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Abstract. In early April 2021 several days of harsh frost affected central Europe. This led to very severe damages in grapevine 

and fruit trees in France, in regions where young leaves had already unfolded due to unusually warm temperatures in the 

preceding month (march 2021. We analysed with observations and 172 climate model simulations how human-induced climate 20 

change affected this event over central France, where many vineyards are located. We found that, without human-caused 

climate change, such temperatures in April or later in spring would have been even lower by 1.2°C [0.75°C;1.7°C]. However, 

climate change also caused an earlier occurrence of bud burst, that we characterized in this study by a growing-degree-day 

index value. This shift leaves young leaves exposed to more winter-like conditions with lower minimum temperatures and 

longer nights, an effect that over-compensates the warming effect. Extreme cold temperatures occurring after the start of the 25 

growing season such as those of April 2021 are now 2°C colder [0.5°C to 3.3°C] than in pre-industrial conditions, according 

to observations. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate 

change with each of 5 climate model ensembles used here simulating a cooling of growing-period annual temperature minima 

of 0.41°C [0.22°C to 0.60°C] since pre-industrial conditions. The 2021 growing-period frost event has become 50% more 

likely [10%-110%]. Models accurately simulate the observed warming in extreme lowest spring temperatures, but 30 

underestimate the observed trends in growing-period frost intensities, a fact that remains yet to be explained. Model ensembles 

all simulate a further intensification of yearly minimum temperatures occurring in the growing period for future decades, and 

a significant probability increase for such events of about 30% [20%-40%] in a climate with global warming of 2°C. 
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1 Introduction 

Frost days and cold spells are decreasing in frequency and intensity worldwide (IPCC, 2021; van Oldenborgh et al., 2019). 35 

Yet, severe cold spells continue to pound many mid-latitude areas, due to the occasional invasion of polar air being transported 

well into lower latitudes as a consequence of the chaotic motion of Rossby waves. When occurring in spring, such cold events 

can create a range of impacts on agriculture such as in April 2021, when young leaves and flowers have started to develop in 

fruit trees or grapevines. The frost event which took place from 6 to 8 April 2021 was exceptional with daily minimum 

temperatures below -5°C recorded in several places. In several places, such low temperatures left no chance to save grapevines 40 

and fruit trees by frost management strategies (e.g.  local heating from braseros or spreading water to keep frost moderate at 

the surface of plants). The cold temperatures led to broken records at many weather stations (see Figure 1, right-hand-side). 

Unfortunately, this cold event happened a week after an episode of record-breaking high March temperatures also in many 

places in France and Western Europe (Figure 1, left-hand-side). This sequence led the growing season to start early, with bud 

burst occurring in March and the new leaves and flowers left exposed to the deep frost episode that followed. 45 

 

Figure 1: Stations with March (left) high records broken (pink thermometer) and April (right) low records broken (since at least 20 

years) (blue thermometers) in 2021 in France. Symbols are superimposed with the record value of the temperature. 

In 2021, the wine production has been historically low, with 33 bn hectoliters produced, a level that is 25% below the average 

production of the previous 5 years, and that is lower than the 2017 production, which was also hit by a late frost (Ministère de 50 

l’Agriculture, 2021). Beyond the frost and its consequences, the losses were amplified by a relatively cool and wet summer 

season allowing Mildew and Botrytis development. In general early varieties in vineyards were affected by frost (for example 

Sauvignon in Bordeaux). The losses were widespread, but the frost hit the vineyard differently. In hardest hit places such as in 

Burgundy or Jura, about ⅔ of the production was destroyed. In other places such as in the Beaujolais, later developing species 

made the losses less severe. In the Champagne vineyards, and in many places across France the losses ranged from 30% to 55 

50% (Agreste, 2021). 
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Fruit production was also severely hit for some fruits. Estimates of production losses are of about 50% for pears, cherries, 

~25% for peaches and ~20% for apples (with large departures from average depending on the region). Some other productions 

were also impacted (as sugar beet emergence) but final yields were not finally affected because of favorable production 

conditions (Agreste, 2021). 60 

The occurrence of such an event called for investigating the role of climate change. From the weather point of view, the event 

is rather classical for cold outbreaks, when air masses of polar origin invade Western Europe. The large-scale flow pattern was 

characterized by a strong high-latitude anticyclone extending from Greenland to the North-Western European coasts, which 

was found among the 4 most recurrent or stationary North-Atlantic flows (the “Greenland Blocking” pattern of Michelangeli 

et al., 1995, and Vautard et al., 1990), inducing a negative value of the North-Atlantic Oscillation (NAO) Index. The 65 

combination of polar air advection, cloud-free sky and still long nights led to hours of intense frost. Such dynamical events are 

not observed to have become more frequent (Screen et al., 2013, Blackport and Screen, 2020) despite the ongoing debate on 

the role of narrower sea ice extent favoring the occurrence of blocking anticyclones (Barnes and Screen, 2015). However, 

human-induced changes in dynamical conditions, especially leading to cold outbreaks, remain largely uncertain and can be 

viewed from various indices (Shepherd, 2014), and their understanding would require an in-depth, dedicated analysis.  70 

Here we perform a statistical attribution analysis of the 2021 late frosts to climate change from an impact perspective. The 

effects of climate change on late frosts and their consequences are complex because several processes are in competition, in 

particular the earlier start of the growing season and the general regression of cold extremes and frost days (IPCC, 2021). The 

advance in the start of the growing season has increased the number of frost days occurring after the start of the growing season 

in several places worldwide, including in Europe (Liu et al., 2018). Using several indices for grapevine exposure, it has been 75 

found that the date of the last frost day has not regressed as fast as the date of growing season start (Sgubin et al., 

2018). However, so far no formal attribution study of a “growing period frost” has been carried out to quantify the role of 

anthropogenic climate change in these observed trends. In order to carry out the attribution study, we use several indices and 

event definitions characterizing cold temperatures in the growing season, and the well-established attribution methodology 

described in Philip et al. (2020) and van Oldenborgh et al. (2021). 80 

A rapid attribution analysis was carried out in June 2021 and reported in (Vautard et al., 2021, 

https://www.worldweatherattribution.org), with several indices developed and analyzed, showing that while spring frosts are 

generally becoming less severe and frequent, frosts occurring after the growing season start are becoming more intense due to 

climate change. Since then, observations were consolidated, more model data has been collected and simulation data 

processing was homogenized. This article reports the final results, which confirm the conclusions of the preliminary analysis.  85 

We present several definitions of the frost event in section 2, and the corresponding indices chosen. In Section 3, we present 

methods, observations and models used, and trends in observations are analyzed, and in section 4, results from observations 

and model ensembles are analyzed. This is followed by a synthesis of results, a discussion and a conclusion in Section 5. 

https://www.worldweatherattribution.org/
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2 Event definition and indices used 

The cold spell of 6-8 April 2021 hit much of Central and Northern Europe (see Figure 2a). However, we focus here on 90 

central/northern France in order to investigate a relatively homogeneous, mostly plain or low-elevation area (see Figure 2b). 

