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Abstract. The study uses Taiwan as an example to explore whether the budget allocation of risk reduction depends on income-

related political power. Specifically, we empirically examine the effect of household income on the probability of flooding. 

Beginning in 2006, the government implemented an 8-year project referred to as the “Regulation Project for Flood-Prone 

Areas” with a budget of NT$115.9 billion (US$3.86 billion). Over half of the budget was allocated to local authorities in 10 

southern Taiwan to help them carry out flood risk mitigation projects. As it was not clear how the local authorities set their 

priorities in allocating their budgets, this study investigates whether high-income individuals may have used their political 

influence to influence the budget allocation to improve the flood risk reduction facilities in their communities. Villages, whose 

average household income was within the top 10% in the county or city, were selected as high-income villages and assigned 

to the treatment group, whereas other villages were included in the control group. The results using propensity score matching 15 

(PSM) show that the flood probability of the high-income group (13% and 16.9%, respectively) was lower than that of low-

income group (22% and 28%) during Typhoon Morakot and Typhoon Fanapi, suggesting that high-income areas are less prone 

to flooding, which might stem from their political power. 

 

1 Introduction 20 

Global climate change has increased the frequency of extreme weather events, including flooding, which has resulted in huge 

amounts of resources, in the form of public budgets or private funding, being allocated to reduce the risk and losses from 

natural hazards. In general, instant downpours of heavy rain caused by typhoons constitute a significant challenge for a 

hydrological system without a broad area of relatively flat land. Taiwan consists mostly of steep and precipitous terrain and is 

frequently subjected to intense rainfall. On average in each year, approximately 3.5 typhoons and dozens of torrential 25 

rainstorms hit Taiwan, resulting in average annual economic losses of NT$12.8 billion. In recent years, flooding beyond the 

capital city (Taipei) has become a larger focus of attention of the government, and large budgets have been allocated to reducing 

the risk of natural hazards in these areas. It is, however, not only unclear how the central government has reached its decisions 

to distribute its budgets among the various counties and cities, but also how the local authorities, due to the complexity of and 

specialist knowledge required for flood management, have set their priorities in their budget allocation. This study uses Taiwan 30 
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as an example to explore whether the allocation of budgets directed at risk reduction depends on income-related political power. 

Specifically, we empirically examine the effect of household income on the probability of flooding. 

A recent study - Masiero and Santarossa (2021) - had found the occurrence of earthquakes affected the municipal 

elections. That effect may pass on the government budget allocation in a democratic regime by a certain mechanism. Previous 

studies have used “rent-seeking theory” to study corruption and self-interest-seeking behaviors. Krueger (1974) defined “rent-35 

seeking” as seeking to gain economic rent or privileges by manipulating political processes through private resources at the 

expense of others’ interests, e.g., through bribery. Orton and Rowlingson (2007) suggested that wealthy individuals would 

attempt to act based on their own self-interest by manipulating policy-making processes to shift the focus and benefits of a 

social welfare policy to themselves. By observing a historic example in Buenos Aires, Argentina in the 1580s, where rural 

plots of land were randomly assigned to people, Rossi (2014) found that individuals who were assigned plots of land with 40 

higher values (i.e., more wealthy individuals) tended to subsequently gain more political success, thereby demonstrating a 

significantly positive correlation between income and political power.  

Some studies have examined examples of inequality in public resource allocation. Tompkins et al. (2008) found that 

funds from drought foundations often fell into the hands of high-income households in north-eastern Brazil, that politicians 

were inclined to pass short-term but more newsworthy legislation to win more votes, and that, as a result, much needed long-45 

term drought management plans were not implemented in the affected areas. Rasch (2017) suggested that households with 

high income had, in fact, an adverse effect on the distribution of public resources. They would channel the benefits of public 

policies for their own self-interest. Adger (1999) observed that sea levees were only made available on coastlines of Vietnam 

inhabited by high-income households, whereas other inhabitants were not provided with adequate protection against disasters. 

Although numerous studies, both theoretical and empirical, have demonstrated the link between political power and self-50 

interest-seeking behaviors, do such findings also apply to the planning of flood risk reduction measures? In other words, would 

the rich exercise their privilege and political power to gain an advantage in preventing flooding in their communities, eventually 

leading to the poor facing a different flood probability than that of the rich? 

