
Response to reviewer RC2 (reviewer in black Open Sans 11, response in blue, Calibri,11) 

” by Gaona et al. submitted to NHESS-discussion an analysis of the atmosphere-soil-vegetation 

interaction, performed through a time correlation analysis among indices of precipitation 

anomalies (SPI computed at weekly scale), evapotranspiration deficit index (ETDI) and soil 

moisture deficit index (SMDI) for the period 2010-2017. ETDI e SMDI input data are provided 

from both remote sensing and from modelling approaches. The study area is the Ebro basin 

(Spain). The goal of the work is to get more insights into the drought propagation mechanisms. 

The manuscript is within the scope of the Journal and potentially of interest for the readers of 

NHESS. However, I have some main concerns that prevent from publishing the manuscript in 

its present form. Here below my general comments: 

1. I found very interesting the adopted methodology. My main concern is on the use in the 

specific case study of standardized indexes. The time span analysed is 8 years. This 

means that whatever the adopted method for standardization, the statistical population 

is 8 (maximum). In the original work by Narasimhan and Srinivasan (2005) the ETDI and 

SMDI are computed on a dataset covering a time span of 70 years (1911-1980), making 

robust the statistical approach necessary to compute SPIn (fitting of the gamma or 

Pearson III distribution), ETDI and SMDI (setting the range of variation through the 

definition of the min and max values, as well as the median to compute the deviation). 

In my opinion the authors should wide the database extending the time span to 2021 in 

order to perform an uncertainty analysis on the robustness of the adopted statistical 

approach. 

For example, it would be interesting to study the variability of the fitting for SPI and of 

the min-med-max values necessary to compute the ETDI and SMDI by considering n 

subset of n-1 elements (12 subset of 11 y data if you consider the time span 2010-2021) 

and studying how the statistical metrics and the indexes themselves vary in relation to 

the subset. I know that it is a lot of work, but in my opinion, this is mandatory to ensure 

a sound and robust time lag analysis. Therefore, my concerns are not on the 

methodology adopted for the analysis of the relationships among the indexes, but on 

the indexes themselves.” 

We sincerely appreciate the rigorous and accurate comments of the reviewer about the temporal 

constraints of the study and the sub-optimal application of drought indices for short time series. We are 

aware of the narrow timespan available for the analysis of soil moisture data but SMOS1km is the 

longest reliable data series available. Certainly, there are remote sensing databases with long-term time 

series of the variables of this study, even for soil moisture (e.g. CCI). However, apart from the coarse 

spatial resolution of CCI (0.25º instead of the 1km of SMOS1km), CCI inherits multiple inhomogeneities 

due to the different remote sensing data sources used to generate such long series. ASCAT and AMRS-E 

have been tested in the area of study in comparison with SMOS1km and despite their notable 

performance, SMOS1km outperforms them both in resolution and due to its lack of roughness and 

vegetation effects (Escorihuela and Quintana-Seguí, 2016). The SMOS1km dataset generated using the 

DisPATCh Algorithm (Merlin et al., 2013) has been also reported of remarkable reliability in similar 

studies in the area (Dari et al., 2021).  Equal resolution SMAP and Sentinel-1 options are of much shorter 

data series and consequently not appropriate for the focus on lags of this study. Therefore, SMOS1km 
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dataset was the longest and optimal remote sensing option for soil moisture analysis. In the case of 

evapotranspiration remote sensing data, MOD16A2 is also the best option considering the spatial or the 

temporal constraints of the alternative databases of longer duration or similar spatial resolution (e.g. 

ERA5Land of 0.1x0.1º resolution spatial resolution, GLEAM 0.25x0.25º, Tomas-Burguera et al., 2019 only 

spans to 2014…etc.). Provided these constraints, we support the validity of considering SMOS1km + 

MOD16A2 as well as ETDI and SMDI as the best available options for the analysis of interactions of the 

selected variables, to evaluate the interactions between rainfall, evapotranspiration, and soil moisture. 

Regarding indices, and following the previous clarification, the study aims to underline the convenience 

of addressing single-variable analysis of drought factors to promote the understanding of water 

exchanges under drought instead of discussing global indices only able to partially characterize drought 

but not specific mechanisms of interaction. That’s the reason for adopting individual indices to assess 

the anomalies of relevant variables involved in drought’s evolution. In view of this, there are multiple 

aspects of incompatibility between drought indices focused on different variables. In fact, the SMDI and 

ETDI are among the few indices defined for different relevant variables of the system exactly in the same 

way, which would be an advisable aspect for studies focused on the multivariate analysis of drought.   

