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Abstract. All along the Property and Casualty (P&C) insurance value chain, a vast range of data feed an equally vast range of

models to estimate the losses for the varying probabilities and magnitudes of all the underwritten risks, be they natural hazards,

financial, cyber. In effect, beyond reflecting and supporting the current understanding and knowledge of risks, these data and

models reflect and support the assessment of situations that have yet to be experienced.The (re)insurance market’s current

body of knowledge on natural hazards loss modelling results from over 30 years’ research involving private companies like5

(re)insurers, brokers, and modelling firms and academic researchers in atmospheric sciences, geosciences, civil engineering

studies, and data sciences, to name but a few disciplines. This paper highlights the need to conduct an in-depth review of the

existing loss modelling framework created in the early 1990s to capture the increasing complexity of the three risk drivers –

exposure, hazard, and vulnerability – as well as their interconnections.

1 Introduction10

The mission of Property and Casualty (P&C) insurers is to effectively protect clients’ property and activities while ensuring

the solvency of the company. Even though insurers develop an ever-increasing number of products to respond to specific client

needs, P&C insurance products are composed of two business segments: individual insurance or the retail business for home

or car owners and corporate insurance or commercial business for corporate clients. Insurance protection goes beyond risk

transfer (i.e., the payment of a premium against future claims); it also encompasses prevention actions such as reinforcing15

customers’ risk awareness and proposing adapted protective solutions.

For example, in commercial business, technical risk experts perform on-site visits to evaluate the state of buildings and identify

potential vulnerabilities to natural hazards. The objective is to assess how natural hazards could generate damage either to the

buildings themselves (e.g. storage warehouses, data centers, shopping centers) or to their contents (e.g. machinery, production

chains, stock), and if such damage could cause business interruption (e.g. employees / clients being unable to access the build-20

ing for N days resulting in a loss of turnover or profits). Prevention measures like elevating goods or machinery in the event of

flooding are then suggested or imposed post-assessment to reduce the risk and adjust the premium.

In the retail business with its mass of clients, protection actions have to be taken globally instead of individually. For example,

after the Great Fire of London in 1666 that destroyed most of the city’s buildings, made of wood at that time, insurance pre-

mium rates were lowered for buildings made of brick to encourage brick constructions instead of wood thus reducing the fire25
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risk in London.

To achieve their mission of protection, it is essential for insurers to identify and quantify the risks associated with the under-

written policies. All along the P&C insurance value chain, a vast range of data feed an equally vast range of models to estimate

the losses for the varying probabilities and magnitudes of all the underwritten risks, be they natural hazards, financial, or cyber.

These models serve to support decision-making from the actual underwriting and pricing of an individual or corporate’s policy30

to the setting and optimization of the reinsurance programs at the insurance company level.

The regulatory environment also plays a significant role in validating the models (re)insurers use to assess risks. Regulations

require (re)insurers to assess the extreme losses of all their risks to determine their minimum level of economic capital to ensure

the (re)insurance companies’ solvency in the event of intensely severe years. The European Solvency 2 regulation is a case in

point. (Re)insurers with Europe-based headquarters are required to annually project their losses for a 200-year return period35

shock along with the associated risk management actions such as the purchasing of reinsurance covers. This estimated amount

of loss determines the level of capital (re)insurers have to bear in their owned funds to resist such a shock if it were to occur in

the following year. The models used to assess this loss require approval and any change is monitored by regulatory authorities.

Sound and adaptive risk assessment and management are built over time through a continuous reassessment of insurers’ under-

standing of: the “known knowns”, what we know we know; the “known unknowns”, what we know we do not know; and the40

“unknown unknowns”, what we don’t even know we do not know (Girard, 2009). This reassessment process induces a knowl-

edge cycle: data supports the current understanding and knowledge of a risk, that is, what we know we know. On the basis of

this understanding, models are also built to support assessing situations that have yet to be experienced such as extreme events,

that is, what we know we don’t know. However, the occurrence of unknown unknowns triggered by natural and organizational

issues that insurers either ignore or have yet to understand, points to a dire need to upgrade data collection, modelling methods45

and tools to perpetually enhance the view of risk and further insights for the decision-making process.

Prior to focusing on the scientific and technical advances made to keep refining what we know about the risk drivers, expo-

sure, hazard, and vulnerability, and how to increase insurers’ preparedness for the unknown, it is important to recall how the

reassessment process engendered the natural hazard loss modeling framework from the outset.

2 Natural hazard modelling: a brief overview50

2.1 The co-influence of (re)insurance market and natural hazard modelling

The actual assessing of natural event related costs has greatly evolved over the past 30 years. At first, so-called catastrophe

models focused on the modelling of extreme losses to assess the risk of a portfolio (i.e. large ensembles of insured buildings).