In Taiwan, except for a few major rivers that are managed by the central government, the flood risk management of local 

rivers is the responsibility of the respective local authorities. However, due to the low budgets, the flood risk management 55 

handled by the local authorities is usually far from satisfactory. Beginning in 2006, the Taiwanese government implemented 

an 8-year project referred to as the “Regulation Project for Flood-Prone Areas” (the “Project”) with a budget of NT$115.9 

billion. The Project was provided with a special budget by the central government to help local authorities mitigate floods. 

Under the Project, the central government was, in principle, responsible for planning and carrying out the construction work 

required by the Project. The local authorities could, however, opt to carry out the work themselves.  60 

The budget of the Project was mainly allocated to counties and cities in southern Taiwan. Tainan received the largest 

share, or an amount totaling almost NT$24 billion, followed by Kaohsiung, Yunlin, Chiayi and Pingtung in that order. More 

than half of the total budget of the Project was provided to these southern parts of Taiwan. However, in terms of priority and 

accountability the budget’s allocation is still not clear. For example, when a village became flooded, the cause of the flooding 
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might not necessarily have originated in that village. In a democratic regime, as in Taiwan, the water management authority, 65 

whose budget is controlled by the legislature, decides on the final priority of public flood protection, regardless of whether at 

the central or city/county government level. Since the legislators are elected by votes that are mainly related to the populations 

of their electoral districts, it needs to be asked whether individuals with higher income use their political influence to gain an 

advantage in the budget allocation of the Project to reduce the flood risk in their communities when the effects of population 

are controlled for. 70 

This study analyzed the data on flooding caused by Typhoon Morakot in 2009 and Typhoon Fanapi in 2010 to gauge 

whether there has been any effect of the average household income of the villages on the flood risk reduction facilities 

implemented under the Project since 2006, because the construction of flood risk reduction facilities usually takes at least two 

years to complete. The factual summaries of the two Typhoons are reported in the Appendix. The remainder of this study is 

organized as follows. Sections 2 and 3 describe the data and methodology used in this analysis. Section 4 represents the results, 75 

and Section 5 summarizes our findings. 

 

2 Data 

The maps of the village territories and digital topography were obtained from an open government data platform to determine 

the average elevation and the average slope of the villages from the information contained therein. The income data of the 80 

villages used in this study were taken from the “2006 Statistical Book of Audited Reported Personal Income for Income Tax” 

compiled by the Ministry of Finance, Taiwan. The reasons for selecting the data from 3 to 4 years prior to the Typhoons were 

twofold. Firstly, as flood protection measures usually took a while to complete, any influence of income on the construction 

of the infrastructure would not have been observed immediately. Secondly, this study investigates whether income would have 

had any impact on flood probabilities and not the other way round as in the study conducted by Xiao (2011). In fact, whether 85 

the villages were flooded by the Typhoons would not have had any bearing on the average household income of the villages 3 

or 4 years before they struck.  

The Social, Economic and Geographical Information Services (SEGIS) platform of the Ministry of Interior provides data 

on population and house prices. Because data on the sold prices of houses and house sales in remote areas were either not 

available or there was very little provided on the SEGIS platform either during or before 2012, data on house prices were 90 

obtained from sold house prices for the years from 2013 to 2017 and then adjusted by the house price indices to arrive at the 

weighted average house prices of the villages. Sold house prices published on the SEGIS platform cover the sold prices of 11 

types of properties, ranging from traditional apartment buildings (without elevators), shops, commercial buildings, residential 

buildings, townhouses, high-rise apartment buildings (with elevators), suites, factories, factory offices, farmhouses and 

warehouses. Because this study focused on flooding in southern Taiwan, where traditional apartment buildings (without 95 

elevators) and townhouses were the two main types of building structures, of which townhouses were more susceptible to 

flooding, the weighted average sold prices of townhouses were used in this study.  

https://doi.org/10.5194/nhess-2022-38
Preprint. Discussion started: 9 February 2022
c© Author(s) 2022. CC BY 4.0 License.



4 

 

Data on rainfall were obtained from the integrated radar-gauge rainfall estimation, KRID, at the National Science and 

Technology Center for Disaster Reduction (NCDR). It was the raster data for a 1.25km2 grid. The major flooding caused by 

Typhoon Morakot occurred on 8 and 9 August 2009, and that resulting from Typhoon Fanapi on 18 and 19 September 2010. 100 

The total rainfall during each Typhoon in the respective two-day period was calculated by using the inverse distance weighted 

(IDW) interpolation and zonal statistics in the ArcGIS to obtain the average total rainfall for each village.  

