution on drought recognition. The formatting of 
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MOD16A2-ET datasets requiresrequire the evaluation of the quality control flags (ET_QC), given that areas of the Pyrenees show 190 

missing data. Only the classes classified as good and optimal in the ET_QC flags are accepted as data for our study.  

3.2.3 Surface Soil Moisture 

In viewBecause of the relatively few years of data currently available from the Soil Moisture Active Passive mission SMAP 

(Entekhabi et al., 2010), the study adopts SMOS data (Kerr et al., 2010), in particular, the high-resolution SMOS1km dataset 

(Merlin et al., 2013). This dataset downscales the original coarse resolution SMOS data using the Disaggregation based on Physical 195 

And Theoretical scale Change algorithm DISPATCH (Merlin et al., 2012) / C4DIS (Molero et al., 2016) algorithm. The algorithm 

enables the downscaling of the 40 km resolution of the SMOS soil moisture data available from 2010 into 1 km resolution using 

two products at 1 km resolution from MODIS, the NDVI and LST, and an elevation map at the same resolution. Precisely because 

the scale of interest to study relevant interactions to droughts is the weekly scale, the data is primarily used on at weekly scale. The 

spatial scale of interest for the study is that of a regular 5 km resolution grid which takes advantage of the high resolution of 200 

SMOS1km. The 2010-2017 dataset presents frequent gaps in the mountainous areas of the Pyrenees. In order to fill the gaps, we 

apply temporal interpolation pixel by pixel considering a maximum period for temporal interpolation of two weeks. These data are 

also spatially aggregated and reprojected to the same grid as the LSM model. 

4 Methods 

4.1 Drought indices 205 

Drought indices allow quantifying several aspects of drought, like the magnitude and duration, and may also focus on particular 

variables depending on the scope of interest (i.e. precipitation, soil moisture, aridity…etc.). In view of the convenience to combine 

several indicators to describe the most about the drought evolution and our focus on rain-fed environments, we adopt the use of 

the Standardized Precipitation Index (“SPI”) (McKee, Doesken and Kleist et al., 1993), the Evapotranspiration Deficit Index 

“(ETDI”) and the Soil Moisture Deficit Index (“SMDI”) (Narasimhan and Srinivasan, 2005). Using these three indices, the study 210 

aims to investigate the interaction between the two main water fluxes (rainfall and evapotranspiration) and the main storage (soil 

moisture) involved in the water balance of the land-atmosphere system. The aggregation periods of the SPI index inform about the 

different responding times of rainfall, soil moisture, streamflow, and groundwater anomalies. By evaluating the evolution of these 

indices along with their interactions, this study aims to characterize drought mechanisms in the Ebro basin. In this study, the indices 

have been computed using gridded datasets, thus, generating a time series for each grid point. 215 

4.1.1 SPI 

The Standardized Precipitation Index (SPI) (McKee, Doesken and Kleist et al., 1993) is an index of precipitation anomalies, which 

is calculated by transforming the accumulated precipitation from its original distribution (usually gamma or Pearson Type III) to 

the normal distribution with zero mean and unit standard deviation. As a result, we obtain a time series that shows, for each time 

step, the departure from the expected value in terms of standard deviations. The calculation of the index is usually done based on 220 

monthly time series of rainfall, aggregated over multiple accumulation periods, typically at 3, 6, 12 months. However, SPI can also 

be calculated on a weekly basis, provided that the accumulation periods are at least 4 weeks (1 month). In this way, this study uses 

the notation SPIm-i to denote the SPI at a monthly scale with an accumulation period of i months and the SPIw-i to denote the 

weekly SPI with an accumulation period of i weeks. Using SAFRAN data, we adopt the non-parametric methodology proposed by 
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Farahmand and Aghakouchak (2015) to calculate the SPI on a monthly and weekly basis using the multi-month accumulation of 225 

1, 3, 6 and 12 months suitable for rainfall, soil moisture, streamflow and groundwater evaluation.  

4.1.2 ETDI 

The second index incorporated into the analysis is the EvapoTranspiration Deficit Index (ETDI) defined by Narasimhan and 

Srinivasan (2005). The first step for calculating this index implies defining the water stress ratio (WS) for each week, which is the 

difference between potential evapotranspiration (PET) and actual evapotranspiration (AET) divided by PET. Then the Water Stress 230 

Anomaly (WSA) is computed as follows:  

𝑊𝑆𝐴𝑖,𝑗 =
𝑀𝑊𝑆𝑗−𝑊𝑆𝑖,𝑗

𝑀𝑊𝑆𝑗−min⁡𝑊𝑆𝑗
𝑥100,⁡⁡⁡⁡⁡𝑖𝑓⁡𝑊𝑆𝑖,𝑗 ≤ 𝑀𝑊𝑆𝑗    

𝑊𝑆𝐴𝑖,𝑗 =
𝑀𝑊𝑆𝑗−𝑊𝑆𝑖,𝑗

max⁡𝑊𝑆𝑗−𝑀𝑊𝑆𝑗
𝑥100,⁡⁡⁡⁡⁡𝑖𝑓⁡𝑊𝑆𝑖,𝑗 > 𝑀𝑊𝑆𝑗        (1) 

where j denotes the week of the year (1 <= j <= 52) and i denotes the year. WSi,j is the water stress of the week j of the year i. 

MWSj is the median WS for the week j of the year, minWSj corresponds to the minimum and maxWSj the maximum. This process 235 

removes the seasonality of the time series. WSA ranges from -100 (maximum water stress) to 100 (minimum water stress). The 

WSA is accumulated over time to define the ETDI as in the following equation:  

𝐸𝑇𝐷𝐼𝑗 = 0.5⁡𝐸𝑇𝐷𝐼𝑗−1 +
𝑊𝑆𝐴𝑗

50
          (2) 

To define a range between -4 and 4 for the index, ETDI of value -4 must correspond to WSA of value -100 and ETDI of value 4 

to WSA of value 100. This range adjustment determines the coefficients 0.5 and the divisor 50 of Eq. (2). In this way, ETDI 240 

becomes a non-seasonal index suitable for comparing time series of diverse climatic characteristics. 

Monthly values of the ETDI are calculated by computing the average of the weekly values of the corresponding month. In this 

study, we calculate the ETDI using PET potential and AET actual evapotranspiration provided by MODIS16A2ET. We have also 

calculated it using the SURFEX-ISBA simulated AET and PET. By default, SURFEX-ISBA does not calculate PETpotential 

evapotranspiration. In order to do so, we have modified the source code to set soil moisture permanently at field capacity and have 245 

run a simulation with this modification. The resulting evapotranspiration corresponds to the potential one (PET).  

