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Abstract. Flood is one of the most disruptive natural disasters, causing substantial loss of life and property damage. Coastal 10 

cities in Asia face floods almost every year due to monsoons influences. Early notification of flooding events enables 

governments to implement focused preventive actions. Specifically, short-term forecasts can buy time for evacuation and 

emergency rescue, giving flood victims with timely relief. This paper proposes a novel multi-strategy-mode-waterlogging-

prediction (MSMWP) framework for forecasting waterlogging depth based on time series prediction and a machine learning 

regression method. The framework integrates the historical rainfall and waterlogging depth to predict the near future 15 

waterlogging in time under future meteorological circumstances. An expanded rainfall model is proposed to consider the 

positive correlation of future rainfall on waterlogging. By selecting a suitable prediction strategy, adjusting the optimal model 

parameters, and then comparing the different algorithms, the optimal configuration of prediction is selected. In the actual value 

testing, the selected model has high computational efficiency, and the accuracy of predicting the waterlogging depth after 30 

minutes can reach 86.1%, which is superior to many data-driven prediction models for waterlogging depth. The framework is 20 

useful for accurately predicting the depth of a target point promptly. The prompt dissemination of early warning information 

is crucial to preventing casualties and property damage. 

1 Introduction 

With the development of globalization, extreme weather and climate events occur frequently and cause a series of disasters. 

According to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), global extreme weather 25 

and climate events have increased and intensified over the past 50 years, and such events will occur more frequently in the 

future (Jefferson, 2015). According to the Global Risk Report 2021 released by the World Economic Forum (WEF), extreme 

weather and climate events in 2017-2020 ranked first for four consecutive years in terms of the probability of occurrence of 

the top 10 global risks. Flood disaster is one of the most destructive natural disasters, usually caused by extreme weather and 

climate events, mainly including river basin flood, mountain flood, storm surge, urban waterlogging, and other disaster types. 30 
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Urban waterlogging can cause great damage to human life, infrastructure, agriculture, and social system (Hu et al., 2021). 

From July 21 to 22, 2012, Beijing was hit by the heaviest rainstorm and waterlogging in 61 years, resulting in 79 deaths and 

property losses of 11.64 billion yuan. Population density and land utilization rate are increasing year by year and urban 

waterlogging caused by extreme rainstorms has become one of the serious threats to urban security. Low-lying areas often 

suffer from waterlogging disasters and the lack of drainage capacity further exacerbates the risk. 35 

In the aspect of disaster prediction, most of the previous research focused on torrential and watershed floods, but the research 

and application of waterlogging disaster prediction were few. Scenario simulation is the main research method, which simulates 

the flood routing process. The submerged area, depth and duration of waterlogging can be obtained by establishing 

hydrodynamics models or other models. Facing severe waterlogging disasters, the government needs to build a complete, 

reliable and accurate waterlogging prediction and risk identification system, focusing on early warning, prevention, rapid 40 

decision-making and emergency rescue. Robust and accurate prediction contributes highly to water resource management 

strategies, policy suggestions and analysis, and further evacuation modeling (Xie et al., 2017). However, waterlogging 

predicting is complex and difficult due to the dynamics of meteorological conditions. (Mosavi et al., 2018). Timely and 

accurate waterlogging monitoring is of great significance for disaster prevention, early warning information to the public, 

targeted blockade of affected roads, and reduction of casualties and property losses caused by waterlogging (Wang et al., 2018). 45 

2 Literature Review 

2.1 Physically based models 

Conventional modeling approaches (1D and 1D-1D) can simulate quite accurately the drainage network. But it is difficult to 

accurately simulate the inundation depth and describe the dynamic development process of waterlogging under severe rainfall. 

2D raster-based diffusion-wave model was applied to determine patterns of fluvial flood inundation in urban areas by using 50 

high-resolution topographic data and explored the effects of spatial resolution upon estimated inundation extent and flow 

routing process. The disadvantage of the 2D model was that raster data model was difficult to predict the submerged area 

changing with time, and the performance of flow process is relatively simplified due to poor description of momentum transfer 

on a flood plain (Yu and Lane, 2006a). But its advantages were also obvious, compared with the finite element method, finite 

difference method and finite volume method, the 2D model is easy to write, with high computational efficiency and simplified 55 

calibration (Yu and Lane, 2006b). SCS-CN method estimated surface runoff, superimposed flow direction grid and weight grid 

to obtain flow length grid, and then obtained Travel Time Grid (Abedin and Stephen, 2019). Zhang (2015) proposed a 3D 

flooding model, which adopted unstructured mesh finite element, to solve the Navier-Stokes equations and developed based 

on Fluidity. CADDIES flood model could identify flooded areas and constructed a flood resilience model based on cellular 

automata but the calculation time is long because all grids need to be retraversed every time (Wang et al., 2019). 60 

Physical models showed great capabilities for predicting a diverse range of flooding scenarios, but they often require various 

types of hydro-geomorphological monitoring datasets. Development of physically-based models often required in-depth 
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knowledge and expertise (Kim et al., 2015). Although relatively fine simulation results can be obtained, comprehensive and 

large-scale calculations are commonly required. Therefore, it is difficult to be applied to large-scale urban flood risk 

identification. 65 

2.2 Statistical methods 

Flood-vulnerable locations have been identified using statistical techniques and sophisticated algorithms. A statistical model 

based on static Bayesian networks was used to detect floods (Hong et al., 2016). Method used Bayesian parameter estimation 

was proposed in 2014.It estimated the Topographic Wetness Index (TWI) threshold based on the inundation curve calculated 

by the spatial window and to identify locations susceptible to waterlogging (Jalayer et al., 2014). Taking into account nine 70 

types of factors, it could predict flood through weighted superposition processing by GIS (Mukherjee and Singh, 2019). The 

statistical methods are simple, practical and easy to operate, mainly used for risk assessment and sensitivity analysis. However, 

it relies on historical statistics and lacks prediction process, so it often makes semi-quantitative prediction. 

2.3 Data-driven models 

Data-driven models can numerically predict the flood solely based on historical data without requiring knowledge about the 75 

underlying physical processes. They are used to induce regularities and patterns, providing easier implementation with low 

computation cost, as well as fast compared to physical models (Faizollahzadeh Ardabili et al., 2018). Machine learning 

methods have contributed greatly to the development of prediction systems over the past two decades, providing better 

performance and cost-effective solutions. Characteristics of the methods need to be clarified with respect to the type and 

amount of available training data, and the type of prediction task, e.g., water level and streamflow. Jia (2022) classified urban 80 

catchment areas to realize the waterlogging risk prediction based on unmanned aerial vehicle images and machine learning 

algorithms. Puttinaovarat (2020) proposed a novel flood forecasting system based on fusing meteorological, hydrological, 

geospatial, and crowdsource big data in an adaptive machine learning framework. EPSs were demonstrated to have the 

capability for improving model accuracy in flood modeling (Zhang et al., 2018). The accuracy of prediction is improved 

through DWT, which decomposes the original data into bands, leading to an improvement of flood prediction lead times. 85 

Neural networks have been widely used for flood prediction. Kim (2016) developed an ANN forecast model for hourly lead 

time consisting of meteorological and hydrodynamic parameters of three typhoons. Danso-Amoako (2012) provided a rapid 

system for predicting floods with an ANN, an R2 value of 0.70 for the ANN model proved that the tool was suitable for 

predicting flood variables with a high generalization ability. Kourgialas (2015) created a modeling system for the prediction 

of extreme flow based on ANNs 3 h, 12 h, and 19 h ahead of the flood, which was more effective than conventional hydrological 90 

models. In hourly forecasting, NARX worked better in short-term lead-time prediction compared to BPNN. The NARX 

network produced an average R2 value of 0.7, showing that it is effective in urban flood prediction (Chang et al., 2014). Some 

studies defined waterlogging prediction as a classification problem. By defining waterlogging prediction as a binary 

classification problem, Ke (2020) divided disasters record into flood and non-flood events and used 14 models for comparison . 
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Some studies used regression to predict the change of waterlogging water level. Wu (2020) constructed a regression model 95 

with deep learning algorithm, named Gradient Boosting Decision Tree to predict the depth of urban flooded areas (GBDT). 

Combined the GBDT model with hydrological variables, they learned the relationship between each condition factor and the 

occurrence of waterlogging through training, then predicted the range and depth of waterlogging.  