Before the 1990s, catastrophe modelling consisted in extrapolating the loss experience to estimate extreme losses. This loss

experience was usually limited and recorded as a total amount of loss per event and per insurer or per event and for the whole55

(re)insurance market. The data were thus too coarse to capture the three risk drivers’ individual impact on the losses: the

exposure (e.g. what if the exposure is located in a more / less risky area), the hazard itself (e.g. what portion of the losses

are generated by a storm surge versus wind in the case of a tropical cyclone), the vulnerability (e.g. how effective the flood
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defenses, building codes are). As a result, while the data and the resulting modelling failed to take into account individual

effects when assessing extreme losses, it did reflect the state of what was known by insurers and public authorities at that time.60

Hurricane Andrew in 1992 and its unexpected impact was a game changer for modelling natural hazard-generated losses

(Grossi et al., 2005; Mitchell-Wallace, 2017). According to McChristian (2012), before Hurricane Andrew, the loss assessment

for an event of that strength was $4 to $5bn. This is three times lower than Hurricane Andrew’s actual loss at $15 bn. Insurers

underestimated their exposure as well as their exposure’s vulnerability to such an event. McChristian (2012) also indicates

that though recent loss history was adjusted to reflect current macro-economic trends, it has failed to capture the increasing65

population over coastal areas. In the aftermath of Hurricane Andrew, a collective realization grew for the need to both separately

characterize the three drivers of the risk - exposure, hazard and vulnerability - and model their interconnections. Catastrophe

modelling therefore evolved from a statistical extrapolation to a framework divided into 4 components as shown in Figure 1;

one component by risk driver (exposure, hazard and vulnerability), and one component that contains the insurance policies’

financial conditions and its modelling.70

The occurrence of natural disasters, in particular those with a strong impact for the (re)insurance market, continues to feed

research insofar that the research is in turn integrated into the hazard and vulnerability components of the loss modelling

framework every 2 to 5 years. This is how, the successive 1999 occurrence of the two extreme European windstorms Lothar and

Martin triggered the introduction of the serial clustering effect in modelling the frequency of European windstorms (Mitchell-

Wallace, 2017). The serial clustering effect refers to the higher probability that two extreme windstorms occur in a short75

period of time, under particular atmospheric conditions (Vitolo et al., 2009; Pinto et al., 2013; Priestley et al., 2017). Prior to

these windstorms, the assumption used to calculate the occurrence probability of European windstorms followed the Poisson

distribution and thus failed to allow for the modelling of successive events. As shown by Priestley et al. (2018), the clustering

effect has a significant impact on the estimation of yearly aggregated losses and therefore on the dimensioning of reinsurance

covers.80

Within the reinsurance market, the use of catastrophe models - developed internally or licensed through third-party vendors -

has grown in the aftermath of Hurricane Andrew. For insurers to cede their risk they must provide their exposure information

to reinsurers so they can conduct a loss assessment prior to estimating the reinsurance premium corresponding to the accepted

risk. Today, catastrophe models continue to be used primarily to set reinsurance programs.

The implementation of regulation has prompted insurers to use catastrophe models, mainly licensed by third-party vendors, as85

tools to assess the risk, define the risk appetite, and set the solvency capital requirement. For example, the Solvency 2 regulation

implemented in Europe in 2016 requires (re)insurers with Europe-based headquarters to annually assess their loss for a 200-

year return period shock. (Re)Insurers conduct this assessment for all the risks they are exposed to. They then aggregate these

estimated losses to determine the total potential loss and the economic capital they have to bear in their owned funds. To achieve

this assessment, (re)insurers have two options: either to use the so-called Standard Formula, calibrated on market exposure,90

or to develop an internal view of their risk that requires regulator approval. Most (re)insurers choosing to develop their own

view of natural hazard risk use one or several models licensed to third-party vendors; others develop their own suite of models.

When (re)insurers opt for using third-party models, model evaluation becomes a necessary activity for assessing the model’s
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strengths and limitations leads to gaining in understanding and in taking ownership of the model. Model adjustments may be

defined and applied to the models’ loss estimation to address identified limitations (e.g. a non-modeled peril). (Re)insurance95

companies also invest in the development of in-house models either on scopes where no third-party vendors model is available

or to gain in flexibility and transparency.

In the past few years, both the scope and use of catastrophe models have evolved. Indeed, to estimate the insurance premium

of an average risk, insurers are now as interested in capturing small frequent events as large rare ones. As more and more data

have been included in the calibration of the catastrophe models, they do capture much more than just extreme loss events. In100

the hazard module, the full spectrum of events (i.e. moderate/intense; frequent/rare events) is considered. In the vulnerability

module, vulnerability curves cover the entire range of hazard intensity. As for the modelling scope, catastrophe models even

exist for man-made perils such as cyber and terrorism. To reflect these evolutions, we will use the term ‘natural hazard models

/ modelling’ as it allows for greater precision on the model’s targeted scope and reaffirms the use of these models for other

purposes than the analysis of extreme events.105

2.2 Natural hazard modelling framework

The loss modelling framework is composed of 4 components, namely exposure, hazard, vulnerability and financial components

(Figure 1). The description below provides a brief introduction. Greater details on the different components can be found in

Mitchell-Wallace (2017).