 

4.1.3 SMDI 

The third index incorporated into the analysis is the Soil Moisture Deficit Index (SMDI) also defined by Narasimhan and Srinivasan 

(2005). The sequence to calculate this index follows the same procedure of as the ETDI. We first calculate a weekly soil moisture 250 

deficit as follows: 

𝑆𝐷𝑖,𝑗 =
𝑆𝑊𝑖,𝑗−𝑀𝑆𝑊𝑗

𝑀𝑆𝑊𝑗−𝑚𝑖𝑛𝑆𝑊𝑗
𝑥100,⁡⁡⁡⁡⁡𝑖𝑓⁡𝑆𝑊𝑖,𝑗 ≤ 𝑀𝑆𝑊𝑗   

𝑆𝐷𝑖,𝑗 =
𝑆𝑊𝑖,𝑗−𝑀𝑆𝑊𝑗

𝑚𝑎𝑥𝑆𝑊𝑗−𝑀𝑆𝑊𝑗
𝑥100,⁡⁡⁡⁡⁡𝑖𝑓⁡𝑆𝑊𝑖,𝑗 > 𝑀𝑆𝑊𝑗       (3) 

Then, the time series of SMDI is generated accumulating 𝑆𝐷: 

𝑆𝑀𝐷𝐼𝑗 = 0.5⁡𝑆𝑀𝐷𝐼𝑗−1 +
𝑆𝐷𝑗

50
         (4) 255 
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SMDI also ranges between -4 and 4, respectively corresponding to extremely dry and very wet soil moisture conditions. The SMDI, 

similarly to the ETDI, becomes a non-seasonal index able to compare time series of diverse climatic characteristics at different soil 

depths. In this study, we have calculated the SMDI using SMOS 1km surface soil moisture data and SURFEX-ISBA simulated 

surface soil moisture data. In the case of SURFEX-ISBA, we have calculated the weighted averages of the first two layers of the 

soil, which corresponds to the first 5 cm of the soil. 260 

4.1.4 Temporal consistency of drought indices calculated based on relatively short RS and LSM data series 

Given the relatively short availability of data for the calculation of ETDI and SMDI series, which depend on the maximum, 

minimum and median values of the available series, we conducted a sensitivity analysis of the indices in reference to the length of 

the series and the subset of spatial data. Results shown in Table S1 illustrate the relatively low impact of the length of the series 

thanks to the high spatial resolution of the dataset. The shortening of the series by half or a quarter barely alters the ETDI series 265 

compared to the series of full temporal length. The subset of the dataset to a fraction of its spatial resolution increasingly impacts 

the robustness of ETDI and SMDI series. Therefore, the high-resolution spatial and temporal datasets such as the RS and LSM 

used for this study seem beneficial to the consistency of drought indices even when data availability remains under a decade long. 

 

4.2 Analysis of interaction between the indices 270 

4.2.1 Correlation between the indices 

To evaluate the similarity between the series of the drought indices (SPI, ETDI and SMDI) we use a variant of the procedure 

applied by Barella-Ortiz and Quintana-Seguí (2019) and Quintana-Seguí et al. (2020), based on Barker et al. (2015). The method 

consists of computing the r Pearson correlation between each pair of series of these three drought indices (e.g. SPIw-i and ETDIw 

and SMDIw); where i is the accumulation period, which varies from 4 weeks (1 month) to 52 weeks (1 year). We adopt the r 275 

Pearson coefficient for this and the following lag-analysis instead of the r Spearman coefficient, more suitable under non-normal 

distributions, due to the great computational advantage of computing r Pearson compared to the r Spearman. The time consumed 

with r Pearson is an order of magnitude lower (e.g. weeks) than that required by r Spearman (e.g. months) for processing our RS 

and LSM datasets. To further support the use of r Pearson despite the concerns of non-normality of SMDI and ETDI distributions, 

we conducted a similarity test of the correlation series between indices obtained using r Pearson and r Spearman. Results indicated 280 

r Pearson and r Spearman correlate generally over r = 0.9 for RS data and moderately lower for LSM data while do not differ 

significantly in the timing characteristics of correlation series between indices (Fig. S2). Therefore, we can consider r Pearson 

comparison of drought indices suitable and sufficiently accurate for the approach and focus of the study. 

 

4.2.2 Temporal lag-analysis of the indices: 285 

Following the correlation analysis between the series, we perform a lag- analysis of the correlation of the pairs of drought indices 

at a weekly scale, introducing lags from -104 weeks to +104 weeks. We compare the ETDIw and SMDIw with the SPIw-i (being 

the period of accumulation for the SPIw-i= 4, 13, 26 and 52 weeks, equivalent to the SPIm-1, SPIm-3, SPIm-6, SPIm-12 months), 

as well as the ETDIw in relation towith the SMDIw. The purpose of this analysis is to diagnose the reciprocity and memory in the 

interaction between rainfall and evapotranspiration, and rainfall and surface soil moisture. The relative abundance of positive over 290 
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negative lags (and vice versa) provides information about the asymmetry of the interaction between the indices (precedence and 

delay). Negative lags refer to leading times of ETDIw and SMDIw in respect of SPIw-i (e.g. lag - 104, left side of the time bar) 

while positive ones (e.g. lag +104) represent lag times when SPIw-i precedes ETDIw and SMDIw (e.g. lag +104, right side of the 

time bar). The number of consecutive weeks of positive of or negative lags with the increasing period of aggregation of the SPIw-

i can inform about the memory of the interactions. For each time lag, it is indicated the percentage of the basin affected by non-295 

significant / significant correlation values (Grey / coloured scales of bars in Figs. 3-7). Positive /negative correlations indicate a 

direct / indirect relationship (red /blue bars in Figs. 3-7). 

5 Results 

5.1 Correlation between indices: Monthly scale in comparison to the weekly scale 

The first two aims of the study are to evaluate the suitability of SPI, ETDI and SMDI indices to characterize the main anomalies 300 

in water exchanges of the land-atmosphere system and to evaluate the suitability of adopting the weekly scale for the analysis of 

drought indices compared to the use of the monthly scale. Regarding the first, results shown in Fig. 2 indicate a general agreement 

of the SPI, ETDI and SMDI indices (either computed at a monthly or weekly scale) on the major events of dry and wet anomalies 

of the period 2010-2017. The dry period of 2011-2012 and the wet period from the end of 2012 to 2015 were properly depicted. 

However, we identified differences, especially in the case of the SMDI. This index tendtends to show a generally lower variability 305 

when calculated with the LSM compared to the other indices. RS results of SMDI differ from the other indices during the start of 

2010 due to the uncertainties during the test period of the SMOS mission. The left column of Fig. 2 shows the monthly SPIm-i and 

the monthly averaged ETDIm and SMDIm. Correlations between SPI-i and ETDI / SMDI are calculated at on the monthly (Table 

1, left columns) and at the weekly scales (right columns) for both RS and LSM data (where i= 4, 13, 26 and 52 weeks of aggregation, 

equivalent to 1, 3, 6 and 12 months). We test the significance of the correlations (p-value < 0.05) between indices for two subsets: 310 

the entire period (2010-2017) and a subset of dry periods (i.e.i.e., when SPI<0, ETDI<0, SMDI<0). Then, we compare the observed 

(RS) and simulated (LSM) estimates of the indices to explore differences between data sources. RS and LSM ETDIm and SMDIm 

indices are moderately correlated (barely over 0.5, significant). Table 1 reports a value of r=0.58 (significant) between ETDIm RS 

and SMDIm RS which is significantly higher than the r=0.32 between ETDIm LSM and SMDIm LSM. In general, despite the 

resemblance of RS and LSM series of ETDI and SMDI shown in Fig. 2, these two series differ. There is a higher agreement 315 

between the RS and the LSM estimates of ETDIm (r = 0.77, significant) than between RS and LSM ones of SMDIm (r = 0.27). 

 

Table 1 also reveals differences in the moderate correlation of the SPIm-i with the ETDI and the SMDI of different temporal 

aggregations (i=1,3,6,12 months of SPIm-i accumulation) as well as between their RS and LSM versions. Correlation between 

SPIm and ETDIm RS increases with the aggregation period of the SPIm (r = 0.39, 0.62, 0.72, 0.81 respectively for SPIm-1, SPIm-320 

3, SPIm-6, SPIm-12) while correlations of SPIm with ETDI LSM peak at SPIm-3 (r=0.8) and remain high for SPIm-6 (r=0.78) 

and SPIm-12 (r=0.71). The correlations between SPIm-i and SMDI RS show moderate correlation ranging from the SPIm-1 

(r=0.42) to the maximum value of the SPIm-12 (r=0.63). SMDIm LSM exhibits a decreasing correlation pattern with the increasing 

aggregation of the SPIm from SPIm-3 to SPIm-12 (r=0.45, 0.31, 0.3, 0.24 respectively for SPIm-1, SPIm-3, SPIm-6 and SPIm-

12). Remarkably, correlations of LSM SPIm - SMDIm are lower than their RS pairs, which suggests data uncertainties in RS and 325 

LSM, as reported by Barella-Ortiz and Quintana-Seguí (2019) and by Quintana-Seguí et al. (2020)).  
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The monthly correlation analysis is additionally conducted for the subsets of dry periods (those of with negative signs of the SPIm, 

ETDIm and SMDIm). Using the dry subset primarily decreases all correlations. Compared to the whole-time series correlations, 

the RS ETDIm – SMDIm values decrease a bit while LSM ones increase a bit. Also, the SPIm-i – ETDIm /SMDIm correlations 

noticeably decline. Despite losing correlation and significance there is still an increase of in correlations with the longer aggregation 330 

periods as observed in the whole series analysis. 