2.4 Hybrid machine learning methods 

Most of the research used a single algorithm or model to predict and worked in different datasets to test the generalization 100 

ability of the model. To improve the quality of prediction, an ever-increasing trend in building hybrid machine learning methods 

had been developed. Hybrid machine learning methods were numerous such as FFRM–ANN (Hsu et al., 2010), ANN-

hydrodynamic model, SVM–FR (Tehrany et al., 2015) WNN–BB, RNN–SVR (Hong, 2008). The application of machine 

learning methods to predict waterlogging disasters also had many shortcomings. If the data was scarce or does not cover 

varieties of tasks, their ability to learn decreased. The second aspect was the performance of each machine learning algorithm, 105 

which might vary across different types of tasks. For example, some algorithms might perform well for short-term predictions, 

but not for long-term predictions. These characteristics of the algorithms needed to be clarified with respect to the available 

training data and the type of prediction task. 

3 Methodology 

3.1 MSMWP Framework 110 

Accumulated rainfall is one of the most direct factors affecting the formation of waterlogging. Through data correlation 

analysis, we conclude that there is a certain functional relationship between rainfall and waterlogging depth, which is related 

to soil permeability, impervious area, air humidity, and drainage system capacity in this area. 
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Figure 1: The Multi-strategy-mode waterlogging prediction framework (MSMWP Framework).  115 

Due to the advantages of a black-box model in data-driven methods, machine learning methods can summarize these factors 

into an overall mechanism. Making full use of the characteristics of accumulated rainfall data will help improve the accuracy 

of waterlogging prediction. 

To improve the accuracy of waterlogging depth prediction, this paper proposes a prediction framework (As shown in Figure 

1) for urban waterlogging depth called MSMWP (Multi-strategy-mode waterlogging prediction) based on a variety of machine 120 

learning strategies, modes, and different algorithms for time series data. In this framework, the process of waterlogging 

prediction is shown as follows. 

3.2 Working process 

Step1. Data preprocessing  

Statistical analysis, box-plot tests and correlation analysis were used to deal with missing values and outliers. Redundant data 125 

were eliminated according to the configuration conditions of the model, and an interpolation method was selected to impute 

the missing data after unifying the data sampling rate. Data processing goes through five steps: (1) Correlation analysis. 

Calculate the correlation of various meteorological data (rainfall, wind speed, temperature, minimum pressure etc.) and 

waterlogging depth. (2) Data screening. Use domain knowledge to set thresholds to identify abnormal data. (3) Resampling. 

Different sensors have different working mechanisms so the sampling time interval is different. The sampling interval is unified 130 
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through Resampling function in Python to prepare for model training. (4) Data interpolation. Data interpolation is used to 

complete the data after resampling to make the time series continuous and fit the real situation. (5) Sliding window 

segmentation and data integration. According to the mode structure requirements, the time series are sliding segmented and 

input model by data integration. 

Step2. Training mode setting 135 

In this paper, the accumulated rainfall data set (𝑅) and the historical waterlogging depth data set (𝐷) are used to predict the 

waterlogging depth in the future. By adjusting the data combination method Ф, a new data set 𝑋 can be constructed by Eq. 

(1): 

𝑋 = Ф(𝑅, 𝐷) (1) 

For each input data 𝑥𝑖 , it is the vector combining 𝑟𝑖 (r∈R) and 𝑑𝑖 (d∈D) in the set sharding mode; vector 𝑟𝑖  can be 140 

represented by [𝑟𝑖+1  𝑟𝑖+2   ⋯  𝑟𝑖+𝑚−1  𝑟𝑖+𝑚]  and vector 𝑑𝑖  can be represented by [ 𝑑𝑖+1  𝑑𝑖+2   ⋯  𝑑𝑖+𝑛−1  𝑑𝑖+𝑛]. The 

sharding mode is realized by adjusting the sliding window size 𝑚 and 𝑛. The combined input vector 𝑥𝑖 can be represented 

as [𝑟𝑖+1  𝑟𝑖+2   ⋯  𝑟𝑖+𝑚−1  𝑟𝑖+𝑚 𝑑𝑖+1  𝑑𝑖+2   ⋯  𝑑𝑖+𝑛−1  𝑑𝑖+𝑛]. Through the continuous iteration of 𝑖 the sliding window can 

loop through all the training data and combine it into the input data set 𝑋, (Eq. 2 to 9) which is a high-dimensional matrix. 

𝑅 = [𝑟1   𝑟2   𝑟3   𝑟4  ⋯ 𝑟𝑙−1   𝑟𝑙] (2) 145 

𝑟𝑖 = [𝑟𝑖+1  𝑟𝑖+2   ⋯  𝑟𝑖+𝑚−1  𝑟𝑖+𝑚] , 𝑟 ∈ 𝑅 (3) 

𝐷 = [𝑑1  𝑑2  𝑑3  𝑑4  ⋯ 𝑑𝑙−1  𝑑𝑙] (4) 

𝑑𝑖 = [𝑑𝑖+1  𝑑𝑖+2   ⋯  𝑑𝑖+𝑛−1  𝑑𝑖+𝑛] , 𝑑 ∈ 𝐷 (5) 

𝑥𝑖 = [𝑟𝑖   𝑑𝑖] = [𝑟𝑖+1  𝑟𝑖+2   ⋯  𝑟𝑖+𝑚−1  𝑟𝑖+𝑚  𝑑𝑖+1  𝑑𝑖+2   ⋯  𝑑𝑖+𝑛−1  𝑑𝑖+𝑛] (6) 

{
𝑖 ∈ (1, 𝑙 − 𝑚 + 1), 𝑚 ≥ 𝑛

𝑖 ∈ (1, 𝑙 − 𝑛 + 1), 𝑚 < 𝑛
 (7) 150 

𝑋 =

[
 
 
 
 
 
 

𝑟1 𝑟2
𝑟2 𝑟3

⋯ 𝑟𝑚
⋯ 𝑟𝑚+1

𝑟3 𝑟4
𝑟4 𝑟5

⋯ 𝑟𝑚+2
⋯ 𝑟𝑚+3

𝑑1 𝑑2
𝑑2 𝑑3

⋯ 𝑑𝑛
⋯ 𝑑𝑛+1

𝑑3 𝑑4
𝑑4 𝑑5

⋯ 𝑑𝑛+2
⋯ 𝑑𝑛+3

⋮ ⋮
𝑟𝑖−1 𝑟𝑖
𝑟𝑖 𝑟𝑖+1

⋯ 𝑟𝑚+𝑖−1
⋯ 𝑟𝑚+𝑖

⋮ ⋮
𝑑𝑖−1 𝑑𝑖
𝑑𝑖 𝑑𝑖+1

⋯ 𝑑𝑛+𝑖−1
⋯ 𝑑𝑛+𝑖 ]

 
 
 
 
 
 

 (8) 

𝑦 =

[
 
 
 
 
 
𝑦1
𝑦2
⋮
⋮

𝑦𝑖−1
𝑦𝑖 ]
 
 
 
 
 

 (9) 

Where 𝑦 is the label of the model, which stands for the output of the regressor, and it is a vector with the same length as 𝑋. 

There are five training modes under the MSMWP Framework. 
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(1) Only multi-R input (R) 155 

Through the analysis of data correlation, the maximum correlation coefficient between rainfall and waterlogging was 0.61. It 

can be concluded that there is an obvious positive correlation between rainfall and waterlogging depth, which proves that it is 

feasible to use accumulated rainfall to predict waterlogging. 

(2) Multi-R and single-D input (mR&D) 

In reality, waterlogging often occurs after raining for a period of time. Therefore, waterlogging has a certain delay characteristic 160 

compared with rainfall. The fluctuation of waterlogging is a continuous physical process affected by multiple factors, so the 

waterlogging depth at the next moment is often the most closely related to the previous one. In multi-R and single-D mode, 

only one historical waterlogging data is selected as input. 

(3) Single-R and multi-D input (R&mD) 

This situation corresponds to multi-R and single-D, in which both rainfall and waterlogging data are taken into consideration 165 

as input, but the proportion of rainfall input is reduced, while the proportion of waterlogging depth input is increased. 