The exposure component contains the insurance portfolio’s information: the buildings’ location, and their key physical prop-110

erties (e.g. structure, occupancy, year of construction. . . ). The hazard component contains a synthetic catalogue of several tens

of thousands of events that represent the range of possible and plausible events for a given natural hazard (e.g., Asia typhoon,

US ground shaking, Europe severe convective storms, ranging from small frequent events to extreme rare events. Each event

is characterized by a footprint (i.e., the maximum intensity over event duration) and an annual occurrence probability. The

vulnerability component is composed of vulnerability curves that translate the hazard’s intensity into a building damage ratio.115

Ideally, there is one vulnerability curve for every combination of a building’s physical properties. Finally, the financial compo-

nent contains the insurance contract’s financial data: the sum insured corresponding to the coverage (building, content, business

interruption), the deductibles and limits, as well as the coinsurance programs or reinsurance treaties, if any.

For every event of the hazard component and for every building in the insurance portfolio, the 3-step loss modelling process

consists in:120

1. Intersecting the building’s location with the event footprint to obtain the location’s hazard intensity value.

2. Taking into account the hazard intensity value and the building’s physical properties and using the vulnerability curve

reflecting the building’s characteristics to derive the corresponding damage ratio.

3. Applying the damage ratio to the insured value of the building, as specified in the financial module, to provide a loss

amount prior applying the financial conditions to the loss amount to get the ultimate loss borne by the insurance company.125
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The primary outputs of natural hazard models are exceedance probability distributions representing the probability to exceed a

certain amount of loss. Two distributions are commonly used: the one for the annual maximum loss - Occurrence Exceedance

Probability (OEP)-, and the one for the annual aggregated loss – Aggregate Exceedance Probability (AEP). The Annual Av-

erage Loss (AAL) is also frequently used for budget planning for instance. Analyses of building losses are aggregated at

granularities going from the building level to the portfolio level to characterize the probability to exceed an amount of loss.130

This granularity is set in function of an analysis’ objective, i.e. policy underwriting or portfolio management.

The loss modelling process is supported by a platform that contains (i) the data of each component stored in a specific format

(e.g. csv or netcdf file, digital precision. . . ) and (ii) the code functions that process data and estimate the losses. Until the early

2010s, the loss modelling process could only be performed on proprietary platforms. Launched in 2010, the OASIS1 initiative’s

ambition was to provide an open-source loss modelling platform to further transparency and to expand the use of natural hazard135

modelling beyond the (re)insurance market.

From a business perspective, integrating such a process in daily operational activities requires the run time to take no more

than a few hours. As an example of volumes at stake, assuming we have a catalogue of around 30,000 events and a portfolio of

5 million buildings, a total 150 billion rows would be needed to capture and store the risk distribution. This is without taking

into account more advanced modelling of randomness and local effect scenarios, that would increase the dimension of outputs140

by several orders of magnitude. To keep to the expected run time and given the constrained IT infrastructure with limited

storage space and a memory limit, the loss modelling platform is to be rationalized and optimized, even if it results in a drop

of formatting flexibility and data precision within the 4-components.

There is therefore a gap between the quality and the sophistication of the modelling produced by research and the derivative

data compiled in the loss modelling framework’s 4-components. For example, the severity of natural events is captured in the145

hazard component through the use of hazard footprints defined as the maximum hazard value (e.g., windspeed, flood depth,

peak ground acceleration) at each grid cell of the considered area over the duration of the event. The information relative to the

event’s duration and to the hazard value’s evolution over time however are lost, even though both of these parameters affect the

damage assessment of a building.

The 4-component loss modelling framework makes it easier to identify the areas where, component by component, a more150

in-depth investigation is needed to refine data collection and modelling. The next section focuses on three of the loss mod-

elling framework’s components where (i) a thorough and systematic data collection needs to be put in place, and (ii) the loss

modelling framework requires investment to upgrade it and tailor it to respond to insurers’ business needs.

3 Current challenges in modelling natural hazards

The (re)insurance market’s current body of knowledge on natural hazards loss modelling results from over 30 years’ research155

involving private companies like (re)insurers, brokers, and modelling firms and academic researchers in atmospheric sciences,

geosciences, civil engineering studies, and data sciences, to name but a few disciplines (Ward et al., 2020). The learning

1https://oasislmf.org/our-modelling-platform
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curve has been steep, closely linked to the increase of computer power (e.g., enabling the development and implementation of

millions of possible climatic or seismic scenarios) and the collection of increasingly granular observational data (e.g. hazard,

claims, geocoded exposure).160

A significant gap exists today between what research produces in terms of data and models and what insurers ultimately have

access to through the natural hazard loss modelling framework. This reflects the gap between the loss modelling framework’s

initial goal – providing aggregated loss estimates for extreme events-, and insurers current needs that is accurately assessing

the impact of natural hazards on their business, by conducting sensitivity tests on modelling parameters to evaluate their impact

on (re)insurance premiums for instance.165

3.1 Exposure component

Through an increasing use of natural hazards models, insurers have realized both data quality and its completeness reduce the

uncertainty in the modelling. Over the past 5 to 10 years, insurers have significantly improved the collection process of infor-

mation characterizing their exposure, namely the coordinates of the location of the buildings as well as the buildings’ physical

properties. As mentioned previously, exposure data in the loss modelling process is used (i) to estimate the hazard’s severity at170

the location of the building and (ii) to select the suitable damage curve. The more precise the exposure data, the more accurate

the loss evaluation will be. However, as some elements are particularly difficult to get at the time of underwriting individual

insurance, the systematic extraction and completion of the data remains a challenge and any missing information needs to be

completed once the policy is underwritten either in the exposure database or at a later stage in the modelling.