 

Fig. 2 provides an overview of the effect of adopting the weekly scale (right column) instead of the monthly scale (left column). 

There weekly scale substantially improves the temporal resolution of the plots. Subplots of SPI-i (a to d), ETDI (e) and SMDI (f) 

show how the weekly scale accurately reproduces the magnitude, tendency and duration of the monthly-scale anomalies, while the 335 

increase in temporal resolution additionally captures quick changes. Graphically, we noticed that the aggregation period applied 

to the SPI prevents from increasing the resolution of the weekly compared to the monthly scale, while the weekly scale strongly 

increases the ETDI and SMDI resolution (Fig. 2 e2 and f2).  

 

The right columns of Table 1 indicate the correlations between indices on at weekly scale compared to those on at monthly scale, 340 

(the ‘w’ sub-index of ETDIw / SMDIw / SPIw denotes the weekly scale). There is an overall decrease of in correlations at the 

weekly scale compared to the monthly scale, accentuated with by the increasing period of aggregation (from SPIw-3 to SPIw-12). 

Correlations increase a bit compared to the monthly scale at the lowest period of aggregation of SPIw-i, especially for the ETDI 

(from r=0.39 to 0.57 / r=0.51 to 0.68 in SPIw-1 - STDIw SMDIw RS / LSM). For both RS and LSM data, the weekly scale lowers 

the correlation values of the SPIw-i with the SMDIw more than those with the ETDIw. Within the dry-period subset, all the 345 

correlations decrease too. The weekly scale lowers correlations due to the increase of variability of the weekly time series compared 

to the monthly ones but enables capturing the increasing complexity of interactions at shorter time scales.  

Therefore, since quick shifts (Fig. 2 e1 and f1) are of great interest for drought analysis, we consider the weekly scale as the most 

convenient for the lag analysis of in the next section. This decision benefits comparing drought indices at their highest temporal 

definition, which for the ETDI and SMDI indices is natively the weekly scale and for the SPI can be easily applied. 350 

5.2 Temporal lag analysis: 

The analysis of correlations between the temporally lagged time series provides valuable insight on into how the indices 

interact with each other (e.g., in terms of reciprocity) and about the memory periods of one variable into the other 

(synchronicity). The analysis addresses the characterization of the feedbacks between rainfall, evapotranspiration and soil 

moisture while also aims to examine whether the land-atmosphere exchange of semi-arid areas under drought events is a 355 

quickly evolving or rather inertial system. Plots of the fraction of the area affected by each correlation level (from -1 to 1 

in steps of r=0.2) for each lag period are shown in Figures 3 - 7. It is anticipated that the three evaluated indices will agree 

the most in a narrow range around lag = 0 (no lag) and that their correlation fades away progressively for the increasing 

lag periods beyond the scale of the propagation of drought. Figures 3 to 6 in which the SPIw-i takes part in the interaction 

of interest with ETDI and SMDI illustrate the range of aggregation periods of SPIw (i.e. from 4 weeks of aggregation SPIw-360 

4 to SPIw-52) along which the interpretation of the interactions between drought indices becomes most altered. In general, 

the upper two subplots of Figs. 3 to 6 identify the admissible aggregation periods to interpret the clusters of interaction 

(SPIw-4 and SPIw-13, equivalent to SPI-1 and SPI-3 on a monthly scale) while the bottom two subplots (SPIw-26 and SPIw-

52, equivalent to SPI-6 and SPI-12 at monthly scale) depict the increasingly merged clusters of interaction due to excessively 
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long aggregation periods of the SPI. This range of aggregation periods aims to open discussion about the optimal time scale 365 

to analyze the interacting drought processes. 

5.2.1 Lag analysis SPI-ETDI  

RS 

The lag analysis of SPIw – ETDIw and SPIw – SMDIw shown in Fig. 3 - 6, aims at diagnosing the reciprocity, synchronicity and 

memory in the interaction between rainfall and evapotranspiration, and rainfall and surface soil moisture. Each subplot of Fig. 3 370 

to 6 shows the correlation between the ETDIw and SMDIw indices with the SPIw-i index calculated for different aggregation 

periods (-i) at the week scale: the SPIw-4, SPIw-13, SPIw-26 and SPIw-52 which are the equivalents of SPI-1, SPI-3, SPI-6 and 

SPI-12 at monthly scale. Negative lags refer to leading times of ETDIw and SMDIw in respect of SPIw-i (e.g.e.g., lag - 104, left 

side of the time bar) while positive ones (e.g. lag +104) represent lag times when SPIw-i precedes ETDIw and SMDIw (e.g., lag 

+104, right side of the time bar).  375 

  

In the case of the ETDIw – SPIw-i analysis based on the remote-sensing (RS) data, there is a remarkable cluster of positive 

correlations in the short term (indicated with the tag ‘ST1’ (Short-Term) over the subplots of Fig. 3). This ‘ST1’ cluster show 

relevant fractions of the basin affected by significant moderate (0.4-0.6) values of correlation, particularly in the first weeks of the 

positive range of lags (from lag 0 to +4) (Fig. 3). The cluster lasts more with the increasing period of aggregation (Fig. 3 a) to d)) 380 

eventually becoming merged with the mid-term clusters. In view of subplots Fig. 3 a) to d), the ‘ST1’ cluster extends from lag -13 

to 4 in the case of SPIw-4, from lag -13 to + 13 in the case of SPIw-13, and once merged with ‘MT1’ from -26 to +26 in the case 

of SPIw-26 and from -26 to +39 for the SPIw-52. The mid-term cluster ‘MT1’, originally indicating a period of correlation of 

ETDIw preceding SPIw-i from 4 to 13 weeks of aggregation, displays moderate to low but significant values of correlation (from 

0.2 to 0.4) from lag -36 to -13. The merging of the cluster ‘ST1’ and ‘MT1’ decreases the asymmetry defining the leading role of 385 

ETDIw on SPIw-i. The initially asymmetric interaction of ETDIw – SPIw-i that is mostly located in the negative range of lags 

(‘ST1’ and ‘MT1’ shown between lag -30 and +10 for the SPIw-4 and SPI-13 cases) propagates and dampens towards the positive 

range of lags with the increasing aggregation. The dampening eventually shifts the interaction of ETDIw to SPIw-i from preceding 

to delayed (at 26 and 52 weeks of aggregation, the clusters of significant positive correlations are mostly within the positive range 

of lags, especially in Fig. 3 d).T the loss of asymmetry due to the increasing aggregation translates into an increase of the duration 390 

of the cluster as well as of the fraction of the basin significantly affected by correlations. Both effects may indicate the 

inconvenience of adopting long aggregation periods that alter the interaction magnitude and timing. There is an additional cluster 

of positive correlations ‘LT1’ past the year and half (lags +78 to +104), particularly noticeable at SPIw-13 and -26. Blue bars in 

Fig. 3 indicate negative correlations for the relationship ETDIw – SPIw-i dominating the long-term between evapotranspiration 

and rainfall anomalies. There is a couple of clusters around lag +42 (tagged with ‘LT2’) and around lag +104 (‘LT4’), slightly 395 

significant, that similarly to the positive correlations, increased in duration and magnitude with the increase of the aggregation 

period of the SPI, particularly for SPIw-26 and 52 (Fig. 3c - d) which may indicate their low relevance.  