(4) Multi-R and multi-D input (mR&mD) 

This mode also covers more rainfall and waterlogging depth information, because it can better extract the characteristics of 

time series, balance the weight of the two data sets coupling, and better conform to the law of time change of rainfall-

waterlogging. 170 

(5) Expanded-multi-R and multi-D (E-mR&mD) 

This paper proposes a new training mode for waterlogging prediction. The prediction value is not only related to the past 

rainfall and the rainfall at the current time point, but the subsequent change of rainfall will largely affect waterlogging depth. 

This mode makes up for the lack of future rainfall information in mode (4) and can better reflect the dominant role of 

accumulated rainfall. In real applications, real-time rainfall forecast data will be added. Due to the lack of rainfall forecast data 175 

for this area, sliding rainfall data is used as an approximation. There are two main reasons for this. Firstly, the expanded part 

(15-30 minutes) only accounts for 12.5%-25% of the sliding rainfall (2 hours or longer) and has little effect on the whole. 

Second, rainfall forecasts, especially short-term forecasts of heavy rains, are now more than 90 percent accurate. It is important 

to note that the article does not consider only the multi-D input, because this mode building of input matrix 𝑋 contains only 

waterlogging depth information changes over time and does not consider the size of the accumulated rainfall. In this mode, 180 

with the extension of prediction time, the prediction ability of the model decreases rapidly, so it is not suitable for long-term 

warning. In the latter part of this paper, the results of this mode are discussed. 

Step3. Machine learning regressor setting 

Prediction of future data based on historical data is here defined as a regression problem. We adopt the sliding window to slice 

the time series data in cycles. Traversal is performed in order of data index to preserve the characteristics of continuous changes 185 

in the time dimension of the data. In this paper, eight types of regression algorithms are selected, which can simultaneously 

perform one-dimensional and multidimensional regression output. They are Linear Regression (LR), Tree Regression (TR), 
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Random Forest Regression (RFR), KNN Regression (KNN), Ridge Regression (RR), Kernel-Ridge Regression (KRR), 

Lasso Regression (LaR) and Elastic Net (ETN). The above eight methods are frequently employed in the field of time series 

prediction. As a simple regression method, linear regression has good applicability although it is sensitive to outliers. On the 190 

foundation of general linear regression, the objective function of ridge regression adds the L2 regularization, which provides 

the best fitting error and makes the parameters as simple as possible, giving the model excellent generalizability. Yu (2007) 

realized hydrological time series prediction using ridge regression algorithm based on feature space. Additionally, the Kernel 

Ridge regression approach was effectively used to the prediction of monthly mean precipitation (Ali et al., 2020). Shen (2021) 

took human action prediction by EEG signals as an example to study multivariate time series prediction based on elastic net 195 

and high order fuzzy cognitive map. Normalization of Lasso regression is achieved by applying L1 regularization to the loss 

function. Wang (2017) used Lasso regression to accurately predict stock market fluctuations. A tree regression model was 

created to analyze and predict time series of air pollution since tree regression can describe complex nonlinear data (Gocheva-

Ilieva et al., 2019). Wu (2017) used random forest regression algorithm to analyze the time series of weekly influenza-like 

incidence and made good findings. Martinez (2017) proposed a time series prediction method using KNN regression algorithm. 200 

Step4. Evaluation of model performance 

In this paper, the evaluation is mainly divided into two stages: test stage and prediction verification stage. Among them, the 

indicators in the test stage mainly include the following three categories: R2 score, Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE). In the verification stage of actual value, a time series of a specific length is taken to carry out the 

evaluation from two parts. Firstly, in order to test the model's ability to predict the variation trend of waterlogging depth, time 205 

series covering water rising, platform and falling are intercepted. Secondly, by comparing the predicted value with the actual 

value, the Absolute Percent Error (APE) is used to calculate the model's ability of correct prediction, namely Accuracy (ACC). 

However, it is worth noting that the APE cannot be completely evaluated the model, so Absolute Error (AE) is needed to 

supplement the evaluation. Because when the waterlogging depth is low, a large APE may correspond to a small AE.  

Step5. Prediction strategy setting 210 

Different mode settings can greatly affect the training results of the model, and the training strategies are also crucial. This 

paper compares three training strategies, which are Recursive, Single-Output Coupling and Multi-Output. The optimal 

prediction strategy is selected by comparing their performance on the test set of waterlogging prediction and the actual value 

test. 

𝑌 can be divided into two parts, the historical data 𝑌𝐻𝐼𝑆 and the prediction data 𝑌𝑃𝑅𝐸 . The time interval of each data set should 215 

be uniform. Even if the sensor sampling rate is different, it should be processed uniformly. We define this time interval as 𝜏 

(Ben Taieb et al., 2012). In order to predict s time steps after the current time 𝑡, the total time of prediction is defined as 𝑡, 

where 𝑡 = 𝜏 × 𝑠, according to the number of time steps covered by the time span of the desired output variable. Therefore, 
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the set of desired output variables can be expressed as 𝑌𝑇, 𝑌𝑇  ∈ 𝑌𝑃𝑅𝐸 . In a certain span of time 𝑇, between 𝑌𝐻𝐼𝑆 and 𝑌𝑃𝑅𝐸 , 

we use a common notation 𝑓∗ in Eq. (11) to denote the functional dependency. 220 

𝑦𝑝𝑟𝑒 = 𝑓(𝑦ℎ𝑖𝑠) + 𝑏𝑖 (10) 

where 𝑦ℎ𝑖𝑠  is the inputs of each set; 𝑦𝑝𝑟𝑒 stands for outputs, the functional relationship between them can be expressed as 𝑓; 

𝑏 stands for modeling error, disturbances or noise. 

𝑌𝑃𝑅𝐸 = 𝑓
∗(𝑌𝐻𝐼𝑆) + ∑𝑏𝑖 (11) 

i. Recursive strategy (Rec) 225 

The intuitive forecasting strategy is the Recursive (also called Iterated or Multi-Stage) strategy. The result of the prediction of 

the first step is embedded into the final element of the input vector for the subsequent prediction, and the result of the prediction 

of the second step is obtained. In Eq. (12), when s=1, 𝑦𝑡 , 𝑦𝑡−1, ⋯ , 𝑦𝑡−𝑛 can be used to predict �̂�𝑡+1.When s=2, the previous 

predicted value �̂�𝑡+1is used to replace the first element of the input vector, and the following elements are replaced in turn. 

The original last element 𝑦𝑡−𝑛 is removed from the input vector. The model is iterated recursively, and the mixed vector of 230 

historical data and forecast data is used as the model input. The algorithm for this method can be expressed as Algorithm 1. 

The prediction vector �̂�𝒑𝒓𝒆[𝒑] in the first step can be obtained based on historical data. Then the final element of the input 

vector 𝑋𝑝𝑟𝑒[𝑝][𝑑𝑠 − 1] is replaced by �̂�𝒑𝒓𝒆[𝒑 − 𝟏] and the new �̂�𝒑𝒓𝒆 is obtained through the input model. And so on, move 

the value of 𝑋 forward one bit and add the new predicted value.  

�̂�𝑡+𝑠 =

{
 

 
𝑓(𝑦𝑡 , 𝑦𝑡−1, ⋯ , 𝑦𝑡−𝑛),                    𝑠 = 1

𝑓(�̂�𝑡+𝑠−1, 𝑦𝑡+𝑠−2, ⋯ , 𝑦𝑡+𝑠−𝑛),    𝑠 = 2
⋮

𝑓(�̂�𝑡+𝑠−1, ⋯ , �̂�𝑡+𝑠−𝑛),
            𝑠 ∈ (2, 𝑛]

 (12) 235 
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Algorithm 1. Recursive Strategy 

Input: 𝐷 = {𝑋, 𝑌𝐻𝐼𝑆 }, Training Dataset. 

Input: 𝑅𝑒𝑔 = {𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟(𝑛)}, n kinds of regression method. 

Input: 𝑀 = {𝑚𝑜𝑑𝑒(1 𝑡𝑜 5)}, Mode. 

Output: �̂� = {�̂�𝑝𝑟𝑒}, the prediction of the output of the selected series. 

1 Using training data, different models and regressors were selected for model training. 

2 for 𝑘 ∈ (1,𝑁) do, test model for N times, select the best output. 

3 for 𝑝 ∈ {1, 𝑠} do. 

