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Abstract. We present a quantitative risk analysis (QRA) case-study from the Franz Josef and Fox Glacier Valleys, on the West
Coast of the South Island, New Zealand. The Glacier Valleys are important tourist destinations that are subject to landslide
hazards. Both valleys contain actively retreating glaciers, experience high rainfall, and are proximal to the Alpine Fault, which
is a major source of seismic hazard on the West Coast. We considered the life safety risk from rockfalls, soil/rock avalanches
and flows that are either seismically triggered or occur aseismically. To determine the range in risk values, and dominant
contributing variables on the risk, we modelled nine different risk scenarios where we incrementally changed the variables
used in the risk model to account for the underlying uncertainty. The scenarios represent our central estimate of the risk, e.g.,
neither optimistic nor conservative, through to our upper estimate of the risk. We include in these estimates the impact of time-
variable factors, such as a recently reactivated landslide has had on locally increasing risk and the time-elapsed since the last
major earthquake on the nearby Alpine Fault. We disaggregated our risk results to determine the dominant drivers in landslide
risk, which highlighted importance of considering dynamic time variable risk scenarios and the changing contributions to risk
from aseismic versus seismic landslides. A detailed understanding of the drivers of landslide risk in each valley is important

to determine the most efficient and appropriate risk management decisions.

1 Introduction

High mountain areas are subject to a variety of natural hazards, including slope instability. Globally, these mountainous areas
are currently experiencing declining low elevation snow cover, retreating glaciers and degrading permafrost as a result of
climate change (cf. Hock et al., 2020). Such changes in environmental, meteorological and geomorphological conditions may
influence the rate, size and characteristics of landslide hazards (Gariano and Guzzetti, 2016). Additionally, such high relief
mountain areas are subject to seismic hazards, including seismically triggered landslides. Given that the exposure of people
and infrastructure to landslide hazards is also increasing from population growth, tourism, and socio-economic development
(Hock et al., 2020), the risk from landslides may change and increase with time.

Quantitative risk analysis (QRA) is an important tool for assessing, managing and communicating the risks from landslide

hazards (Corominas et al., 2014; 2015), and there is an increasing need to undertake QRA from legislative authorities and from
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within the engineering and engineering geological communities (Corominas et al., 2014; Van Westen and Soeters, 2006; Ho
et al., 2000). QRA are undertaken for a land use planning (e.g., Bell and Glade, 2004; VVega and Hidalgo, 2016), infrastructure
(e.g., Voumard et al., 2013; Macciotta et al., 2015a), and for visitor destinations (e.g., Corominas et al., 2019; Stock et al.,
2014). However, the ability to estimate quantified levels of risk is often challenging as the input datasets used in risk analyses
are inherently uncertain. Such uncertainty is mainly due to the lack of completeness, quality, or range within the input datasets
required to undertake a QRA (Van Westen and Soeters, 2006). A landslide inventory, which details where landslides have
occurred in the past, provides information critical to understand what triggers landslides, what makes a particular slope more
susceptible to landsliding, and how frequently landslides are likely to occur (Guzzetti et al., 2012). Yet, for many landslide
prone areas this spatial and temporal record of landsliding is limited or does not exist. This is particularly the case for certain
trigger events, such as earthquakes, where the return period of the trigger event may be greater than the length of the historical
record (van Westen et al., 2008). Consequently, assessments of landslide susceptibility and frequency rely heavily on
practitioner experience and judgement (Lee, 2009), and may not always reveal the full levels of uncertainty attached to the
risk estimates (Corominas et al., 2014; Macciotta et al., 2015b). Most approaches use past landslide behaviour to predict what
may occur in the future based on the maxim “the past is key to the future” (Varnes, 1978). However, the present or future
conditions that make a slope susceptible to, or trigger landsliding may be different to those of the past. Changes in the location
and the frequency of landslide activity may substantially alter the estimated risk, adding to the uncertainty associated with the

risk value.

Fell et al., (2005) suggest using sensitivity factor analysis as a tool to understand the influence of potential uncertainties on the
estimated risk levels, and communicate the influence of this input variability to users of the risk analysis and assessment. A
current limitation of risk analysis is the need to be able to ‘disaggregate’ the risk results in order to determine the importance
of the different input factors included in the QRA, such as the annual frequency of a given landslide type and volume occurring
under a given set of triggers, how far landslide debris travels down a slope, where people are present on the slope and their
biophysical vulnerability if present and hit by landslide debris. Such limitation means that the contribution to the risk and
sensitivity of the results relating to the input variables used are rarely quantified, thus making it difficult for risk managers to
understand and implement targeted risk reduction measures and risk communication options. We address this here, by
presenting the QRA results, and their uncertainties, from a local to regional scale (1: 10,000 — 1: 50,000) analyses of landslide
hazards and the risk they pose to the lives of people visiting and working in the Franz Josef and Fox Glacier Valleys, located
on the West Coast of New Zealand. In the Southern Alps of New Zealand, landslides are a common feature that play a
significant role in driving erosion (e.g., Hovius et al., 1997; Korup et al., 2004) and present an increasing natural hazard and

risk to people and property (Allen et al., 2011; Cox et al., 2015; McSaveney, 2002).
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2 Study Site

The Glacier Valleys, which are important tourist destinations, are located on the West Coast of the South Island, New Zealand
(Figure 1). Both valleys contain multiple trails (walking and/or cycling tracks), which take between 30 minutes and up to 8
hours to walk/cycle, that allow visitors to access and experience a glacial environment. The glaciers themselves can now only
be accessed via helicopters, with visitors undertaking paid tours on the glacier. Given the commercial sensitivities the risk
from landslide hazards to visitors on commercial tours on the glacier has not been quantified in our risk analysis. . Prior to the
Covid 19 pandemic and associated closure of New Zealand’s border to international tourists, ¢.700,000 people per year walked
the tracks in the Franz Josef Glacier Valley and ¢.400,000 people per year walked the tracks in Fox Glacier Valley. A maximum
number of 6,000 people per day and 3,500 people per day walked the tracks in Franz Josef and Fox Glacier Valley respectively.
Within this environment, visitors are exposed to a variety of landslide hazards. Numerous near-misses have been documented,
and two fatalities occurred in January 1980 when a debris avalanche occurred along a track in the Fox Glacier Valley.
Currently, the northern road and access track within Fox Glacier Valley is closed due to repeated damage from debris flow
events. Evidence of landsliding is present within each valley, with the types of landslide broadly classified into rock falls,
slides and topples, debris and rock avalanches and debris flows (as classified by Hungr et al., 2014: see Figure 2). In addition
to these broad landslide types, deep-seated gravitational slope deformations (DSGSD’s) can be observed in both study areas.
These large DSGSD’s typically provide sources of material for smaller rockfall/debris avalanches or debris flows (Cody et al.,
2020). Earthquakes are potential triggering mechanisms for landslides, as both study areas are located less than 10 km southeast
of the Alpine Fault (Figure 1), which is a major source of earthquakes in New Zealand (Stirling et al., 2012). Additionally,
both valleys experience high rainfall, with 5 m/year recorded in Franz Josef village increasing to >10 m/year towards the main
divide of the Southern Alps (Langridge et al., 2016). The glaciers in each valley are currently retreating (Purdie et al.,
2015,2021), exposing more disturbed and consequently weaker rock masses, which appear to be the source of many recently
documented landslides. Many of these ’aseismic’ landslides appear to be triggered by intense rainfall; however, several have
no documented trigger. Therefore, the slopes in the study areas have and will continue to be subjected to transient changes in
stress, typically caused by precipitation-induced variations in pore-water pressure, erosion, freeze-thaw cycles, and diurnal and
seasonal temperature variations (Gunzburger et al., 2005; Viles, 2013; Eppes and Keanini, 2017). Transient stress changes
within a slope can lead to deformation, fracturing, and joint dilation, thus reducing rock mass strength leading to failure (e.g.,
Eberhardt et al., 2004; Eppes and Keanini, 2017).

The study areas (shown in Figure 1) are dominated by ice-free slopes comprised of schist (Cox and Barrell, 2007). The
structural geology of the bedrock schist is complex, given the proximity of both sites to the Alpine Fault (Figure 1). Large
persistent faults cut through the area trending north-east to south-west and east to west. The quality of the rock mass is highly
variable over the study areas and tends to change with proximity and location relative to these persistent faults. Moraine and

colluvium deposits are present within the main and tributary valleys, with the valley floors formed of predominantly alluvium,
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and re-worked moraine and colluvium. The glaciers have carved the valleys, resulting in steep bedrock valley sides truncated
by deeply incised streams. Debris fans are present at the mouth of these incised streams, which feed into the Fox and Waiho
(Franz Josef) rivers. Flow rates within these rivers are highly seasonal and their courses, within their respective wider valleys,

change frequently.

In Fox Glacier Valley, there are more extensive and thicker debris deposits (both moraine and colluvium) and larger debris
fan deposits (e.g., Yellow Creek Fan; Gomez and Purdie, 2018), indicating that debris flows and avalanches may be more
prevalent. With glacier retreat, these debris deposits are free to begin creeping, and debris is available for remobilisation via
debris flows (Cody et al., 2020). In contrast, Franz Josef contains less debris and is more dominated by bedrock slopes, which
may have been the result of limited debris accumulation through time or the ability of erosional processes to keep pace and

remove material from the valley.