 

LSM 

Results from the LSM SURFEX-ISBA (Fig. 4) show a less lasting and more concentrated cluster of significant positive correlations 400 

around lag 0 (‘ST1’ tagged in Fig. 4) than those observed in the RS results (Fig. 3). This result implies there is more synchronicity 

between SPI and ETDI in LSM data than in the RS data. Furthermore, the LSM provides higher magnitudes of the significant 

positive correlations of ETDIw – SPIw-i of ST1 than RS results. Similarly to RS data, the duration of the highly correlated period 
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‘ST1’ extends with the increasing aggregation of the SPIw-i (Fig. 4 a to d), eventually causing the merge of clusters ‘ST1’ and 

‘MT1’. The initial asymmetry of the positive correlations towards the negative range of lags is due to the cluster ‘MT1’ placed 405 

around lag -26 and cluster ‘LT1’ (Fig. 4 a and b). In the SPIw-26 and SPIw-52 cases (Fig. 4 c and d) ‘LT1’ disappears, and the 

‘ST1’ merges with ‘MT1’, artificially shifting the initial asymmetry dominating the negative range of lags towards the positive 

range. Thus, the precedence of ETDIw with SPIw-i prevalent in the period of aggregation of 4 and 13 weeks translates may look 

as into a precedence of SPIw-i with ETDIw when long aggregation periods such as the ones in SPIw-26 and -52 are applied. The 

initial asymmetry of the cluster ‘ST1’ – ‘MT1’ is lower in LSM results (Fig. 4) than in RS results (Fig. 3) due to the lower magnitude 410 

of ‘MT1’. The additional cluster of positive correlations ‘LT3’ past the year and a half range of positive lags (lags +78 to +104) in 

LSM results (Fig. 4a to c) concurs with that of RS results (Fig. 3a to c). LSM results (Fig. 4) show a few more clusters of negative 

correlations ETDIw – SPIw-i but of lower magnitude than those of RS ones (Fig. 3). These significant clusters merge with the 

increasing aggregation period ‘LT4 – LT5’, which agrees with ‘LT2’ shown in RS at the 26- and 52-weeks period of aggregation of 

SPIw-i. LSM results further include a cluster of significant negative correlations values in the lead time range (cluster ‘LT2’) that 415 

is absent in RS results (Fig. 4 vs. Fig. 3). The agreement between LSM and RS results confirms the asymmetrical interaction 

between ETDIw and SPIw-i. The asymmetry suggests a certain prevalence of the precedence of positive correlations of ETDIw 

with SPIw-i in the short term (from the month to the seasonal scale) while points to some delayed response of ETDIw to SPIw-i 

in the negative correlations in the mid to long-term (from seasonal to interannual scale). The LSM results tend to amplify the 

magnitude and the area affected by positive correlations compared to the RS dataset. The asymmetry of the ETDIw – SPIw-i 420 

becomes also more shifted towards the positive range of lags with the increasing aggregation period in LSM than in RS results.  

5.2.2 Lag analysis SPI-SMDI 

RS 

The interaction of SPIw-i with SMDIw for the RS dataset is not as strong as it was with ETDIw (Fig 5 and 6 vs. Fig. 3 and 4). 

Both the correlation values and the significant fraction of the basin affected by them are lower than in the case of the ETDIw. 425 

Conversely Similarly to the ETDIWETDIw, the significant positive correlations around lag 0 (‘ST1’) are asymmetrical. In 

viewBecause of this, the SMDIw tends to experience the effect of the preceding conditions of the SPIw-i more less than influencing 

those of the SPIw-i. The increasing period of aggregation of the SPIw-13, -26 and -52 widens and lags the short-term influence of 

the SPIw-i on the SMDIw (‘ST1’) into a short to mid-term influence (‘ST1-MT1’). This widened cluster of positive correlations 

stays almost entirely in the positive range of lags, which differs from that of the ETDIw where the ‘ST1-MT1’ cluster extended 430 

both in positive and negative ranges of the lags (Fig. 5 compared to Fig. 3 to 4). The leading range of lags (from lag -104 to lag 0) 

does not show relevant clusters of significant correlation at all, neither on in the mid nor in the the long term. Negative correlations 

of the SMDIw – SPIw-i interaction only occasionally stand up at a small cluster (‘LT1’, Fig. 5 b - d) in the positive range of lags 

(when SPIw-i precedes SMDIw). The smoothing effect of the aggregation period of SPIw-i increases increasingly alters the initial 

bias of interactions towards the leading influence of SMDI on SPIw as well as the delays of this ‘LT1’ cluster but differently from 435 

in ETDIw cases, the magnitude of the significant negative correlations decline. most clusters similarly to the case of with ETDIw. 

 

LSM 

The LSM results for the SMDIw – SPIw-i relationship depicts strongly dampened patterns of significant correlation between 

SMDIw and the SPIw-I compared to those of RS SMDIw – SPIw-i or ETDIw – SPIw-i.  Only the ‘ST1’cluster is noticeable around 440 

lag 0. The increase of in the aggregation period does not favor its permanence as a relevant cluster beyond the SPIw-4. The cause 

can be the generalized low values of both non-significant and significant correlations obtained for these estimates of LSM 
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SURFEX-ISBA which may indicate the difficulties of the land surface modelLSM to describe the response of the surface soil 

moisture (the SMDI index) to the atmospheric forcing (the SPI index) that we saw in the RS dataset. The periods identified of 

short-term, mid-term and long-term influence of one SPIw-i in the SMDIw such as ‘SP1’, ‘MT1’, ‘LT1’ cannot be recognized in 445 

Fig. 6 compared to Fig. 5. Therefore, the LSM results of the SPIw-i – SMDIw relationship strongly differ from the ones obtained 

from RS data and is a matter of debate in the discussion section.  

5.2.3 Lag analysis ETDI-SMDI  

RS 

The remaining interaction in this analysis is the ETDI – SMDI. The results show a less asymmetric relationship between the ETDI 450 

and the SMDI compared to the ones between SPIw with ETDI and SMDI. The significant moderate positive correlation values 

(red bars in Fig. 7a) between lag 0 and +13 and from lag -10 to 0 indicate that the influence of the ETDI on the SMDI lasts longer 

than the one of the SMDI on the ETDI. The magnitude, though, expresses that SMDI moderately impacts the short-term conditions 

of the ETDI for about a month in comparison to the sole week the ETDI affects moderately those of SMDI. However, the highest 

correlations occur for the lag -1 when SMDI precedes ETDI in one week. Negative clusters ‘MT1 , MT2’ at +/- 39 weeks suggest 455 

that the interaction between the indices goes beyond the seasonal scale commented above. However, the significance of all these 

mid to long-term clusters remains low.  

LSM 

The results of ETDI – SMDI interaction based on LSM data show less evident periods of interaction between the indices compared 

to the RS results. The expected strong correlation around lag 0 is largely diminished. The strongest cluster appears from lag -21 to 460 

-39 ‘MT1’ (Fig. 7b) when SMDI precedes ETDI. No notable negative clusters can be identified. Apart from the lack of agreement 

on the symmetry of the interaction between LSM and RS results (Fig. 7b vs. 7a), the notable cluster ‘ST1’ in RS results is less 

relevant in LSM results. In view ofGiven the disparity between LSM and RS results, we rise concerns about the accuracy of offline 

LSM simulations compared to the RS results, addressing them for discussion in the next section.  