The increasing volume and precision of geographical information captured by satellites allowed for the development of perfor-175

mant geocoding tools supporting the completion of the exposure database. With an address, it is possible to get the geolocation,

the structure of the building, number of floors and even the roof type, all critical drivers of damage for different perils (Ehrlich

and Tenerelli, 2013; Castagno and Atkins, 2018; Kang et al., 2018; Schorlemmer et al., 2020). This progress in characterizing

buildings’ properties along with geolocations, was a major advancement enabling insurers to visualize and analyze their accu-

mulation to natural hazard risk.180

To fill the gap when critical information is missing in the exposure database, assumptions are made by using either other data

sources to complete the exposure database (e.g. exposure disaggregation to fill in buildings’ geolocation) or generic vulnerabil-

ity curves defined as the weighted average of specific vulnerability curves in the loss modelling process. Any omission on the

properties of a building’s construction induces an uncertainty on that given building(s)’s exposure that can be quantified through

sensitivity tests that assess varying combinations of a building’s construction properties. The impact of inferring geolocation185

might however be greater, depending on the peril in question, as for flood and severe convective storms. Testing the impact

on losses of a disaggregation scheme requires running the model using several versions of disaggregated portfolios, which is

inconceivable today notably because of run time constraints. The disaggregation technique could also provide a solution to

modelling the impact of natural hazard on movable exposure. Today, motor and marine exposures are modelled like buildings’.

The geolocation used is the car owner’s address or the vessel’s home port as specified in the policy contract. Disaggregating the190

motor or marine exposure multiple times would give different vehicle locations and hence capture a range of potential losses.

6



3.2 Hazard component

An ever-growing amount of data on the hazard component has been made accessible, refined, and maintained. A multitude of

types of data, from observations to model simulations or a mixture of both, substantially support the development of hazard

catalogues and their validation. Hazard modelling sets out to characterize, via a hazard events catalogue, the full spectrum195

of severity and frequency of hazards on a specific geographical area. A review of hazard modelling approaches by peril can

be found in Ward et al. (2020). Beyond the perpetual enhancement necessary to complete and refine the view of the risk and

to adapt to an ever-evolving environment, uncertainties persist in being only partially quantified due to (i) IT constraints and

(ii) the information loss perpetuated by simplifying assumptions to derive data compiled in the loss modelling framework.

Resolving these two sources of uncertainties would enable insurers to heighten their understanding of the risk and make200

sounder business decisions.

Uncertainties in the hazard component come from the input data and the modelling parameters used to generate the stochastic

event catalogue. For example, Kaczmarska et al. (2018) quantify how in changing flooding parameters the loss estimates are

impacted. Winter et al. (2018) go a step further notably in identifying and quantifying uncertainties present in the production

of the hazard events catalogue. Such an analysis first requires running the production of the hazard catalogue several times to205

test different sets of parameters and secondly running the loss simulation engine multiple times. Including the quantification of

uncertainties is costly both in terms of computer power and runtime but should be systematized as a modelling best practice.

As mentioned in Section 2.2, the information relative to the event’s duration and to the hazard value’s evolution however are lost

when generating the events’ footprint, i.e. the maximum value of hazard intensity over the duration of the event. In (re)insurance

policies, an event’s duration is a metric used, within the hours clause, to specify that the (re)insurer will cover all the financial210

losses accumulated in a defined number of hours, varying depending on the peril. If financial losses are still recorded surpassing

the defined number of hours, it will be counted as a second and separate event and activate a double reimbursement from the

reinsurer. According to how the reinsurance program is defined, the insurer may have to pay additional fees to get a cover for the

second event. Analyzing the impact of the hours clause on the ultimate loss would therefore be beneficial for the (re)insurance

market. The loss modelling framework must evolve to allow for more flexibility and more completeness.215

3.3 Vulnerability component

When a natural event occurs, damage results from the rupture of one or several of the building’s components, the level of the

rupture depending on the hazard’s severity and the components’ vulnerability. In the aftermath of the event, reconstruction

costs are assessed based on the current material prices and labor costs. However, in post-disaster situations, reconstruction

costs may be significantly higher due to a post-event demand surge and inflation. This effect is called post-loss amplification220

(PLA) and is modelled using a sigmoid function whose calibration remains difficult as (i) it has been observed subsequent to

very extreme events and (ii) reconstruction costs or claims available in the historical record includes the PLA effect. As the

PLA may have a substantial impact on the ultimate amount of loss paid by insurers, further research is needed to analyze and

model this effect.
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Systematic data collection of damage information and its associated hazard magnitude is therefore vital to characterize the225

impact of natural hazards on buildings and to improve the calibrations not only of the buildings’ destruction rate but also of the

reconstruction costs in the vulnerability component. New technologies such as drones and satellites provide alternative ways

to access impacted areas to collect detailed and granular measurements within a few hours or days of an event’s occurrence