3 Methodology
3.1 Risk calculation route

To estimate the risk, we follow the quantified risk analyses method described in the Australian Geomechanics Society (2007),
and the Joint Technical Committee on Natural Slopes and Landslides (JTC1, as outlined in Fell et al., 2008). We calculated
the probability of death (life risk) of an individual, P¢ov), from:

Prowy = Pay XPr1) X Py X Vor (1)

where:
- Pwisthe probability (annual frequency) of the landslide occurring

- P is the probability of the landslide (e.g., the debris from a landslide of a given type) reaching the element at risk
(e.g., visitor on a track)

- P is the spatio-temporal probability of the person at risk being present and in the path of landslides (the proportion
of a year that the person is exposed to landslides)

- V1 is the vulnerability of the person if present and in the path of landslide debris (i.e. the probability that the person
will be killed if impacted by the landslide). In our analyses, we include in the vulnerability estimates, the potential

for a person to be aware of the hazard and take evasive action.
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Within the Fox and Franz Josef Glacier Valleys, we sum risk from several landslide hazards where people are exposed to 1)
Several types of landslides, 2) Landslides of the same type but different volume, 3) Landslides triggered by more than one
phenomenon, and 4) Several slopes on which landslides can occur. To take such cases into account, we re-wrote Equation 1
as:

Pooy = 2it1(Piwy X Picr.1y X Pis.my X Vip.1) )

where n is the number of landslide hazards of a given type and volume. This assumes that the hazards are independent of each
other. However, in the valleys, it is possible that one or more of the hazards may result from the same causative event, e.g., an
earthquake. Therefore, we estimate the probabilities using the theory of uni-modal bounds where the upper bound conditional

probability (Pus) is calculated from:

Pus=1-(1-P1) X (1-P2) oe.(1 - Pu) ®3)

where: P; to Pnare the estimate of several individual hazard conditional probabilities. We then multiplied the Pug by the annual
probability of the common causative event, e.g., the given level of shaking representing a given earthquake. More detail on

the equation route is provided in the Appendices.

3.2 Risk metrics

We estimated the risk to life, using four risk metrics. Firstly, we estimated the local personal risk (LPR), which represents the
annual probability of death for a hypothetical person present at a particular location for 100% of the time (24-hours a day and
365 days of the year). LPR, a metric used in flooding and seismic hazard studies (Crowley, 2017; Jonkman et al., 2003, van
Elk et al., 2017), can be used to visualise the spatial distribution of risk within the study areas in order to help plan/realign
tracks and roads. Secondly, we estimated the individual risk per trip, which is expressed in terms of the fatality risk (probability
of death) of an individual resulting from one return trip along one of the main access tracks or roads within the study areas.
We use this to represent the risk to visitors. We then estimated the annual individual fatality risk (AIFR), which is expressed
in terms of the fatality risk experienced by the most exposed individual over one full year of, e.g., working in the valleys and
undertaking frequent track checks for two to three hours a day (cf. Massey et al., 2022a). We use AIFR to estimate the risk to
the most exposed worker in each valley who is present every day for substantial periods of the year. We estimated societal risk
by determining fN pairs, which represents the frequency (f) of an accident killing (N) or more people in a single event, plotted
on a fN curve (Strouth and Mcdougall, 2021). In this paper, we focus on and report the results for LPR and individual risk per

trip. AIFR and the fN curve results are reported in Massey et al. (2018c).
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3.3 Methodology framework

Our risk analysis firstly considers the possible range of triggering events in terms of a set (bands) of earthquake triggers and
aseismic triggers (e.g., rain, time). In our compilation of the landslide inventories for each valley, we were unable to determine
a relationship between rainfall or snowmelt with landslide occurrence. The recorded near misses in Franz Josef Glacier Valley
and two fatalities (January 1980) in Fox Glacier Valley from a debris avalanche occurred in the absence of any discernible
trigger. Therefore, we subsume potential rainfall triggering, snowmelt triggering and climatic factors into an aseismic
annualised rate of landsliding. However, due to the proximity of the Alpine Fault and the seismic history of the region, we
explicitly considered the possibility of seismically triggered landslides.

For each representative earthquake event, we determined the annual frequency of the event and the number of landslides of a
given volume class produced in that event. For aseismic landslides, we determined the annual frequency of landslides of a
given volume occurring in each valley using historical data on aseismic landslides in the valleys and the wider Southern Alps
(Massey et al., 2022a). For both seismic and aseismic landslides we considered the full range of volume classes that could
occur in each valley, which are: 1) <10 m?, 2) 10 m® to 100 m?, 3) 100 m? to 1,000 m?, 4) 1,000 m* to 10,000 m?, 5) 10,000 m?
to 50,000 m3, 6) 50,000 m3 to 100,000 m?3, 7) 100,000 m3 to 500,000 m?3, 8) 500,000 m3 to 1,000,000 m3, 9) 1,000,000 m? to
5,000,000 m3, and 10) >5,000,000 m3. We estimated the number of landslides that could occur for each volume class using the
Moon et al. (2005) method, by calculating the area under the landslide volume frequency curve (see Figure 2) using log-log

histogram bins.

Secondly, we considered the locations from which landslides are most likely to source in each glacier valley. We explicitly
determined landslide source locations, in order to estimate how far the debris could travel downslope from a particular source.
We used slope angles, volume to area scaling relationships and geomorphic mapping to delineate these source areas. We
compiled information on pre-disposing factors of slope instability in each valley to understand spatial controls on landslide
occurrence, with these datasets forming an important input into landslide susceptibility modelling for each valley (Reichenbach
et al., 2018). We used logistic regression susceptibility models for both seismic (Massey et al., 2021) and aseismic landslides

to weight which source areas may preferentially generate landslides.

We conducted 3D numerical runout simulations to determine Pr.y: the probability of the debris from a landslide reaching or
passing a portion of slope as it travels downhill from the source area. We conducted these numerical simulations for rockfall,
debris avalanches and debris flows from our explicitly determined source areas. We used RAMMS rockfall software (2015)
for rockfall simulations, and RAMMS debris flow software (2011) for debris flow and debris avalanche simulations.

We compiled information on the length of time visitors and workers spend along the tracks in each valley to estimate the
spatio-temporal probability of the person at risk being present at a location (P(r:s)) and consequently in the path of debris. We

used empirical estimates of vulnerability (V), which is the probability of a person being killed if present and in the path of one
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or more boulders, considering both: a) the likelihood of being killed if struck; and b) the possibility of being able to take

evasive action and avoid being struck.

For each of these steps and elements of the risk equation, we determined central estimates (which we define as neither
optimistic nor conservative and is based on taking the mean estimate) and upper estimates (based on the 84™ percentile) of the
different variables used in the QRA. We used these different estimates in our sensitivity analysis, where we incrementally
changed the variable estimates from central to upper, until all variables were upper estimates. This results in 9 different risk
models, from which we can calculate the incremental change in risk based on varying the input assumptions and document the

impact of aleatory uncertainty.

3.4 The probability(annual frequency) of the landslide occurring: P,
3.4.1 Seismic Landslides

We determined the frequency and volume of landslides likely to be generated at different magnitudes of ground shaking
intensity from the mapped landslide distributions of historical New Zealand and international earthquakes, as detailed in de
Vilder et al. (2020). We used the landslides generated during the 2016 My 7.8 Kaikoura, 1968 Mw 7.1 Inangahua and 1929
Mw 7.8 Murchison earthquakes, as proxies (Massey et al., 2018b; Hancox et al., 2014, 2015). We selected these three landslide
inventories as they represent the most complete New Zealand inventories for seismic landslides that occurred in fractured hard

rock (such as greywacke) similar to that of schist and occurred in mountainous and hilly terrain.

We assessed the number of landslides that could be generated for four different representative earthquake events, as represented
by peak ground acceleration (PGA) bands: Band 1 (0.2 — 0.35 g); Band 2 (0.35 - 0.65 g); Band 3 (0.65 — 1.2 g) and Band 4 (>
1.2 g). It is unlikely that several landslides will be generated by ground shaking < 0.2 g (Dowrick et al., 2008). We calculated
the annual frequency of the representative PGA per band from the New Zealand National Seismic Hazard Model (NSHM)
(Stirling et al., 2012), by subtracting the annual frequencies that represent the PGA boundaries (start and end) of each band.
The active fault component of the NSHM defines the Alpine Fault local to Franz Josef and Fox Glacier Valley as the
AlpineF2K fault source. Within the NSHM the AlpineF2K source generates a My, 8.1 + 0.2 earthquake with a single-event
(strike-slip + dip-slip) displacement of c. 9.2 m with a mean recurrence interval of 341 years (Stirling et al., 2012). This is
time independent variable and does not consider time elapsed since the last earthquake on the Alpine fault in 1717 (Howarth
et al., 2021). Landgride et al., (2016) disaggregated the NSHM to see what other fault sources may contribute to the shaking
hazard at Franz Josef. For a probability of roughly 10% in 250 years (or 2,500 years) the disaggregation indicates that the main
contributor of seismic hazard is the My 8.1 AlpineF2K source (i.e., the Alpine Fault). Additionally, the second largest seismic

hazard over 2,500 years comes from moderate magnitude (Mw 5-6) earthquakes that can occur <10 km from the townships.
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Although the Alpine Fault is the main seismic source in the area, the section of fault that could rupture might be located some
distance away from the sites. For this reason, and to consider the contribution from the M 5-6 earthquakes, we, therefore
estimate the landslide severity for the four different bands of PGA as determined from the NHSM. Recent research (Howarth
et al., 2021) shows that the probability of an earthquake occurring on the central section of the Alpine Fault is 75% per cent in
the next 50 years, and that there is an 82% chance that the earthquake will be greater than M8. To account for this, our upper
estimate of the PGA annual frequencies, we increase the annual frequency of the most intense ground shaking (Band 4) to

0.015 to reflect time elapsed since the last Alpine Fault earthquake.