This area [-1°- 5°E; 46°-49°N] covers most of the grapevine agriculture areas of Champagne, Loire Valley and Burgundy 

which were identified as specifically vulnerable regions under climate change (Sgubin et al., 2018). The area also covers 

regions with high crop and fruit production.  

 95 

 

Figure 2. a) Minimum temperatures on 6 April 2021 in Europe from the E-OBS database (see Section 3); b) focus on France with a 

higher resolution dataset, using the Anastasia data (Météo-France, Besson et al, 2019). The study area is shown in this panel by the 

bounded box in red; stars indicate the location of the 3 stations used to assess local trends; c) Spatial distribution of the Growing 

Degree Day index in Europe on 5 April 2021 as calculated from E-OBS. 100 

We use several event definitions, accounting for different phenological aspects. Differences in results for these definitions also 

test the robustness of the attribution. In each case, the “event” is defined as the yearly minimum temperature (TNn) obtained 

under specific conditions, and then averaged over the area, or taken at specific station locations. A basic reference conditioning 

is the fixed-season minimum temperature and does not consider phenology: the TNn is calculated over the April-July months 

(index TNnApr-Jul). The second index accounts for phenology. The TNn is calculated conditioned upon the Growing Degree 105 

Day above 5°C (hereafter denoted “GDD”) being larger than thresholds characterizing bud burst conditions, which depend on 

species. In this study, our aim is not to tie thresholds to specific plants' phenology but to provide a general overview for 

different thresholds. GDD is calculated, at each grid point, with a starting date of the previous winter solstice, in a similar 

approach used by Garcia de Cortazar-Atauri et al. (2019), assuming that the dormancy break period for grapes is finished in 

the calculation period. The formula for the GDD at day t during year y is therefore: 110 
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(1)  𝐺𝐷𝐷(𝑡, 𝑦) = ∑ max(𝑇𝑀𝑘 − 5, 0) 𝑘=𝑡
𝑘=𝑡𝑠𝑡𝑎𝑟𝑡 , 

 

with TM the daily mean temperature and tstart is the 21 december of previous year y-1 (starting time of the cumulation). In 

2021, the values of GDD obtained on the day before the frost events in the concerned area vary in the range 150°C.day to 115 

350°C.day, with an average value on 5 April of 259°C.day over the study domain. This value is high for this calendar day 

(rank=14th since 1921 in the E-OBS extended dataset) but the record value was obtained in 2020, with a mean GDD of 

320°C.day. Given the range of values taken in the domain, we considered 3 thresholds for GDD: 250°C.day as a central value, 

and 150°C.day and 350°C.day as sensitivity experiments. This range of values also helps to capture a range of bud burst values 

of grapevine cultivars as found in Garcia de Cortazar-Atauri et al. (2009). For each GDD threshold, the yearly minimum TN 120 

values (TNn), respectively called hereafter “TNnGDD250”, “TNnGDD150” and “TNnGDD350” for the three GDD 

thresholds, is calculated over subsequent days and until the end of July at each grid point and then averaged over the study 

area [-1°- 5°E; 46°-49°N]. Despite the fact that the average characterizes the mean lowest temperature that can occur after 

crossing the GDD threshold, the average can mix several dates as the GDD threshold crossing and the yearly minimum does 

not necessarily occur on the same date over the whole domain. In 2021, for instance, the TNnGDD250 was already reached 125 

during the 6-8 Apr episode for most of the area, but not in the easternmost part and in some other parts, because GDD did not 

exceed 250°C.day during the April frosts.  

In order to focus on specific phenological periods when young leaves and flowers are sensitive to frost after bud burst and 

flowering, we also defined indices over limited ranges of GDD values. The number of possibilities are large, in most cases 

providing qualitatively similar results. The analysis is reported here only for the range 250-350°C.day, by using the yearly 130 

minimal temperature over this GDD range (index TNnGDD250-350). This index is again calculated by grid point before being 

averaged spatially over the study region, or is taken at stations. 

3. Methods, observations and models 

3.1 Methods 

Event attribution methods used in this study are well documented in previous studies. The rapid attribution methodology is a 135 

classical probabilistic approach, described in Philip et al., 2020 and van Oldenborgh et al., 2021, and has been used in many 

case studies for heat waves (e.g. Kew et al., 2019, Vautard et al., 2020), extreme precipitation (e.g. Philip et al., 2018), or more 

complex events such as wildfire weather (van Oldenborgh et al., 2020). It uses a stepwise approach analyzing observations 

with a Generalized Extreme Value (GEV) with a global warming index as a covariate, then using ensembles of models 

validated on the event indices and their extreme value statistics by comparison with observations, and finally using the GEV 140 

with the covariate fit to build a statistical model of the data under some assumptions. 
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In all cases (observations and models), we used data in the 1951-2021 period for the GEV fit for attribution and for future 

trend estimates for a global warming of 2°C, we used the period from 2000 to 2050. For observations, the covariate is the 

smoothed observed GISTEMP Global Mean Surface Temperature (GMST), while for models the smoothed Global mean 

Surface Air Temperature (GSAT) (5-year running average) is used. The only exception is the High Resolution Model 145 

Intercomparison Project (HighResMIP) SST-forced ensemble (see below), for which the observed GMST was used, because 

of the ensemble forcing.. Change statistics are calculated with respect to the 2021 year and estimated return period from 

observation as a reference.  

3.2 Observations and model ensembles 

The observations used here for the attribution are the E-OBS v23e dataset of daily minimum temperatures (Cornes et al., 2018). 150 

The above indices are calculated for each grid point, spaced every 0.25° in this dataset, and then averaged over the study area.  