(Chesnel et al., 2007; Kakooei and Baleghi, 2017). While there has been a substantial increase in the availability of observa-

tional data over the past two decades (Yu et al., 2018), further investments should be made to systematically collect: (i) the230

event’s level of hazard severity at the building’s location (i.e. values of the relevant hazards’ variables leading to the building’s

damage), (ii) the building’s level of damage and the prevention measures if any (concurrently recording all relevant information

on the building itself) and (iii) the level of associated repair costs (including information on loss adjustments and economic

metrics such as post event inflation). This data collection effort should be a joint public and private sector undertaking to build

up a core common knowledge.235

A point of attention is the need for data collectors to coordinate and use the common definitions of the damages’ scale to avoid

duplicating and overlapping datasets that are incomparable. Research initiatives dedicated to gathering various data sources

already exist at country level. One such example is the HOWAS database for flood damage in Germany (Kreibich et al., 2017;

Kellermann et al., 2020). Could this type of work be extended to the whole of Europe or even more globally? The PERILS1

initiative is worth mentioning as it is an example of the (re)insurance market’s claims data collection initiative. When an event’s240

loss estimation exceeds a defined threshold, the PERILS organization collects claims from the (re)insurers taking part in the

consortium. While this data is aggregated at CRESTA2 level, the initial estimates of the loss ratios are fundamental to establish

market’s loss benchmarks and derive market vulnerability curves for instance.

While the challenges set out in this section indicate how to improve what we know we don’t know, they also highlight the

potential limitations of the current loss modelling framework and its simulation platform. The shortcomings of the current245

loss modelling framework herein described point to the need for an in-depth review of the framework to improve and increase

insurers’ understanding of natural hazard risk particularly in an ever more connected environment that is described in the next

section. From an insurer’s perspective, in a context of growing focus on natural hazard impacts, data collection, modelling

flexibility, and transparency have become core strategic elements to enhance and gain confidence in its assessment of natural

hazard risk. To achieve modelling flexibility and transparency the loss modelling framework will require in-depth changes to250

absorb the high amount of data and to incorporate uncertainty quantifications. Data collection, especially for damages and

claims, is a societal matter and should be tackled collectively.

4 Future challenges and further needs

Since the building of the loss modelling framework in the 1990s, clients have become more interconnected (Gereffi et al.,

2001), and the correlations between natural hazards and regions have also become better understood and quantified (Steptoe255

1https://www.perils.org/
2https://www.cresta.org/
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et al., 2018; Zscheischler et al., 2020; Tilloy et al., 2020). This section explores 3 elements that would advance natural risk

assessment and would support insurers’ in their ambition to more accurately project and plan out their business activities related

to natural hazards.

4.1 Introducing a fifth component to quantify the uncertainty

As stated in previous sections, the assessment of uncertainty all along the modelling chain constitutes the loss modelling260

framework’s notable shortcoming and the one that requires further investigation. To a certain extent, uncertainty is inherent to

modelling and is partly captured in the loss modelling framework today through (i) the primary uncertainty, that is the assump-

tions and the simulation of the hazard catalogue, and (ii) the secondary uncertainty, that is the damage and loss assessment.

Including the quantification of uncertainties in the loss modelling framework is costly both in terms of computer power and

runtime. However, given the rapid evolution of IT, computer power and run time should not be an issue for long and the ques-265

tion will then be how to implement a comprehensive uncertainty quantification scheme. While Beven et al. (2018) suggest a

framework to deal with epistemic uncertainty in natural hazard modelling, recent work like (Noacco et al., 2019; KC et al.,

2020) has been carried out to address quantifying uncertainty with appropriate methods and tools. How about introducing a

specific “uncertainty component” that would deal with the multiple datasets from the different components and propagate the

quantification all along the loss modelling process?270

Along with their systematic quantification, we are convinced that uncertainties’ management and communication around it will

evolve and that insurers will take ownership of this management and make it a tool to enhance the modelling (Thompson and

Warmink, 2016; Doyle et al., 2019).

4.2 Supply chain modelling

With globalization, clients around the world have become increasingly interconnected and dependent on each other within275

so-called Global Value Chains (Gereffi et al., 2001; Baldwin and Lopez-Gonzalez, 2015; Phillips, 2018). This dependency

became apparent with the 2011 floods in Thailand when Thailand’s brutal interruption of microprocessor production led to

a halt in global production, a global shortage of microprocessors, and consequently, a shortage of cameras and smartphones

(Chopra and Sodhi, 2014; Haraguchi and Lall, 2015).

From an insurer’s perspective, suppliers’ defaulting in their deliveries due to the occurrence of a natural hazard is not insur-280

able, as it is not quantifiable with the current modelling that fails to capture this connection between suppliers and their client

producers. Supply chain data has improved (Tiwari et al., 2018; Beorchia and Crook, 2020) and needs to be analyzed further

and incorporated into natural hazard loss modelling. This could provide a source of opportunities for insurers to deliver new

services to customers while continuing to contribute to advancing research in visualizing and measuring the levels of complex-

ity (volume, direction and intensity of interconnections).285

The interconnections between hazards or between clients have yet to be captured even in the latest loss modelling framework.

It remains siloed by hazard and region and omits supply chain information. Failing to integrate these interactions may result

9



in instilling a bias in our understanding of the underlying risk. A deeper review of the loss modelling framework is to be

conducted to reflect on this new and complex reality.