6 Discussion 465 

Results require careful discussion regarding three main aspects: firstly, the effect of adopting the weekly scale for drought indices 

and analyses, secondly the meaning behind the complex interactions between drought indices and thirdly the comparison of RS 

and LSM as tools for high-resolution monitoring of drought. All comments refer to the results at on a weekly scale. 

6.1 Scales for drought monitoring in semiarid environments 

AnalysingAnalyzing the differences in correlations between indices at monthly and weekly scales (Figure 2), we support the 470 

necessity of adopting the weekly scale to study lags between relevant variables driving drought processes, because the monthly 

scale preferred for drought assessment from a hydrological perspective may overlook the quick response of the land-atmosphere 

interactions. The clusters of moderate to high correlation between indices mostly occur within the first month preceding or 

following an anomaly (Figs. 3-7), particularly in the short to very short-term. Apart from the tendency of high correlations to peak 

and plunge in the interval of a few weeks, the information about its delay or precedence can only be observed when the weekly 475 

scale is adopted and when aggregation periods of the indices remain below the seasonal scale, such as SPIw-13 (equivalent to 

SPI3). Our results showing soil moisture response to rainfall (-5 to 5 weeks) and evapotranspiration (-10 to 5 weeks) anomalies in 
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the a matter of weeks are consistent with previous works showing soil moisture echoing rainfall anomalies in a range from days to 

weeks (Scaini et al., 2015; Martínez-Fernández et al., 2016), but also when driven by evapotranspiration (Otkin et al., 2013). 

Therefore, in a basin exposed to the high-energy characteristics of semi-arid climates, the weekly scale increases the capability to 480 

diagnose quick and often disregarded interactions such as the short-term interactions of ETDI and SMDI on SPI, without losing 

resolution in the identification of mid to long-term interactions. The need to apply a weekly scale even the SPI index, which is 

currently barely used below the monthly scale, is recommended not only for interactions such as the rainfall-evapotranspiration 

anomalies but also for anomalies such as soil moisture which are often assumed to show interactions over the monthly scale. An 

additional aspect to bear in mind when shifting to the weekly scale for drought assessment is that the spatial resolution must 485 

increase accordingly. We identified that certain inputs of the LSM model (mainly the forcing dataset, which nominally has a 

resolution of 5 km, but which has a lower real resolution due to the spacing between meteorological stationssemi-aggregated 

configuration of the physical input data) may undermine the resolution of LSM results compared to the ones from RS. This is a 

scale effect reported by Rodriguez-Iturbe et al. (2001), who warned that coarse resolution of the spatial characteristics increases 

the temporal scale “at which the processes are effectively correlated”. Therefore, the lag analysis must compile datasets of 490 

appropriate spatial and temporal scales for their aims, like the high-resolution RS and LSM data evaluated in this study. 

6.2 Interpretation of the interactions between drought indices 

Adopting specific drought indices for rainfall, evapotranspiration and soil moisture allows us to explore the interactions between 

variables of different levels of the land-atmosphere system. Fig. 8 a), and graphically 8 b), graphically summarizes the annual 

mode of interactions. In the short to mid-term, both the ETDI and SMDI interactions with SPI concur on having moderate 495 

significance, with only a few negative and positive low interactions in the mid to long term. Positive correlations around lag=0 of 

the ETDI and SMDI with SPI indicate direct precedent dependence of the indices, which means changes on ETDI and SMDI 

correlate positively (negatively) to positive (negative) changes on the SPI. The short-term correlations after rainfalls for both ETDI 

and SMDI (lagged response of these indices to SPI) have immediate interpretation and was were reported before in similar Iberian 

regions (Martínez-Fernandez et al., 2016). Sustained dry or wet anomalies in both variables favouredfavored by a positive 500 

correlation between indices are primarily restricted to a length of three seasons, while remaining less probable beyond a year. 

 

 The merging effect of the ‘ST1 – MT1’ clusters with the increase of the aggregation period implies that the reinforcing positive 

interaction of SPI-ETDI /SMDI can be still be identified easily when indices are aggregated at monthly or evenup to the seasonal 

scales. This also affects cCorrelations beyond the year scale may suggesting some multi-annual persistence of the positive 505 

reinforcing anomalies, nothing infrequent in Mediterranean climates. Nonetheless, given the strong aggregation impact occurring 

when adopting the SPIw-26 and SPIw-52, the analysis of interactions between rainfall and evapotranspiration and soil moisture 

may be uncertain when indices are aggregated beyond the seasonal scale in contrast to the suitability of SPI-6 and SPI-12 used for 

drought monitoring purposes based on single variables. Autocorrelation values of the SPI series are only partly caused by the 

aggregation effect since significant autocorrelated values extend always for less than the period of aggregation of SPIw-i (2 weeks 510 

on SPIw-1, 3 weeks on SPIw-4, 10 weeks for SPIw-13, 18 on SPIw-26, 35 on SPIw-52, 40 on SPI-78, 45 on SPIw-104). The 

partial autocorrelation of both ETDI and SMDI shows mostly two significant week-lags which may imply an AR(2) model (Fig. 

S3) functioning as a combination of growing and decaying factors, which reflects the waving balance between positive and negative 

correlations between indices. In consequence, the clusters of interactions identified in Figs 3 to 6 at least partially capture the 

interactions between rainfall, evapotranspiration and soil moisture anomalies at short-term temporal scales. This highlights the 515 

benefit of assuming that drought evolution, as an expression of the complex exchanges between land-atmosphere variables, 
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primarily occurs up to seasonal scales. This means the temporal resolution of drought indices must adapt to short time scales such 

as the weekly scale to detail the interacting processes governing drought. Otherwise, using drought indices at time scales beyond 

the seasonal scale may neglect the interplay of land-atmosphere processes determining drought progress.  

 520 

The existence of the precedent influence of ETDI and SMDI on SPI (clusters of the negative range of lags) implies some unequal 

reciprocity (feedback) between evapotranspiration and soil moisture with rainfalls. This precedent influence is weaker than the 

influence of SPI on subsequent ETDI and SMDI anomalies (lagged response), but still remarkable. It is reasonable that the lagged 

response of evapotranspiration and soil moisture to rainfall is stronger and more long long-lasting than the precedent influence 

(Fig. 8 a). Furthermore, the precedent influence period between the ETDI and SPI is stronger and of longer duration than the one 525 

of SMDI on SPI. This asymmetry suggests that ETDI, more than SMDI, has a weekly to seasonal precedent influence on rainfall 

(Fig. 8b). We expected a longer period of positive correlations of SMDI influencing rainfalls, given the multiple reports of soil 

moisture inducing memory to the near-surface atmosphere (Manning et al., 2018).  

 

Oone reason that why the ETDI shows a longer influence on SPI than the SMDI may be that ETDI from MOD16A2ET is fed by 530 

the whole depth of soil moisture, while SMDI based on SMOS1km is limited to the top 5 centimetrescentimeters of soil moisture, 

a very exposed soil level in semi-arid climates. The complexity of soil moisture dynamics, which barely follow a cyclic interaction 

(Rodriguez-Iturbe et al., 1991), can also explain a weaker relationship between the SMDI and SPI compared to the ETDI. Other 

reasons to for this may be in the prevalence of maritime advection as the main contributor to evapotranspiration in the Iberian 

PeninsulaIP (Gimeno et al., 2010), compared to the prevalence of local soil moisture recycling common in the more continental 535 

areas of Europe (Bisselink and Dolman, 2008). The advective explanation is supported by the contrast between the few weeks of 

precedent influence of soil moisture on rainfall we observe in the Ebro basin and the up to 250 days of precedent influence of 

continental areas prone to soil moisture recycling (Rowntree and Bolton, 1983; Bisselink and Dolman, 2008). Some studies focused 

on continental climates of relevant summer rainfall have described the implications of the alteration of the recycling due to soil 

moisture depletion during heatwaves and drought Eventually, the self-intensification loop may go beyond the interactions described 540 

here andwhich can eventually alter the atmosphere (Rasmijn et al., 2018; Miralles et al., 2019). In the Mediterranean climate of 

the Iberian Peninsula characterized by the lack of summer rainfall, soil moisture annually reaches such low levels that we can 

expect annual summer alterations in the near atmosphere. Differences between areas where soil moisture plays a role, like central 

Europe, and areas where soil moisture is unable to control the evolution of the system under high-energy conditions, like the Iberian 

Peninsula, have been reported before in Mediterranean-like Western Australia in comparison to eastern Australia (Herold et al., 545 

2016).  