For the attribution of the frost event, we use five model ensembles. Each simulation of each ensemble was bias-adjusted using 

the CDFt method (Vrac et al., 2016) using the daily minimum and the daily average temperatures from E-OBS over the 1981-

2020 period. Bias correction is an important step here since GDD calculations use a threshold. This method was assessed for 

use in climate services in Bartok et al. (2019), and showed good performance. We used statistics of pooled ensembles, using 155 

data until 2021 for the GEV fit of the distributions. Indices are calculated exactly as for the observations: model GDD values 

are calculated at each grid points using Equation (1), and the indices are averaged over the area of study (rectangle in Figure 

2b). 

The first model ensemble is the Euro-CORDEX (0.11° resolution, EUR-11) multi-model ensemble. It is composed of 75 

combinations (as of May 2021) of Global Climate Models (GCMs) and Regional Climate Models (RCMs) for downscaling 160 

(see Vautard et al., 2021 and Coppola et al., 2021 for the description of the ensemble which has increased since these 

publications). Each simulation consists of a historical period simulation and a RCP8.5 scenario simulation with fixed aerosol 

concentrations. For the attribution of past evolutions historical and scenario are concatenated until 2020. Some simulations 

start in 1971, whereas most simulations start from 1951. Given that we need to use data from the previous year for starting 

GDD accumulation, all yearly indices are calculated from their second simulation year (i.e. 1972 and 1952 respectively).  165 

The second model ensemble used to study the influence of internal variability was the IPSL-CM6A-LR model (see Boucher 

et al., 2020 for a description of the model and Bonnet et al., 2021 for a presentation of the ensemble). It is composed of 32 

extended historical simulations, following the CMIP6 protocol (Eyring et al., 2016) over the historical period (1850-2014) and 

extended until 2029 using all forcings from the SSP2-4.5 scenario, with the exception of the ozone concentration which has 

been kept constant at its 2014 level (as it was not available at the time of performing the extensions). 170 

The third model ensemble is a selection of the CMIP6 historical and SSP3-7.0 simulations. To keep the ensemble balanced we 

retained a maximum of three realizations per model. Not all CMIP6 models could be processed at the time of the study. Models 

are detailed in the Appendix A, and constitute an ensemble of 45 simulations. 

https://www.zotero.org/google-docs/?n2EG4q
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The fourth ensemble used is a set of 10 SST-forced HighResMIP simulations (Haarsma et al. 2016). For the historical time 

period (1950-2014), the SST and sea ice forcings used are based on observed dataset, and for the future time period (2015-175 

2050) the SST and sea ice are derived from CMIP5 RCP8.5 simulations and a scenario as close to RCP8.5 as possible within 

CMIP6. The analysis of this ensemble was carried out using the observed GMST as for the observations. The fifth ensemble 

is the same set of models run in coupled mode, and the model GSATs were used. Again, more details can be found in the 

Appendix A. 

Note that we bring together available simulations which do not follow the same greenhouse gas emission scenarios, which 180 

could lead to large difference in climate response for given times. Such would also be the case for individual models’ responses. 

However, this should not be a problem as long as results are compared with fixed degree of warming. Such an approach is also 

followed by the recent IPCC report where changes in extremes are compared (see IPCC, 2021). 

The differences with the rapid attribution in models is (i) the homogeneous bias correction, while it was model-dependent in 

the rapid attribution, (ii) the addition of the HighResMIP coupled runs, and the change in the CMIP6 selection which was 185 

based on least-biased models instead of bias-corrected models. The present analysis is therefore more consistent across 

ensembles. 

3.3 Model evaluation 

As stated in the Philip et al. methodology, we only keep model ensembles which have extreme statistics compatible with 

observations. We compared the model GEV fit parameters over the overlapping model periods (1951-2020 or 1971-2020) in 190 

order to check the ability of models to simulate such extremes. For reference, such ability was not confirmed for heat waves 

(eg. Vautard et al., 2020). In the current case, we found that model ensembles are compatible with the observations accounting 

for uncertainties (see Figure 3) for most indices but not all. Models are said to be compatible with observations when GEV 

scale and shape parameters have overlapping 95% confidence intervals. The comparison is made for two indices for simplicity. 

For TNnGDD250 the fitted model scale parameter is compatible with the observed one. The shape parameter is very uncertain 195 

in observations, leaving all model fits compatible with them. The same occurs for the TNnApr-Jul, but in this case all models 

have an overestimated scale parameter (in terms of amplitude). Only Euro-Cordex and HighResMIP-SST appear to have a 

parameter compatible with observations. Given this evaluation for this index, for the final model “weighted average” (see 

Philip et al., 2020), only Euro-Cordex and HighResMIP-SST should in principle be considered for the statistical evaluation of 

probability ratio and intensity change, while for the TNnGDD250 index, all ensembles can be considered. However, we have 200 

here considered all model ensembles even for the TNnApr-Jul index for consistency across indices, and because results are 

qualitatively similar, keeping all models or retaining only the compatible models (see also discussion in Section 5). 
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Figure 3: Model evaluation, using 2 main indices, TNnApr-Jul (left panels) and TNnGDD250 (right panels). The estimates of the 205 
scale parameters are displayed in the first row, and the estimates for the shape parameters in the second row. Results for 

TNnGDD250-350 are qualitatively similar to those for TNnGDD250. 

 

4. Results 

4.1 Observations 210 

In Figure 4, we show the annual time series of the indices as obtained from E-OBS, together with simple trend statistics for 

the 1951-2020 period. The Apr-Jul TNn has a slightly upward linear trend of +0.13°C/Decade, which is however not significant 

at the 90% (two-sided) level because of the large interannual and interdecadal variabilities. By contrast, both TNnGDD250 

and TNnGDD250-350 have a significant cooling trend of -0.21 and -0.25°C/Decade respectively. The warming trend in 

TNnApr-Jul is partly due to larger values since 2000, but these higher values are not reflected in the other indices because 215 

GDD also has increased during this period, allowing lower daily minimum temperatures to be counted earlier in the season. 
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We conclude that, on average, since 1950, extreme yearly minimum temperatures for GDD>250 have cooled by about 1.5-

2.0°C. Very low growing-period frosts were also found in 1957 and 1991, with lower values than in 2021.  

For different thresholds we also find cooling trends, however with lower significance (Figure 4b). The significance of the 

signal remains. Interestingly, over the last 50 years (1971-2020) the trends have increased and become more significant (for 220 

instance +0.29°C/Decade, p<0.1 for TNnApr-Jul, and -0.37°C/Decade for TNnGDD250, p<0.1). 