4    𝑑𝑠 = 𝑙𝑒𝑛(𝒙𝒊)𝑥𝑖∈{𝑋}, recursive index 

5 
   𝐴𝑃𝐸 = |

�̂�𝑝𝑟𝑒
(𝑝)
− 𝑦 

(𝑝)

𝑦 (𝑝)
| 

6    𝐴𝐸 = |�̂�𝑝𝑟𝑒
(𝑝)
− 𝑦 

(𝑝)| 

7  𝑀𝑆𝐸 = ∑ (𝑦 − �̂�)1
𝑚  

8    𝑒(𝑘) = {𝐴𝑃𝐸(𝑘), 𝐴𝐸(𝑘),𝑀𝑆𝐸(𝑘)}, comprehensive error evaluation. 

9    �̂�𝒑𝒓𝒆[𝒑] = 𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋𝑝𝑟𝑒[𝑝]) 

10    𝑋𝑝𝑟𝑒[𝑝][𝑑𝑠 − 𝑠 − 1]  =  𝑋𝑝𝑟𝑒[𝑝 − 1][𝑑𝑠 − 𝑠] 

11 ……… ………… ……… 

12    𝑋𝑝𝑟𝑒[𝑝][𝑑𝑠 − 2]  =  𝑋𝑝𝑟𝑒[𝑝 − 1][𝑑𝑠 − 1] 

13    𝑋𝑝𝑟𝑒[𝑝][𝑑𝑠 − 1]  =  �̂�𝒑𝒓𝒆[𝒑 − 𝟏] 

14 end 

15 𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑘∈{1⋯𝑁}𝑒(𝑘). 

16 �̂� = {𝑦𝑝𝑟𝑒
(𝑘)
}. 

17 return �̂�. 

 

ii. Single-Out Coupling strategy (SOC) 

The Single Output Coupling strategy is similar to the Direct strategy proposed by Hamzacebi (2009). Different machine 

learning models have been used to implement the Direct strategy for multi-step ahead forecasting tasks, for instance neural 240 

networks (Khashei and Bijari, 2010), nearest neighbors (Sorjamaa et al., 2007) and decision trees (Guimarães Santos and Silva, 

2014). It consists of forecasting each horizon independently from the others. The biggest difference from Recursive strategy 

is that Single-Out Coupling does not use any approximated values to compute the forecasts, so having no accumulation of 

errors. In this strategy, error of the previous prediction results will not have a great influence on the later prediction results. 

Each 𝑓 is supported by a corresponding model and trained with its own independent data (Eq. 13). When s =1, it is the same 245 

as one-step prediction. When s>1, the model makes prediction across the time interval of s steps. Finally, the results of Single-

Out 𝑦𝑡+1, 𝑦𝑡+2, ⋯ , 𝑦𝑡+𝑠−1, 𝑦𝑡+𝑠 coupling by Eq. (14) into a new forecast time series[𝑦𝑡+1, 𝑦𝑡+2, ⋯ , 𝑦𝑡+𝑠−1, 𝑦𝑡+𝑠]. 

𝑦𝑡+𝑠 = 𝑓𝑠(𝑦𝑡 , 𝑦𝑡−1, ⋯ , 𝑦𝑡−𝑛+1) (13) 
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{
 
 

 
 
𝑦𝑡+1 = 𝑓1(𝑦𝑡 , 𝑦𝑡−1, ⋯ , 𝑦𝑡−𝑛+1) + 𝑏𝑖
𝑦𝑡+2 = 𝑓2(𝑦𝑡 , 𝑦𝑡−1, ⋯ , 𝑦𝑡−𝑛+1) + 𝑏𝑖

⋮
⋮

𝑦𝑡+𝑠 = 𝑓𝑠(𝑦𝑡 , 𝑦𝑡−1, ⋯ , 𝑦𝑡−𝑛+1) + 𝑏𝑖

 (14) 

iii. Multi-Output strategy (MO) 250 

The two previous strategies (Recursive and Single-Out Coupling) may be considered as Single-Output strategies, which 

neglects the existence of stochastic dependencies between future values and consequently affects the forecast accuracy. Multi-

Output strategy requires the design of Multiple-Response modeling techniques. The output is no more a scalar quantity but a 

vector of length 𝑠. Using only one model, output a time series of s time intervals (Eq. 15). Compared with Single-Output 

Coupling strategy, this strategy has simple operation and fast calculation. The disadvantage is that some regression algorithms 255 

such as Bayesian regression, GBRT and Adaboosting, do not support multidimensional output directly. 

[𝑦𝑡+𝑠, 𝑦𝑡+𝑠−1, ⋯ , 𝑦𝑡+2, 𝑦𝑡+1] = 𝑓𝑚(𝑦𝑡 , 𝑦𝑡−1, ⋯ , 𝑦𝑡−𝑛+2, 𝑦𝑡−𝑛+1) + 𝑏𝑖⃗⃗⃗   (15) 

Where 𝑓𝑚 is vector-valued function. 𝑏𝑖 is a noise vector. 

Step6. Actual value testing 

In order to prevent over-fitting phenomenon or insufficient prediction, it is necessary to test the performance of the framework 260 

in actual waterlogging data sets after completing training and testing. N groups of continuous time series are selected for actual 

value test and the application results in actual data will be discussed. 

4 Case Study 

4.1 Research area 

As an important city in south China and a representative of China's special economic zones, Shenzhen is one of the core cities 265 

of the Guangdong-Hong Kong-Macao Greater Bay Area. Over the past 40 years, Shenzhen's GDP has grown rapidly from 270 

million yuan in 1980 to 2,767.024 billion yuan in 2021. 

In the process of rapid urban development, Shenzhen is also facing many challenges from natural disasters and accidents, 

which often bring serious threats to urban public safety and security. Shenzhen, located in the southeast coast of China, has a 

subtropical monsoon climate. Influenced by the Pacific monsoon current, it is greatly influenced and receives sufficient rainfall 270 

all year round. The rainfall is unusually concentrated from June to September every year, and heavy rains or extremely heavy 

rains occur frequently. In particular, the frontal rainfall in Shenzhen area is subject to topography, which often forms local 

sudden rainstorms with short duration. According to the statistics of rainfall data in Shenzhen from 1960 to 2012, there were 

8.8 times of heavy rainfall with daily rainfall of more than 50mm, 75.2% of which were heavy rain, 21.4% of which were 

torrential rain, and 3.4% of which were extremely torrential rain (Chen et al.,2020). In May 2014, Pingshan District, Shenzhen, 275 
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was hit by a sudden rainstorm, with 261mm of rainfall in three hours, causing 150 houses to be flooded and 2,600 people 

affected. The rainstorm event on April 11, 2019 saw the heaviest rainfall in April since Shenzhen began meteorological records, 

and it led to 11 deaths (Liu et al., 2020). 

This paper focuses on the areas vulnerable to waterlogging in Shenzhen. A data-driven prediction model of urban rainstorm 

waterlogging depth is established, which can realize the advance perception and accurate prediction of water level change of 280 

a waterlogging point. 

 

Figure 2: Waterlogging sensors and weather stations in Shenzhen. 
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 285 

Figure 3: Rainfall region division obtained by Tyson polygon algorithm in Shenzhen.  

4.2 Step1: Data preprocessing 

There are two main sources of the data used in the study. The first is the meteorological observation data of Shenzhen provided 

by the Shenzhen Meteorological Bureau. The data covers the time ranging from March 8th, 2019, to August 17th, 2020, 

including the meteorological observation data of rainfall, wind speed, visibility, temperature and humidity at 242 stations in 290 

the city. The second is the waterlogging depth sensor data of 170 observation stations in the city provided by Shenzhen 

Municipal Water Bureau, with an accuracy of 1 cm. Changes in waterlogging depth affect parameters such as refractive index 

and pressure. The sensor senses the changes and converts physical signals into electrical signals, which are transmitted to the 

database through optical fibers. The longest time range is from January 1st, 2019, to July 18th, 2020.  