4.3 Forward-looking scenario: modelling the future of natural hazard risks290

Natural hazard models have been primarily developed to overcome the limited historical loss record and to assess extreme

losses driven by exposure, hazard and vulnerability in the present. They are now envisaged as tools to assess the future of

natural hazard climate risks.

To perform this exercise, insurers need to not only project the plausible future scenarios of hazard events (information provided

by climate model simulations) but also to project the evolution of exposure and vulnerability. In this context, the most pressing295

questions global insurers need to respond to are: how to gather future projections of population growth or decline and/or wealth

worldwide? How will building codes evolve?

Cremen et al. (2022) perform a thorough review of the available literature and provide initial answers to these questions.

Such a review is particularly enlightening to enhance the simple initial assumptions that were made, especially for exposure

growth and vulnerability. Furthermore, as vulnerability is a crucial element in adapting to climate change impacts, further300

investigations on the implementation of prevention measures and the quantification of the resulting risk reduction are needed.

Finally, while this forward-looking exercise is necessary, its outcomes should be taken with great caution. As Fiedler et al.

(2021) highlight, uncertainty around future exposure, hazard or vulnerability projections, is significant and compounds the

uncertainty already present in the loss modelling framework.

5 Conclusions305

To date, models have evolved through the incorporation of new information, without ever undergoing an in-depth transforma-

tion. Modifications have stemmed from the observation of the growing number of interconnections – and mutual impacts – at

multiple levels: between insured customers and their suppliers and interactions and cross impacts between the disasters-causing

natural phenomena. Though this make-do approach has served, it no longer suffices. In today’s world where complex intrinsic

interconnections exist between natural hazards, exposure, and vulnerability, models fail to reflect this reality. They are in want310

of an in-depth transformation. Only then will they convey and advance the new level of understanding insurers need to cultivate

and enable the design and testing of new products and protection mechanisms.

As said in Baum (2015), “threats are rarely completely unknown or unquantifiable”. Sometimes what we do not know is already

present in the data or the model but it has yet to be understood or analyzed. We propose reflecting on how to bring together

a transdisciplinary research team composed not only of IT, data science, and the geosciences, but also civil engineers, urban315

planning sciences, and socio-economic sciences to investigate the opportunities to build global loss models for natural hazards

that would deal with the complexity of the interactions of both natural elements and the customer ecosystem. This would enable

insurers to better anticipate the needs of their customers while being better equipped to cope not only with uncertainty but also

the unknown.

10



References320

Baldwin, R. and Lopez-Gonzalez, J.: Supply-chain Trade: A Portrait of Global Patterns and Several Testable Hypotheses, The World Econ-

omy, 38, 1682–1721, https://doi.org/10.1111/twec.12189, 2015.

Baum, S. D.: Risk and resilience for unknown, unquantifiable, systemic, and unlikely/catastrophic threats, Environment Systems and Deci-

sions, 35, 229–236, https://doi.org/10.1007/s10669-015-9551-8, 2015.

Beorchia, A. and Crook, T. R.: Bloomberg Supply Chain Analysis: A Data Source for Investigating the Nature, Size, and Structure of325

Interorganizational Relationships, in: Research Methodology in Strategy and Management, edited by Crook, T. R., Lê, J., and Smith,

A. D., pp. 73–100, Emerald Publishing Limited, https://doi.org/10.1108/S1479-838720200000012017, 2020.

Beven, K. J., Aspinall, W. P., Bates, P. D., Borgomeo, E., Goda, K., Hall, J. W., Page, T., Phillips, J. C., Simpson, M., Smith, P. J., Wagener,

T., and Watson, M.: Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?, Natural

Hazards and Earth System Sciences, 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018, 2018.330

Castagno, J. and Atkins, E.: Roof Shape Classification from LiDAR and Satellite Image Data Fusion Using Supervised Learning, Sensors,

18, 3960, https://doi.org/10.3390/s18113960, 2018.

Chesnel, A.-L., Binet, R., and Wald, L.: Object oriented assessment of damage due to natural disaster using very high resolu-

tion images, in: 2007 IEEE International Geoscience and Remote Sensing Symposium, pp. 3736–3739, IEEE, Barcelona, Spain,

https://doi.org/10.1109/IGARSS.2007.4423655, 2007.335

Chopra, S. and Sodhi, M. S.: Reducing the Risk of Supply Chain Disruptions, Supply Chain Management, p. 9, 2014.

Cremen, G., Galasso, C., and McCloskey, J.: Modelling and quantifying tomorrow’s risks from natural hazards, Science of The Total Envi-

ronment, 817, 152 552, https://doi.org/10.1016/j.scitotenv.2021.152552, 2022.

Doyle, E. E., Johnston, D. M., Smith, R., and Paton, D.: Communicating model uncertainty for natural hazards: A qualitative systematic

thematic review, International Journal of Disaster Risk Reduction, 33, 449–476, https://doi.org/10.1016/j.ijdrr.2018.10.023, 2019.340

Ehrlich, D. and Tenerelli, P.: Optical satellite imagery for quantifying spatio-temporal dimension of physical exposure in disaster risk assess-

ments, Natural Hazards, 68, 1271–1289, https://doi.org/10.1007/s11069-012-0372-5, 2013.

