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Abstract. Wildfires pose a significant risk to people and property which is expected to grow with urban expansion into fire-

prone landscapes and climate change causing increases in fire extent, severity and frequency. Identifying spatial patterns 

associated with wildfire activity is important for assessing the potential impacts of wildfires on human life, property and other 

values. Here, we model the probability of fire ignitions in vegetation across Victoria, Australia to determine the key drivers of 10 

human- and lightning-caused wildfire ignitions. In particular, we extend previous research to consider the role fuel moisture 

has in predicting ignition probability while accounting for environmental and local conditions previously identified as 

important. We used Random Forests to test the effect of variables measuring infrastructure, topography, climate, fuel and soil 

moisture, fire history, and local weather conditions to investigate what factors drove ignition probability for human- and 

lightning-caused ignitions. Human-caused ignitions were predominantly influenced by measures of infrastructure and local 15 

weather. Lightning-sourced ignitions were driven by fuel moisture, average annual rainfall and local weather. Both human- 

and lightning-caused ignitions were influenced by dead fuel moisture with ignitions more likely to occur when dead fuel 

moisture dropped below 20%. In future, these models of ignition probability may be used to produce spatial likelihood maps 

which will improve our models of future wildfire risk and enable land managers to better allocate resources to areas of 

increased fire risk during the fire season. 20 

1 Introduction 

Wildfires present a significant risk to both people and property, with this risk increasing as urban areas continue to expand into 

fire-prone landscapes (Syphard et al., 2013). Wildfire associated risks are likely to increase further with future climate change 

scenarios predicting increases to fire extent, severity and frequency in fire-prone ecosystems (Bowman et al., 2009; Flannigan 

et al., 2009). Wildfires require four key factors to start: sufficient biomass, fuel moisture low enough to allow combustion, 25 

weather conditions conducive to fire spread and an ignition source (Archibald et al., 2009; Bradstock, 2010). These factors 

vary in space and time to influence the risk of a wildfire occurring on any day in a particular location. While weather variables 

are considered to be determinants of fire size (Bradstock et al., 2014; Penman et al., 2013), the spatial pattern of fire is better 
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predicted by ignitions and fuels (Parisien et al., 2010; Pausas and Paula, 2012). Understanding spatial patterns in fire activity 

is important for assessing the risks and associated impacts of wildfires to human life, property and other values.  30 

 

Spatial variation in ignition likelihood has been documented in a number of studies, with different patterns observed depending 

on the ignition source under examination (Bar Massada et al., 2013; Clarke et al., 2019; Liu et al., 2012). Sources of wildfire 

ignition can either be human-caused or natural. Human-caused ignitions may be either intentional or accidental and are often 

related to indicators of human settlement, such as the distance to the nearest road or housing density (Bar Massada et al., 2013; 35 

Clarke et al., 2019). Natural ignition sources include lightning strikes, which can account for up to 90% of recorded wildfire 

ignitions (Clarke et al., 2019; Keeley and Syphard, 2018). The spatial pattern of lightning ignitions differs from human-caused 

ignitions (Bar Massada et al., 2013) with variables such as local weather or topography driving the probability of lightning 

ignition (Clarke et al., 2019; Liu et al., 2012). Further, lightning storms may be responsible for multiple ignitions at a time, 

potentially resulting in more concurrent fires or larger fires when these ignitions converge (Read et al., 2018). The proximity 40 

of human-caused ignitions to population dense areas means early detection of fires is common. However, the potential for 

lightning-caused ignitions to occur in remote or hard to access locations means detection of these fires can be difficult. 

Improved models of lightning ignition probability may therefore aid the early detection of and response to wildfires.  

 

Fuels are composed of both live and dead vegetation. Fuel moisture is a critical factor affecting how fire interacts and moves 45 

through fuels (Chandler et al., 1983). Fuel moisture in both live and dead fuel contributes to fire ignition, spread and severity 

in several ecosystems (Chuvieco et al., 2004, 2009; Dennison et al., 2009; Nolan et al., 2016a). For example, fuel moisture 

content thresholds have been associated with wildfire occurrence in Australian forests and woodlands (Nolan et al., 2016a). 

Forest fuel moisture content can shift across these thresholds in very short periods of time (e.g. within weeks; Dennison et al. 

2009; Nolan et al. 2016a), causing a forest to shift from low to high flammability rapidly. It is therefore important to consider 50 

the influence of fuel moisture on fire ignitions at fine temporal scales.  