 

In consequence, our results at the Ebro basin seem compatible with the frequent activation of a reinforcing or self-intensification 

loop (Brubaker and Entekhabi, 1996), by which the precedent influence of positive (negative) (eventually positive) anomalies of 

evapotranspiration increasing (reducing)(increasing) rainfall cascades into a depletion (rise) of soil moisture that further limits 550 

(enhance) a lagged enhanced the (depleted) response of evapotranspiration restarting the cycle (Fig. 8b8c, right column). The weak 

precedence of soil moisture on rainfall compared to that of evapotranspiration expresses the limited duration power of the 

reinforcing control capacity of the soil moisture loop (based on rainfall recycling) to inhibit the self-intensification loop ofover 

evapotranspiration in semi-arid climates of Mediterranean type (upper left column of Fig. 8c).  

 555 
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Negative correlations when indices differ in sign (r<0 conditions, Fig. 8a) can be indicative of transitional periods of mid-seasons. 

The sharp shift from the cluster of short-term positive correlations to the cluster of mid- to long-term negative correlations suggests 

a limit in the persistence of the self-intensification mechanism. A physical interpretation of the shift may be related to the change 

in the dominance of the sequence from the one under high-energy conditions (Fig. 8c, right column) to the one under low-energy 

conditions (Fig. 8c, left column). A low-energy inhibiting mechanism was already described by Brubaker and Entekhabi (1996) 560 

described an inhibiting feedback mechanism of negative correlations between soil moisture and surface temperature when under 

low temperatures is low. Given the direct link between evapotranspiration and temperature, the shift from positive to negative 

interactions beyond the semester, but below the year scale, suggests that the arrival of winter low-energy conditions terminates the 

dominance for most of the year of the self-intensifying loop of evapotranspiration.  

 565 

In this way, the annual cycle is regulated by the seasonal succession of two sequences: one under the low-energy conditions of 

winter when evapotranspiration no longer outweighs the inhibiting of soil moisture due to rainfall (left column of Fig. 8c), and the 

other under high-energy conditions driven by evapotranspiration (right column of Fig 8c). While driven by energy variables, the 

shift between the long period of interactions dominated by evapotranspiration (right column of Fig. 8c) and a short period of 

interactions controlled by rainfall and soil moisture (lower sequence of Fig. 8c) may also occur in advance or delayed depending 570 

on thresholds of rainfall and soil moisture anomalies. This reason explains why under high-energy conditionsmay eventually 

drought may terminate due to heavy rainfall, while under low-energy conditions drought may persist triggering the onset of the 

self-intensification loop of evapotranspiration sooner than normal.  

 

is The conceptualization of the interactions illustrated in Fig. 8 aims to in line with reports highlighting the power of 575 

evapotranspiration anomalies not only during in hydrological extremesdrought generation (Otkin et al, 2013) and meteorological 

extremes (Seneviratne et al., 2006; Teuling, 2018; Miralles et al., 2019) but also along the year under the highly variable 

Mediterranean climate. Another reason supporting the year-round implications of the dominance of evapotranspiration over soil 

moisture is that rainfall mostly transfers to evapotranspiration in semi-arid climates (Rodriguez-Iturbe et al., 2001), where the 

often-underestimated interception (Savenije et al., 2004) further increases evaporation at the expense of soil moisture. Therefore, 580 

the Mediterranean climate likely presents higher thresholds of rainfall, evapotranspiration and soil moisture anomalies different 

from those triggering hydrometeorological extremes in other areas (Tramblay et al., 2021) that determine the initiation of the 

evapotranspiration-dominated sequence but may not end up in drought. All these aspects together with predictions of comparatively 

more change of extremes in the Mediterranean area due to climate change (Samaniego et al., 2018) recommend assessing changes 

in the interactions and their balance from the basis of this study. 585 

 

However, we bear in mind that our results may oversimplify the causality since processes not analyzed in this study may also play 

a role. One major factor of uncertainty is due to the non-linear response of vegetation to water stress, particularly in Mediterranean 

areas of adapted vegetation (Boulet et al., 2020). An example of uncertainties due to vegetation comes from the vegetation type 

whose specific interaction with the boundary-layer of the atmosphere modulates the partitioning of energy governing 590 

evapotranspiration (Lansu et al., 2020) but similar ones are reported with soil moisture (Barbeta et al., 2015). Additional processes 

factors may be of influence may be, such as  the well-known atmospheric patterns of NAO or WeMO (Barnston and Livezey, 

1987, Conte et al., 1989) or the oceanic ones like AMO (Kerr, 2000). The multiple periods showing neither prevalent positive nor 

negative correlations between indices indicate a loss of linear interaction. A source of non-linearity is vegetation. Plants can control 

evapotranspiration and soil moisture in adaptation to water stress in complex manners that depend more on the type of vegetation 595 
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(Katul et al., 2012) than in on the evapotranspiration or soil moisture status. Plant impact both the ETDI and SMDI because 

interactions of vegetation integrate the status of the atmospheric and the land- surface variables (Peters, Rundquist, & Wilhite ,et 

al., 1991). In the Mediterranean environment of this study, the quick response to drought of rainfed crops and sclerophyll vegetation 

and the lagged response of other vegetation types (Vicente-Serrano et al., 2019) may obscure interpreting the links between rainfall, 

evapotranspiration and soil moisture. 600 

6.3 The value of remote sensing and land-surface model’s estimates 

The RS and LSM results of the lag analysis of the ETDI – SPI interactions show consistently comparable results in contrast to the 

remarkable disagreement between RS and LSM for the SMDI - SPI interaction. Results of SMDI obtained with the LSM show 

substantially lower correlations than the ones of RS, while also differing in the timing of the clusters of correlation. We expected 

the opposite, that the LSM, as being simpler than reality, has stronger SPI – ETDI - SMDI correlations than the RS dataset. We 605 

assume the implicit accumulation of uncertainties of modelling (Rodriguez-Iturbe et al., 1991), partly inherited from inputs but 

also from LSM structure, causes the decrease of in correlations. This is particularly true for soil moisture, a variable integrating 

exchanges between climate, soil and vegetation (Rodriguez-Iturbe et al., 2001). Secondly, this is an offline simulation, where the 

atmosphere (SAFRAN) is forcing the land-surface (SURFEX-ISBA), without explicit feedback, because SURFEX-ISBA does not 

influence back SAFRAN. SAFRAN estimates real conditions by ingesting observations, so the feedback is implicit in results, 610 

which may be insufficient to represent reality. Thirdly, the model itself does not consider important processes like the interactive 

response of vegetation. ISBA has an interactive vegetation module (ISBA-A-gs), but Mediterranean vegetation can be particularly 

challenging for it. We expect to test the capabilities of interactive modelling vegetation in a follow-up study. Uncertainties of ISBA 

with vegetation have also roots in the use of ECOCLIMAP2 database, which shows inaccuracies of cover type and LAI. 