To assess the magnitude-frequency of seismic landslides in each band, as outlined in de Vilder et al. (2020), we firstly
determined the appropriate landslide source volume to area scaling relationship (from Massey et al., 2020). Secondly, we
estimated the landslide frequency (number) and source area scaling relationship. Thirdly, we investigated the relationship
between landslide occurrence and PGA, slope angle and material type using the Kaikoura, Inangahua and Murchison landslide
inventories. Finally, we combined estimates of the annual frequency of the representative event PGA for each earthquake band
in the NSHM. Using this relationship, we estimated the probability of a landslide of a given volume class occurring within
each study area for each PGA band considered, along with the annual frequency of the representative PGA in the band
occurring (see Figure 3 a). We fitted power laws to the data, with these representing our central estimate of the number of
landslides of given volume class occurring for each PGA band considered. To derive an upper estimate, we added the standard
error of the gradient of our best-fit power-law to the power-law relationship to calculate the number of landslides that could

be generated.

3.4.2 Aseismic Landslides

We collated information on the occurrence of aseismic landslides from various data sources, which we used to assess the
historical type, mechanisms, and rates of aseismic landslides for both valleys. These data sources include 1) a rockfall register
compiled from observations made by staff of the Department of Conservation (DOC), Franz Josef Glacier Guides Ltd, and
Fox Glacier Guides Ltd, 2) a landslide inventory derived from historical aerial imagery analysis of both valleys, and 3) a large
landslide inventory of historical landslides observed in the wider Southern Alps (see the appendices for more information on

the compilation of the landslide inventories).

We determined valley-specific magnitude-frequency relationships of landslides, given the amount of catchment-specific
information about landslides. We fitted power law trends to the data to generate a central estimate and an upper estimate (using
the standard error of the power law) of the number of landslides that could occur in each valley per km? and their annual
frequency (see Figure 3 b). These landslide rates were then scaled to each valley by multiplying them with the total area of the
slopes greater than 30° within each valley. We used a slope angle of 30° as a cut-off as within our landslide inventory no

landslides occurred on slopes with angles <30°.
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3.5 The probability of the landslide reaching the track or road
3.5.1 Landslide Susceptibility

In the absence of historical information on landslides triggered by an Alpine Fault earthquake, we used the 2016 Mw 7.8
Kaikoura Earthquake-induced landslide inventory to understand the spatial controls on susceptibility to failure. From this
dataset, Massey et al. (2018a, 2021) used a logistic regression model to correlate the three aforementioned mapped earthquake
induced landslide inventories with various topographic, geological and seismological parameters to understand which
parameters best explained the occurrence of coseismic landslides. We applied the Massey et al. (2018a) logistic regression
model to both valleys, using PGA input from the NSHM. The PGA input varied from 0.8 g to 1.1 g across both valleys, which
along with the other components of Massey 2018a logistic regression model such as distance to fault, slope angle, geology,
and local slope relief , was used to determine the probability of a landslide occurring from a particular source location.

We developed valley-specific logistic regression models to determine aseismic landslide susceptibility, given the amount of
landslide-specific information and slight differences in the landslide hazards within each valley (see Figure 4 for an example
from Fox Glacier Valley). These models are based on the correlation of mapped landslides, and various topographic, geological
and land use characteristics (cf Massey et al., 2018a and the appendices ). Rockfalls recorded in the rockfall register were not
included within the analysis as the data do not have accurate geographic locations. More information on the aseismic

susceptibility models is provided in the appendices.

3.5.2 Landslide Runout

Landslide sources <1,000 m® were assumed to be rockfalls rather than debris flows and debris avalanches. Potential rockfall
source areas were defined using all slopes >45°, assuming any slope >45° can potentially generate rockfalls (Figure 5) (Budetta,
2010; Massey et al., 2014a). For landslide volumes <100,000 m® the landslide sources were assumed to be pixels of a given
area based on the area to volume scaling exponents (Figure 5). For landslide volumes >100,000 m?, the shapes of the sources

were defined using the geomorphic features (Figure 45.

For the rockfall simulations, we used RAMMS rockfall software (2015), which simulates the rigid body motion of falling
rocks and predicts rock trajectories in general three-dimensional terrain (see the appendices for more information). For the
debris avalanches and debris flow simulations, we used RAMMS debris flow software (2011), changing the Voellmy friction
parameters (see the appendices for more information) to determine if a particular source area failed as a debris avalanche or
debris flow. From these simulations, we derived the runout extent and maximum debris height. The simulated maximum height
of debris passing through a given grid cell is converted into the number of boulders (our central estimate), with our field
measurements indicating that the median boulder size is 1 m3 (Figure 6). For example, if the maximum debris height passing

through a 3 m by 3 m grid cell is 1 m, then the total volume of debris passing through that grid cell is 9 m?, which when
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converted into N boulders, would be on average 9 boulders. Based on sensitivity analysis of the Voellmy friction parameters
(see the appendices for more information), we calculated a standard deviation-based factor of difference in debris height. We

applied this factor of difference to the simulation results to increase debris height, providing an upper estimate.

We calculated the probability of one boulder in the debris hitting an object when passing through a particular portion of the

slope, perpendicular to the debris path, using the equation:

D+d
Piry ==~ @

where D is the diameter of the boulder, d is the diameter of a person (our central estimate assumes a person is a “cylinder”
with a 1 m diameter, while our upper assumes an estimate of 2 m diameter), and L is the unit length of slope perpendicular to
the runout path, which for this study is 3 m grid cell. Our equation includes a “buffer-zone” around the person (D + d) within

which the boulder travels along a path either side of d and cannot miss.

3.6 Exposure

We calculated the probability that a person will be occupying a given grid cell along one of the tracks/roads (P(s.m) if they

spend a number of hours (Nurs) per trip per year walking/driving that route using the equation:

__ (NgRs) (5)

Where Nc is the number of cells visited along the route. We compiled information provided by DOC on the estimated time
taken to travel by vehicle along given roads to/from the car parks, and the time taken for walking a round trip from the car
park to the glacier viewing points to determine the time exposed for an average walker (central estimate) or a slow walker
(upper estimate). In Fox Glacier Valley, our average walker spent 1.5 hours walking to and from the glacier viewpoint and 0.2
hours driving to and from the car park (see Figure 1 c), while the slower walker spent 2 hours walking to and from the glacier
viewpoint and 0.3 hours driving to and from the car park. In Franz Josef Glacier Valley, our average walker spent 2-hour
walking to and from the glacier viewpoint, and 0.3 hours driving to and from the car park (see Figure 1 d) while the slower
walker spent 2.5 hours walking to and from the glacier viewpoint and 0.4 hours driving to and from the car park. Therefore,
we assumed that the time spent on each one metre section of track was equal to the duration (time) of travel divided by the
total length of the track. However, exposure can be adjusted to account for longer time spent by a visitor at a viewing area,

picnic spots etc. For the calculation of LPR, we assumed Pr.s) of 1, where a person is present 100% of the time.

10



315

320

325

330

335

340

3.7 Vulnerability

Physical vulnerability (V) depends on the landslide intensity, the characteristics of the elements at risk, and the impact of the
landslide (Du et al., 2013). To derive our central estimate of vulnerability, we link vulnerability values to representative
landslide volumes, which act as a proxy for landslide intensity (see the appendices for more information). Anecdotal evidence
from the glacier valleys suggests that evasive action reduces vulnerability. This was the case on 13 October 2011 and 16 June
2014, when boulders and fly rock from debris avalanches passed over several people on the ice. During these near misses, the
guides heard the debris moving down the slope and had time to instruct their clients to take evasive action. In Table 1 our
vulnerability values scale with landslide volume, were for landslide volumes <100,000 m* an individual may be able to take
evasive action. However, the ability to take evasive action decreases with landslide volume. For landslide volumes >100,000
m3 an individual is likely to be buried by debris and killed. To derive an upper estimate of vulnerability, we assume a

vulnerability of 1 for all rockfall and landslide volumes.

3.8 Rick scenarios modelled

For each valley, we estimated the individual risk per trip for a visitor using nine different risk model scenarios (Table 2) which
ranged from our central estimate of the risk to our upper estimate of the risk. Our central estimate (Scenario 1: Table 2) risk
model uses the central estimate input variables and a time independent ground shaking annual frequency. For each risk model
scenario we incrementally change the variable from central to upper estimates, starting with the number of landslides that
could occur in an earthquake event (Scenario 2), then the number of aseismic landslides that occur annually (Scenario 3),
before increasing our estimate of debris height (Scenario 4), the diameter of a person (Scenario 5), our vulnerability estimate
(Scenario 6), the time elapsed since the last Alpine Fault earthquake (Scenario 7), and lastly increase the length of time a visitor
is exposed to the risk (Scenario 8). We also included a risk model scenario (Scenario 9: Table 2), where we used central
estimate input variables but account for the increased probability of Alpine Fault earthquake occurring, to understand the

impact of these assumptions on the risk results.