Observation points of meteorological data and waterlogging depth data cover all 10 districts of Shenzhen, and their spatial 295 

distribution is shown in the Figure 2. Tyson polygon algorithm is used to divide regions according to the geographical location 

of meteorological stations, and the rainfall coverage of each station is obtained. The polygon surface of each region indicates 
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that meteorological data of this station is used in this region (Figure 3)(Men et al., 2020). Through this classification form, it 

is determined that 170 observation stations of waterlogging depth have unique corresponding meteorological input, which 

unified the model input and output relationship in spatial dimension. 300 

Due to the fact that waterlogging sensors are configured in batches, the total operating time and data storage capacity of each 

sensor varies. Among 170 waterlogging sensors, we selected the sensor_123 with a long operation time and a large amount of 

data as the research object. Through data analysis and testing the consistency of meteorological data, it has been determined 

that precipitation is the most influential element on waterlogging depth. Rainfall data include sliding rainfall with different 

window lengths, R10M R30M, R01H R02H, R03H, R06H, R12H, R24H and R72H for 10 minutes, 30 minutes, 1 hour, 2 hours, 305 

3 hours, 6 hours, 12 hours, 24 hours and 72 hours of sliding rainfall values. D means the waterlogging depth. Through the data 

correlation analysis between sliding rainfall and waterlogging depth data of each station (Figure 4), it is concluded that R02H 

has the largest correlation degree of 0.61 with waterlogging depth. In the Figure 4, the darker the color, the lower the 

correlation, and the lighter the color, the higher the correlation. 

 310 
Figure 4: Data correlation analysis of rainfall data at weather station_ G3795 and waterlogging depth data at sensor_123, the 

maximum correlation coefficient with D is 0.61 (D and R02H) and the minimum is 0.26 (D and R06M). 

Due to the special working mechanism of the waterlogging depth sensor, the data sampling rate is not uniform. In the period 

when there is no water accumulation (the waterlogging depth is 0), it is collected at irregular intervals of several hours or even 

several days. In the period when the water level changes dramatically, the sensor can collect data a per minute at the fastest, 315 

which brings some difficulties to our research. Considering that the interval of rainfall data is 5 minutes, in order to balance 
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the model accuracy and training efficiency, the data of waterlogging depth is resampled first, which is consistent with the 

rainfall data on the time scale. Then data interpolation is performed on the newly added blank interval of resampling, which 

does not destroy the original characteristic attributes of the data. Since the fluctuation process of waterlogging is a smooth and 

continuous process, the waterlogging-depth curve is smooth. Five commonly used interpolation methods, Cubic, Quadratic, 320 

Linear, Zero and Nearest, are used and compared in this paper. The optimal interpolation method is determined by comparing 

the MAPE of the interpolation data 𝑌𝑖𝑛𝑠𝑒𝑟𝑡 and the actual data 𝑌𝑡𝑟𝑢𝑒 and observing the fitting of the interpolation curve and 

the actual one. Finally, the Linear interpolation method is applied. (Cubic and Quadratic may have negative values, while Zero 

and Nearest have obvious ladder characteristics, which are not consistent with the continuous characteristics of the 

waterlogging depth). After analysis, we obtain a total of 527 non-zero interpolation data, accounting for 0.46% of the total data 325 

set (143,424). Interpolation data are mainly concentrated at the beginning and end of the water, and the values are generally 

low. This part of data preprocessing unified the model input and output relationship in the time dimension, and the time range 

of the final rainfall and waterlogging depth data was unified from 00:00:00 on March 8th, 2019, to 23:55:00 on July 18th, 

2020, with an interval of 5 minutes. 

 330 

Figure 5: Rainfall and waterlogging from 00:00:00 on March 8th, 2019, to 23:55:00 on July 18th, 2020 (with an interval of 5mins). 

After determining the location correlation between rainfall stations and waterlogging observation stations and unifying the 

time scale, the two data were integrated into one data. From Figure 5, it can be seen that in most of the time interval, when the 

rainfall is 0, the frequency of waterlogging accumulation data is less. This is because there is no rainfall in most time interval, 

which is consistent with the reality. Despite the fact that the proportion of impervious water surface in urban construction areas 335 

increases annually the frequency of waterlogging accumulation caused by surface runoff has decreased due to the continuous 

improvement of drainage system construction and the application of sponge city engineering. However, in the event of strong 
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typhoon or heavy rain, the drainage volume still cannot meet the needs of urban drainage. This would overload the drainage 

system and allow large amounts of urban surface runoff to accumulate in low-lying areas. In this study, considering the factors 

of surface infiltration, vegetation leaf canopy interception effect and evaporation, surface runoff cannot be formed under 340 

extremely low rainfall and non-rainfall, so the waterlogging depth is always 0. In order to avoid the interference of such factors 

on model training, the minimum rainfall threshold is set here as 5 millimeters. By searching the entire data set, lock the start 

and end time stamps of each rainfall event interval, named R_STA and R_END, Rainfall duration is denoted by R_DUR. In the 

entire data set, R_STA and R_END are paired to represent the rainfall start and end index. A total of 251 rainfall event time 

series (982.34 hours in total, average rainfall duration is 3.91 hours) were obtained by screening 143,424 data points from this 345 

site, and a new dataset Rain_Set with 12,309 data points (Figure 6) was constructed. This method eliminates the interference 

of a large number of sunny weather inputs to the model, which is proved to improve the efficiency and accuracy of the model 

calculation. 

 
Figure 6: Rainfall (blue solid line) and waterlogging (red dotted line) according to Rain_Set.  350 

4.3 Step2: Training mode setting 

Based on MSMWP framework, after data preprocessing, different training modes are constructed by changing ф to adjust 

𝑅 𝑎𝑛𝑑 𝐷 combination mode. Each rainfall time series is processed by cyclically cutting in the form of sliding windows, we 

can get a matrix 𝑅 as Eq. (16). In the five modes, input vectors of different dimensions can be constructed by adjusting the 

values of m and n, and multiple models would be trained. The goal of the model is to accurately predict the waterlogging depth 355 

at a certain time. Assume that the current time is 𝑡, and the predicted target value of the waterlogging depth in the future is 

𝑦𝑡+1, 𝑦𝑡+2, 𝑦𝑡+3, ⋯ , 𝑦𝑡+𝑠−1, 𝑦𝑡+𝑠. When m=6 and n=1, the model selects rainfall in 30 minutes and waterlogging in 5 minutes 
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before time 𝑡 as input for training. When m=12 and n=3, the model selects the rainfall in 1h and waterlogging in 15minutes 

before time t as input for training. Under different combination conditions of m and n, the five combination modes are selected 

as shown in Table 1: 360 

Table 1: Mode (1) to (5) with different parameter m and n. 

(1) Only multi-R input (2) Multi-R and single-

D input 

(3) Single-R and multi-

D input 

(4) Multi-R and multi-

D input 

(5) Expanded-multi-R 

and multi-D 

m=6 m=6, n=1 m=1, n=6 m=6, n=3 m=6(3:3), n=3 

m=12 m=12, n=1 m=1, n=12 m=12, n=3 m=12(9:3), n=3 
m=18 m=18, n=1 m=1, n=18 m=18, n=3 m=18(12:6), n=3 

m=24 m=24, n=1 m=1, n=24 m=24, n=3 m=24(18:6), n=3 

—— —— —— m=6, n=6 m=6(3:3), n=6 

—— —— —— m=12, n=6 m=12(9:3), n=6 

—— —— —— m=18, n=6 m=18(12:6), n=6 

—— —— —— m=24, n=6 m=24(18:6), n=6 

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑠𝑒𝑡: 𝑅 =

[
 
 
 
 
 
[  5, 18, 41, 63,⋯ ,97, 99,130,147]

[18, 41, 63, 74⋯99,130,147,151]

[41,63,74,83⋯130,147,151,158]

[⋯⋯⋯⋯⋯⋯ ⋯⋯⋯⋯⋯⋯⋯]

[  6, 4, 2, 1, ⋯⋯⋯ ⋯⋯ , 0, 0, 0, 0]

[ 4, 2, 1, 1 , ⋯⋯⋯ ⋯⋯ , 0, 0, 0, 0]]
 
 
 
 
 

 (16) 

Since rainfall is the fundamental factor affecting waterlogging, the dimension of rainfall in the latter two modes is basically 

higher than that of waterlogging. In expanded multi-R and multi-D, the rainfall input is split with t as the dividing line to 

emphasize the influence of the subsequent continuous rainfall input on the model. For example, m=12(9:3) means that rainfall 365 

45 minutes before t and 15 minutes after t are selected as input. 

The strategy in step 5 influences the label selection of the model. The Recursive strategy requires direct prediction of 𝑦𝑡+1 

and then recursion with label 𝒚𝒕+𝟏. 