Data on flooded locations due to Typhoon Morakot and Typhoon Fanapi were obtained from the Disaster Event Records 

published by the NCDR in Taiwan. Floods caused by Typhoon Fanapi were concentrated in the three southern regions of 

Taiwan, namely, Pingtung, Kaohsiung and Tainan. While the floods caused by Typhoon Morakot were also concentrated in 105 

southern Taiwan, they were more widespread and also affected parts of central and northern Taiwan, namely, Miaoli, Hsinchu 

and Keelung. In order to calculate the probability of being flooded in both typhoons, 2,074 valid samples (all villages) in 

Pingtung, Kaohsiung and Tainan were adopted in this study. 

 

3. Methodology 110 

Whether a disaster may strike and its potential impacts are determined by many factors. A traditional risk assessment model 

was adopted. First, a “hazard” refers to the severity of an impact that a hazard itself may bring and is not attributable to human 

behavior, e.g., the intensity of rainfall of a typhoon. Second, “exposure” refers to the population or properties that may be  

exposed to a hazard, e.g., if a typhoon hits a more densely populated area, it will result in more losses. Third, “vulnerability” 

refers to all other factors that may affect the eventual impact of a typhoon. There are two categories of vulnerability: the 115 

physical/environmental vulnerability, and the socioeconomic vulnerability. The former refers to the physical environments of 

hazard-affected areas, e.g., the natural terrain in the areas affected, whereas the latter encompasses age, gender, ethnicity, 

income, and so on. This model had been adopted to access various risk, such as seismic risk in Taiwan (Lin et al., 2015). 

For the purposes of this study, whether a village was flooded was the dependent variable. If a village was flooded, the 

dependent variable’s value would be 1, otherwise 0. The independent variables selected in this study were as follows:  120 

1. Population: The population exposed in an area is an important variable in a risk assessment model. This study used 

population data for 2009 and 2010, when Typhoon Morakot and Typhoon Fanapi impacted Taiwan, respectively. We 

assume that the more populated the area, the higher the priority it would be given on the list of flood risk reduction 

facilities, because government leaders in a democratic society are concerned with their election campaigns, and hence 

these areas should be less prone to flooding.  125 

2. House price: The house price is an important factor in the probability of flooding (Felsenstein and Lichter, 2014; Hudson 

et al., 2014). The higher the average house price of a village, the less likely that it will be flooded.  

3. Maximum hourly rainfall: Maximum hourly rainfall is a proxy for the rainfall intensity.  

4. Total rainfall: Total (accumulated) rainfall during a typhoon is one of the factors contributing to a flood hazard. Typhoon 

Morakot lasted 6 days in total from 5 to 10 August 2009. The heaviest rainfall and most severe flooding during Typhoon 130 

Morakot and Typhoon Fanapi occurred on 8 and 9 August 2009 and 18 and 19 September 2010, respectively. This study 
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thus uses the total rainfall of the villages for Typhoon Morakot and Typhoon Fanapi during these respective two-day 

periods.1 

5. Elevation: The higher the elevation and the steeper the slope, the less likely that flooding will occur. Thus, this study 

selected elevation to measure environmental vulnerability. 135 

6. Income: Income was used to reflect socioeconomic vulnerability. Piketty (2015) suggested that the “rich” could be 

defined as individuals within the top 10% or 1% in terms of earnings in a community. If the samples had solely been 

based on those within the top 1% of earnings, this would have resulted in very small samples in this study. Therefore, 

those individuals within the top 10% in terms of earnings were used in this study. If the average household income of a 

village was found to be within the top 10% in the relevant county or city, these villages belong to high-income (treatment) 140 

group.   

  

 
1 Maximum hourly rainfall and total rainfall exhibited severe multicollinearity in the case of Typhoon Fanapi. However, this 

was absent in Typhoon Morakot. To further control the rain elements in this study, both maximum hourly rainfall and total 

rainfall variables were used in this study. 
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Table 1 summarizes the descriptions of the variables used in this study. 

Variables Detail Year Expected 

Impact 

Typhoon  Morakot Fanapi  

Dependent 

Variable 

    

Flooding Nominal variable: “1” for villages flooded by the 

Typhoon and “0” for non-flooded villages. 

2009 2010  

Independent 

Variables 

    

Population The population of the villages in the year of the 

Typhoon. It was assumed that the government 

would prioritize more densely populated villages 

over others so far as election campaigns were 

concerned. 

2009 2010 (−) 

House Price The weighted average sold prices of townhouses 

in the villages from 2013 to 2017 as adjusted by 

house price indices.  