 

Fuel moisture has previously only been tested in studies of fire ignitions, based on calculations from meteorological data 

(Dowdy and Mills, 2012; Liu et al., 2012; Miranda et al., 2012; Wotton and Martell, 2005). These methods may lead to 

uncertain estimates of fuel moisture in areas with highly heterogeneous topography and vegetation (Nieto et al., 2010). The 55 

recent development of fuel moisture estimates at regular temporal intervals from remotely-sensed MODIS data may provide a 

solution (Nolan et al., 2016a, 2016b). These methods integrate remotely-sensed data with climate modelling inputs to generate 

layers estimating both live and dead fuel moisture across large spatial and temporal scales. Using these inputs as predictors of 

fire ignitions may improve our estimates of ignition probability for both human-caused and lightning ignited fires.  

 60 

Wildfires in south-eastern Australia have resulted in significant loss of human life and property (Blanchi et al., 2010; Filkov 

et al., 2020; Haynes et al., 2010). A better understanding of both human-caused and lightning-caused ignitions and the 
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associated risks to human life and property is therefore important for this area. This project aimed to model the probability of 

fire ignitions across Victoria, Australia. Specifically, we ask are the key drivers of both human-caused and lightning-caused 

fire ignitions consistent with the global patterns previously reported? We extend previous research of both human and 65 

lightning-caused ignitions and ask to what extent does fuel moisture influence ignition probability? And if so, what is the 

importance of fuel moisture relative to topographic, human and climatic variables? 

2 Methods 

2.1 Study Area 

Our study area was the state of Victoria in south-eastern Australia. The population in Victoria is ~6.6 million, of which the 70 

majority lives in Melbourne (www.abs.gov.au, accessed 7th January 2021). Remnant native vegetation in Victoria covers 

approximately 46% of the state due to previous land clearing for agriculture and human settlements (Fig. 1). There is a climatic 

gradient across the state with average annual rainfall in the north-west averaging ~300 mm, and in the south-east ranging from 

1000 to 1500 mm (www.bom.gov.au, accessed 7th January 2021). Average daily maximum temperatures in summer also vary 

across the state, ranging from 27-30°C in the north-west to 18-24°C in the south-east (www.bom.gov.au,  accessed 7th January 75 

2021). 

 

2.2 Data Compilation 

Historical fire ignition data was obtained from the Victorian Country Fire Authority (CFA) and the Department of 

Environment, Land, Water and Planning (DELWP) for the period between 2000 and 2019 (n = 67,927). These databases have 80 

approximately 20 different ignition causes. For this study, ignition causes were reclassified broadly into human-caused (n = 

59,146; e.g. from arson or accidental sources) and lightning-ignited fires (n = 8,781) as previous work found consistent patterns 

in the drivers of the different types of human ignitions in the study area (Clarke et al., 2019).  

 

The analytical pathways for human and lightning ignitions were necessarily different. For the analysis of human-caused 85 

ignitions, a set of random points were generated across Victoria from a uniform distribution (n = 75,281). Each random point 

was assigned a random date and time within the date range of the ignitions data. These random points were used as absence 

data in the statistical model, providing a random sample of points where fire ignitions did not occur. For the lightning ignitions 

model, data of all lightning events in Victoria over a certain time period were obtained from the Global Position and Tracking 

System Pty. Ltd. (GPATS) Australia. These lightning events were each assigned a probability of starting a fire. Therefore, 90 

absence data was abundant within the dataset and random points were not required. 
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Figure 1: Study area showing areas of remnant native vegetation and areas of cleared or modified (i.e. matrix) vegetation in Victoria, 
Australia (source: Native Vegetation Regulation Extent (2017), www.data.vic.gov.au). 

 95 

Data from raster layers representing a range of natural and built environments were extracted for each ignition and random 

point. Details of the different environmental variables used, and descriptions of the layers and their data sources are listed in 

Table 1. Variables were selected based on those identified as being important from previous studies. For example, human-

caused ignitions have a strong relationship with infrastructure variables such as distance to the nearest road and housing density 

or distance to the nearest settlement (Catry et al., 2009; Clarke et al., 2019; Miranda et al., 2012). Local weather variables, 100 

topography and average annual rainfall have also been shown to have an effect on human-caused ignitions (Catry et al., 2009; 

Clarke et al., 2019; Collins et al., 2015; Liu et al., 2012). Similarly, studies of lightning-caused fires have shown ignitions to 

be influenced by variables such as: aspect, slope and topographic position (Collins et al., 2015; Miranda et al., 2012); average 

annual rainfall (Clarke et al., 2019); fuel moisture indices (Dowdy and Mills, 2012; Liu et al., 2012; Miranda et al., 2012; 
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Wotton and Martell, 2005); local weather (Clarke et al., 2019; Miranda et al., 2012); soil moisture (Liu et al., 2012); and are 105 

predicted be to influenced by changes to fire fuel loads with the time since last fire (Clarke et al., 2019). 