Following the recommendation of the reviewer, we tested the sensitivity of the ETDI and SMDI (they 

have the same definition based on calculating max, min, median annual weekly values of the data) to the 

number of years of data used to obtain the maximum, minimum and median values of the series 

necessary to calculate the indices. We adopted the ETDI because it has a longer series (~18years) than 

SMDI (~8 years) so that the results of half the length of the series of ETDI can give an idea of how the 

restricting length of the SMDI series impacts the outcomes of the study. Firstly, taking the full spatial 

dataset (all pixels of data: 10129px) we constrained the temporal data available to generate the mean 

annual max/med/min weekly values of the series to a half, a quarter and an eighth of the length of the 

series. The comparison of the correlation between the ETDI obtained using the full spatial and temporal 

dimension compared to the half, quarter and an eight length of the series using ¼ of the data (case A) 

indicate there is little impact due to the shortening of the timeseries. Adopting the length of 8 years of 

SMDI compared to 18 years would keep ETDI and SMDI values above r=0.95. Even an eighth of the 18y 

series length keeps r=0.78. The reason for such low impact is the high spatial resolution of the dataset, 

whose spatial heterogeneity contributes to compensate the risk of sensitivity of the ETDI/SMDI series to 

the shortening of the temporal dimension. This statement is supported by the results of the increased 

sensitivity of the ETDI to the shortening of the series when a fraction of the pixels instead of the full 

range of basin pixels is used (case B, with 1/20 of the pixels). Using 1/4 of all pixels (case B, not shown) 

causes a slight degradation of the series, while using a 1/20 fraction (case C) causes a sharp decline in 

the correlation, particularly for the biggest shortening of the timeseries (1/8 of length). Therefore, we 

can assume the ETDI and SMDI series are sufficiently representative despite their short length of the 

dataset thanks to the spatial resolution providing enough heterogeneity of the MOD16 and SMOS values 

to define sufficiently representative max, median and min values to generate the ETDI and SMDI series.  
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A) ETDI sensitivity to series length with full spatial dataset (10129 px) 

 

  

 

C) ETDI sensitivity to series length with 1/20 of the spatial dataset (516 px) 
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2. “In my opinion, results on table 1 could be presented in a more effective way. I suggest 

presenting four different correlation matrixes (2010-2017m, dry periods m, 2010-2017 

w, dry periods w). Each matrix has on the rows [ETDI RS; SMDI RS; SPIm-1; SPIm-3; SPIm-

6; SPIm-12] and on the columns [ETDI RS; ETDI LSM; SMDI RS; SMDI LSM]. A colour code 

to highlight the Pearson correlation, ranging [0,1] would help the readability of the 

tables, supporting the presentation of the outcomes.” 

We thank the reviewer for the suggestions to improve the visualization of Table 1 which has been 

completely reformed following the indications. We realize the matrix format and the color code 

helps interpreting the magnitude of the correlation. (At Lines 845-850). 

 

3. “Figures 4-7. These are the core business of the work, but the outcomes did not 

convince me. I focus on the bars showing statistically significant correlations (blue or 

red coloured bars). It is clear that the fraction of the basin presenting high correlations 

lasts approximately for a time span equal to the time scale of the SPI: more or less 4 

weeks when I use SPI1, more or less 13 weeks when I use SPI12 and so on. I’m not 

convinced that this is not simply due to time autocorrelation of the pairs SPIn(t), 

SPIn(t+n) and not to real physical processes as proposed in the discussions. Please, 

clarify this point as it is very important” 

Regarding the concerns of the reviewer about the “potential autocorrelation” of the ETDI - SPI at 13, 
26 and 52 weeks of aggregation, firstly, its mainly caused by the effect of the period of aggregation, 
and secondly, the purpose was in fact to illustrate the impact of the period of aggregation used for 
SPIw-13, w26 and w52 indices (of monthly focus as SPI-3, -6 and-12) instead of using the weekly-
focused results of SPIw-4 (SPI-1) to elucidate the interactions.  