2013~2017 (−) 

Maximum Hourly 

Rainfall 

The maximum hourly rainfall in the villages 

recorded during the Typhoon 

2009 2010 (+) 

Total Rainfall The total rainfall in the villages recorded during 

each Typhoon 

2009 2010 (+) 

Elevation The average elevation of the villages 2013 (−) 

Income Nominal variable: “1” for villages, whose average 

household income was in the top 10% in the 

relevant county/city, and “0” for other villages in 

the same county/city. 

2006 (−) 

 

  145 
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This study used the logistic regression model and the propensity score matching (PSM) method to estimate the flood 

probability. PSM had been adopted to control factors affecting flood probability including hazards, exposure and physical 

vulnerability when comparing household flood damage mitigation measures (Hudson et al., 2014). This study followed the 

same theory. The hazard (rain), exposure (population), and vulnerabilities (elevation and house price) were included as 150 

confounding variables when analyze the effect of income on flood probability. The empirical model for whether a village 

flooded during Typhoon Morakot or Fanapi is specified as follows: 

𝐹𝑖 = 𝛼𝑖 + 𝛽1𝑃𝑜𝑝𝑖 + 𝛽2𝐻_𝑃𝑟𝑖𝑐𝑒𝑖 + 𝛽3𝑇_𝑅𝑎𝑖𝑛𝑖 + 𝛽4𝑀𝑎𝑥_𝑅𝑎𝑖𝑛𝑖 + 𝛽5𝐸𝑙𝑒𝑖 + 𝛽6𝐼𝑛𝑐𝑖 + 𝜀𝑖                                                        

(1) 

where i represents the village, Pop denotes the population of the village, H_Price denotes the index of the house price of the 155 

village, T_Rain denotes the total rainfall of the village during typhoons, Max_Rain denotes the maximum hourly rainfall of 

the village during typhoons, Ele denotes the elevation of the village, Inc denotes whether the village belongs to the top 10% 

of villages in terms of income in a city/county, and ε represents the residual error term. 

Propensity scores were calculated through pre-determined confounding variables to find matching units and to assign 

units with propensity scores similar to those of the treatment group to the control group (Rosenbaum and Rubin, 1983). 160 

Therefore, the effects caused by the confounding variables could be controlled and the treatment effect could be estimated. 

The first step in the propensity score matching (PMS) method taken in our study was to decide a method for unit matching. 

The propensity of a village for being flooded was expressed as: 

 

𝑃𝐹𝑖 = 𝛼𝑖 + 𝛽1𝑃𝑜𝑝𝑖 + 𝛽2𝐻_𝑃𝑟𝑖𝑐𝑒𝑖 + 𝛽3𝑇_𝑅𝑎𝑖𝑛𝑖 + 𝛽4𝑀𝑎𝑥_𝑅𝑎𝑖𝑛𝑖 + 𝛽5𝐸𝑙𝑒𝑖 + 𝜗𝑖  (2) 165 

 

The definitions of these variables are the same as those for Equation (1). The residual error term ε is assumed to have a logistic 

distribution. PF is an index of the similarity of villages concerning those characteristics in Equation (2). It can be adopted to 

choose villages with similar characteristics apart from income. The 1:1 nearest neighbor matching method is used in this study, 

i.e. the same quantity of observations from each control and treatment group are selected for matching purposes. 170 

The descriptive statistics of the variables for the two typhoons are shown in Table 2. The elevation of the villages is the 

same for each of these two years. One may be concerned that rich people may move, resulting in lower average income in the 

flooded area (Smith et al., 2006). We obtained income data for 2006 and 2016 to calculate the income growth rate of the 

villages. We selected the income of villages flooded by both Typhoons and those not flooded by either from 2,074 available 

observations, in order to compare the income growth rates of the flooded and non-flooded villages. The results shown in Table 175 

3 suggest that there is no obvious difference in the income growth rates between the flooded and non-flooded villages. 

Assuming that the earning ability of any household in the flooded villages is associated with the level of their original income, 

this result could indicate that the rich did not move away and the poor did not move into the affected villages. In the long term, 

the income of the affected villages did not decrease after the Typhoons in Taiwan, unlike the research results obtained in a 
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case study in the USA (Smith et al., 2006). Apart from that study in the USA, it was found that flooding has no long-term 180 

direct impact on population growth either (Husby et al., 2014). As flooding does not seem to be a significant factor affecting 

income and the relocation of the residents of the flooded villages in Taiwan, the potential bias caused by the residential sorting 

appears to be very limited in this study. 