 
Table 1: Environmental and human-mediated variables used as predictors in model development. Table provides a description of 
the variable and the source of the data. 

Variable Description Time Range Source 
Topography 

Elevation (m) Calculated from 30 m Digital Elevation Model 
(DEM) 

N/A www.data.vic.gov.au 

Aspect (degrees) Calculated from 30 m DEM 
Slope (degrees) Calculated from 30 m DEM 

Topographic Position 
Index (TPI) 

Calculated from 30 m DEM, combining slope 
position and landform category. Positive TPI values 
indicate ridges, negative values indicate valleys, and 
values near zero represent plains and areas of 
constant slope 

Fire 

Time Since Fire (years) Derived from Fire History Maps. TSF was set to 100 
for ignitions in areas with no mapped fire history.  

Annual 
2000-2020 www.data.vic.gov.au 

Infrastructure 
Housing Density 
(houses/ km2) 

Calculated from vector files of address locations 
following Clarke et al. (2019) N/A www.data.vic.gov.au Distance to the nearest 

road (km) 
Calculated from vector files of roads following 
Clarke et al. (2019) 

Climate 

Rainfall (mm) Mean annual rainfall from Worldclim v2.1.  Average from 
1970-2000 www.worldclim.org  

Weather 

Forest Fire Danger 
Index (FFDI) 

FFDI calculated from gridded hourly temperature, 
drought factor and humidity data within the VicClim 
database Hourly 

2000-2017 
Country Fire Authority 
(CFA) 

Wind Speed (km/hour) Wind speed from gridded hourly data within the 
VicClim database 

Dryness    

Soil moisture (sm_pct) Extracted from the root zone soil moisture layer 
provided by the Australian Landscape Water Balance 

Annual 
2005-2020 www.bom.gov.au  

Fuel Moisture    
Live Fuel Moisture 
Content Fuel moisture within vegetation. Calculated 

following Nolan et al. (2016b). (N.B. Live Fuel 
Moisture was limited to areas of native vegetation.) 

Annual 
2000-2019  Dead Fuel Moisture 

Content 
 110 

2.3 GPATS Lightning Data 

Lightning is an electrical discharge generated when positive and negative charges in clouds separate (Latham and Williams, 

2001). A flash of lightning from a cloud to the ground can contain a single or several return strokes. Each stroke can be 

described by its duration, strength (amplitude or current) and polarity (positive or negative). All strokes within a lightning flash 
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can either follow the same channel to the ground or have several different terminals if the flash branches near to the ground 115 

(Larjavaara et al., 2005).  

 

 
Figure 2: Lightning data manipulation process. Here a lightning flash is composed of several strokes which can differ in their 
duration, strength (amplitude), and polarity. Strokes can follow the same channel to the ground or can branch and have several 120 
terminals near the ground. *Equations for the calculation of stroke ignition probability are described in text following the method 
outlines in (Larjavaara et al., 2005). 

 

Data of lightning strokes were obtained from Global Position and Tracking System Pty. Ltd. (GPATS) Australia. GPATS uses 

triangulation of data from a network of radio receivers to determine the time and location of individual lightning strokes. This 125 

technique distinguishes between cloud-to-cloud strokes and cloud-to-ground strokes and detects the multiple strokes that can 

occur within a single lightning flash. The data contains information about the strength of each lightning stroke (amplitude), its 

polarity, its time and location. There is some variation within the detection efficiency of the GPATS data due to spatial and 

temporal variation in the systems used (Dowdy et al., 2017). The GPATS data obtained covered the state of Victoria from the 

period 2004 to 2019 (number of strokes = 3,977,126). The data was simplified for the analysis following the process outlined 130 

in Fig. 2. 
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The time and location of each stroke was used to extract information from raster layers representing natural and human built 

variables (Table 1). An ignition probability was calculated for each stroke following the method outlined in Larjavaara et al. 