4 Results
4.1 Individual risk per trip

The individual risk per trip in Franz Josef Glacier Valley ranged from 7.8 x 10 (central estimate: Scenario 1) to 8.3 x 10
(upper estimate: Scenario 8). The risk along the road in Franz Josef ranges from 7.88 x 10-° to 1.03 x 10”7, while the risk along
the track in Franz Josef ranges from 7.72 x 10" to 1.08 x 10°°. For Scenario 9 (central estimate with higher earthquake annual

frequency), the risk along the road in Franz Josef was 6.84 x 10 and the risk along the track was 2.73 x 108, with a total risk
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per trip of 2.8 x 10°%. The individual risk per trip in Fox Glacier Valley ranged from 4.9 x 10 (central estimate: Scenario 1) to
1.7 x 105 (upper estimate: Scenario 8). The risk along the road in Fox ranges from 2.57 x 1077 to 6.34 x 10”7, while the risk
along the track in Fox ranges from 4.63 x 10-® to 1.62 x 10°. For Scenario 9 (central estimate with higher earthquake annual
frequency), the risk along the road in Fox was 4.22 x 107 and the risk along the track was 7.16 x 10, with a total risk per trip
of 7.59 x 10®. The risk along roads is less than that along tracks; this is a function of both overall lower LPR risk, and less
time spent on the roads. It is important to note that the risk numbers reported here do not consider any risk management and

mitigation so should not be treated as indicative of current residual risk levels following actions taken in light of this analysis.

4.2 Risk disaggregation

Using Scenario 1, we disaggregate our risk results to understand the contributions to risk from the different risk model
components. Figure 7 and Figure 8 display an LPR map of Franz Josef and Fox respectively, illustrating the spatial variation
in risk within the valley and along the access tracks to the viewpoint of the glaciers. Aseismic landslides account for 66% and
83% of total LPR along the access tracks in Franz Josef and Fox, respectively, in contrast to 34% and 17% for seismic
landslides (Figure 7 b & 8 b). In Fox, increases in aseismic landslide risk are observed when the track is close to the base of
larger, steeper slopes or crosses a large debris fan (Figure 8 a). Although the risk to an individual is higher for aseismic
landslides, the risk of a large landslide causing multiple fatalities or multiple landslides occurring at the same time leading to
multiple fatalities, is dominated by earthquake events with PGA’s > 0.6 g (Band 3 & Band 4) (cf. Massey et al., 2022a). For
aseismic landslides, we disaggregated the risk further to determine which landslide volume classes contributed most to the
risk. In Franz Josef, moderate sized landslide volume classes of 10,000 m?, 50,000 m3, and 100,000 m? account for 31%, 30%,
and 14% of the aseismic landslide risk along the track, while landslide volume classes of 500,000 m3 and 1 M m3 account for
a further 7%, and 11% of LPR, respectively (Figure 7 c¢). Landslide volume classes of 5 M m3 or greater account for less than
3% of LPR. The risk from rockfalls (4% of LPR along track), increases when the track is closer to the base of the steep valley
sides as displayed in the spikes in risk associated with volume classes of 10 m3 (Figure 7 c). Increases in the risk associated
with 10,000 m? landslide volume is associated with increases in both aseismic and seismic risk along the track (Figure 7). In
Fox Glacier Valley, landslide volume classes of 10,000 m3, 50,000 m3, and 100,000 m? account for 24%, 21%, and 12% of
LPR, respectively (Figure 8 c). Larger volume classes of 500,000 m3, 1 M m3, 5 M m3 and > 5 M m3 contribute 12%, 15%,
10% and 6% to LPR, respectively. For seismic landslides in Franz Josef, Band 2 contributes the most to the risk, accounting
for 43% of LPR, while Band 1 accounts for 21%, Band 3 for 32% and Band 4 for 4% of LPR (Figure 7 d). A similar pattern
exists for seismic landslides in Fox, where Band 2 contributes the most risk, accounting for 48% of LPR, while Band 1 accounts
for 29%, Band 3 accounts for 21% and Band 4 accounts for 2% of LPR (Figure 8 d).

However, in Scenario 9 (Table 2), we modelled the increased annual frequency of a large Alpine Fault event that was assumed

to result in the greatest ground shaking (Band 4), while using central estimate for all other input variables to the risk model. In
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this scenario, the seismic landslide risk in Franz Josef (Figure 9 a) is higher, accounting for 81% of LPR along the track, than
that of aseismic landslide risk in contrast to the patterns in Scenario 1 (Figure 7 b). In Fox, the contribution of seismic landslide
risk is higher in Scenario 9, accounting for 46% of LPR along the track (Figure 9 b), than in Scenario 1 (Figure 8 b), and in
locations along the track, surpasses that of aseismic landslides. However, aseismic landslides contribute more to the overall

LPR (54%), particularly in locations where the track crosses debris fans (Figure 9 b).

For the eight different risk scenarios (Table 3), we calculate the overall cumulative increase in risk as a percentage, along with
the amount of cumulative increase in risk between each scenario. We also calculate the increase in risk between each scenario
as a percentage, to understand the contribution of each variable to overall risk in order to negate the effect of the order in which
each variable is altered in the risk models and the compounding effect of changes to variables on the cumulative risk results.
Our sensitivity analysis of the risk model inputs for Franz Josef (Table 3) shows that, within the ranges of inputs considered,
the largest increase in the risk is associated with increasing the number of aseismic landslides that occur annually with a
cumulative increase in risk of 365%. Second to this, is the increased earthquake annual frequency, with a cumulative increase
in risk of 330%. Thirdly, increased exposure time results in a cumulative risk increase of 328% while a constant vulnerability
of 1 result in a cumulative increase in risk of 219%. Changes in input variables (debris height and diameter of a person) that
affect the P,y term resulted in negligible changes to risk, with < 10% change in cumulative risk. Overall, changes in the input
variables from central estimate to upper estimate resulted in a 1298% cumulative increase (just over an order of magnitude) in
the risk results. For Fox, increases in exposure time and vulnerability resulted in the largest increase in risk ( increase in
cumulative risk of 80% and 60%, respectively: Table 3), while changes in the annual frequency of earthquake events as well
as the number of aseismic landslides resulted in cumulative increases of risk of 56% and 30%, respectively (Table 3). Changes
in the number of seismic landslides resulted in a cumulative increase in risk of 10%. Similarly, to Franz Josef, changes in
debris height and the diameter of a person had negligible impact (Table 3). The range in risk values for Fox from central

estimate to upper estimate was smaller than for Franz Josef, with a cumulative percentage of increase of 244%.

4.3 Changing risk through time

Recently within the Fox Glacier Valley, there has been increased debris flow events from the Mill’s Creek catchment. The
debris flows are sourced from the toe of the Alpine Gardens landslide, which is an approximately ~50 million m? actively
moving landslide complex in the Fox Glacier Valley (Figure 10). These debris flows travel down Mill’s Creek and deposit on
the debris fan at its confluence with the Fox River. The debris flow activity has resulted in the expansion of the Mill’s Creek

debris fan, which in turn, has forced the migration of the Fox river to the true-right side of the valley.

This is changing the rate of debris flow activity, and concentration in a specific area influences landslides susceptibility and

magnitude-frequency. The change to the landslide hazard has an impact on the estimated risk levels. The increase in activity
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from a particular area is a common phenomenon, based on the long-term observations of national park staff and glacier guides
(Marius Bron- personal communication), with this type of behaviour described colloquially as “switching on — and off”,
whereby a particular gully or slope will display enhanced rates of landslide activity for a period of time (sometimes in the
order of years) before the levels of activity reduce. We incorporated the elevated debris flow activity into the risk analysis, by
deriving a specific magnitude-frequency relationship for debris flows from the Alpine Gardens and Mill’s Creek catchment
and applying this revised magnitude-frequency relationship to source areas within this catchment (see the appendices for

information).

The increased landsliding from the Alpine Gardens area was propagated through the risk equation. Figure 11 displays the LPR
map that includes the current elevated rates of debris flow activity in the Fox Glacier Valley. In the Alpine Gardens — Mill’s
Creek catchment, the increase in LPR ranges from 5% to 1442%, with a mean increase in LPR of 285.5% + 245%.

5 Discussion
5.1 Drivers of risk

We disaggregate our QRA to determine the dominant contributors to risk in each Glacier Valley. For both valleys, in our
central estimate scenario, aseismic landslides dominate the risk profile. Of these aseismic landslides, the major contributors to
the risk are the moderate sized landslides (10,000 m? to 100,000 m3), which happen more frequently than the large or very
large landslides (> 100,000 m3) but travel further and impact a larger area than the more frequently occurring small landslides
(<10,000 m3). Only when the tracks veer closer to the base of the slope does the risk from small landslides and rockfalls
increase. We suggest that a similar pattern would be observed for seismic landslide volumes, given that the same volumes will
impact the same area and that increases in the risk associated with 10,000 m3 landslide volume class in Franz Josef is associated

with increases in both seismic and aseismic LPR.