Table 2 Summary statistics of variables 

Typhoon Morakot  Sample size: 2074 

 Mean Std. Dev. Max. Min. 

Flood Probability 0.3351 0.4721 1 0 

Village Population 2647.8 2476.6 38982 120 

House Price (NT$ per Ping) 119562.4 55286.2 391400.1 21963.9 

Max. H. Rainfall (mm) 62.9045 13.4580 114.4584 31.6653 

Total Rainfall (mm) 679.4306 166.2727 1742.2170 311.1189 

Elevation (m) 58.62926 157.3282 2273.06 0.7331 

Household Income (103 NT$) 691.8264 161.5832 2089 381 

Typhoon Fanapi  Sample size: 2074 

 Mean Std. Dev. Max. Min. 

Flood Probability 0.2777 0.4480 1 0 

Village Population 2644.2 2514.1 39640 121 

House Price (NT$ per ping†) 119562.4 55286.2 391400.1 21963.9 

Max. H. Rainfall (mm) 57.6140 19.4350 120.4116 12.1104 

Total Rainfall (mm) 367.5439 166.8045 889.4242 47.9751 

Elevation (m) 58.62926 157.3282 2273.06 0.7331 

Household Income (103 NT$) 691.8264 161.5832 2089 381 

Note: †Areas in Taiwan are often measured in pings. One ping is equal to 3.30579 m2. 185 

 

Table 3 Differences in income growth rates between flooded and non-flooded areas 

Income Growth Rate 

 Flooded by both 

Typhoons (n=261) 

Not flooded by either 

Typhoon (n=1063) 

Difference T Value 

Growth Rate 12.60%    12.19%   -0.41% -0.4408 
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4. Empirical results  

In this section, the first subsection describes the results of the logistic regression as to whether villages were flooded during 190 

the two typhoons. The second subsection describes the results of the propensity score matching (PSM). 

(1) Logistic regression 

The logistic regression results are shown in Table 4. Total rainfall had a significant positive effect on the flooding probability 

and elevation had a significant negative effect on the flooding probability in the cases of both Typhoon Morakot and Typhoon 

Fanapi. These results were consistent with our expectations. Maximum hourly rainfall had a significant positive effect on the 195 

flooding probability in the case of Typhoon Fanapi, but not in the case of Typhoon Morakot. The population of the villages 

had a significant positive impact on the flooding probability, contrary to our expectations. One possible reason for this could 

be that the flooding data was collected from self-reported data, and, therefore, the larger the population, the more likely it was 

that flood incidents were reported. House prices had a significant negative impact on flooding, which was in line with the 

findings in the literature (Kousky, 2010; Bin and Polasky, 2004). Income, the key variable in this study, had a significant 200 

negative effect on the probability of flooding, which was consistent with our expectations. 
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Table 4 Logistic regression results 

                          Sample size=2074，Top 10% income = 1 

Variables Morakot Fanapi 

Population 0.000079 *** 

(.0000231) 

0.0000775 *** 

(0.0000243) 

House Price  

(NT$ per ping) 

-0.0000169 *** 

(0.0000014) 

-0.0000068 *** 

(-.0000012) 

Max. Hourly Rainfall (mm) -.0005572  

(.00534) 

0.0163683 * 

(0.0063905) 

Total Rainfall (mm) 0.0042395 *** 

(0.000749) 

0.0065651 *** 

(0.0007598) 

Elevation (m) -0.0436608 *** 

(0.0038467) 

-0.0224764 *** 

(0.0030573) 

Income (top 10%) -0.7015498 *** 

(0.227194) 

-0.7858783 *** 

(0.2220299) 

Note: Statistical significance (*P<0.1 ，**P<0.05，*** P<0.01) 

 (2) Propensity score matching (PSM)  205 

Although the distribution of rainfall is truly exogenous, the distribution of high-income villages could still be correlated with 

elevation and house prices. In order to ensure that the treatment effect of high income was random, the propensity score 

matching method was adopted to find villages with similar characteristics apart from income. Figure 1 (a) and (b) shows the 

histograms for the propensity scores after matching. Despite its skewed distribution, there are ample overlaps between the 

treated and the control group implying that the matching has successfully retained adequate samples to avoid attrition bias 210 

from the cases of off-support. Figure 1 (c) and (d) shows that after matching, the standard percentage of bias across covariates 

has been reduced to near zero. 
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Morakot                                                              Fanapi  215 