(2005) based on the temporal and spatial proximity of a stroke to an ignition caused by lightning. First the proximity index (𝐴𝐴) 135 

was calculated for each stroke within 10 km of the ignition and within five days preceding the ignition. Approximately 75% 

of fire ignitions from lightning are detected within three days of the lightning occurring (Wotton and Martell, 2005). We 

allowed for five days to cover this period and ensure we captured the majority of ignitions. The proximity index was calculated 

following Eq. (1). 

𝐴𝐴 = (1 − 𝑇𝑇 120⁄ ))(1 − 𝑆𝑆 10⁄ ),          (1) 140 

where, 𝑇𝑇 is the delay in hours between the time of the stroke to the time of the ignition and S is the spatial distance in kilometres 

between the stroke and the fire.  

 

The proximity index was then used to calculate ignition probability for each stroke (𝑃𝑃𝑆𝑆) by dividing the proximity of each 

stroke (𝐴𝐴𝑆𝑆) by the sum of all strokes (𝐴𝐴𝑖𝑖) within 10 km and five days of the ignition following Eq. (2). 145 

𝑃𝑃𝑆𝑆 = 𝐴𝐴𝑆𝑆 ∑ 𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖=1⁄ ,           (2) 

 

Lightning strokes were grouped into lightning flashes if they occurred within 0.5 seconds and 0.05° in both latitude and 

longitude. This reduced the size of the dataset (n = 1,994,918) and allowed inclusion of flash multiplicity (a potential indicator 

of ignition likelihood; Flannigan and Wotton 1991; Larjavaara et al. 2005) as a predictor in the statistical models. The ignition 150 

probability of a flash (𝑃𝑃𝐹𝐹) was then calculated following the inclusion-exclusion principle described in Eq. (3).  

𝑃𝑃𝐹𝐹 = 1 −  ∏ (1 − 𝑃𝑃𝑆𝑆)𝑛𝑛
𝑆𝑆=1 ,           (3) 

The inclusion-exclusion principle was used rather than the sum of probabilities as the latter could be greater than one when a 

lightning stroke was linked to more than one fire. More information on the inclusion-exclusion principle is included in 

Appendix 1. Finally, for each flash the environmental data (listed in Table 1) was calculated by averaging the data extracted 155 

for each stroke. 

2.4 Random Forest Modelling 

Random Forests were used to determine the probability of an ignition occurring, with separate models built for lighting- and 

human-caused ignitions. Random Forests are a non-parametric modelling technique with a higher classification accuracy and 

reduced risk of overfitting the data compared to other parametric modelling techniques (Breiman, 2001; Cutler et al., 2007). 160 

Both classification and regression trees are used in random forests, which are built using a random subset of the data (usually 

70%; termed out of bag (OOB) samples). Trees are then ensembled to calculate either the majority vote (classification) or 
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average value (regression) of predictions in the model (Breiman, 2001). Model accuracy is calculated by comparing the model 

built on the OOB samples to the data withheld during model development and averaging this across all observations (Cutler 

et al., 2007). For classification trees this results in an estimate of classification error, while for regression this gives a measure 165 

of variance explained and mean square error. 

 

Variable importance is calculated following two different methods for the two types of Random Forest. For classification trees, 

variable importance is calculated by summing the decrease in Gini impurity that occurs every time a variable is chosen to split 

a node in the classification tree, giving a measure of Mean Gini Index (Cutler et al., 2007). For regression trees, variable 170 

importance in calculated by measuring the total decrease in the residual sum of squares that occurs every time a variable is 

chosen to split a node in a regression tree, giving a measure on Included Node Purity.  

 

Random Forests were used to model lightning- and human-caused ignitions separately. Each ignitions dataset was split again 

into those occurring within remnant native vegetation (hereafter “native forest”) and those on cleared or modified land 175 

(hereafter “matrix”) (based on the native vegetation layer from data.vic.gov.au). Models were therefore prepared for four 

different ignition datasets – human ignitions in native vegetation, human ignitions in matrix, lightning ignitions in native 

vegetation and lightning ignitions in matrix. Splitting the data into native forest and matrix vegetation was undertaken to allow 

the inclusion of Live Fuel Moisture as a predictor in models of native forest and also resulted in much reduced computation 

times for the models. Live Fuel Moisture has only been modelled for native forest in the south-east of Australia meaning no 180 

data was available in matrix areas. As previous work has indicated live fuel moisture thresholds can determine fire activity 

(e.g. Dennison et al., 2009) we wanted to determine its importance relative to other predictors in this area. 