Even when the annual frequency of a large ground shaking event is increased to account for the probability of > Mw 8 Alpine
Fault event occurring in the next 50 years (Howarth et al., 2021), aseismic landslides account for more than half of the risk in
Fox Glacier Valley. In Franz Josef Glacier Valley, increases in the number of aseismic landslides result in a large increase in
risk of 365%, suggesting that within the aleatory uncertainty (e.g., within the standard deviation) of the landslide magnitude-
frequency relationships, aseismic landslides are a dominant contributor to the risk. Similar conclusions were reached by
Robinson et al. (2016) in their analysis of co-seismic landsliding from an Alpine Fault event, which suggests that for the central
section of the Southern Alps aseismic erosional processes are more important than seismically driven landslide erosion on

annual time-scales.
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However, accounting for the increased probability of an Alpine Fault earthquake occurring in the next 50 years and increasing
the number of landslides that could occur during an earthquake event each lead to increases in our risk estimates, both the
individual risk per trip, discussed in detail here, and societal risk, as determined by fN pairs, which represents the frequency
(f) of an accident killing (N) or more people in a single event. In Franz Josef, increasing earthquake annual frequency and the
number of seismic landslides resulted in increases in risk of 330% and 46%, respectively. The increase in earthquake annual
frequency results in a larger cumulative increase in risk of 330% compared to 46% for the increased number of seismic
landslides — the difference may be the result of the order of the scenarios and compounding effect of variables. For example,
the cumulative increase in risk associate with including a time dependent earthquake scenario in Scenario 7 is 330 % and 56
% for Franz Josef and Fox respectively, while for Scenario 9 (time dependent only scenario) it is 260% and 54%. We suggest
that the differences between the example scenarios are due to changes in the number of seismic landslides generated, spatial
probability of impact and vulnerability. However, the relative differences between the scenarios do not change. In Fox,
increasing the annual frequency of earthquakes and the increasing number of aseismic landslides both result in risk increases
of 56% and 30%, respectively. Increasing the number of seismic landslides results in risk increases of 10%, lower risk increases
than that observed in Franz Josef. In Fox Glacier Valley, the presence of large debris fans indicates debris flow activity (Gomez
and Purdie, 2018; e.g. Cody et al., 2020), however, debris flow records in both valleys are limited and therefore the aseismic
debris flow risk may be underestimated. Our example from Mill’s Creek debris fan highlights that local increases in debris
flow activity can significantly affect the risk, with local increases in risk of up to 1442%. For both seismic and aseismic
landslides, the impact of the number of landslides generated, which is the P term in the risk equation, emphasises the
importance of the landslide inventory as an input into the risk calculation process. Therefore, more time and resources
dedicated to the creation of a landslide inventory may reduce the uncertainty associated with the risk values (van Westen et
al., 2008).

For seismic landslides, the landslide inventories of the 2016 Mw 7.8 Kaikoura, 1968 My 7.1 Inangahua and 1929 My 7.8
Murchison earthquakes (Massey et al., 2018b; Hancox et al., 2014, 2015), were used as proxies for Franz Josef and Fox Glacier
Valleys given the lack of seismic landslide inventories for the West Coast. All three inventories were dominated by shallow
debris avalanches, with such failure types potentially being the dominant type of seismic landslide type (Keefer, 2002).The
schist rock mass of both glacier valleys is fractured with persistent faulting (Cox and Barrell, 2007) and therefore we assume
that shallow debris avalanches are the dominant failure type. While all three inventories occurring in similar mountainous
terrain to Franz Josef and Fox Glacier Valleys, climatic differences exist, with the impact of these climatic differences on the

number and size of seismic landslides triggered unknown.

The biggest increase in risk values in Fox is associated with increases in the vulnerability and spatio-temporal probability of a
visitor being in the path of a landslide (66% and 80% increases in risk respectively), with these factors resulting in increases

in risk in Franz Josef (219% and 328%, respectively). This emphasises the importance of risk management decisions to reduce
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exposure and lower vulnerability. Changes to the diameter of a person and debris height had a very limited impact on the
estimated risk values, which affect the P(r..y term in the risk equation. Changes in the spatial extent of debris from the numerical
simulations were not included within the sensitivity analysis, but could be included using empirical or other probability based
(e.g. Flow-R: Horton et al., 2013) runout analysis and calculations of runout probability of exceedance (McDougall, 2017; e.g.
Brideau et al., 2020). In this case-study, we assume such variations are not particularly meaningful given the number of source
areas the rockfall and landslide runouts were simulated from (Figure 2), the confined nature of the valleys, and the proximity

of the access tracks and road to the base of the steep slopes from which the debris is sourced.

5.2 Time variable risk

Our sensitivity analysis highlights the importance of accounting for time-variable risk with the inclusion of the increased
frequency of an Alpine Fault earthquake resulting in cumulative increases in risk of 330% and 56% for Franz Josef and Fox
Glacier Valleys, respectively. Alongside this, increases in aseismic landsliding results in cumulative increases of risk of 365%
and 30% for Franz Josef and Fox Glacier Valley, respectively. Use of the upper estimate of the number of aseismic landslides
that could occur may represent a future climate change scenario, reflecting the increased rates of landsliding (Gariano and
Guzzetti, 2016) as glaciers retreat, slopes debuttress and the environmental condition changes. Our sensitivity analysis suggests
that climatically driven increases in landsliding will have a larger impact on landslide risk in Franz Josef than in Fox Glacier
Valley. We hypothesise that the differences in sensitivity analysis between the valleys may reflect the geomorphology of each
valley. In Franz Josef, increases in the number of larger landslides may significantly increase the probability of such landslides

reaching the element at risk.

However, the size and frequency of landslides may change in response to climate change (Huggel et al., 2012; Korup et al.,
2012), with Liu et al. (2021) observing a shift in the frequency-area distribution with larger landslides occurring in their dataset
of landslides in the high mountains of Asia. In our sensitivity analysis we do not test changes in gradient of the -magnitude —
frequency distributions to reflect increases in the frequency of larger landslides occurring relative to the frequency of smaller
landslides. Such shifts in the magnitude — frequency distribution will impact the risk results and associated uncertainty. The
larger debris and alluvial fans in Fox may indicate higher rates of aseismic landsliding than those observed in Franz Josef, and
consequently may also explain that due to the already high rates of landsliding, increases in landslide rates (both seismic and
aseismic) may have limited impact on risk, while the changes in vulnerability and exposure have a relatively bigger impact on

the overall risk value.

Changes in landslide susceptibility should also be accounted for, as highlighted by Reichenbach et al. (2018), where the spatial
pre-disposition to landsliding may change in response to environmental changes though the exact changes to landslide
susceptibility are unknown. Given that landslide susceptibility is usually the starting point for risk analyses, time-variable

landslide and therefore susceptibility means that the risk to people and infrastructure from landslides is also time-variable,
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especially after a major earthquake (e.g. Massey et al., 2014b; Lin et al., 2006; Marc et al., 2015). Following the Canterbury
earthquake sequence in New Zealand, a time-varying seismic hazard model was used as input to quantify the risk to life from
rockfall in the Port Hills of Christchurch (cf. Massey et al., 2014b). Consequently, the rockfall risk was shown to be time-
variable with a rapid 50% decrease in seismic rockfall risk in the 5 years post earthquake event and a 14% decrease in risk 5
to 10 years post event. Massey et al. (2022b) shows that aseismic rockfall risk is also elevated post-earthquake event with a
similar 50% decrease in rockfall rates 1 to 5 years post earthquake event. Our example of increased debris flow activity on the
Mill’s Creek debris fan allows for spatial changes in landslide susceptibility frequency and magnitude to be easily incorporated
into the risk model. Our analysis shows that the impact on LPR on the Mill’s creek debris fan is significant. The ability to
dynamically update the risk model to account for increased landslide activity in a specific area or catchment, allows changes
in environmental conditions and progressive failure, for example, increased number and size of landslides (Purdie et al., 2015;
Fischer et al., 2012; Liu et al., 2021; e.g. Allen and Huggel, 2013) in a recently deglaciated area, to be assessed. The only
required input is an estimate of approximate landslide size and frequency for a particular spatial area. Sensitivity analysis could
be undertaken to understand if variations in the magnitude-frequency relationship had a significant impact on the resulting risk
estimates. It is also important to note that our risk analysis does not include cascading hazards, such as landslide dam formation
and associated dam break floods as well as catastrophic glacier multi-phase mass movements, which may be important in an
Alpine Fault earthquake scenario (Robinson and Davies, 2013). Such cascading hazards could be incorporated into future risk
analysis potentially using an event tree approach (e.g. Macciotta et al., 2016). Alongside changes in hazard behaviour, risk
analysis should also account for dynamic changes in exposure and vulnerability. Voumard et al.,(2013) developed a dynamic
traffic simulator to simulate changing traffic speeds, with their results showcasing increased risk due to slow -moving traffic
and traffic light placement compared with static speed, and therefore exposure. Stock et al., (2014) quantitative rockfall risk
analysis of people within in Yosemite Valley highlights that closure of buildings within their rockfall hazard line and reduced
exposure resulted in decreased cumulative risk in the valley. Since 2019 and 2020 the main visitor tracks in the Fox and Franz
Josef Glacier valleys respectively have been closed or partially closed due to geomorphic processes. Until access is restored
in both valleys, the exact location of the tracks in each valley and the number of people walking the tracks is unknown. In Fox
Glacier Valley, the expansion of the Mill’s Creek fan from debris flow activity has damaged access on the true -right side of
the valley, while in Franz Josef Glacier Valley, the course of the Waiho River has restricted access on the true-left side of the
valley. As such visitor exposure and therefore risk to landslide hazard is reduced. Alongside this, the Covid-19 pandemic and
associated closure of New Zealand’s border to international tourists has resulted in a reduction in visitor numbers to both
glacier valleys. This reduction in visitor numbers will impact our societal risk metric, by reducing exposure of 1 or more people

to an event that might result in fatalities.