 

(a)                                                                    (b) 

 

(c)                                                                   (d) 

Figure 1 Propensity score matching graphs 220 

 

Table 5 shows the characteristics of the 207 village samples in each treatment and control group for Typhoon Morakot 

after matching. The mean of the flood probability of the treatment group was 13.53%, which was much lower than the 24.64% 

for the control group. The average populations of the treatment and control groups were 3,554 and 3,537, respectively. The 

average house price of the treatment group was NT$176,196 per ping, close to the NT$175,866 for the control group.2 The 225 

average maximum hourly rainfall was 66.1mm for the treatment group, close to the 64.2mm for the control group. The average 

total rainfall was 653.5mm for the treatment group, and close to 645.5mm for the control group. The average elevation for the 

 
2 One ping is equal to 3.30579 m2. 
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treatment group was 28.2m above sea level, close to the 26.5m for the control group. After using propensity score matching, 

the characteristics of the villages in the treatment and control groups became very similar. The average household income of 

the treatment group was NT$1,025,000 per household, higher than the NT$735,000 for the control group. 230 

 

Table 5 Descriptive statistics of the Typhoon Morakot samples (after propensity score matching (PSM)) 

Typhoon Morakot (207 observed values for each treatment and control group)  

 Mean S.D. Max. Mini. 

 Trt. 

Group 

Control 

Group 

Trt. 

Group 

Control 

Group 

Trt. 

Group 

Control 

Group 

Trt. 

Group 

Control 

Group 

Flood 

Probability 
0.1353 0.2464 0.3428 0.4319 1 1 0 0 

Village 

Population 
3554.2 3537.1 3453.9 4093.1 29452 38982 219 395 

House Price 176196.2 175866.3 61831.5 60904.7 391400.1 341835.4 52173.1 47449.0 

Max. H. 

Rainfall 
66.0997 64.2174 10.2845 10.9371 88.3391 97.8864 45.2654 44.8524 

Total 

Rainfall 
653.4965 645.4790 70.8059 89.1945 1067.495 979.7900 444.2594 422.6498 

Elevation 

(meters) 
28.2068 26.4997 14.4969 16.1168 147.3107 132.4810 6.5947 6.7068 

Household 

Income 
1025.2 735.2 207.6 108.4 2089 932 730 438 

 

Table 6 shows the characteristics of the 207 village samples in each treatment and control group for Typhoon Fanapi. 

The mean of the flood probability of the treatment group was 16.91%, which was much lower than the 33.82% for the control 235 

group. The average populations for the treatment and control groups were 3,426 and 3,493, respectively. The average house 

price for the treatment group was NT$175,164 per ping, almost equal to the NT$174,659 for the control group. The average 

maximum hourly rainfall was 58mm for the treatment group, almost equal to the 58.9mm for the control group. The average 

total rainfall was 377mm for the treatment group, slightly lower than the 393.3mm for the control group. The average elevation 

for the treatment group was 28m above sea level, slightly higher than the 26.3m for the control group. Therefore, after the 240 

propensity score matching, the characteristics of the villages in the treatment and control groups became very similar. The 

average household income for the treatment group was NT$1,023,000 per household, which was higher than the NT$735,000 

for the control group.  
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Table 6 Descriptive statistics of the Typhoon Fanapi samples (after the propensity score matching (PSM)) 245 

Typhoon Fanapi (207 observed values for each treatment and control group) 

 Mean S.D. Max. Mini. 

 Trt. 

Group 

Control 

Group 

Trt. 

Group 

Control 

Group 

Trt. 

Group 

Control 

Group 

Trt. 

Group 

Control 

Group 

Flood 

Probability 
0.1691 0.3430 0.3757 0.0469 1 1 0 0 

Village 

Population 
3426.3 3493.7 3009.1 4620.4 24356 39640 202 406 

House 

Price 
175164.7 174659.0 61984.3 60494.7 391400.1 341835.4 52173.1 51085.7 

Max. H. 