Fiedler, T., Pitman, A. J., Mackenzie, K., Wood, N., Jakob, C., and Perkins-Kirkpatrick, S. E.: Business risk and the emergence of climate

analytics, Nature Climate Change, 11, 87–94, https://doi.org/10.1038/s41558-020-00984-6, 2021.

Gereffi, G., Humphrey, J., Kaplinsky, R., and Sturgeon*, T. J.: Introduction: Globalisation, Value Chains and Development, IDS Bulletin, 32,345

1–8, https://doi.org/10.1111/j.1759-5436.2001.mp32003001.x, 2001.

Girard, J.: A Leader’s Guide to Knowledge Management: Drawing on the Past to Enhance Future Performance, Business Expert Press, 1

edn., https://doi.org/10.4128/9781606490198, 2009.

Grossi, P., Kunreuther, H., and Windeler, D.: An Introduction to Catastrophe Models and Insurance, in: Catastrophe Modeling: A New

Approach to Managing Risk, edited by Grossi, P. and Kunreuther, H., vol. 25, pp. 23–42, Kluwer Academic Publishers, Boston,350

https://doi.org/10.1007/0-387-23129-3_2, series Title: Catastrophe Modeling, 2005.

Haraguchi, M. and Lall, U.: Flood risks and impacts: A case study of Thailand’s floods in 2011 and research questions for supply chain

decision making, International Journal of Disaster Risk Reduction, 14, 256–272, https://doi.org/10.1016/j.ijdrr.2014.09.005, 2015.

Kaczmarska, J., Jewson, S., and Bellone, E.: Quantifying the sources of simulation uncertainty in natural catastrophe models, Stochastic

Environmental Research and Risk Assessment, 32, 591–605, https://doi.org/10.1007/s00477-017-1393-0, 2018.355

11

https://doi.org/10.1111/twec.12189
https://doi.org/10.1007/s10669-015-9551-8
https://doi.org/10.1108/S1479-838720200000012017
https://doi.org/10.5194/nhess-18-2769-2018
https://doi.org/10.3390/s18113960
https://doi.org/10.1109/IGARSS.2007.4423655
https://doi.org/10.1016/j.scitotenv.2021.152552
https://doi.org/10.1016/j.ijdrr.2018.10.023
https://doi.org/10.1007/s11069-012-0372-5
https://doi.org/10.1038/s41558-020-00984-6
https://doi.org/10.1111/j.1759-5436.2001.mp32003001.x
https://doi.org/10.4128/9781606490198
https://doi.org/10.1007/0-387-23129-3_2
https://doi.org/10.1016/j.ijdrr.2014.09.005
https://doi.org/10.1007/s00477-017-1393-0


Kakooei, M. and Baleghi, Y.: Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment, International Journal of

Remote Sensing, 38, 2511–2534, https://doi.org/10.1080/01431161.2017.1294780, 2017.

Kang, J., Körner, M., Wang, Y., Taubenböck, H., and Zhu, X. X.: Building instance classification using street view images, ISPRS Journal of

Photogrammetry and Remote Sensing, 145, 44–59, https://doi.org/10.1016/j.isprsjprs.2018.02.006, 2018.

KC, U., Garg, S., Hilton, J., and Aryal, J.: A cloud-based framework for sensitivity analysis of natural hazard models, Environmental360

Modelling & Software, 134, 104 800, https://doi.org/10.1016/j.envsoft.2020.104800, 2020.

Kellermann, P., Schröter, K., Thieken, A. H., Haubrock, S.-N., and Kreibich, H.: The object-specific flood damage database HOWAS 21,

Natural Hazards and Earth System Sciences, 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, 2020.

Kreibich, H., Thieken, A., Haubrock, S.-N., and Schröter, K.: HOWAS21, the German Flood Damage Database, in: Geophysical

Monograph Series, edited by Molinari, D., Menoni, S., and Ballio, F., pp. 65–75, John Wiley & Sons, Inc., Hoboken, NJ, USA,365

https://doi.org/10.1002/9781119217930.ch5, 2017.

McChristian, L.: Hurricane Andrew and Insurance: The Enduring Impact of an Historic Storm, p. 19, 2012.

Mitchell-Wallace, K., ed.: Natural catastrophe risk management and modelling: a practitioner’s guide, John Wiley and Sons, Inc, Hoboken,

NJ, 2017.

Noacco, V., Sarrazin, F., Pianosi, F., and Wagener, T.: Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the370

SAFE toolbox, MethodsX, 6, 2258–2280, https://doi.org/10.1016/j.mex.2019.09.033, 2019.

Phillips, N.: Global value chains:, in: Dictionnaire d’économie politique, pp. 247–250, Presses de Sciences Po,

https://doi.org/10.3917/scpo.smith.2018.01.0247, 2018.

Pinto, J. G., Bellenbaum, N., Karremann, M. K., and Della-Marta, P. M.: Serial clustering of extratropical cyclones over the North Atlantic and

Europe under recent and future climate conditions: Clustering of Extratropical Cyclones, Journal of Geophysical Research: Atmospheres,375

118, 12,476–12,485, https://doi.org/10.1002/2013JD020564, 2013.