 

a)       b) 

Figure 4: a) Time series of the yearly indices and their respective linear trends calculated over the 1951-2020 period; b) Same as a) 

but for TNnGDD250, TNnGDD150 and TNnGDD350. 225 

When considering trends in low extremes of these indices, the results are qualitatively similar but significance is increased 

when considering GEV fitting using the smoothed observed GMST as covariate instead of assuming a linear trend (see Table 

1). We estimate that the event, defined as minimum temperatures over Apr-Jul, has a return period of 78 years [at least 19 

years], which means a very rare event in the current climate. However, in a climate corresponding to a global temperature 

1.2°C cooler, this would have been about a 1-in-7-year event (best estimate). By contrast, the minimum temperature, taken 230 

over the growing period as characterized by the GDD index, instead of fixed month, has significantly cooled by almost 2°C 

with large varying uncertainty ranges and significance depending on the chosen index. The observational analysis is however 

not sufficient to conclude a role of climate change, which would require models with factual and counterfactual assumptions. 
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 235 

E-OBS statistics 

0 to 1.2° global warming level 

TNnApr-Jul TNnGDD250 TNnGDD250-350 TNnGDD150 TNnGDD350 

Observed 2021 (°C) -3.4°C -2.1°C -2.0°C -3.5°C 1.6°C 

Return Period 2021 (Yr) 78 [19;Inf] 8 [4;25] 12 [5.0;70] 9 [4-57] 2 [1.4-3.2] 

Return Period -1.2°C (Yr) 7.2 [3.8;19] 88 [24;inf] 780 [>53] 26 [>10] 9 [3.7;31] 

Probability Ratio 0.09 [0;inf] 11 [2.0;inf] 63 [>2.3] 3 [>0.6] 4.4 [1.3;21] 

Intensity Change (°C) +1.4 [0.2;2.7] -2.0 [-3.3;-0.50] -2.0 [-3.5,-0.53] -0.80 [-2.0,0.34] -2.0 [-3.4,-0.38] 

Table 1: Extreme value statistics and observations for the various indices and using the 1951-2020 period and a GEV fit with GMST 

covariate. Bold font denotes statistical significance at the two-sided 95% level The observed value of each index is shown in the first 

row, the calculated return periods from the GEV fit of the yearly data series for 2021 and for the preindustrial climate (assumed to 

have a global temperature 1.2°C lower than today) are shown in rows #2 and #3. The probability ratio (the ratio of the return 

periods) is shown in Row #4 and the resulting intensity change from the GEV fit is shown in Row #5 (see Philip et al., 2020 for 240 
methodological details). 

To assess the changes at local scale, we also calculated trends for 3 specific stations in the domain (stars in Figure 2). We 

selected a subset of 3 Météo-France reference stations, which were selected in grapevine regions (Beaucouzé: downstream 

Loire valley; Charnay-les-Mâcon: Burgundy; Charmeil: Saint-Pourçain grapevine), with several characteristics: for 

Beaucouzé, light frost and non-exceptional event (-1.3°C) but high GDD (321°C.day on 5 April); for Charnay-les-Mâcon: 245 

record frost (-4.4°C, with 266°C.day on 5 April), and for Charmeil: the most severe frost among stations at our disposal (-

6.6°C with 244°C.day on 5 April). Detection results are shown in Table 2, for these stations, and for the three main indices: 

TNnApr-Jul, TNnGDD250 and TNnGDD250-350. In most cases, the trends are positive for the fixed season index and 

negative for the growing season period. However, almost no result is statistically significant. We conclude that at local scale, 

variability is dominating trend signals (Table 2). 250 
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 Beaucouzé Charnay-lès-Mâcon Charmeil 

 Value 

Ret. Per. 

PR 

∆I 

Value 

Ret. Per. 

PR 

∆I 

Value 

Ret. Per. 

PR 

∆I 

TNnAprJul -1.3°C 

11 yr 

0.3 [0.02;1.2] 

1.4 [-0.3;3.0] 

-4.4°C 

>100 yr 

0.03 [0;0.9] 

1.5 [0.1;2.8] 

-6.6°C 

85 yr 

0.2 [0.01;7.2] 

1.2 [-0.7;3.0] 

TNnGDD250 -1.3°C 

5 yr 

1.4 [0.2;9.0] 

-0.4 [-2.2;1.8] 

-4.4°C 

>50 yr 

>1e-4 

0.2 [-2;2] 

-5.3°C 

18 yr 

3.0 [>0.2] 

-1.0 [-3;1] 

TNnGDD250-350 -1.3°C 

7 yr 

1.1 [0.14;7.2] 

-0.2 [-2.5;2.3] 

-4.4°C 

>90 yr 

Infinite 

0.3 [-2.0;2.6] 

-6.6°C 

83 yr 

>0.7 

-1.5 [-4;1] 

Table 2: Return periods, probability ratios (PR) and changes in intensities (∆I ) obtained from the observations at three stations 

located as in Figure 2b. Red color indicates a warming change and blue color a cooling change. 

Results here differ from the rapid attribution analysis (Vautard et al., 2021) in the completion and adjustment of the E-OBS 255 

dataset by the producers. This led to slightly different values for the observed indices in 2021. For instance, the estimation of 

the TNnGDD250-index based return period was estimated here to 8 years instead of 12 years in the rapid attribution. However, 

the results are qualitatively similar to those found in the preliminary analysis.   

4.2 Simulated mean trends 

The trends in the two main indices for the 5 model ensembles is analyzed in the form of histograms (Figure 5), in order to 260 

examine the variability across ensemble members. There is a large range of minimum temperature trends from April to July, 

which are almost all positive. The observed trend in the minimum temperature from April to July is close to the median middle 

of the distribution for the Euro-Cordex and the CMIP6 ensemble, while it is closer to the lower tail of the distribution of the 

remaining three ensembles. A large range of possibilities is also found for the trends of the TNnGDD250 index, with a large 

part of the simulations showing negative and lower trends than those of the minimum temperature from April to May, 265 

consistent with the observations. We conclude from these figures that, despite the general trend towards cooling of the growing 

period frosts, the expected trend, for a given singular member, can also be a warming one, albeit with a smaller chance than 

for a cooling one. This large uncertainty also has to be taken into account in any adaptation strategy. 
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 270 

Figure 5. Histogram of the daily minimum temperature trend calculated from (a) the IPSL ensemble, (b) the Euro-Cordex ensemble, 

(c) the CMIP6 ensemble, (d) the HighResMip ensemble and (e) the HighResMipSST ensemble (See Section 4.1 and Annex 1 for more 

details about these ensembles). The observations are represented with the vertical lines. The trends are calculated over the 1971-

2020 period for (green) GDD>250 and (red) from April to May. 