2.4.1 Human-caused Ignitions Model Development 

A classification Random Forest for human ignitions was built on the ignition data (presence) and a set of random points 

(absence).  As the number of points in the presence and absence data were uneven, we used a down sampling method to balance 185 

the two classes (Valavi et al., 2021). Down sampling is a method which takes subsamples of the data (with replacement) at 

each tree so that the classes are equal in sample size. The subsamples are replaced and resampled for every tree that is built. 

Models were built using all variables listed in Table 1. Soil moisture was removed from the models as it did not improve the 

overall accuracy of these models and it limited the dataset to ignitions from 2005 onwards. Similarly, of the weather variables, 

only FFDI was retained in the model as including the other variables did not improve model accuracy. To ensure optimal 190 

model fit, model tuning was conducted to determine the number of trees to grow and the number of variables to sample at each 

split. 

 

Model validation was done using the OOB error described above and a 10-fold cross-validation procedure. The cross-

validation procedure retained a 10% subset of the data as a test set and built the model on the remaining data. By performing 195 
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this cross-validation we were able to retain a complete section of the dataset to validate the model and account for any large 

variation present in the dataset. The model fit was assessed by comparing the training and testing errors produced by the two 

model validation procedures. Partial dependence plots (PDPs) were used to examine the relationship of each predictor variable 

with the probability of an ignition when the other predictors variables are held constant at their average (Friedman, 2001). 

2.4.2 Lightning-caused Ignitions Model Development 200 

The lightning dataset was highly skewed towards lightning flashes with no probability of ignition (89% of the dataset). 

Therefore, this analysis was conducted in two stages. The first stage reclassified the ignition probabilities to determine if a 

flash had no chance of starting a fire (ignition probability = 0) or if the flash had any chance of starting a fire (ignition 

probability > 0). The reclassified data was zero inflated, so a classification random forest was run using a down sampling 

method for class imbalanced data (Valavi et al., 2021), as described above. The second stage of the analysis used a regression 205 

random forest on all the lightning flashes with any chance of starting a fire to predict what the probability of ignition would 

be. For consistency, we used the same variables in both stage one and stage two.  

 

Models were built using all the variables listed in Table 1. Testing of variables was undertaken to determine which weather 

variables were important to include in the model. The best models were produced when both weather variables listed in Table 210 

1 were used. Use of only FFDI resulted in a drop in the accuracy of models. Additionally, the number of strokes within a flash 

and the average amplitude of these strokes were used as predictor variables. As with the human ignitions model, model tuning 

was conducted to determine the optimum number of trees and variables to use at each split. Model validation using OOB and 

cross-validation was conducted for both stages of the lightning model, and partial dependence plots were built to show the 

predictors effect on the probability of lightning causing an ignition.  215 

 

All analyses were conducted in R v3.6.3 using the “randomForest” package to build Random Forest models (Liaw and Wiener, 

2002). Partial dependence plots were produced using the “pdp” package (Greenwell, 2017) and all graphs were produced in 

the package “ggplot2” (Wickham, 2009). 

3. Results 220 

Models of ignition probability from human-caused sources used data from 59,984 ignitions in native forest and 94,034 ignitions 

in cleared or modified land (i.e. matrix areas). The classification model generated for each of these areas was very accurate 

with both models predicting between 86.4% and 90.3% of ignitions and non-ignitions (i.e. random points) correctly (Table 2). 

Models of ignition probability from lightning sources used data from 888,604 flash events in native forest and 986,777 flash 

events in the matrix. Of these flashes, 11% occurred within 10 km and 5 days of a recorded lightning fire event and so had an 225 

ignition probability calculated (average = 3%). The first stage of the lightning modelling process (classification procedure) 

https://doi.org/10.5194/nhess-2022-52
Preprint. Discussion started: 8 March 2022
c© Author(s) 2022. CC BY 4.0 License.



10 
 

recorded all flashes with any probability of ignition as an ignition presence. These models performed well with low error 

classifying lightning flashes as either likely to start a fire, or with no chance of starting a fire (Table 2). The second stage of 

the lightning modelling process (regression procedure) used only flashes with a probability of starting a fire. This resulted in 

a reduced dataset containing only 77,193 lightning flash events in native forest and 82,762 flashes in matrix. The ability of 230 

these regression models to accurately predict the probability that a fire was started from one of the lightning flashes was quite 

low (~15%; Table 2).  