Since the Section 5.1 in results and 6.1 in discussion focus on the advantage of the week scale, we 
show the range of results from SPI-4w as supportive evidence of the pertinence of using the week 
scale, less prone to aggregated outcomes, particularly for this type of interactions and geographical 
context, than the commonly used monthly scale. In fact, many any times the SPI-3 is used to debate 
anomalies in the atmospheric system, like when referred to meteorological drought. We argue, 
based on the studies focused on flash droughts and drought on semi-arid environments, that the 
scale of analysis should be weekly, even when referring to interactions between atmosphere and 
land surface like SPI-ETDI or SPI-SMDI. For this reason, discussion in section 6.1 based on Figures 
3,4,5,6 was written in that sense: 
 
 L429-433 “The clusters of moderate to high correlation between indices mostly occur within the first 
month preceding or following an anomaly (Figs. 3-7), particularly in the short to very short-term. 
Apart from the tendency of high correlations to peak and plunge in the interval of a few weeks, the 
information about its delay or precedence can only be observed when the weekly scale is adopted.” 

 The range of subplots of Figs. 3 to 6, as well as the ones of aggregation period of 1 week and 78 
weeks attached below, show in fact that the aggregation period mostly impacts results when using 
aggregations over 3 months, as it is the case of SPI-3 (SPIw-13), both in timing and duration of the 
clusters of lags. Therefore, the panel of aggregation periods of Figs. 3-6 provided two subplots below 
and two subplots over this midpoint of the range of aggregation to show the sensitivity of results to 
the aggregation period.  

The additional plots of SPIw-n – ETDIw attached below (SPIw-1 and SPIw-78) show that the clusters of 
lags MT1 and ST2, primarily of precedent lags, appear clearly separated in the first three subplots of 
SPIw-1 - ETDIw, SPIw-4 - ETDIw and SPIw-13 - ETDIw while they become merged and largely distorted 
by the increasing period of aggregation (i.e. SPIw-26 and -52 – ETDIw). The longer the period of 
aggregation, the more the clusters increase the magnitude of the correlation, the length of the cluster 
and the significance of the correlations. Additionally, we can observe that the shortest period of 
correlation, the SPIw-1 – ETDIw shows very fragmented signals of interactions which is logical when 
analyzing results at the weekly scale. However, the timing of the fragmented clusters of correlation 
match well those shown until aggregation periods of 13 weeks, so that we can say, results are 
consistent in between weekly and the firsts months scale of aggregation of the SPIw. In consequence, 
the two upper ETDIw - SPIw-n subplots of Figure 3 and 4 aimed to illustrate the range of temporal 
scales at which the interactions between rainfall and evapotranspiration anomalies are within the 
range of observability. The lower ones of SPIw-26 and SPI-52 – ETDIw alternatively illustrate the 
temporal scales (seasonal, annual) at which the interactions between SPI and ETDI cannot be further 
discerned. In the case of SPI-n – SMDI, again the range of lag suitable for the interpretation of SPIw- 
ETDIw remains consistent until the seasonal scale of aggregation of the SPI.  

The range of subplots in figs 3-6, aimed to illustrate how the weekly scale (dominating the clustering 
configuration in between SPIw-1 and SPIw-13) is the most suitable for the interpretation of the short-
term interactions. For this reason, the results described in Section 5 mostly referred to the short-term 
aggregation periods to interpret the clusters of lags, stating that the higher SPIw26 and SPIw52 results 
tend to dampen, merge and later the clustering of lags indicated by SPIw4 and SPIw13. We are open 
to include SPIw1 in Figs 3-6 for better illustration of our purpose, while we refrain ourselves to include 
it due to the reluctance of the scientific community to refer to aggregations of the SPI index below the 
monthly scale. Therefore, we have further clarified this scope of showing the sensitivity of results to 
the aggregation period in the description of results (lines L331-332, L350-351, L393-395) and 
discussion section (L437-L440). 
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Regarding the possibility of autocorrelation, once checked the series are stationary (by Augmented 
Dickey-Fuller (ADF) test) we tested the autocorrelation results of each drought index series. ETDI and 
SMDI mainly show autocorrelations in the range from 7 to 10 weeks of significant autocorrelation. 
The autocorrelation values of series of SPI, while depending on the period of aggregation, differ 
notably (2 weeks on SPIw-1, 5 weeks on SPIw-4, 10 weeks for SPIw-13, 18 on SPIw-26, 35 on SPIw-52, 
40 on SPI-78, 45 on SPIw-104) from those of ETDI and SMDI, while the range of ones of importance 
(ACF>0.5) barely reach half of them. The increasing values of autocorrelation with the increasingly 
aggregated SPI are compatible with the effect of the moving average of SPI. The evaluation of partial 
autocorrelation is more informative. Partial autocorrelations of ETDI and SMDI show mostly two (to 
four) week-lags as significant. An AR(2) configuration can be explained as a combination of growing 
and decaying exponentials. We assume the first term causes the direct relation and the second one 
inverse relation, supports our interpretation that the interactions between indices have a dominant 
positive interaction limited in time by a secondary inverse interaction, which we define as the energy-
limiting shift from high-energy conditions (evapotranspiration-mediated) to low-energy conditions 
(rainfall-inhibited). The autoregression terms at 4, 13, 26, 52 of SPIw-n  again refer to remnants of the 
moving average of the aggregation period of SPIw-n. 