4.3 Simulated growing period frost extreme trends and attribution 275 

Figure 6 shows, as an example, the change in return values vs. return periods for indices TNnApr-Jul and TNnGDD250 for 

the Euro-Cordex ensemble, and Table 3 shows the extreme value statistics for all indices for this ensemble as well as other 

ensembles used. Models show large agreement with observations on changes in return periods and intensities between the 

preindustrial and current climates for the fixed-calendar TNn index (TNnApr-Jul). The trends in all models seem however 

underestimated compared to observations for the indices with a GDD conditioning (TNnGDD250). 280 

The behaviour present in all model analysis is illustrated in Figure 6: a clear, significant increase in TNnApr-Jul and an opposite 

trend sign for the TNnGDD250. Despite being weaker, this increasing trend in low extremes is significant for all ensembles 

but for HighResMIP-SST (Table 3), with a clear signal of increase in coldest temperatures when considered over the growing 

period, and with a threshold of 250°C.days. Such a trend is also clear and significant in most ensembles when considering the 

sensitive range 250<GDD<350 where young leaves and flowers are vulnerable to frost. For the other indices, trends are also 285 

significant in most cases but not all. 
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Figure 6. Return value vs. return period for Euro-CORDEX and the indices TNnApr-Jul (left panel) and TNnGDD250 (right panel) 

averaged iover the study area (the rectangle shown in Figure 2b). The observed values from E-OBS are marked by the purple line. 

Note however that the observed values were not the values used to calculate the probability ratio of the event in the Euro-CORDEX 290 
ensemble, as the ensemble has a bias toward higher values. 

Model ensemble / Observation Index  Probability Ratio 

2021 vs 2021 -1.2°C 

Intensity change (°C) 

2021 vs 2021 -1.2°C 

Observation TNnApr-Jul RP=78 [19, Inf] 0.09 [0;inf] +1.4 [0.22;2.7] 

Euro-Cordex 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 
2C vs 2021 

0.24 [0.14;0.37] 
0.50 [0.29;0.67] 

+1.0 [0.67;1.2] 
+0.36 [0.21;0.57] 

IPSL-CM6A-LR 2021 vs p.i. 0.19 [0.13;0.25] +1.3 [1.1;1.5] 

CMIP6 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 

2C vs 2021 

0.23 [0.15;0.28] 

0.23 [0.12;0.29] 

+1.0 [0.86;1.2] 

+0.71 [0.60;0.81] 

HighResMip-SST 2021 vs p.i. 0.07 [0.03;0.16] +1.8 [1.2;2.1] 

HighResMip 2021 vs p.i. 

2C vs 2021 

0.10 [0.03;0.16] 

0.09 [0.;0.17] 

+1.3 [1.0;1.6]   

+0.64 [0.54;0.89] 

Model average 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 
2C vs 1.2C 

0.18 [0.08;0.37] 
0.31 [0.004;2.0] 

+1.2 [0.75;1.7] 
+0.58 [0.24;0.92] 

Observation TNnGDD250 RP=8 [4-25] 11 [2;Inf] -2.0 [-3.3, -0.5] 

Euro-Cordex 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 

2C vs 1.2C 

1.5 [1.1;1.9] 

1.3 [1.1;1.6] 

-0.39 [-0.60;-0.05] 

-0.34 [-0.48;-0.07] 

IPSL-CM6A-LR 2021 vs p.i. 1.5 [1.2;2.0] -0.36 [-0.61;-0.18] 

CMIP6 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 

2C vs 1.2C 

1.4 [1.3;1.7] 

1.1 [1.0;1.3] 

-0.39 [-0.54;-0.23] 

-0.14 [-0.23;-0.02] 

HighResMip-SST 2021 vs p.i. 1.2 [0.65; 1.8] -0.21 [-0.58;0.41] 
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HighResMip 2021 vs p.i. 
2C vs 1.2C 

2.3 [1.6;3.6] 
1.3 [1.1;1.6] 

-0.73 [-1.1;-0.38] 
-0.21 [-0.41;-0.06] 

Model average 2021 vs p.i. 

2C vs 1.2C 

1.5 [1.1;2.1] 

1.2 [1.1;1.4] 

-0.41 [-0.60;-0.22] 

-0.20 [-0.30;-0.08] 

Observation TNnGDD250-350 RP=12 [5.0;70] 63 [2.3;Inf] -2.0 [-3.5;-0.57] 

Euro-Cordex 2021 vs p.i. 

2C vs 2021 

1.7 [1.2;2.7] 

1.1 [0.98;1.7] 

-0.50 [-0.80;-0.14] 

-0.14 [-0.47;0.01] 

IPSL-CM6A-LR 2021 vs p.i. 1.9 [1.4;2.8] -0.54 [-0.82;-0.29] 

CMIP6 2021 vs p.i. 
2C vs 2021 

1.5 [1.3;2.0] 
1.1 [0.99;1.3] 

-0.43 [-0.64;-0.27] 
-0.09 [-0.23;0.01] 

HighResMip-SST 2021 vs p.i. 1.0 [0.44;1.8] -0.03 [-0.54;0.69] 

HighResMip 2021 vs p.i. 

2C vs 2021 

2.8 [2.1;8.9] 

1.3 [0.93;1.6] 

-0.82 [-1.3;-0.58] 

-0.21 [-0.36;0.05] 

Model average 
2C changes relative to 2021 (+0.8°C) 

2021 vs p.i. 