Rainfall 
58.0469 58.9436 15.2987 17.8320 111.6155 120.4116 22.8115 19.6113 

Total 

Rainfall 
377.0194 393.2966 144.7007 138.2058 727.6195 723.0698 129.6320 97.1310 

Elevation 

(meters) 
28.1308 26.3159 14.5563 28.0940 147.3107 345.7311 6.5947 3.3753 

Household 

Income 
1023.1 734.6 209.2 113.5 2089 1083 650 478 

 

Rubin’s B and Rubin’s R were also adopted to check the balance of matching. Rubin’s B was 21.6 and Rubin’s R was 

1.08 after applying propensity score matching to the observations for Typhoon Morakot; and Rubin’s B was 17.4 and Rubin’s 

R was 1.23 for the observations for Typhoon Fanapi. Rubin (2001) recommended that B be less than 25 and that R be between 

0.5 and 2 for the observations to be considered to be sufficiently balanced.  250 

As shown in Table 7, the probabilities of flooding for the control groups for Typhoon Morakot and Typhoon Fanapi 

were 24.6% and 34.3%, respectively, while those for the treatment group were 13.5% and 16.9%, implying that the treatment 

effect of income reduced the flooding probabilities of Typhoon Morakot and Typhoon Fanapi by 11% and 17%, respectively.  
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 255 

Table 7 Propensity Score Matching (PSM) results for the top 10% high-income villages 

 Flood prob. of the 

Treatment Group (High 

Income Group) 

Flood prob. of the 

Control Group (Non-

High Income Group) 

Difference 

(Treatment 

Effect) 

T -Value 

Morakot 0.1353 0.2464 -0.1111 -2.33 

Fanapi 0.1691 0.3430 -0.1739 -3.71 

 

Robustness Check 

We also examine whether any selection bias existed in the sampling of the treatment group in this study as a robustness 

check. Since villages scoring average household incomes in the top 1% as proposed by Piketty (2015) generated too few 260 

observations, our sampling of high-income villages was expanded to include villages scoring average household income in the 

top 20% in the relevant city/county to observe whether PSM results would remain the same for the adjusted “high-income” 

group. As shown in Table 8, the difference in flooding probabilities between the high-income and non-high-income groups 

was insignificant in the case of Typhoon Fanapi, but still significant in the case of Typhoon Morakot. The possible explanation 

for the difference may stem from the rainfall caused by Typhoon Fanapi being more extreme and concentrated in Kaohsiung 265 

city, which caused some flood protection measures to fail. 

 

Table 8 Propensity Score Matching (PSM) results for the top 20% high-income villages 

 Flood Prob. of the 

Treatment Group (High 

Income Group) 

Flood Prob. of the 

Control Group (Non-

High Income Group) 

Difference 

(the Treatment 

Effect) 

T -Value 

Morakot 0.1908 0.3068 -0.1160 -3.89 

Fanapi 0.2729 0.2947 -0.0218 -0.69 

5. Conclusions 

This study has investigated the impact of average household income on the flooding probability of a village in an affected 270 

city/county during Typhoon Morakot and Typhoon Fanapi. The results of the logistic regression analysis show that the high-

income villages had a lower probability of being flooded during Typhoon Morakot and Typhoon Fanapi. All other control 

variables including maximum hourly rainfall, total rainfall and elevation were, as expected, significant variables affecting 

flooding. In order to ensure that the treatment effect of income was random, propensity score matching was adopted to find 

villages with similar characteristics. This study found that high-income villages had a lower probability of being flooded. We 275 

defined the high-income villages as villages whose average income was in the top 10% of income in the relevant city/county 
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in southern Taiwan during Typhoon Morakot and Fanapi. Even after changing the definition of high-income villages to those 

in the top 20% of income in the relevant city/county, the high-income villages still had a lower probability of flooding during 

Typhoon Morakot. 

These results suggest that, between 2006 and 2010, the flood risk reduction may have been concentrated in more wealthy 280 

areas, with rich people being likely to attempt to act in self-interest by manipulating policy-making processes and shifting the 

focus and benefits of a social welfare policy on to themselves (Orton and Rowlingson, 2007), simply because they had more 

political power (Rossi, 2014). An 8-year NT$115.9 billion budget flood risk reduction project was launched in 2006. We find 

that, when rainfall and other environmental factors are controlled for, the 2006 high-income villages had a significantly lower 

probability of being flooded by the heavy downpours unleashed by Typhoon Morakot and Typhoon Fanapi three to four years 285 

after the Project started. High-income people thus might have used their political power to influence the priority of flood risk 

reduction measures over others to protect their own communities. If, in the future, budget allocations in regard to flood 

management projects can be made public and transparent, they may deter untoward self-benefiting behavior.  