Priestley, M. D. K., Pinto, J. G., Dacre, H. F., and Shaffrey, L. C.: Rossby wave breaking, the upper level jet, and serial cluster-

ing of extratropical cyclones in western Europe: Western Europe Clustering Dynamics, Geophysical Research Letters, 44, 514–521,

https://doi.org/10.1002/2016GL071277, 2017.

Priestley, M. D. K., Dacre, H. F., Shaffrey, L. C., Hodges, K. I., and Pinto, J. G.: The role of serial European windstorm clustering for extreme380

seasonal losses as determined from multi-centennial simulations of high-resolution global climate model data, Natural Hazards and Earth

System Sciences, 18, 2991–3006, https://doi.org/10.5194/nhess-18-2991-2018, 2018.

Schorlemmer, D., Beutin, T., Cotton, F., Garcia Ospina, N., Hirata, N., Ma, K.-F., Nievas, C., Prehn, K., and Wyss, M.: Global

Dynamic Exposure and the OpenBuildingMap - A Big-Data and Crowd-Sourcing Approach to Exposure Modeling, other, oral,

https://doi.org/10.5194/egusphere-egu2020-18920, 2020.385

Steptoe, H., Jones, S. E. O., and Fox, H.: Correlations Between Extreme Atmospheric Hazards and Global Teleconnections: Im-

plications for Multihazard Resilience: Atmospheric Hazards and Global Teleconnections, Reviews of Geophysics, 56, 50–78,

https://doi.org/10.1002/2017RG000567, 2018.

Thompson, M. and Warmink, J. J.: Natural Hazard Modeling and Uncertainty Analysis, in: Geophysical Monograph Series, edited by Riley,

K., Webley, P., and Thompson, M., pp. 9–19, John Wiley & Sons, Inc., Hoboken, NJ, USA, https://doi.org/10.1002/9781119028116.ch2,390

2016.

Tilloy, A., Malamud, B. D., Winter, H., and Joly-Laugel, A.: Evaluating the efficacy of bivariate extreme modelling approaches for multi-

hazard scenarios, Natural Hazards and Earth System Sciences, 20, 2091–2117, https://doi.org/10.5194/nhess-20-2091-2020, 2020.

12

https://doi.org/10.1080/01431161.2017.1294780
https://doi.org/10.1016/j.isprsjprs.2018.02.006
https://doi.org/10.1016/j.envsoft.2020.104800
https://doi.org/10.5194/nhess-20-2503-2020
https://doi.org/10.1002/9781119217930.ch5
https://doi.org/10.1016/j.mex.2019.09.033
https://doi.org/10.3917/scpo.smith.2018.01.0247
https://doi.org/10.1002/2013JD020564
https://doi.org/10.1002/2016GL071277
https://doi.org/10.5194/nhess-18-2991-2018
https://doi.org/10.5194/egusphere-egu2020-18920
https://doi.org/10.1002/2017RG000567
https://doi.org/10.1002/9781119028116.ch2
https://doi.org/10.5194/nhess-20-2091-2020


Tiwari, S., Wee, H., and Daryanto, Y.: Big data analytics in supply chain management between 2010 and 2016: Insights to industries,

Computers & Industrial Engineering, 115, 319–330, https://doi.org/10.1016/j.cie.2017.11.017, 2018.395

Vitolo, R., Stephenson, D. B., Cook, I. M., and Mitchell-Wallace, K.: Serial clustering of intense European storms, Meteorologische

Zeitschrift, 18, 411–424, https://doi.org/10.1127/0941-2948/2009/0393, 2009.

Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D.,

Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E., and Winsemius, H. C.: Review article: Natural

hazard risk assessments at the global scale, Natural Hazards and Earth System Sciences, 20, 1069–1096, https://doi.org/10.5194/nhess-400

20-1069-2020, 2020.

Winter, B., Schneeberger, K., Huttenlau, M., and Stötter, J.: Sources of uncertainty in a probabilistic flood risk model, Natural Hazards, 91,

431–446, https://doi.org/10.1007/s11069-017-3135-5, 2018.

Yu, M., Yang, C., and Li, Y.: Big Data in Natural Disaster Management: A Review, Geosciences, 8, 165,

https://doi.org/10.3390/geosciences8050165, 2018.405

Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A.,

Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate

events, Nature Reviews Earth & Environment, 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.

13

https://doi.org/10.1016/j.cie.2017.11.017
https://doi.org/10.1127/0941-2948/2009/0393
https://doi.org/10.5194/nhess-20-1069-2020
https://doi.org/10.5194/nhess-20-1069-2020
https://doi.org/10.5194/nhess-20-1069-2020
https://doi.org/10.1007/s11069-017-3135-5
https://doi.org/10.3390/geosciences8050165
https://doi.org/10.1038/s43017-020-0060-z


Figure 1. Loss Modelling Framework composed of 4 components. A simulation engine is used to intersect the exposure information with

the catalogue of hazard events and apply the damage ratio characterized with the vulnerability curve, function of hazard and building

characteristics. This operation leads to a loss, gross of any financial insurance conditions. Their application is performed in the financial

module.
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