2C vs 2021 

1.7 [0.89;3.2] 

1.1 [1.0;1.3] 

-0.50 [-0.94;-0.07] 

-0.12 [-0.23;-0.04] 

Observation TNnGDD150 9 [5;82] 3 [>0.7] -0.80 [-2.1;0.35] 

Euro-Cordex 2021 vs p.i. 1.3 [1.1;2.0] -0.29 [-0.74;-0.12] 

IPSL-CM6A-LR 2021 vs p.i. 1.2 [1.0;1.4] -0.28 [-0.46;-0.02] 

CMIP6 2021 vs p.i. 1.4 [1.2;1.6] -0.36 [-0.52;-0.19] 

HighResMip-SST 2021 vs p.i. 1.1 [0.61;1.4] -0.09 [-0.40;0.54] 

HighResMip 2021 vs p.i. 1.7 [1.3;3.9] -0.62 [-0.95;-0.21] 

Observation TNnGDD350 2 [1.4;3.2] 4.4 [1.3;21] -2.0 [-3.4;-0.38] 

Euro-Cordex 2021 vs p.i. 1.1 [0.98;1.3] -0.24 [-0.49;+0.05] 

IPSL-CM6A-LR 2021 vs p.i. 1.2 [1.0;1.3] -0.27 [-0.45;-0.07] 

CMIP6 2021 vs p.i. 1.1 [1.0;1.2] -0.19 [-0.41;-0.08] 

HighResMip-SST 2021 vs p.i. 1.4 [1.1;1.7] -0.54 [-0.94;-0.11] 

HighResMip 2021 vs p.i. 1.4 [1.2;1.8] -0.56 [-0.87;-0.21] 

Table 3: Change in extreme value statistics for all model ensembles and observations, with the GEV model fitted from data over the 

1951-2020 period for the past trends estimates, and over the 2000-2050 period for future trends (when estimating the changes for a 

2°C warming above pre-industrial levels); We assume here that pre-industrial (p.i.) global warming level is 1.2°C cooler than the 

2021 one, and therefore the 2°C warming level is reached when the warming is 0.8°C above the current level. In each row, the values 295 
of the probability ratio (the ratio between inverse return periods) are shown as well as the intensity change obtained by using the 

same return period threshold as in the observations, together with their 95% confidence levels as obtained from a bootstrap estimate 
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using 1000 samples. Numbers in blue indicate a decrease of TN, and in red an increase of TN. The last row indicates changes for a 

2°C warming level. Boldface numbers indicate statistical significance against a “no change” assumption. 

Despite a sign agreement between models and observations on trends, models generally simulate much weaker trends for the 300 

GDD-conditioned indices than observed, a fact that remains unexplained, just as the underestimation in extreme temperatures 

in summer heat waves (see eg. Vautard et al., 2020; van Oldenborgh et al., in revision). For TNnGDD250, all ensembles 

simulate an increase in the frequency of growing-period low extreme temperatures ranging from 10% to 110% with a weighted 

best estimate of 50% (see also Section 5). For the other indices the range of factors is rather similar, despite lower values for 

TNnGDD350. Changes in intensities are also all negative but remain below 1°C. 305 

4.4 Future trends 

Indices have similar future projected trends as in the past decades in the ensembles and scenarios considered here. Figure 7 

shows evolutions of the ensemble-median and 10th and 90th percentiles for Euro-Cordex [RCP8.5] and CMIP6 [SSP3-7.0], 

for example, but similar results hold for the other ensembles, which have less members or shorter time coverages. In both 

cases, the median of April-July minimum temperatures over the region continues to increase with mean values around 2°C 310 

while they are below frost level in 2021. By the end of the century, frost such as in 2021 will become a very rare occurrence 

in April or after in these scenarios. However, frost can still be expected earlier in the year, while at the same time the growing 

season starts earlier. This can be seen in the development of the TNnGDD250 index throughout the 21st century which shows 

a weak decreasing trend. It is noteworthy that in the second half of the century, the 10th percentile often nears or exceeds the 

2021 value. More frequent events like the 2021 are therefore expected. By the end of the century for this scenario, we also 315 

expect deep frosts in the growing period with intensities which have never been met in 2021 or in earlier years. 

 

Figure 7. Time evolution of the median (thick line), and the 10th and 90th percentiles (dashed lines) of the ensembles Euro-Cordex 

(75 members) and CMIP6 (45 members) for the indices TNnApr-Jul (Red) and TNnGDD250 (blue). Black dots represent the 

observations from E-OBS, on the left panel for Euro-CORDEX, on the right panel for CMIP6. 320 
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Figure 7 also includes the observed time series for the two indices. For TNnGDD250, even though points generally fit well 

the 10%-90% model range (expected because the models are bias-corrected), we observe a bias in low extremes with variability 

in the observations inducing frequent excursion in temperatures far below the 10% quantile. Such bias is not found in the 

TNnApr-Jul index. 325 

We restrict the analysis of future trends in extremes to the 2°C warming level above the P.I. conditions, which is assumed to 

be 0.8°C above current level in 2021. This restriction is made to be on the safe side with potential nonlinearity of response of 

the extreme indices to global warming while we assume linearity here with the covariate GEV method. In this future case the 

GEV fit is carried out over the 2000-2050 period, and probability ratios and intensity changes are given for events with a 

similar return period as for the 2021 event.  330 

Results are shown along with attribution results in Table 6. Extreme cold temperatures for the April-July period will continue 

to become less extreme. Euro-Cordex simulations, which are the only ones consistent with observed trends, project that events 

similar to the 2021 event would become about half as frequent in a 2°C warming climate. The other models predict factors 

ranging from between 3 and 10 times less frequent. In contrast, the growing-period extreme frost intensity is increasing, and 

the 2021 event with a GDD>250 is projected to have an increasing frequency by about 30% [10% - 60%] for a 2°C warmer 335 

climate than preindustrial in Euro-Cordex, 10% [0%-30%] for CMIP6 selections and 30% [10% - 60%] for HighResMIP 

(coupled).  

5. Synthesis, summary and discussion 

The individual assessments described above for probability ratio and intensity changes in the past period are summarized in 

Figure 8. Given the large differences between models and observations for the growing-period indices TNnGDD250 and 340 

TNnGDD250-350, we do not combine the observational and model results to form a single "synthesis" but instead we present 

the model weighted average for comparison with the observations. In the case of the TNnApr-Jul index, only two ensembles, 

Euro-Cordex and HighResMip-SST, pass the validation criteria. However, the three additional models (IPSL-CM6A-LR, 

CMIP6 and HighResMip) that validate well for TNnGDD250 and TNnGDD250-350, give similar results to the other ones. 

Incorporating them in the weighted average has no impact on the high significance of the change found, and makes the 345 

comparison across indices consistent. 