4.4 Step3: Machine learning regressor setting 

In this paper, eight regression algorithms are selected. They are Linear Regression (LR), Tree Regression (TR), Random Forest 370 

Regression (RFR), KNN Regression (KNN), Ridge Regression (RR), Kernel-Ridge Regression (KRR), Lasso Regression (LaR) 

and Elastic Net (ETN), which can simultaneously perform one-dimensional and multidimensional regression output. 

4.5 Step4: Evaluation of model performance 

The data set constructed was divided into training set and test set at a ratio of 70% and 30%. Different modes, strategies and 

regression algorithms were applied for training, and evaluated by RMSE, MAE and R2 score. The curve fitting of the predicted 375 

data on the test set was compared with the actual data, and the test results of each configuration were analyzed and sorted. 

 𝑀𝐴𝐸 =
1

𝑚
∑ |�̂� 

(𝑖) − 𝑦 
(𝑖)|𝑚

𝑖=1  (17) 
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𝑚
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(𝑖))2𝑚

𝑖=1  (18) 

𝑅2 = 1 −
∑ (�̂�(𝑖)−𝑦(𝑖))

2

𝑖

∑ (�̅�−𝑦(𝑖))
2

𝑖

 (19) 

4.6 Step5: Prediction strategy setting 380 

The Rec policy is set to replace only the last value of the waterlogging vector at a time. Single-Out Coupling strategy outputs 

5 minutes, 10 minutes until the moment (𝑠 × 5) minutes of waterlogging, so the label is 𝑦𝑡+1, 𝑦𝑡+2, 𝑦𝑡+3, ⋯ , 𝑦𝑡+𝑠. Multi-

Output strategy outputs the waterlogging value vector of minutes at (5  𝑡𝑜 𝑠 × 5 ) at the same time, so its label is 

[𝑦𝑡+1, 𝑦𝑡+2, 𝑦𝑡+3, ⋯ , 𝑦𝑡+𝑠]. 

4.7 Result and discussion 385 

This section presents and discusses the testing results of the different mode and forecasting strategies. For each mode, we 

report the results obtained in the eight different regression methods. Based on the results of actual value verification, different 

prediction strategies are discussed. 

4.7.1 Testing result 

The time series intercepted with rainfall events were integrated into a new data set, with a total of 12,039 data points. The first 390 

70% constituted a training set with 8,428 points of data, and the last 30% constituted a testing set with 3,611 points of data. In 

the testing set, eight regression methods were used to test 5 modes, and the model structure inside each mode was changed by 

adjusting the input parameters m and n. The testing results of different modes are shown in Table A1 to Table A4 in Appendix. 

The numbers in brackets represent the ranking of evaluation indicators (MAE, RMSE, R2score) among different modes of the 

same algorithm. Bold font indicates the top results of the same algorithm with different modes. The underlined number 395 

indicates that the indicator is in the top 50% of the best results (bold) between different algorithms. Taking mode (3)-KRR as 

an example, in KRR optimal indicator, RMSE is 0.0051, ranking the second, MAE is 0.0013, ranking the third, R2score is 

0.9779, ranking the third, so the underlined indicator of KRR is 3.  
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Table 2: Testing result of mode (5) Expanded-multi-R and multi-D. 

 Evaluation 

Indicator 

Regression methods 

Mode LR TR RFR KNN RR KRR LaR ETN 

m=6(3:3) 

n=3 

MAE 0.0011(8) 0.0014(6) 0.0010(2) 0.0168(1) 0.0024(5) 0.0024(8) 0.0199(7) 0.0191(7) 

RMSE 0.0046(8) 0.0076(6) 0.0053(2) 0.0336(1) 0.0061(8) 0.0061(8) 0.0308(7) 0.0314(7) 

R2score 0.9826(8) 0.9528(5) 0.9766(2) 0.0659(2) 0.9697(6) 0.9698(6) 0.2183(7) 0.1877(7) 

m=12(9:3) 

n=3 

MAE 0.0010(6) 0.0013(3) 0.0010(2) 0.0176(5) 0.0024(5) 0.0023(4) 0.0197(5) 0.0189(5) 

RMSE 0.0039(4) 0.0077(7) 0.0061(3) 0.0351(3) 0.0060(4) 0.0059(3) 0.0303(5) 0.0307(5) 

R2score 0.9870(5) 0.9506(7) 0.9686(3) -

0.0358(3) 

0.9701(4) 0.9702(4) 0.2256(5) 0.2040(5) 

m=18(12:6) 

n=3 

MAE 0.0009(4) 0.0012(2) 0.0011(4) 0.0181(7) 0.0023(4) 0.0023(4) 0.0194(3) 0.0185(3) 

RMSE 0.0039(4) 0.0061(2) 0.0063(4) 0.0367(7) 0.0059(3) 0.0059(3) 0.0299(3) 0.0299(3) 

R2score 0.9871(4) 0.9687(2) 0.9665(5) -

0.1485(7) 

0.9704(3) 0.9704(3) 0.2382(3) 0.2373(3) 

m=24(18:6) 

n=3 

MAE 0.0008(2) 0.0016(8) 0.0011(4) 0.0171(3) 0.0020(2) 0.0019(2) 0.0191(1) 0.0179(1) 

RMSE 0.0029(2) 0.0141(8) 0.0073(8) 0.0358(5) 0.0054(2) 0.0054(2) 0.0293(1) 0.0284(1) 

R2score 0.9924(2) 0.8246(8) 0.9532(8) -

0.1241(5) 

0.9742(2) 0.9744(2) 0.2474(1) 0.2947(1) 

m=6(3:3) 

n=6 

MAE 0.0000(1) 0.0001(1) 0.0001(1) 0.0168(1) 0.0005(1) 0.0005(1) 0.0199(7) 0.0191(7) 

RMSE 0.0000(1) 0.0007(1) 0.0005(1) 0.0336(1) 0.0025(1) 0.0025(1) 0.0308(7) 0.0314(7) 

R2score 1.0000(1) 0.9996(1) 0.9998(1) 0.0661(1) 0.9948(1) 0.9948(1) 0.2183(7) 0.1877(7) 

m=12(9:3) 

n=6 

MAE 0.0010(6) 0.0013(3) 0.0011(4) 0.0176(5) 0.0024(5) 0.0023(4) 0.0197(5) 0.0189(5) 

RMSE 0.0040(7) 0.0076(5) 0.0063(4) 0.0351(3) 0.0060(4) 0.0060(6) 0.0303(5) 0.0307(5) 

R2score 0.9868(7) 0.9510(6) 0.9666(4) -

0.0358(3) 

0.9699(5) 0.9701(5) 0.2256(5) 0.2040(5) 

m=18(12:6) 

n=6 

MAE 0.0009(4) 0.0013(3) 0.0011(4) 0.0181(7) 0.0024(5) 0.0023(4) 0.0194(3) 0.0185(3) 

RMSE 0.0039(4) 0.0064(3) 0.0065(6) 0.0367(7) 0.0060(4) 0.0060(6) 0.0299(3) 0.0299(3) 

R2score 0.9870(5) 0.9648(3) 0.9635(6) -

0.1485(7) 

0.9695(7) 0.9696(7) 0.2382(3) 0.2373(3) 

m=24(18:6) 

n=6 

MAE 0.0008(2) 0.0014(6) 0.0011(4) 0.0171(3) 0.0022(3) 0.0021(3) 0.0191(1) 0.0179(1) 

RMSE 0.0030(3) 0.0070(4) 0.0071(7) 0.0358(5) 0.0060(4) 0.0059(3) 0.0293(1) 0.0284(1) 

R2score 0.9924(2) 0.9566(4) 0.9557(7) -

0.1241(5) 

0.9687(8) 0.9690(8) 0.2474(1) 0.2947(1) 

Underlined indicator 6 4 6 0 2 2 0 0 

 400 

Among the five modes, mode (1) only uses rainfall data to predict waterlogging accumulation and gets the worst testing result. 

When m changes from 6 to 24, the R2 score of RR changes from 0.1209 to 0.3954, which is 3.27 times of the initial value. In 

this mode, the larger m is, the more information the model learns and the better the testing performance is. By comparing the 

predicted value with the actual value, the results of the eight kinds of regression methods all have large noise when the actual 

waterlogging depth is 0. Even though KRR and LR can achieve good trend prediction at the peak, there are still large noise 405 

fluctuations in most of the time (Figure 7). This phenomenon may be caused by the lack of historical waterlogging time series 

input, so the noise suppression is not good. 
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Figure 7: Testing result using LR and KRR method when m=18. 