 
Table 2: Random Forest results for human ignitions and GPATS lightning data. Model parameters indicates where the random 
forest was classification or a regression, how many trees were built (ntree) and the number of variables tested at each split (mtry). 235 
Average and standard deviation from the 10-fold cross-validation of classification error for points classed as ignitions compared to 
points with no ignition are given for classification models. Average and standard deviations from the 10-fold cross-validation are 
provided for the variance explained (R2) of regression models. 

Model 
Model Parameters Classification Error 

R2 Type ntree mtry Ignition No Ignition 

Human Matrix Classification 500 2 0.100 ± 0.004 0.101 ± 0.004  

Human Native Classification 500 2 0.136 ± 0.007 0.097 ± 0.006  

Lightning Matrix Classification 500 6 0.173 ± 0.005 0.127 ± 0.001  

Lightning Native Classification 500 6 0.226 ± 0.006 0.131 ± 0.002  

Lightning Matrix Regression 600 4   15.041 ± 1.269 

Lightning Native Regression 600 4   15.358 ± 0.929 
 

3.1 Human-caused Ignitions 240 

The human ignitions models for both native forest and matrix were predominantly driven by variables measuring human 

infrastructure: Distance to Road and Housing Density (Fig. 3 a, b). The probability of ignition in both models decreased rapidly 

as the Distance from Road increased to ~500 m then levelled off (Fig. 4). This effect was not as large within the native forest 

model as it was in the matrix. Conversely, the probability of ignition increased rapidly in both models as Housing Density 

increased to ~100 and remained high above this threshold. FFDI was the next most important variable having a greater 245 

influence on the probability of ignition in native forests than in matrix (Fig. 3 a, b). In both models, the probability of an 

ignition increased rapidly up to an FFDI of ~30 and remained high above this point (Fig. 4). Dead Fuel Moisture and Rainfall 

had a weaker influence in both models (Fig. 3 a, b). However, both showed thresholds of influence with a lower probability of 

ignition in parts of the state with low average annual rainfall (<1000 mm) and higher probability of ignition in areas with Dead 

Fuel Moisture content below 20 (Fig. 4).  250 
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Figure 3: Variable importance of predictors for human-caused ignitions in (a) matrix and (b) native forest, and lightning ignitions 
in (c) matrix and (d) native forest. Average and standard deviations of the Mean Decrease in Gini Index for the models produced 
during the 10-fold cross-validation are shown. 255 
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Figure 4: Partial dependence plot for the six top variables in the random forest model for human-caused fire ignitions in (a) matrix 
and (b) native forest. Variables are plotted in order of importance. Black lines are the average probability of ignition from the 10 
models produced during the 10-fold cross-validation. Grey error bars represent the upper and lower estimates from the 10-fold 
cross-validation. 260 

 

3.2 Lightning-caused Ignitions 

In classification models predicting whether a lightning flash had any chance of starting a fire, fuel moisture, average annual 

rainfall, weather and soil moisture were the most important variables (Fig. 3). Dead Fuel Moisture was very important to both 

models in native forest and in the matrix with a higher probability of ignition when dead fuel moisture was below 20 (Fig. 5). 265 

In matrix vegetation, Rainfall was the second most important variable (Fig. 3 c), with the probability of an ignition in parts of 

the state with average annual rainfall above 1000 mm (Fig. 5 a). Rainfall was less important in native forest (Fig. 3 d), but 

followed a similar trend with the probability of an ignition increasing as average annual rainfall increased (Fig. 5 b). FFDI was 

the most important variable in the native forest model (Fig. 3 d), with the probability of an ignition increasing to an FFDI of 
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~30 and remaining stable at values above this threshold (Fig. 5 b).  For FFDI in matrix, the probability of ignitions followed 270 

the same trend (Fig. 5 a). Soil moisture was of similar importance to both matrix and native vegetation models (Fig. 3). 

However, there was no strong trend in either vegetation type, with slightly higher ignition probability in areas with soil moisture 

below 0.25 (Fig. 5). 