While uncertainties are comparably large for the quantitative assessment of probability ratios there is a significant decrease in 

the likelihood of cold waves as defined above for TNnApr-Jul. The event that has occurred in 2021, taken as a fixed-season 

extreme, has become rare, with a return period of at least 19 years, and with a best estimate of 78 years. The intensity of a cold 

wave as observed in April is also decreasing, by a well-constrained best estimate of 1.2°C. When considering the lowest 350 

temperatures after the growing season start simulated by the GDD thresholds, models and observations quantitatively disagree 

with respect to probability ratio and intensity, but the qualitative agreement is clear and shows an increase in the likelihood of 

damaging frost as well as an increase in the intensity across all indices. This is corroborated by the fact that these trends 
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continue under future warming (see below). This allows a clear qualitative attribution of these trends to anthropogenic climate 

change with the model results serving as lower bounds.  355 

In Figure 9 we summarize the projected changes in probability and intensity between the present and +2°C climate, showing 

an unweighted average for the three model ensembles Euro-Cordex, CMIP6 and HighResMIP. We again use all available 

models for TNn-Apr despite CMIP6 and HighResMIP ensembles not passing the validation over the historical period. We do 

so because (i) all models are included for the other two indices and we do not know how well they validate for the future, (ii) 

no synthesis is formed so the unweighted average shown is only of qualitative use. Probability ratios are less than unity for 360 

TNnApr-Jul, indicating that the current trend for decreasing frequency of cold snaps is likely to continue in the future. 

Projections indicate a decrease by a factor of about 5 in the type of event witnessed in 2021. Likewise, the projections for 

change in intensity indicate that Apr-Jul cold snaps will continue to warm, by a best-estimated increase of about 0.6°C. 

Growing-period minimum temperatures with GDD=250 degree.day continue to decrease with a best estimate of about 0.2°C 

and an increase in frequency of about 20%. 365 

  

 

 

 

 370 
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Figure 8. Changes between the past and present: summary of observational (blue) and model (red) results for probability ratio (left, 

giving the change in the probabilities between the climate with a 1.2°C cooler global temperature and the current climateand change 

in intensity [°C] (right) in the three indices TNnApr-Jul (top), TNnGDD250 (middle) and TNnGDD250-350 (bottom), as averaged 

over the study area (see rectangle in Figure 2b). Extent of the bars gives the two-sided 95% confidence intervals accounting for 375 
internal variability (pink) of each ensemble and model spread added (white), calculated as explained in Philip et al. (2020), with the 

black marker indicating the best estimate. A weighted average of model results is shown in bright red (label “models”). Note that, 

for the index TNnApr-Jul, only Euro-Cordex and HighResMIP-SST passed the validation step but other models are included in the 

weighted average for reasons described in the text. 

 380 

 

 

 

Figure 9. Projected changes between the present and +2degC climate: summary of results for probability ratio (left) and change in 

intensity [°C] (right) in the three indices TNnApr-Jul (top), TNnGDD250 (middle) and TNnGDD250-350 (bottom). Extent of the 385 
bars gives two-sided 95% confidence intervals accounting for variability within the data sets, with the black marker indicating the 

best estimate. A weighted average of the results is shown in bright red. 
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While the growing season is starting earlier, necessary plant dormancy characteristics also change and the lack of chilling 

winter days may delay the bud burst in many species (Chuine et al., 2016). This effect is not taken into account here and could 390 

alter our results concerning changes in bud burst dates. Such dates are also dependent on species. We have tested the 

dependence on thresholds of a simple GDD index, which provide similar results than the central thresholds discussed in the 

synthesis. Dormancy effects, as well as other specific plant effects can only be studied through impact models, which was not 

the goal in this study. 

The applicability of our results at local scale is limited in quantitative terms. The local station analysis, and the trends 395 

histograms show that given locations are more likely to exhibit cooling of extreme growing-period temperatures than warming, 

but a warming cannot be excluded at these scales and at present day warming levels. 

The discrepancy between trends in models and in observations in the historical periods currently remains unexplained. It shows 

that either large variability inhibits an accurate estimation of trends of cold extremes or that other factors come into play which 

may not be well simulated such as trends in radiation or cloudiness as a response to either warming or aerosols. These factors 400 

should be investigated in future studies. 

Above all, the finding that trends identified up until now continue under future warming indicates that anthropogenic climate 

change is an important driver of the observed trends and suggests that the models indeed underestimate the effect of change 

due to forcing factors and that the discrepancy between observed and simulated trends is not entirely explainable by 

unmodelled factors other than human-induced climate change.  405 

In conclusion, we identify two key attributable effects, the decrease in likelihood and intensity of minimum temperatures and 

the increase of likelihood and intensity of minimum temperatures when conditioned on growing degree indices. These findings 

are consistent across the different lines of evidence pursued despite the quantitative differences. The GDD-indices are however 

a crude representation of the vulnerability of different species to frost. Thus, our findings highlight that growing season frost 

damage is a potentially extremely costly impact of climate change already damaging the agricultural industry but to inform 410 

adaptation strategies for specific species impact-based modeling will need to complement our assessment. Other studies, in 

particular, indicated that impacts may be highly variable across locations and species (Leolini et al., 2018), emphasizing this 

need. 

 

Code/data availability 415 

All datasets are available from the Climate Explorer at 

https://climexp.knmi.nl/francespring_timeseries.cgi?id=5f4fa945dc278ae21c3c6df2f705243d . The freely available Climate 

Explorer code was used for the analysis and can be downloaded from https://gitlab.com/KNMI-OSS/climexp?sort=nameasc . 

 

https://climexp.knmi.nl/francespring_timeseries.cgi?id=5f4fa945dc278ae21c3c6df2f705243d
https://gitlab.com/KNMI-OSS/climexp?sort=nameasc
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Annex I. Model ensembles description 

This annex provides more details about the model ensembles used in this study. 435 

1 EURO-CORDEX  

The Euro-Cordex ensemble is made of 75 simulations of 12 Regional climate models downscaling 8 Global Climate Models. 

The description of the ensemble is detailed in Vautard et al. (2021) and Coppola et al. (2020), but between the article 

publication and the start of the study, the ensemble size passed from 55 models to 75 models. The reader is referred to this 

publication for a description and an assessment of this ensemble in the historical period. Daily mean and minimum 440 

temperatures were corrected at grid point level using the E-OBS observation dataset from 1981 to 2020. Bias correction follows 

the method described in Vrac et al. (2016) refined in Bartok et a. (2019) and applied on daily data instead of hourly data. The 

GCM-RCM ensemble is described in Table A.1 below. 