ECOCLIMAP assumes the maximum/minimum LAI occur in June/February in contrast with the early spring and autumn LAI 615 

maximums characteristic of the Mediterranean environment (Queguiner et al., 2011). All in all, the differences between LSM and 

RS datasets are already an important result to improve the LSM and useful insight into the use of offline LSM drought simulations. 

 

Our results positively verify that remote sensingRS represents an effective tool to overcome the problem of sparsely observed soil 

moisture or evapotranspiration, whose crucial role on in drought evolution requires high high-resolution data similarly to 620 

precipitation (AghaKouchak and Nakhjiri, 2012). Including high-res evapotranspiration products from MODIS (MOD16A2ET) 

and soil moisture from SMOS missions (SMOS 1km) together with the distributed rainfall reanalysis data allows dedicated 

interpretation of the interactions between these two drought-relevant variables and rainfall, and their role in the water balance of 

the land-surface interface (Dai, 2011). Especially for evapotranspiration, the maps and series of LSM SURFEX-ISBA are 

comparable of to those of remote sensingRS, which supports the reliability of LSM despite their limited capability in arid regions 625 

(De Kauwe et al., 2015).  

 

The temporal and spatial patterns of the anomalies are overly identified both by remote sensingRS and the LSM model. The RS 

data seems able to capture a more complex scheme of interactions than the LSM model, despite the intrinsic data issues of the RS 

sensors and the performance of the algorithms used to generate the products. Conversely, the LSM seems sensitive to uncertainties 630 

from input data, especially surface properties, and the offline forcing. The parametrization of the model assumes a semi-distributed 

approach by sub-basins of the catchment on which each sub-basin is defined based on average values of land over and soil 

characteristics of the ECOCLIMAP database, which may induce some patchiness of LSM results compared to the RS results. The 

offline run means that the meteorological data forces the LSM, but the feedbacks are lost beyond the meteorological observations 
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included as observation in the model. Additional aspects can be, for instance, the impact of groundwater redistributing soil moisture 635 

depending on topography, which is underrepresented in the LSM. LSM limitations have been reported in multiple works before 

and are subject of improvement based on the discussion of these limitations (Teuling et al., 2006; Samaniego et al., 2018). Either 

way, uncertainties are causes of major concern in the lag analysis where they can alter the correlations between indices and obscure 

the interpretation of the interactions.  

 640 

These aspects together with the complex response of vegetation to semi-arid environments can be critical to improve improving 

evapotranspiration and soil moisture estimates (Ukkola et al., 2016). Solving these inaccuracies would increase the value of RS 

and LSM estimates. This study exemplifies the potential of high-resolution RS and LSM products for a wide range of applications, 

such as drought analysis.  

7 Conclusions and perspectives 645 

The analysis of droughts in the Ebro basin using dedicated evapotranspiration and soil moisture drought indices based on high-

resolution data from MOD16A2ET, SMOS1km and the land-surface modelLSM SURFEX-ISBA provides the following insights.  

The monthly scale commonly adopted for drought evaluation (e.g., SPI-3) may overlook the quick evolution of drought from an 

agricultural and environmental perspective, especially in the high-energy climates of the Mediterranean basin where the anomalies 

of rainfall, evapotranspiration and soil moisture can vary in a matter of days. ETDI shows the strongest response at a weekly scale 650 

while it remains also influential in the mid-term. SMDI can also quickly evolve with anomalies of evapotranspiration and 

particularly with lasting anomalies of rainfall. The weekly scale is advantageous to describe trends and shifts in the evolution of 

the indices and to identify disregarded interactions such as the preceding influence of ETDI on SPI.  

 

The ETDI and SMDI indices, together with the SPI adapted to the weekly scale, allow to tracktracking the evolution of the 655 

anomalies of evapotranspiration, soil moisture and rainfall, as well as their interactions driving water anomalies in the region. 

There is great consistency between the time series of ETDI, SMDI and SPI. Lag analysis between these indices clarifies the 

interactions between anomalies on different levels of the surface-atmosphere system, information that is neglected when using 

multivariable indices or indices aggregated beyond the seasonal scale. The lag analysis also identifies sequences of interactions 

defining reinforcing or inhibiting feedbacks. Evapotranspiration dominates the water balance of the Iberian semi-arid climate, 660 

especially during high-energy periods. This dominance frequently exceeds the controlling action of rainfall and soil moisture, 

inducing the reinforcing dry loop. In viewBecause of the relevance of evapotranspiration, heat waves further fuellingfueling dry 

events deserve further attention. The weak influence of soil moisture on subsequent evapotranspiration and rainfall limits its 

capability to control the propagation of the anomalies.  

 665 

Remote sensingRS datasets of MOD16A2ET and SMOS-1km accurately estimate the temporal and spatial anomalies in the basin. 

Evapotranspiration from the land surface modelLSM SURFEX-ISBA closely resembles the remote sensingRS one of 

MOD16A2ET. Results differ substantially between SMOS1km and SURFEX-ISBA estimates of soil moisture. Remote sensingRS 

uncertainties arise mainly from data gaps. Land-surface model’s estimates can extend the evaluation of soil moisture beyond the 

surface towards the root zone, but face notable challenges from offline simulation neglecting feedbacks, as well as from the quality 670 

of input data that defines surface characteristics. Remote sensingRS outcompetes the land surface modelLSM on in the ability to 

integrate information about challenging processes, such as the vegetation dynamics. Assimilation seems the way forward to 
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integrate the best aspects of both kinds of data. For as long as ground-based observations remain sparse, remote sensingRS and 

land surface modelsLSM represent effective tools to assess the water anomalies of the land-atmosphere system and their interaction 

mechanisms.  675 
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Figure 1: a) Ebro basin location in the Iberian Peninsula (OSM OpenTopoMap). b) Land cover of the basin describes a 935 

contrasted basin between the forested areas of the mountains and the steppes of the central depression (© ESRI satellite 

online maps, World Imagery, 2022). c) Altitudinal range of the basin (IGN ES/FR MDT25, CC-BY 4.0). D) Climatic classes 

present in the basin according to the climatic classification of Köppen-Geiger (from data of Beck et al. (2018)). 
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r Pearson correlation coefficient of the monthly                 

time series (ETDIm, SMDIm, SPIm-i)                  
 

r Pearson correlation coefficient of the weekly 

time series (ETDIw, SMDIw, SPIw-i)                  

Pairs of indices 
 

2010-2017  Dry periods  2010-2017  Dry periods 

        
ETDI RS and ETDI LSM 

 
0.77 

 
0.60 

 
0.55 

 
0.34 

SMDI RS and SMDI LSM 
 

0.27 
 

0.13 
 

0.19 
 

0.12 

         
ETDI RS and SMDI RS 

 
0.58 

 
0.50 

 
0.50 

 
0.46 

ETDI LSM and SMDI LSM 
 

0.32 
 

0.43 
 

0.21 
 

0.18 

         
SPIm-1/SPIw-4 and ETDI RS 

 
0.39 

 
0.23 

 
0.57 

 
0.30 

SPIm-1/SPIw-4 and ETDI LSM 
 

0.51 
 

0.37 
 

0.68  0.49 

SPIm-1/SPIw-4 and SMDI RS 
 

0.42 
 

0.52 
 

0.57 
 

0.57 

SPIm-1/SPIw-4 and SMDI LSM 
 

0.45 
 

0.59 
 

0.33 
 

0.25 

         
SPIm-3/SPIw-13 and ETDI RS 

 
0.62 

 
0.42 

 
0.63 

 
0.32 

SPIm-3/SPIw-13 and ETDI LSM 
 

0.8 
 

0.67 
 

0.74  0.47 

SPIm-3/SPIw-13 and SMDI RS 
 

0.61 
 

0.41 
 

0.51 
 

0.36 

SPIm-3/SPIw-13 and SMDI LSM 
 

0.41 
 

0.32 
 

0.21 
 

0.29 

         
SPIm-6/SPIw-26 and ETDI RS 

 
0.72 

 
0.45 

 
0.57 

 
0.21 

SPIm-6/SPIw-26 and ETDI LSM 
 

0.78 
 

0.39 
 

0.60 
 

0.30 

SPIm-6/SPIw-26 and SMDI RS 
 

0.58 
 

0.19 
 

0.40 
 

0.40 

SPIm-6/SPIw-26 and SMDI LSM 
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SPIm-12/SPIw-52 and ETDI RS 
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0.40 
 