In mode (2), the prediction performance of LR and TR becomes better as m increases, which is the same as that of mode (1). 410 

However, RFR, RR, KRR are not sensitive to parameter changes.  

In mode (3), the larger the parameter n is, the better the model may not be. For example, the optimal results of RFR, RR and 

KRR are obtained when n=6, which the R2score of the three exceeds 0.977, indicating that the early information of 

waterlogging depth is not helpful to the prediction of waterlogging depth in the future, and may cause some interference. For 

LR, with the same number of parameters, the result of mode (3) is better than that of mode (2). The main reason is that mode 415 

(3) extracted more historical waterlogging depth information, which changes by a continuous process in short-term prediction. 

However, this does not mean that the model has the best performance, because it contains insufficient rainfall information and 

may not perform well in the practical application of prediction. 
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Mode (4) coupled multiple rainfall and waterlogging inputs. Overall, the results of mode (4) are better than that of mode (2) 

and mode (3) with one-dimensional input (m=1 or n=1). In this mode, the TR and RFR methods achieved the best testing 420 

results. TR achieved 0.9778 R2score and 0.0050 RMSE (m=24, n=3). The R2score of RFR reached 0.9803 and RMSE reached 

0.0049 (m=6, n=3). 

Mode (5) expanded the rainfall input and considered the influence of future rainfall. When parameters are adjusted to m=6(3:3) 

and n=6, LR evaluation indicator (MAE=0, RMSE=0 and R2score=1) is abnormal. This problem also exists in RFR, TR, etc. 

The main reason is that the prediction label has been included in the input time series, so the result of m=6(3:3), n=6 in mode 425 

(5) should be removed in the discussion. Based on the performance of mode (5) on the test set, the performance of mode (5) 

will get better after the predicted time is expanded. The reason is that mode (5) expands the rainfall input and considers the 

influence of future rainfall. Especially, the rainfall model with short duration and high intensity is more suitable for this mode. 

As shown in Figure 8, (a) only 30 minutes of waterlogging data were used for prediction, and (b) 30 minutes of waterlogging 

with 90 minutes of expanded rainfall were used as input. With the increase of prediction time, the difference of prediction 430 

performance between them increases gradually. In the prediction of 40minutes waterlogging, R2score of (b: 0.6841) is 2.4 

times that of (a: 0.2847) when TR method is applied. Using the RFR method, R2score and MAE of (b: R2score=0.7428, 

MAE=0.0044) also significantly exceeds (a: R2score=0.6488, MAE=0.0053). Especially for the prediction of medium-high 

value, in the case of high value (0.30m) and medium value (0.13m), the prediction results of (a) are 0.82m and 0.73m, and the 

large error leads to poor accuracy in the prediction of medium-large scale waterlogging. 435 

Figure 8: Testing result of mode (5) and only-D prediction using TR and RFR (when both n=6). 
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Figure 9: Testing result using different method when m=24, n=3. (a) for KRR, (b) for LR, (c) for RFR, (d) for TR. 

From the perspective of comparison of regression methods, the performance of LR, TR, RFR, RR and KRR are relatively 440 

better, which is reflected in the strong generalization ability of the model (Figure 9). KRR, as Ridge Regression with kernel 



23 

 

function added, is more suitable for high-dimensional data. In this study, it shows a slightly stronger regression performance 

than RR. It can be seen from the comparison (Figure 9(a)(b)) that LR and KRR have strong prediction ability for high values, 

but poor noise suppression for low values and 0 values, and the model fluctuates constantly around the x axis. The prediction 

of RFR for the highest value is insufficient, but the prediction performance for other high values is better. Its noise control for 445 

low values is better. TR has the best noise control effect for 0 value, but the curve is not smooth or ladder shape at high value. 

Of course, this is related to the principle of the algorithm. When applying RFR, selecting the parameter n_estimators which is 

equal to 100 can solve the problem of TR (Figure 9(c)). LR, RFR, KRR, TR show strong fitting ability in the training set (TR 

has the MAE:0.0000 RMSE:0.0000 score:1.0000) (Figure 10) in, KNN and ETN show relatively poor fitting ability. KNN, 

LaR and ETN have weak ability of fitting and generalization, which are not suitable for regression prediction of such data 450 

(Figure 11). KNN methods have negative R2score in mode (1), mode (2), mode (4) and mode (5). For most data sets with 

eigenvalues of 0, the prediction performance is often poor, which can explain why the results of KNN method are the worst 

(Figure 11(a)). LaR and ETN are mode-insensitive and have the same results in mode (1) and mode (2). However, within each 

mode, as m and n change, the results will be different. The poor results of the LaR method (Figure 11(c)) may be that the 

method is suitable for multi-variable model, and the variables are selected by adjusting the λ value to change the compression 455 

variable coefficient, but there are fewer variables in this study. Similarly, considering that ETN (Figure 11(b)) works well 

when many features are interconnected, while this model has a small number of features, the model with similar basic principles 

to Lasso Regression also has poor performance. 

To sum up, mode (5) performs better than any other modes, indicating that the short-term prediction of waterlogging 

considering the change of future rainfall trend is more realistic. LR seems to have achieved good prediction results in all the 460 

five modes. However, the factor that cannot be ignored is that the original waterlogging depth data is sparse and uneven, which 

must be resampling interpolation processing. It is necessary to go through actual value test to judge whether LR method is 

really applicable to prediction. 
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465 
Figure 10: Fitting performance of different regression methods on training set when m=18, n=6. 
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Figure 11: Performance of KNN, ETN and LaR method on testing set when m=18, n=6. (a) for KNN, (b) for ETN, (c) for Las. 

4.7.2 Step6: Actual value verification 

Actual value verification takes a subset of the testing set, so the first 85% of the full data set is selected as the training set, 470 

which can increase the number of training samples and improve the training ability of the model. The time series from 

2020/5/26 13:00 to 2020/5/26 17:30 was selected, lasting 4.5h (Figure 12), covering the complete process of waterlogging 
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fluctuation. In this way, the waterlogging-depth prediction ability of the model can be verified. The changes of rainfall and 

waterlogging in this period are shown in Figure 12. The time series was divided into 6 groups on average. The waterlogging 

depth changes of 30 minutes were predicted by 6 sequential steps. 475 

 
Figure 12: Actual value verification time series from 2020/5/26 13:00 to 17:30. 

In order to highlight the prediction performance of each strategy, we set s=6 for 30-minute-prediction. That is a long forecast 

for real-time water levels. In practical application, 15 minutes to 20 minutes prediction may be the common prediction, and 20 

minutes prediction has fully met the requirement of releasing early warning information in advance and dispatching the nearest 480 

traffic and fire personnel to the scene for disposal (Georgiadou et al., 2010). We will make evaluation from multiple indicators 

such as Absolute Error (AE), Absolute Percent Error (APE) and Time Cost. Mode (5) with m=18 (12:6) and n=6 was selected 

as the basic parameters of the model to evaluate the model performance under each strategy.Figure A 1 in appendix represents 

the isometric segmentation of the verification data set with different strategies. The first 30 minutes of the time series are taken 

to show the curves between the actual values in each group and the predicted values for each method. KNN, LaR and ETN, 485 

perform poorly in the application of prediction and have high values of AE and APE. Therefore, we will not discuss these three 

poor methods in the analysis of results. Absolute Error of the predicted value and actual value of each strategy was also 

discussed (Figure A 2 in appendix). We set a tolerance of 0.02m to exclude reasonable error. APE reflects the accuracy of the 

model, but at low values it does not independently reflect the performance of the model because even small errors (< 0.01m) 

can cause APE to rise (Figure A 3 in appendix). Therefore, the mean value of AE and APE (MAE and MAPE) was used to 490 

evaluate the model accuracy, and the variance of AE and APE (V-AE and V-APE) was used to evaluate the robustness. Since 
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real-time sensor data is used in prediction, continuous calculation is required to update the model. Time cost is adopted as an 

indicator to evaluate the continuous computing capability of the model. 