RCM / GCM CNRM EC-EARTH HadGEM MPI NorESM IPSL CanESM MIROC 

CCLM         

HIRHAM  3       

RACMO  3       

RCA  3  3     

REMO    3     

WRF361H          

WRF381P         

ALADIN53         

ALADIN63         

RegCM         

COSMO 

-crCLIM 

 3  3     

HadREM               

Table A.1: Euro-CORDEX Simulations analyzed in this study. Grey cells indicate a GCM-RCM couple used, and numbers in the 

cell indicate the number of realizations used (essentially 3 for two of the GCMs). 445 

2 CMIP6 selected ensemble 

The CMIP6 multi-model ensemble is a set of global climate models, developed by several institutes around the world (Eyring 

et al., 2016). Here a subset of CMIP6 models are used, with historical and SSP3-7.0 experiments (Meehl et al. 2014; O’Neill 
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et al. 2014, Vuuren et al. 2014, and O’Neill et al. 2016) together spanning the period between 1850 and 2099 for tas and tasmin 

variables. The analysis, as for the other ensembles, is however restricted to the years after 1950. Simulations were also bias-450 

corrected but we kept only 3 members maximum per ensemble in order not to overload the results with models having many 

members. In total, given the available simulations initially, we obtained 45 simulations with models described in Table A.2 

below. 
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 455 

Model Realization Model Realization 

ACCESS-CM2 

 

 
ACCESS-ESM1-5 

 

 

AWI-CM-1-1-MR 
 

 

BCC-CSM2-MR 

CanESM5 
 

 

CNRM-CM6-1 

CNRM-ESM2-1 
EC-Earth3-AerChem 

EC-Earth3 

 

EC-Earth3-Veg-LR 
EC-Earth3-Veg 

GFDL-ESM4 

INM-CM4-8 

r1i1p1f1 

r2i1p1f1 

r3i1p1f1 
r1i1p1f1 

r2i1p1f1 

r3i1p1f1 

r1i1p1f1 
r2i1p1f1 

r3i1p1f1 

r1i1p1f1 

r1i1p1f1 
r1i1p2f1 

r2i1p1f1 

r1i1p1f2 

r1i1p1f2 
r1i1p1f1 

r1i1p1f1 

r4i1p1f1 

r1i1p1f1 
r1i1p1f1 

r1i1p1f1 

r1i1p1f1 

 

INM-CM5-0 

 

 
IPSL-CM6A-LR 

 

 

KACE-1-0-G 
 

MIROC6 

 

 
MIROC-ES2L 

MPI-ESM1-2-LR 

 

 
MRI-ESM2-0 

 

 

NorESM2-LM 
NorESM2-MM 

UKESM1-0-LL 

 

r1i1p1f1 

r2i1p1f1 

r3i1p1f1 
r1i1p1f1 

r2i1p1f1 

r3i1p1f1 

r1i1p1f1 
r3i1p1f1 

r1i1p1f1 

r2i1p1f1 

r3i1p1f1 
r1i1p1f2 

r1i1p1f1 

r2i1p1f1 

r3i1p1f1 
r1i1p1f1 

r2i1p1f1 

r3i1p1f1 

r1i1p1f1 
r1i1p1f1 

r1i1p1f2 

r2i1p1f2 

r3i1p1f2 

 

Table A.2: CMIP6 models used in this study, together with the realization when several were available 

3 IPSL-CM6 single model ensemble 

The IPSL-CM6A-LR model ensemble is a 32-member ensemble of the coupled climate model with the same name. The model 

is described in Boucher et al. (2020) and the ensemble is presented and evaluated in Bonnet et al., (2021). Simulations start in 460 

the pre-industrial period with slightly different initial conditions and are saved in this study for the whole historical period and 

beyond, until 2029. The ensemble has been used for attribution studies, for instance in the 2019 heatwave attribution described 

in Vautard et al. (2020).   

4 HighResMIP SST-forced and coupled ensembles 

We also consider two sets of ensembles from the High Resolution Model Intercomparison Project (HighResMIP, Haarsma et 465 

al. 2016), which is a coordinated set of experiments as a part of CMIP6, designed to assess the impact of model horizontal 

resolution. HighResMIP consists of atmosphere-only (SST-forced) and coupled runs, both spanning 1950-2050. In this study, 

we make use of both the SST-forced and coupled ensembles. As briefly described in the main text, in the SST-forced ensemble, 

for the ‘present’ time period (1950-2014), the SST and sea ice forcings used are based on the daily, 0.25° x 0.25° Hadley 

Centre Global Sea Ice and Sea Surface Temperature dataset, with area-weighted regridding used to map this to each model 470 

grid; for the ‘future’ time period (2015-2050), SST/sea-ice data are derived from RCP8.5 (CMIP5) data, and combined with 
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greenhouse gas forcings from SSP5-8.5 (CMIP6) simulations (interested readers are referred to Section 3.3 of Haarsma et al. 

2016 for further details).  

Bias correction was performed using the same method as for the other ensembles. 

 475 

Model  High Medium Low DOI Contributed by Number of 
simulations 

used 

CNRM-

CM6-1-HR 

 720*360  https://doi.org/10.22033/ESGF/CMIP6.1387  CNRM (Centre 

National de 
Recherches 

Meteorologiques), 

CERFACS 

(Centre Europeen 
de Recherche et 

de Formation 

Avancee en 

Calcul 
Scientifique) 

(CNRM-

CERFACS) 

1 

CNRM-
CM6-1 

  256*128 https://doi.org/10.22033/ESGF/CMIP6.1375  CNRM-
CERFACS 

1 

EC-

Earth3P-

HR 

1024*512   https://doi.org/10.22033/ESGF/CMIP6.2323  EC-Earth-

Consortium 

3 

EC-

Earth3P 

 512*256  https://doi.org/10.22033/ESGF/CMIP6.2322  EC-Earth-

Consortium 

3 

HadGEM3-

GC31-HM 

1024*768   https://doi.org/10.22033/ESGF/CMIP6.446  the Met Office 

Hadley Centre 

1 

HadGEM3-

GC31-MM 

 432*324  https://doi.org/10.22033/ESGF/CMIP6.190 

 

the Met Office 

Hadley Centre 

1 

 

Table A3. Spatial grids of the HighResMIP models in high-, medium,-, and low-resolution groups used in this study, along with 

relevant references for the simulations, their origins, and the number of simulations used in the analysis 

 

  480 

https://doi.org/10.22033/ESGF/CMIP6.1387
https://doi.org/10.22033/ESGF/CMIP6.1375
https://doi.org/10.22033/ESGF/CMIP6.2323
https://doi.org/10.22033/ESGF/CMIP6.2322
https://doi.org/10.22033/ESGF/CMIP6.446
https://doi.org/10.22033/ESGF/CMIP6.190
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