0.43 
 

0.39 

SPIm-12/SPIw-52 and SMDI LSM 
 

0.24 
 

0.22 
 

0.15 
 

-0.03 

         
* Dry periods considered when SPI<0, ETDI<0, SMDI<0 

Table 1: Significant (in bold) correlation coefficients considering p-values=0.05 for pairs of indices at monthly and weekly scale, for the 940 

period 2010-2017 of the SPI-i, ETDI and SMDI series, including results for the subset of dry periods in the series. 
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Table 1: Matrices of significant (in bold) correlation coefficients considering p-values=0.05 for pairs of indices at monthly 

and weekly scale for the period 2010-2017 of the SPI I, ETDI and SMDI series, and the corresponding dry period subsets. 

Higher correlation values show a more intense red color. Since the correlations of interest refer to comparing the same type 945 

of data sources for different indices, dark grey cells identify unsuitable combinations for the analysis such as comparing 

RS results from one index with LSM results from another index. 

  

RS LSM RS LSM RS LSM RS LSM

RS 0,77 0,58 RS 0,60 0,50

LSM 0,77 0,32 LSM 0,60 0,43

RS 0,58 0,27 RS 0,50 0,13

LSM 0,32 0,27 LSM 0,43 0,13

SPIm-1 0,39 0,51 0,42 0,45 SPIm-1 0,23 0,37 0,52 0,59

SPIm-3 0,62 0,80 0,61 0,41 SPIm-3 0,42 0,67 0,41 0,32

SPIm-6 0,72 0,78 0,58 0,30 SPIm-6 0,45 0,39 0,19 0,17

SPIm-12 0,81 0,71 0,63 0,24 SPIm-12 0,75 0,53 0,40 0,22

RS LSM RS LSM RS LSM RS LSM

RS 0,55 0,50 RS 0,34 0,46

LSM 0,55 0,21 LSM 0,34 0,18SPIm-1 SPIm-1

RS 0,50 0,19 RS 0,46 0,12

LSM 0,21 0,19 LSM 0,18 0,12

SPIw-4 0,57 0,68 0,57 0,33 SPIw-4 0,30 0,49 0,57 0,25

SPIw-13 0,63 0,74 0,51 0,21 SPIw-13 0,32 0,47 0,36 0,29

SPIw-26 0,57 0,60 0,40 0,16 SPIw-26 0,21 0,30 0,40 0,02

SPIw-52 0,48 0,45 0,43 0,15 SPIw-52 0,31 0,16 0,39 -0,03

* Dry periods considered when SPI<0, ETDI<0, SMDI<0
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Figure 2: Time series of SPI, ETDI and SMDI indices at monthly scale (left column of subplots identified with sub-index 1) and weekly 950 

scale (right column of subplots identified with sub-index 2). a) to d) correspond to SPIm-1, SPIm-3, SPIm-6 and SPIm-12, e) and f) 

display the temporal evolution of the ETDI and SMDI. These ones show two rows corresponding to the series based on RS and LSM 

data. Red /blue color represents dry /wet periods. Periods of drought occur when SPI<0, ETDI>0, SMDI<0. 
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 955 

Figure 3: Lag plots of SPI-1, SPI-3, SPI-6 and SPI-12 (expressed as SPIw-4, 13, 26, and 52 weeks respectively) with remote sensing (RS) 

ETDIw index at weekly scale for the period 2010-2017. Lags are calculated for the -104 leading and +104 lagged time steps of ETDIw in 

reference to the SPIw-i. The height of the bars of the plot indicates the area of the basin affected by non-significant (grey scale) or 

significant (coloured scale) correlations. The saturation of the colored scale indicates the magnitude of the significant positive (red) or 

negative (blue) Pearson correlation coefficient of SPIw-i and ETDIw. 960 
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Figure 4: Lag plots of SPI-1, SPI-3, SPI-6 and SPI-12 (expressed as SPIw-4, 13, 26, and 52 weeks respectively) with land -surface model 

(LSM) ETDIw index at weekly scale for the period 2010-2017. Lags are calculated for the -104 leading and +104 lagged time steps of 

ETDIw in reference to the SPIw-i. The height of the bars of the plot indicates the area of the basin affected by non-significant (grey scale) 965 

or significant (coloured scale) correlations. The saturation of the colored scale indicates the magnitude of the significant positive (red) or 

negative (blue) Pearson correlation coefficient of SPIw-i and ETDIw. 
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Figure 5: Lag plots of SPI-1, SPI-3, SPI-6 and SPI-12 (expressed as SPIw-4, 13, 26, and 52 weeks respectively) with remote sensing (RS) 970 

SMDIw index at weekly scale for the period 2010-2017. Lags are calculated for the -104 leading and +104 lagged time steps of SMDIw 

in reference to the SPIw-i. The height of the bars of the plot indicates the area of the basin affected by non-significant (grey scale) or 

significant (colouredcolored scale) correlations. The saturation of the colored scale indicates the magnitude of the significant positive 

(red) or negative (blue) Pearson correlation coefficient of SPIw-i and SMDIw. 

  975 



33 

 

 
Figure 6: Lag plots of SPI-1, SPI-3, SPI-6 and SPI-12 (expressed as SPIw-4, 13, 26, and 52 weeks respectively) with land- surface model 

(LSM) SMDIw index at the weekly scale for the period 2010-2017. Lags are calculated for the -104 leading and +104 lagged time steps 

of SMDIw in reference to the SPIw-i. The height of the bars of the plot indicates the area of the basin affected by non-significant (grey 

scale) or significant (colouredcolored scale) correlations. The saturation of the colored scale indicates the magnitude of the significant 980 

positive (red) or negative (blue) Pearson correlation coefficient of SPIw-i and SMDIw.  
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Figure 7: Lag plots of ETDIw – SMDIw at weekly time scale in the period 2010-2017 for a) RS data and b) LSM data. Lags are calculated 985 

for the -104 leading and for the +104 lagged time steps of SMDIw in reference to the ETDIwSPIw-4. The five levels of red and blue 

indicate the positive (red) or negative (blue) Pearson correlation coefficient between the ETDIw and the SMDIw for each time step (lead 

or lag time step). The height of the bars of the plot indicates the area of the basin affected by that level level of r Pearson values.  
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Figure 8: (a) InterpretationPhysical meaning of the correlations between SMDI-SPI, ETDI-SPI and SMDI-ETDI indices. The r>0 box 

exemplifies positive correlations between the indices (positive correlations of red arrows in b)) while the r<0 box defines the negative 
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ones (negative correlations of blue arrows in b)). (b) Summary of the annual magnitude and timing of the interactions. Red arrows 

represent positive correlations while blue arrows the negative ones. Arrow width represents the magnitude of the correlation. Arrow 

direction determines the direction of the interaction. The timeline in at the bottom indicates the scale of the interactions ranging from 995 

short-term to long-term. (c) Sequences of prevalent reinforcing (upper) and inhibiting (lower) conditions alternating during the annual 

cycle based on the scheme of interactions described in a) and b). The upper sequence is the self-intensifying loop driven by 

evapotranspiration under high-energy conditions. The lower sequence displays the inhibiting role of rainfall / /soil moisture under low-

energy conditions.   
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