5.3 Risk communication and management

Our analysis quantitatively estimates the risk to life to visitors from landslides, with this information used by risk managers

and decision makers to evaluate risk tolerability, determine appropriate risk mitigation measures and communicate the risk to
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visitors and workers in each valley. Due to the uncertainty associated with risk analysis (Lee and Jones, 2014), we report our
risk estimates as bands and not as single points (see Figure 12). The risk bands represent our central estimate through to upper
estimate of the risk; we do not present a lower estimate of the risk as lower estimates are not currently used in decision-making
regarding risk acceptability, in order to ensure that the highly uncertain risk levels are not underestimated. However, we note
and agree with Strouth and McDougall (2021) that risk assessment conservatism should be avoided, with central estimates
used for risk evaluation and uncertainties in the risk analysis presented transparently. The risk bands can be presented against
risk comparator data to inform risk evaluation and risk tolerability processes in conjunction with an evaluation of how visitors
and decision makers perceive risk (cf. Taig et al., 2012; Taig, 2022b, a). In Figure 10, the individual risk per trip for visitors
to both Franz Josef and Fox Glacier Valleys (though it is important to note that the risk numbers do not include any mitigation
measures and are therefore not residual risk), are plotted against other activities that a visitor may undertake. These activities
include popular tourist activities in New Zealand, modes of transport to and from the Glacier Valleys, and risk per trip in other
national park settings globally. More information on these datasets can be found in Taig (2022 a, b). Not only can this be used
to inform the risk evaluation process but can also help with risk communication to visitors. The range in risk values can be
presented as a graphic to illustrate the risk, and to avoid confusion with small numbers or scientific notation along with helping

visitors, whose main language may not be English, understand the uncertainty in risk results (Taig, 2022).

The disaggregation of the QRA allows a greater understanding of both the contributors to landslide risk, and their associated
uncertainty. Such an approach presents a useful tool to inform and communicate to risk managers where appropriate
management and mitigation strategies may be most effective. Reductions in vulnerability and exposure can be important risk
mitigation measures (e.g., Schneiderbauer et al., 2017), as highlighted by our risk sensitivity scenario analysis. The LPR maps
can be used to inform track placement and re-alignment, reducing the time spent and exposure of an individual in high hazard
zones beneath steep slopes. The LPR maps may also be used for informing and identifying suitable, “less risky” stopping
points in the valley, when tracks are partially closed due to rainfall, high stream flows or other events. Where it is not possible
to relocate the tracks, other mitigation measures such as track closures during heavy rainfall may reduce the risk from rainfall-
induced landslides within the aseismic landslides class. As aseismic landslides dominate the risk profiles, reduction in exposure
to rainfall-induced landslides may result in a significant reduction in visitor risk per trip. In Figure 12, we include a theoretical
reduction in aseismic landside risk of 75%, assuming that 75% of aseismic landslides are triggered under heavy rainfall
conditions. In this example, if the track is closed under heavy rainfall conditions substantial reductions in the visitor risk per
trip occurs (cf. Massey et al., 2022a). However, due to the limitations of our landslide inventory, we are unable to link landslide
occurrence to rainfall events in each valley, and therefore cannot provide a quantitative basis for the risk reduction associated
with track closures. To provide a robust basis for using track closures as a risk reduction method, rockfall and landslide events
should be documented and recorded within each valley, along with meteorological observations. This should also include any
information of the occurrence of debris flows, particularly within Fox, as this landslide type is difficult to determine within

our landslide inventory analysis and are therefore underrepresented in our magnitude-frequency analysis even though debris
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fans are higher risk environments (see Figure 6). Such information could be crowd-sourced, with visitors in Yosemite Valley
able to report rockfall occurrences to Park Staff (https://www.nps.gov/yose/learn/nature/rockfall.ntm). For both valleys, the
glacier guides continue to record rockfall and landslide activity. A rockfall/landslide register can also be used to inform
dynamic risk analysis, by recording areas of locally high activity. Our methodology presents a base risk model that can be
easily updated and amended to incorporate future information such as revised track locations, visitor numbers and changes in

landslide activity.

6 Conclusion

We have presented a quantitative risk analysis (QRA) case study from the Franz Josef and Fox Glacier Valleys, on the West
Coast of the South Island, New Zealand. We deconstructed the QRA to reveal the relative contributions of aseismic versus
seismic landsliding, and landslide volume classes to risk. Our results reveal that for both valleys in our central estimate scenario
aseismic landslides contribute more to the overall risk than that of seismic landslides. However, our sensitivity analysis of nine
risk scenarios, to explore the uncertainties in our inputs to the model, suggests that the contribution of seismic or aseismic
landslide risk is dependent on time-variable input assumptions. The increasing probability of a large Alpine Fault earthquake
occurring results in increased seismic landslide risk, both individual and societal. Increases in the number of aseismic
landslides, within the standard deviation of the valley specific magnitude-frequency relationships, also increase the landslide
risk, particularly in Franz Josef. This increase in aseismic landsliding may reflect climatically induced changes in landslide
rates in these actively deglaciating valleys and suggests that the risk of landsliding will change under different climate change
scenarios. Additionally, the spatial location and susceptibility of landsliding may also change in response to environmental
changes. We presented an example to show-case how local changes in the rates of landsliding can be explored and incorporated
in the analysis. We present our risk results as bands, not points, that display the uncertainty of our risk results. We suggest that
QRA is not only a valuable tool for evaluating the risk to an individual but can be used to better understand what drives
landslide risk and as such what risk management decisions will be most effective and appropriate in significantly reducing
risk. In order to do this, QRA must be able to be deconstructed as well as be dynamic to account for changing hazards and

exposure with time.

Appendix
Appendix A: Aseismic landslide inventories

The data sources for the aseismic landslide include 1) a rockfall register compiled from observations made by staff of the

Department of Conservation (DOC), Franz Josef Glacier Guides Ltd, and Fox Glacier Guides Ltd, 2) a landslide inventory
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derived from historical aerial imagery analysis of both valleys, and 3) a large landslide inventory of historical landslides
observed in the wider southern alps. The record of observed rockfall activity in the rockfall register contains data collected
since 2008 for Franz Josef and 2009 for Fox. The rockfall registers record the date, approximate size, and source location, if
identifiable, of rockfalls. Alongside this, local knowledge of long-term guides Craig Buckland, Jon Tyler (Franz Josef Glacier
Guides Ltd) and Marius Bron (Fox Glacier Guides Ltd) informed the relative changing rates and sources of landslide activity
within each valley. We identified and mapped landslides from a series of historical aerial photographs for each valley (1948,
1965, 1981, 1985, 1987, 2011, 2017 in Franz Josef Glacier Valley, and 1953, 1981, 2017 for Fox Glacier Valley), and these
landslides were subsequently verified in the field. Additionally, we identified large (>500,000 m3) relict landslides in each
valley, with an unknown temporal occurrence. To assess the potential for large landslides to occur, we used a landslide dataset
recorded in the wider Southern Alps region, where there is evidence of large landslides occurring under aseismic conditions,
such as the 2007 11 million m3 Young River landslide (Massey et al., 2013). We also used data from the following studies
which detail the occurrence of debris avalanches since 1978: McSaveney (2002), Hancox et al. (2010), Cox and Allen (2009)
, Allen et al. (2011), Allen and Huggel (2013), Massey et al. (2013), and Cox et al. (2015). We assumed that landslides
<500,000 m? are unlikely to have been noticed or mapped unless they impacted people or property in the wider Southern Alps.
We also assume that landslides in both valleys where the glacier guides and DOC operate would be well documented as people

are present almost on a daily basis.

Appendix B: Aseismic landslide susceptibility models

We used best sub-set regressions to explore which group of variables could statistically best explain landslide occurrence.
From these variable groupings, we undertook backward step-wise regression modelling to determine which group of variables
was the most statistically significant. Using the variables of slope angle, local slope relief (LSR), material type and vegetation,
we estimated the aseismic landslide probability using the following logistic regression equation (with output coefficients in

Table B 1) for Fox study area:

Non EQ LS pl'Ob — 1/(1 + e(—(lntercept+Slope Angle+LSR+Material type+veg))) (Bl)
For the Franz Josef study area, we found vegetation to be a statistically insignificant variable when used to explain landslide
occurrence, and as such was not included in the model. For the aseismic landslide probability in the Franz Josef study area, we

used the following logistic regression equation (with output coefficients in Table B 2):

Non EQLS pl'Ob — 1/(1 + e(—(lntercept+Slope Angle+LSR+Material type))) (BZ)
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Appendix C: Landslide runout analysis
C.1 Rockfall

We modelled landslides with volumes <1,000 m? as rockfalls using RAMMS rockfall software (2015) for all material types.
The software simulates the rigid body motion of falling rocks and predicts rock trajectories in general three-dimensional terrain.
Rock trajectories are governed by the interaction between the rock, its associated shape, and the nature of the ground (e.g., a
soft substrate such as sand will dampen the rock energy in contrast to a hard substrate such as rock). Generalised rock shapes
are simulated, and rock block orientation and rotational speed are included in the rock/ground interaction. We determined the
simulation parameters for forecasting by back-analysing recorded rockfalls within the study areas, where the source area,
boulder shape and rockfall trails were recorded or could be accurately inferred. The RAMMS rockfall forecast parameters
adopted from back analysis are shown in Table C 1, along with descriptions of the parameters and the data sources used to
derive them. The results from the simulations comprise: Kinetic energy; runout distance; jump heights and the number of

simulated trajectories passing through a given grid cell.