 

Figure 5: Partial dependence plot for the six top predictor variables in the random forest models predicting whether a lightning 
flash has any probability of starting a fire in (a) matrix and (b) native forest. Variables are plotted in order of importance. Black 
lines represent the average probability of ignition from the 10 models used in the cross-validation. Grey error bars represent the 
upper and lower estimates from the 10-fold cross-validation.  

 280 

Fuel moisture, lightning stroke amplitude, weather and average annual rainfall were the most important predictors of ignition 

probability in the regression models for lightning ignition. Dead Fuel Moisture and Average Stroke Amplitude had the 

strongest effect in both native and matrix vegetation, followed by FFDI and Rainfall (Fig. 6). However, the overall strength of 

these predictor variables to predict fire ignition probability from a lightning stroke was low (Table 2). 
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 285 

 

Figure 6: Variable importance of predictors for the probability of a lightning flash causing an ignition in (a) matrix and (b) native 
forest. Average and standard deviations of the Included Node Purity calculated by averaging the residual sum of squares over all 
trees in a random forest model for each model used in the 10-fold cross-validation. 

4. Discussion 290 

Understanding spatial patterns of ignition probability is important for the assessment of risks from wildfires to human life, 

property and environmental values. We evaluated wildfire ignition probability across a broad range of environments in south-

eastern Australia to determine key variables driving human-caused and lighting-caused ignitions. We found human-caused 

ignitions were primarily influenced by human infrastructure and local weather conditions whereas lightning-sourced ignitions 

were driven by fuel moisture, average annual rainfall and local weather conditions. In particular, dead fuel moisture influenced 295 

ignitions from both sources with ignitions more likely to occur when dead fuel moisture dropped below 20%.  

 

Human-caused ignitions were strongly related to measures of infrastructure and local weather with clear thresholds indicating 

the influence of these variables. These results are consistent with a number of other studies demonstrating the importance of 

infrastructure and weather for predicting spatial patterns in ignitions from human causes (Clarke et al., 2019; Collins et al., 300 

2015; Faivre et al., 2014; Liu et al., 2012; Syphard et al., 2008). These studies also reported similar trends with a higher 

probability of ignitions closer to roads and housing (Clarke et al., 2019; Faivre et al., 2011; Liu et al., 2012) and a steady 

increase in ignition probability as FFDI reached 50 (Clarke et al., 2019). The accuracy of the models produced here (86.4% 

and 90.3%) are also comparable to the accuracy of models in other studies, although differences in modelling approach may 

affect interpretation here. For example, Clarke et al. (2019) reported AUCs between 84.6 and 96.7, Collins et al. (2015) 305 

reported deviance explained of 83.8% to 88.3% and Liu et al. (2012) reported R2 of 95%. The similarity in predictive accuracies 
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among these models suggests the inclusion of fuel moisture does not improve overall model performance for human-caused 

ignitions, despite clear thresholds existing for ignition probability.  

 

Lightning ignition probability was most strongly driven by rainfall, dead fuel moisture and local weather conditions (FFDI). 310 

The importance of average annual rainfall and FFDI for lightning ignitions has previously been demonstrated in this region 

with similar trends in ignitions for these variables reported  (Clarke et al., 2019). While studies have previously demonstrated 

the influence of fuel moisture on lightning ignitions (Dowdy and Mills, 2012; Miranda et al., 2012; Wotton and Martell, 2005), 

few have done so in conjunction with both local environmental and weather conditions (but see Liu et al., 2012). Incorporation 

of variables measuring fuel moisture, environmental factors and local weather may have contributed to a higher prediction 315 

accuracy for ignition following lightning flash events using a classification procedure in this study compared to others. Here, 

model classification accuracy was between 77.4% and 87.3% for models of lightning ignition. Previous studies using different 

methods and variables to measure classification accuracy have found 67.2% deviance explained (Collins et al., 2015), 73% 

variability explained (Wotton and Martell, 2005) and an AUC of 79.3 (Clarke et al., 2019). Our estimates may be further 

improved by incorporating measures of weather in the days following a lightning event as delays between lightning strike 320 

events and fire ignitions are known to occur (Wotton and Martell, 2005). 

 

There is a clear dead fuel moisture threshold effect for both ignition types. Ignition probability was higher in areas where dead 

fuel moisture was below 20% and dropped almost to zero at fuel moisture ratings above this level. Similar effects of fuel 

moisture or surface moisture have been found in previous studies with decreases in ignition probability as moisture content 325 

increases for both lightning and human-caused ignitions (Liu et al., 2012; Miranda et al., 2012; Wotton and Martell, 2005). 