Therefore, since the duration of the autocorrelation of ETDI, SMDI and ETDI differs (except for the 
combination SPIw13-ETDI or SMDI) the results of significant interactions commented based on SPI-
ETDI or SPI-SMDI interactions remain consistent from the weekly to the below-seasonal scale (SPIw-
13), which is the scale at which we underline the importance of identifying the interactions between 
indices. Therefore, we can say that despite the evident increasing lengthening of the impact of the 
moving average (aggregation period) on the significant clusters of correlation between indices in 
subplots c) and d) of Figs.3-6, the duration of the lags shown in Figs. 3-6 does seem to be defined by 
true interaction between the anomalies of the indices beyond autocorrelation artifacts.  

 
ETDIw     SMDIw 

 
SPIw-1     SPIw-26 

 

Regarding the apparent mismatch of RS and LSM of causes already discussed in Section 6.3 we can 
further illustrate for the reviewer the impact of the input and LSM structure. The parametrization of 
the model assumes a semi-distributed approach by sub-basins of the catchment on which each 
subbasin is defined based on average values of land cover and soil characteristics of the ECOCLIMAP2 
database in the subbasin. In consequence, the patchiness of LSM results due to the partial 



aggregation of the input (see figure below), may cause the loss of spatial variability compared to the 
remote sensing results and induce the mismatch on RS-LSM results we see on Figs. 3-7. 

 

4. “Line 162 “In order to fill the gaps … interpolation”. Please, specify the methodology 

adopted to interpolate and the maximum time span interpolated (this may strongly 

affect the results if the original time series is very fragmented, or the missing data 

interval are long)” 

The interpolation was applied pixel by pixel on a temporal basis. The maximum time span for the 

temporal interpolation fed from the last previous data within two weeks.  No spatio-temporal 

interpolation was applied. This clarification has been included in the same L162 of the manuscript. 

5. “Equations 1 and 3. I would suggest indicating the median with an overbar, avoiding 

MWS” 

Unlike other authors applying the ETDI and SMDI, we considered worthwhile keeping the notation 
shown by the authors of the indices SMDI and ETDI (Narasimhan and Srinivasan, 2005, AFM) 
expressed in the Equations 1 and 10 of their article to avoid confusion in the formula defining these 
indices. 

6. “Equation 1. As written, the first equation is always positive and the second is always 

negative. Is it correct? Shouldn’t it be the opposite?” 

The notation is that of Narasimhan and Srinivasan (2005, AFM) and is correct. We understand the 
misunderstanding of the reviewer since both the ETDI and SMDI may require an example to 
interpret their meaning. This is the case for Equation 1 of the water stress anomaly formula fed by 
the water stress ratio. The water stress ratio (WS=(PET-AET)/PET) for an area experiencing AET close 
to that of the PET (i.e. under wet conditions, e.g. 75% of PET) generates a water stress of WS=0.25. 
Using this value in the first equation of Equation 1, when WS<=MWS (assuming MWS may be 0.5, 
maxWS=0.9, minWS=0.1), we get the WSA=(MSW0.5-WS0.25)/(MWS0.5-minWS0.1)*100=62.5. This 
is a positive WSA that may tend to keep ETDI in + values, indicating wet conditions. It is the water 
stress ratio of values in between 0 (dry) and 1 (wet) which mislead the interpretation of the sign.  