There were a number of limitations in this study. For instance, the data on the house price variable should have been 

taken for the years of the Typhoons or even earlier, just like the data on the population. However, due to the insufficient records 290 

of property transactions in remote areas at that time, we used weighted averages of house prices taken from data over a span 

of many years, which might have differed from actual house sale prices in the years of the Typhoons. The income data covered 

the period from 2006 and 2016 and were used to investigate household relocation for the treatment and control groups. Even 

though the average household income of the flooded villages did not reveal a significant difference over this period in our 

study, the results might have been different if the income data had covered a longer period. As the data used in this study were 295 

collected from the flood data for the two Typhoons, which occurred at the halfway point of the Project, the results of this study 

may not necessarily have held over a longer period of the Project.  

 

6.APPENDIX A 

(1) Typhoon Morakot 300 

Figure 1 depicts a Typhoon Morakot path map. According to global disaster events published by the National Science & 

Technology Center for Disaster Reduction (NCDR) in Taiwan, the Central Weather Bureau issued land warnings for Typhoon 

Morakot at 8am on 6 August 2009. Typhoon Morakot made landfall in Hualian on 7 August 2009 as a moderate typhoon, 

accompanied by strong southwesternly flows. Typhoon Morakot brought with it unprecedented rainfall in southern and eastern 

Taiwan and caused the most davastating flooding in the past 50 years, resulting in severe flooding in Tainan, Kaohsiung and 305 

Pingtung, and mudslides on mountainous slopes. A huge landslide destroyed Hsiaolin Village in Jiaxian, Kaohsiung. A total 
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of 474 people in Hsiaolin Village were buried alive. Typhoon Morakot exited Taiwan close to Taoyuan at 2pm on 5 August 

2009. The Central Weather Bureau lifted the typhoon warnings at 5:30am on 10 August 2010. 

Figure 2 shows Typhoon Morakot’s accumulated rainfall from 5 to 10 August 2010. The heaviest rainfall fell in the 

mountainous areas of Chiayi, Tainan, Kaohsiung and Pingtung. Most of the rainfall and flooding occurred on 8 and 9 August 310 

2010. The highest accumulated rainfall of 3,060 mm during Typhoon Morakot was recorded in Alishan, surpassing all previous 

rainfall records in Taiwan and close to the world record. Typhoon Morakot caused an estimated NT$90.47 billion of losses in 

total. There were a total of 765 square kilometers of flooded areas, including 196 bridges destroyed, 769,159 households 

without water, 1,595,419 households without electricity, 22,221 households without telecommunications, 516 schools with 

building structural damage, NT$19.41 billion in losses to agriculture, forestry, fishery and animal husbandry industries and 315 

private facilities, and 1,626 destroyed or damaged buildings and houses.  

 

 

Figure A1: Typhoon Morakot Path Map 

Source: The Central Weather Bureau 320 
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Figure A 2: Typhoon Morakot Accumulated Rainfall 

Source: Global Disaster Events (NCDR) 

 

(2) Typhoon Fanapi 325 

Figure 3 depicts the Typhoon Fanapi path map. According to the global disaster events published by the National Science & 

Technology Center for Disaster Reduction (NCDR) in Taiwan, the Central Weather Bureau issued sea warnings at 11:30 pm 

on 17 September 2010. Typhoon Fanapi made landfall in Fengbin Township, Hualian County at 8:40am on 18 September 

2010 as a moderate typhoon and exited Taiwan from Qigu District, Tainan City at 6:00pm on the same day. Taipower 

calculated that Typhoon Fanapi caused almost NT$21 billion in losses in total, including power cuts for 905,000 households, 330 

two deaths, one serious injury, 110 light injuries, the forced relocation of 6,172 individuals to shelters, 160,000 evacuees, 37 

road disruptions, and almost NT$2.1 billion in losses to agriculture, forestry, fishery and animal husbandry industries and 

private facilities. Even though the damage caused by Typhoon Fanapi was less severe than that wreaked by Typhoon Morakot, 

as Typhoon Fanapi did not linger in Taiwan as long, Typhoon Fanapi managed to cause flooding in many areas of Tainan, 

Kaohsiung and Pingtung due to the heavy rainfall, as shown in Figure 4. The main rainfall and flooding caused by Typhoon 335 

Fanapi occurred on 19 and 20 September 2010.  
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Figure A3: Typhoon Fanapi Path Map 

Source: The Central Weather Bureau 340 

 

 

Figure A4: Typhoon Fanapi Accumulated Rainfall 

Source: Global Disaster Events (NCDR) 

 345 

Code availability 

The code for this study (logistic regression and propensity score matching) is available on request. 

Data availability 
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The data of this study is available on request. 
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