C.2 Debris avalanche and flows

To identify the areas impacted by landslides, and the associated height of debris and number of boulders, we conducted a suite
of runout simulations for the different volume bins. We modelled landslides with source volumes > 1,000 m?3 as debris
avalanches (if sourced from rock) or as debris flows (if sourced from colluvium or moraine) using RAMMS debris flow
software (2011). RAMMS is based on Voellmy friction law, where the frictional resistance consists of a dry-Coulomb type
friction (coefficient p or Mu), which scales with normal stress, and a viscous turbulent friction (coefficient xi), which scales
with landslide volume. These coefficients are calibrated from the back -analysis of case-studies. For this assessment, we used
the back -analysis of 67 debris avalanches (ranging in volume from 300 m3 to 100 Mm?3) published in the literature (Schneider
et al., 2011; Allen et al., 2009). For debris flows, we used 22 back analysis case-studies ranging in volume from 1,000 m3 to
200,000 m3 (Loup et al., 2012; Cesca and Agostino, 2008; Deubelbeiss et al., 2011; Hussin, 2011; Scheuner et al., 2011). We
fitted a power-law to the data (Figure C1 and Figure C2) to calculate the coefficients for the numerical simulations. For debris
flows, the Xi parameters did not vary with source volume and so we adopted a central estimate of 350 in the numerical
simulations.

In areas where the source area could potentially fail as either a debris avalanche or debris flow (for example, potential failure
from the top of the larger creeping Yellow Creek landslide in Fox study area), we simulated both and calculated the maximum

debris flow height from the two outputs.

21



665

670

675

680

685

690

C 3: Sensitivity analysis of debris avalanche and debris flow output

We assessed the sensitivity of the simulated maximum debris heights to varying RAMMS input parameters. Different input
Mu and Xi parameters within RAMMS result in a change in both the extent of the debris runout (and therefore area inundated
by debris) and the height of the debris and therefore the number of boulders passing through a given location on the ground
(grid cell). For the debris avalanche simulations, we calculated the standard error of the modelled fit of the data (Figure C. 3)
We both added and subtracted the standard error from the power-law relationship to obtain the mean £1 standard error (SE)
values of both Mu (p) and Xi parameters (Figure C3). For the debris flow simulations, we used the same procedure as outlined
for debris avalanches to calculate the Mu parameter. As no relationship existed for the Xi debris flow parameters (Figure C 2),
we used the standard deviation (o) of the mean parameters to calculate both mean +1c and mean -1c ( Figure C4). We choose
one representative source area for both debris flow and debris avalanche deposits, to simulate both mean +1 SE (or standard
deviation) and mean -1 SE (or standard deviation) runouts. For each source area, the following volume classes were simulated;
10,000 m3, 50,000m3, 100,000 m3 and 1 million m3. We varied the simulated volume size to assess if the range in maximum
flow height increased or decreased for larger volumes. From the simulation results, we calculated the difference in debris
heights (per grid cell) between the standard parameter simulation results and the results from each respective mean =+ 1 SE
simulation. We calculated the mean and standard deviation of the difference (in debris height per grid cell) for each simulation
result (i.e., we calculated the difference of the difference). We summed the values to calculate the mean +1c (upper-bound)
value of the difference between the simulations.

The results from our sensitivity assessment indicate that the absolute difference in debris heights increases with volume size,
whereby larger landslides can display several metres of difference in flow height for any given grid cell. Proportionally, the
differences in maximum flow height for debris avalanches were on average 60% * 22% higher than those modelled using the
preferred forecast parameters. For debris flows, the difference in maximum flow heights are on average 60% = 28% higher
than those simulations adopting the preferred forecast parameters. We applied this 60% factor of difference to all simulation

results to derive upper estimates of debris heights.

Appendix D Calculation of LPR

For seismic landslides, the probability of death (Pp) is calculated for each earthquake Band 1 to 4, for each individual source
area of a given volume class, and the debris that the given source area generates. The calculations were done for each grid cell
within the study areas. Firstly, we calculated the probability of death for each landslide source and its related debris (Ppsource)),

where:
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l)D (EQ Band x; Vol Class y; Source z) — PA or B (dependent on LS Vol Class) X P2(S:H) xV (Dl)

Pass is the probability the given source within each landslide volume class, will generate the given volume of debris. P is the
probability of being in the path of N boulders within the debris generated by a given source if it occurs. V is the vulnerability,
defined as the probability of a person being killed if present and in the path of one or more boulders. We then calculated the
Pp(source) fOr each source area of a given landslide volume class (y), and its related debris, and combined for each landslide
volume class to estimate the probability of death from all landslides of the same volume class that might contribute to the given

grid cell (Po(vol class)), Where:

Pp (EQ Band x:vol Classy) = 1 — (1 — Pp (ol class y1; LS Source zl)) X (1 — Pp(vol class y1; LS Source zz)) X (1 -
l:.D(Vol Class y1; LS Source zN...)) (D2)

We then calculated the probability of death from ALL landslides of a given volume class generated by each earthquake band.
Pb(eq Band x; Vol class y) fOr a given earthquake band (x) and volume class (y), was multiplied by the number of landslides of a
given volume class (Nis)) generated by the representative earthquake PGA of the given band. If the number of landslides (Ns)
triggered in the band was > 1, then instead of multiplying PoEg Band x; Vol class y) by the number of landslides (N.s), the following

formula was used:

Pp (EQ Band x; ALL Vol classy) = 1 — (1 — Pp(£q Band x-vol Class y) )\ (D3)

We combined the contribution to each grid cell from each landslide volume class per band to calculate the probability of death

from all landslides triggered by the representative PGA in the given band (Ppeq sand x)), Where:

Ppeqeandx) = 1 — (1 — Pp. arLvol class 1)) X (1 — Pp.anvol class 10k)) X (1 — Pp.an vol class N...)) (D4)

We calculated the local personal risk from all landslides that occur within the given band by multiplying Ppeg sandx) by the
annual frequency of the presentative earthquake PGA in that band.

For aseismic landslides, we calculated the probability of death (Po (vol class y)) in the same way as earthquakes except ignored
the need to calculate for each earthquake band. We then calculated the LPR for each volume class, by multiplying Pp (voi class

y) by the annual frequency of the given volume class (y) of landslide occurring.

7.5 Mill’s creek catchment magnitude — frequency relationship

We used several datasets to derive the magnitude-frequency relationship for the Mill’s Creek Catchment, including: 1) A

change detection model from differencing of a March 2017 digital surface model (DSM) and June 2018 digital elevation model
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(DEM); 2) National park staff observations of the frequency of debris flow events and a rough estimate of their associated
volume; and 3) NIWA weather observation data from Franz Josef township, which represents the closest meteorological
observation point. Our change detection model revealed that between March 2017 and June 2018, approximately 6.5 million
m?® was eroded and 3 million m® deposited within the Alpine Gardens and Mill’s Creek catchment. During this same time
period, the valley was closed 34 times due to heavy rain and flooding. For the larger storm events, including ex-tropical
Cyclone Fehi in February 2018, national park staff observed debris flow activity that resulted in damage to the road. The staff
estimated that for the Cyclone Fehi event, approximately 2 million m* had been deposited on the Mill’s Creek debris fan (Tony
Hart — personal communication). Using this information, including both the rough national park staff volume estimates and
frequency of heavy rain events likely to trigger debris flows, we divided the approximately 6.5 million m3 into different debris
flow events based on magnitude — frequency principles. We normalised the data over the 1.38 year time record and the spatial
area of the Alpine Gardens and Mills Creek catchment to derive a magnitude frequency power — law relationship, with elevated

rates of landslide activity compared to the magnitude — frequency relationship for the Fox Glacier Valley overall.
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Table 1: Physical vulnerability values used in study

. . Vulnerability
Representative Landslide Volume (m?) ) )
Central Estimate Upper Estimate

1,000 0.1 1

10,000 0.5 1

50,000 0.5 1

100,000 0.9 1

>500,000 1 1

945
Table 2: Risk model scenarios and associated input variables
Risk Number of landslides | Annual number of | Debris Diameter of a | Vulnerability EQ Scenario Spatio -
Scenario generated during an | aseismic landslides Height person temporal
earthquake probability

1 Central Central Central | 1 Central Time Average walker
estimate Independent

2 Upper Central Central | 1 Central Time Average walker
estimate Independent

3 Upper Upper Central 1 Central Time Average walker
estimate Independent

4 Upper Upper Upper 1 Central Time Average walker
estimate Independent

5 Upper Upper Upper 2 Central Time Average walker
estimate Independent

6 Upper Upper Upper 2 Upper estimate | Time Average walker

Independent

7 Upper Upper Upper 2 Upper estimate | Time Dependent | Average walker

8 Upper Upper Upper 2 Upper estimate | Time Dependent | Slow Walker

9 Central Central Central | 1 Central Time Dependent | Average Walker

Table 3: Risk Model Sensitivity Analysis displaying the factor in increased risk between each scenario and the cumulative increase
in risk from central to upper estimate (Scenario 8).