The 20% fuel moisture threshold in dead fuel moisture content mirrors the thresholds found in a study assessing the area burnt 

by fires in this region (Nolan et al., 2016a), indicating dead fuel moisture levels above 20% significantly reduce both the 

likelihood of an ignition and the size of a fire. While dead fuel moisture influenced ignition probability in both lightning and 

human-caused ignitions, live fuel moisture had only a limited effect in the models and is thus much less likely to determine 330 

ignition probability.  

 

Despite the high accuracy achieved in the classification models, lower accuracies were recorded in the regression models of 

lightning ignition probability. This is likely due partly to discrepancies in the recording locations of both fire ignitions and 

GPATS lightning flashes. Within the fire ignitions dataset locations are sometimes recorded at the nearest road or intersection 335 

to the fire, rather than the exact latitude and longitude of the ignition. There are also likely to be ignitions missing from the 

dataset, since many lightning ignitions occurring in remote areas may not be reported or may be reported days after the ignition 

has occurred. In the GPATs lightning dataset, there is potential recording errors of at least 1 km within key deployment areas 

(http://www.gpats.com.au/, accessed 25th January 2021) and potentially higher error in remote locations. Additionally, the use 

of different recording systems over the years has resulted in spatial and temporal variation in recorded lightning flash locations 340 
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(Dowdy et al., 2017). These spatial and temporal discrepancies have likely contributed to the error in the regression lightning 

model, but may have also influenced classification accuracy in the lightning classification model. 

 

Models of ignition probability were able to be produced with high predictive accuracy despite the spatial error present within 

the predictor datasets. These models allow for spatial likelihood maps of ignition probability to be produced at a daily temporal 345 

resolution. High accuracy ignition probability models also have application in the estimation of areas where ignition probability 

may increase under different climate change scenarios. In turn, this would provide better information in models of future fire 

behaviour and risk in fire-prone landscapes. Further, the ignition probability models developed here use daily weather variables 

as inputs. This means finer-scale, daily ignition probability maps could be produced on a regular basis. These could inform the 

placement of suppression resources for rapid attack when fires occur and also provide better information for the community, 350 

such as providing warnings on high fire danger days. 

6. Conclusion 

Globally consistent patterns were found in the drivers of both human and lightning caused ignitions. Human-caused ignitions 

are predominantly pre-determined by the proximity to human settlement and weather conditions while lightning-caused 

ignitions are driven by fuel moisture, average annual rainfall and local weather. Relationships with remotely sensed values of 355 

fuel moisture provide a means for better understanding and predicting the likelihood of fires across the landscape on a daily 

time step.  These high accuracy spatial and temporal likelihood maps of ignition probability will improve our models of wildfire 

risk and enable land managers to better allocate resources during the fire season.   
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Appendix 1 360 

Inclusion-exclusion formula for any two events: 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) 

Where 

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) ∗ 𝑃𝑃(𝐵𝐵) 

And 365 

𝑃𝑃(𝐴𝐴) = 1 − 𝑃𝑃(�̅�𝐴) and conversely 𝑃𝑃(�̅�𝐴) = 1 − 𝑃𝑃(𝐴𝐴) 

𝑃𝑃(𝐵𝐵) = 1 − 𝑃𝑃(𝐵𝐵�)and conversely 𝑃𝑃(𝐵𝐵�) = 1 − 𝑃𝑃(𝐵𝐵) 

Therefore, the probability of an event not occurring: 

𝑃𝑃(�̅�𝐴) ∗ 𝑃𝑃(𝐵𝐵�) = �1 − 𝑃𝑃(�̅�𝐴)� ∗ �1 − 𝑃𝑃(𝐵𝐵�)� 

becomes, 370 

𝑃𝑃(�̅�𝐴) ∗ 𝑃𝑃(𝐵𝐵�) = 1 − 𝑃𝑃(𝐴𝐴) − 𝑃𝑃(𝐵𝐵) + 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) 

And conversely, the probability of an event occurring: 

𝑃𝑃(𝐴𝐴 ∪ 𝐵𝐵) = 1 − �1 − 𝑃𝑃(𝐴𝐴)� ∗ �1 − 𝑃𝑃(𝐵𝐵)� 

Therefore, the inclusion-exclusion formula for the case when there are 𝑛𝑛 number of events becomes: 

1 −�(1 − 𝑃𝑃𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 375 
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