Risk Model | Changing risk variable Franz Josef Glacier Valley Fox Glacier Valley
Scenario Cumulative Risk | Cumulative Risk | Cumulative Risk | Cumulative Risk
Increase  Percentage | Increase Percentage % | Increase Percentage | Increase Percentage %
% between scenarios % between scenarios
1 Central Estimate Scenario NA NA NA NA
2 Increased number  of | 46 46 10 10
landslides generated during
an earthquake
3 Increased number of | 411 365 40 30
aseismic landslides
4 Increased debris height 420 9 42 2
5 Increased diameter of a | 421 1 42 0
person
6 Increased vulnerability 640 219 108 66
7 Increased earthquake annual | 970 330 164 56
frequency
8 Increased exposure time 1298 328 244 80
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950 Table B 1: Summary table of co-efficient estimates for the variables used in the Fox study area logistic regression equation.

Parameter Type Estimate (coefficients) Standard error Statistical significance (p)
Intercept -7.07532 0.235784 0.000000
Slope Angle 0.03376 0.000177 0.000000
Local Slope Relief 0.02067 0.000188 0.000000
Material Type Rock 1.33131 0.235734 0.000000
Alluvium -5.16420 0.471425 0.000000
Colluvium 0* NA NA
Vegetation Vegetated -1.08698 0.003315 0.000000
No Vegetation 0** NA NA

*Colluvium is set as the reference material, which means that Alluvium is less likely to fail with a negative estimate and rock more likely to
fail with a positive estimate.

**Slopes that are not vegetated is set as the reference vegetation variable, which means that areas that are vegetated are less likely to fail
with a negative estimate.

955 Table B 2: Summary table of co-efficient estimates for the variables used in the Franz Josef study area logistic regression equation.

Parameter Type Estimate (coefficients) Standard error Statistical significance (p)
Intercept -5.70152 0.061317 0.000000
Slope Angle 0.01196 0.000176 0.000000
Local Slope Relief 0.00506 0.000159 0.000000
Material type Colluvium 1.33545 0.061123 0.000000
Rock 2.39511 0.060985 0.000000
Alluvium 0* NA NA

**Alluvium is set as the reference material, which means that colluvium and rock are more likely to fail with a positive

estimate.

960
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Table C 1: RAMMS Rockfall model parameters used for forecasting rockfalls.

Substrate material

and mixed colluvium, moraine,
and talus

Rock, rock at/near surface

Terrain parameter: Hard

Simulation Description
. P RAMMS parameter Data source
Variable
Alluvium, swamp Terrain parameter: Soft
Colluvium, talus and moraine, | Terrain parameter: Medium Materials taken from the

engineering  geomorphology
materials layer

of the rock blocks at source

selected

Vegetation Scrub Forest parameter: Open forest Mapped from aerial
Trees Forest parameter: Medium forest photographs and field verified
Rock shape The shape of the boulders used | Rock parameter: “Real long”, | Field mapping and
in the simulations dimensions (1.5 by 1.0 by 1.0 m). | measurements of rockfalls
Rock volume = 1 m3 (assumes
rounded edges). Mass = 2,730 kg
Topography The digital elevation model used | Terrain = 3 m by 3 m grid cell | Digital Elevation Models
in the simulations resolution (DEM) (bare earth) derived
from the LiDAR surveys of
both study areas
Release Number of random orientations | Three random orientations were | N/A

Source area locations

Rock positions: from 3 m by 3 m grid

cells, with slope angles >45°

From the LIDAR DEMs

Initial velocities of the rock
blocks

Initial velocities of: X =1.5m/s, Y =

15 m/s and Z =
assumed

1.0 mfs,

were

N/A
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Figure 1: Location of the Franz Josef and Fox Glacier Valleys on the West Coast of the South Island (a & b), which contains data
sourced from the LINZ Data service and licensed for reuse under the CC BY 4.0 licence. ¢) Photograph of Franz Josef Glacier
Valley. d) Fox Glacier Valley, including the access roads, cycleway, and tracks within it. €) Franz Josef Glacier valley, including the
access roads, cycleway, and tracks within it.

Figure 2: Schematic and example photographs of landslide types considered in the QRA, including a) rockfall, b) debris and rock
avalanches, and c) debris flows.

Figure 3: a) The number of landslides of given landslide volume that could be generated for different levels of ground-shaking as
represented by Bands 1 through to 4. The power law for Band 2 is y = 2.28x 10%x (vol-*€%), for Band 3 is y = 2.33x 108x (vol14%), for
Band 4 is y = 1.47x 107x (vol'**1). b) Magnitude Frequency relationships for aseismic landslides for Fox Glacier Valley and Franz
Josef Glacier Valley. The two power laws on each graph represent the central estimate (using the power-law relationships). The
power law for Franz Josef Glacier Valley is y = 9.08x (vol-%66), and for Fox Glacier Valley itisy = 5.21 x (vol 051,

Figure 4: Generation of both a seismic and seismic logistic regression model for Fox Glacier Valley. The aseismic logistic regression
model is determined from the correlation between a) The landslide inventory, and the static variables of b) slope angle, c) local slope
relief (LSR- defined as maximum height difference within a fixed 80 m radius of the grid cell), d) geology, and €) vegetation (as
classified from imagery and the Land Cover Database). The logistic regression model calculates f) aseismic landslide susceptibility.
The seismic logistic regression model is determined from the correlation between g) peak ground acceleration (PGA), and the static
variables of b) slope angle, c) local slope relief (LSR), d) geology, and h) distance to active faults (Massey et al., 2018a). The logistic
regression model calculates i) seismic landslide susceptibility.

Figure 5: a) Simulated source areas in Fox Glacier Valley for all volume classes. b) Numerical rockfall simulations, using RAMMS,
from pixel source areas. ¢c) Numerical debris avalanche and debris flow simulations, using RAMMS, from pixel source areas for
volume classes 10,000 m3 to 100,000 m3. d) Numerical debris avalanche simulations, using RAMMS, for geomorphically defined
source areas for volume classes >500,000 m?3.

Figure 6: a) Boxplot of the measured boulder volumes (n = 36) in the field, indicating a median boulder volume of 1 m3. b) Histogram
of the measured boulder volumes in the field.

Figure 7: Risk results from Scenario 1 (Central Estimate) risk model for Franz Josef Glacier Valley. a) LPR map displaying areas
of higher and lower risk, along with the location of tracks (black dotted lines) in the valley. The risk results presented in b) to d) are
extracted along the lower track in a). b) LPR values for aseismic landslides compared with seismic landslides, ¢) LPR values for
different volume classes of aseismic landslides. d) LPR values for the different bands of ground shaking (from lowest Band 1 through
to highest Band 4).

Figure 8: Risk results from Scenario 1 (Central Estimate) risk model for Fox Glacier Valley. a) LPR map displaying areas of higher
and lower risk, along with the location of the access track (black dotted line) in the valley. The risk results presented in b) to d) are
extracted along the track in a). b) LPR values for aseismic landslides compared with seismic landslides, ¢) LPR values for different
volume classes of aseismic landslides. d) LPR values for the different bands of ground shaking (from lowest Band 1 through to
highest Band 4).

Figure 9: Risk results for Scenario 9 (central estimate & time dependent earthquake frequency) along the access track in a) Franz
Josef Glacier Valley and b) Fox Glacier Valley, displaying the contributions of aseismic landslide risk and seismic landslide risk.

Figure 10: a) & b) Photographs of the evolution of the Mill’s Creek debris fan and Alpine Gardens landslide. c) The linkage between
the Alpine Gardens landslide and Mill’s Creek debris channel and fan.

Figure 11: Calculation of local personal risk for Fox Glacier Valley, including recent elevated levels of activity in the Alpine Gardens
— Mill’s Creek debris complex.

Figure 12: Quantitative estimates of individual risk per trip for Fox Glacier and Franz Josef Glacier visitors compared against
popular tourist activities, modes of transportation used to access the glaciers, and individual risk per trip to national parks overseas
(sourced from Taig, 2022). The band range for each activity represents both the statistical uncertainty and uncertainty in the
denominators of units of activity undertaken (cf. Taig, 2022).

Figure C 1: Debris avalanches: Range of parameters used to back-analyse the runout of debris avalanches published in the literature
(n =67), using the RAMMS software.
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Figure C 2: Debris flow: Range of parameters used to back-analyse the runout of debris flows published in the literature (n = 22),
using the RAMMS software

Figure C 3: Range of parameters used to back analyse the runout of derbis avalanches published in the literature. Purple fitted line
represents the mean -1e, the red line represents the modelled fit of the data, and the green line represents the mean +16.

Figure C 4:Range of parameters used to back analyse the runout of derbis flows published in the literatures. The purple fitted line

represents the mean -1o, the red line represents the rounded parameters used within the simulation, and the green line represents
the mean +1o.
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