Table 3 to Table 5 shows the evaluation results of different strategies. As seen in Table 6, MAE of Rec strategy is 0.0153m, 

which is better than 0.0184m of SOC and 0.0165m of MO. Of course, the MAE of the three is within the tolerance (0.02m). 495 

Under the Rec strategy, the model replaces the last data point of the input vector with the predicted value every step. The 

reason for the optimal Rec result is that the fluctuation of the waterlogging is basically a monotone increasing or decreasing 

process, and generally there is no fluctuation in a short period of time. In addition, the input vector is long enough to minimize 

the cumulative error caused by the predicted value deviation. The application of recursive algorithm can better continue the 

prediction trend of the model, so the MAE result of Rec is the best. 500 

Rec and MO strategies have a better performance and robustness. Rec and MO have lower MAPE, corresponding accuracy 

can reach 86.1% and 85.7%. The accuracy of SOC was only 81.4%. The primary cause of this phenomena is the operating 

process of SOC, which combines the findings of six distinct models into a final prediction vector. When s=1, the prediction 

strategy is the same as MO. However, with the increase of S, when predicting the s step, there will be a loss of 

𝑦𝑡+1, 𝑦𝑡+2, ⋯ , 𝑦𝑡+𝑠−1 in the middle, resulting in a large error in the following part. In contrast, the V-AE and V-APE of the 505 

SOC strategy are the lowest, indicating poor performance and model robustness. 

MO has the best V-APE (0.01036), indicating that the accuracy of this strategy has the smallest fluctuation, and the model has 

the best robustness. The V-AE (0.00026) of Rec was similar to that of MO (0.00022), but the V-APE of Rec was 69% larger 

than that of MO. The reason is that APE fluctuated greatly when TR and RFR were applied under Rec strategy, and V-APE 

was 3.05 times and 2.49 times of MO strategy respectively. Therefore, we infer that under the same conditions, the decision 510 

tree algorithm has smaller fluctuation when applied to multidimensional output and can obtain better robustness. 
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Table 3: Model performance using Rec strategy. 

P EI LR TR RFR RR KRR  P EI LR TR RFR RR KRR 

1 

MAE 0.0284 0.0223 0.0139 0.0443 0.0436  

4 

MAE 0.0112 0.0076 0.0058 0.0045 0.0042 

MAPE 0.2109 0.1661 0.1062 0.3469 0.3419  MAPE 0.2063 0.1388 0.1144 0.0829 0.0780 

V (AE) 0.0003 0.0002 0.0001 0.0003 0.0002  V (AE) 0.0001 0.0001 0.0000 0.0001 0.0000 

V (APE) 0.0085 0.0079 0.0037 0.0036 0.0034  V (APE) 0.0085 0.0042 0.0091 0.0021 0.0020 

2 

MAE 0.0264 0.0317 0.0119 0.0060 0.0061  

5 

MAE 0.0003 0.0035 0.0025 0.0010 0.0002 

MAPE 0.0976 0.1179 0.0446 0.0221 0.0222  MAPE 0.0096 0.0999 0.0705 0.0291 0.0069 

V (AE) 0.0001 0.0003 0.0001 0.0000 0.0000  V(AE) 0.0001 0.0001 0.0000 0.0000 0.0000 

V (APE) 0.0020 0.0048 0.0012 0.0001 0.0001  V(APE) 0.0001 0.0033 0.0012 0.0002 0.0000 

3 

MAE 0.0233 0.0483 0.0553 0.0195 0.0196  

6 

MAE 0.0009 0.0028 0.0064 0.0034 0.0025 

MAPE 0.1398 0.2819 0.3151 0.1219 0.1219  MAPE 0.0486 0.1446 0.3544 0.1776 0.1319 

V (AE) 0.0005 0.0014 0.0013 0.0005 0.0005  V (AE) 0.0001 0.0001 0.0000 0.0000 0.0000 

V (APE) 0.0266 0.0789 0.0756 0.0273 0.0272  V (APE) 0.0015 0.0155 0.1017 0.0100 0.0059 

Table 4: Model performance using SOC strategy. 

P EI LR TR RFR RR KRR  P EI LR TR RFR RR KRR 

1 

MAE 0.0349 0.0515 0.0229 0.0554 0.0549  

4 

MAE 0.0060 0.0047 0.0043 0.0032 0.0037 

MAPE 0.2608 0.3846 0.1878 0.4263 0.4228  MAPE 0.1261 0.1320 0.1488 0.1003 0.1054 

V (AE) 0.0005 0.0008 0.0002 0.0006 0.0006  V (AE) 0.0001 0.0001 0.0001 0.0001 0.0001 

V (APE) 0.0179 0.0289 0.0121 0.0129 0.0128  V (APE) 0.0048 0.0257 0.0237 0.0098 0.0093 

2 

MAE 0.0284 0.0237 0.0274 0.0176 0.0178  

5 

MAE 0.0015 0.0302 0.0071 0.0018 0.0008 

MAPE 0.1103 0.1103 0.0847 0.0697 0.0702  MAPE 0.0574 0.7403 0.1732 0.0659 0.0407 

V (AE) 0.0001 0.0013 0.0002 0.0001 0.0001  V(AE) 0.0002 0.0010 0.0000 0.0001 0.0000 

V (APE) 0.0028 0.0191 0.0029 0.0021 0.0022  V(APE) 0.0026 1.1122 0.0350 0.0026 0.0023 

3 

MAE 0.0276 0.0400 0.0334 0.0200 0.0202  

6 

MAE 0.0020 0.0039 0.0022 0.0034 0.0022 

MAPE 0.1804 0.2680 0.2216 0.1423 0.1434  MAPE 0.1257 0.1872 0.1612 0.1939 0.1399 

V (AE) 0.0006 0.0013 0.0006 0.0005 0.0005  V (AE) 0.0000 0.0000 0.0000 0.0000 0.0000 

V (APE) 0.0352 0.0633 0.0333 0.0297 0.0302  V (APE) 0.0110 0.0178 0.0144 0.0138 0.0099 

Table 5: Model performance using MO strategy. 515 

P EI LR TR RFR RR KRR  P EI LR TR RFR RR KRR 

1 

MAE 0.0349 0.0536 0.0284 0.0554 0.0549  

4 

MAE 0.0060 0.0074 0.0045 0.0032 0.0037 

MAPE 0.2564 0.4092 0.2119 0.4257 0.4217  MAPE 0.1077 0.1353 0.0833 0.0561 0.0659 

V (AE) 0.0005 0.0006 0.0003 0.0006 0.0006  V (AE) 0.0001 0.0001 0.0001 0.0001 0.0001 

V (APE) 0.0168 0.0155 0.0082 0.0128 0.0125  V (APE) 0.0030 0.0065 0.0039 0.0014 0.0020 

2 

MAE 0.0284 0.0100 0.0230 0.0176 0.0178  

5 

MAE 0.0015 0.0027 0.0071 0.0018 0.0008 

MAPE 0.1052 0.0370 0.0834 0.0659 0.0664  MAPE 0.0430 0.0779 0.2127 0.0518 0.0223 

V (AE) 0.0001 0.0001 0.0001 0.0001 0.0001  V(AE) 0.0002 0.0002 0.0000 0.0001 0.0000 

V (APE) 0.0025 0.0010 0.0009 0.0019 0.0020  V(APE) 0.0009 0.0016 0.0392 0.0009 0.0002 

3 

MAE 0.0276 0.0183 0.0328 0.0200 0.0202  

6 

MAE 0.0020 0.0039 0.0011 0.0034 0.0022 

MAPE 0.1641 0.1075 0.1844 0.1243 0.1256  MAPE 0.1065 0.2029 0.0544 0.1771 0.1135 

V (AE) 0.0006 0.0003 0.0004 0.0005 0.0005  V (AE) 0.0003 0.0003 0.0000 0.0001 0.0001 

V (APE) 0.0334 0.0145 0.0231 0.0280 0.0285  V (APE) 0.0066 0.0273 0.0019 0.0096 0.0037 

 
Considering the time cost, the model must be updated within the 5 minutes interval for data prediction. This paper used tower 

workstation with 8 core Intel(R) Xeon(R) W-2123 3.60 GHz CPU, 64.0 GB RAM and NIVDIA Quadro RTX4000 GPU. MO 

strategy has a faster speed in calculation. The average time cost of Rec and SOC is about 2.54 times that of MO. Under the 

MO strategy, the output form of the model is a six-dimension-vector. The advantage of this strategy is that it only needs to 520 

perform one training and prediction process, and does not need recursion or multiple model coupling, so it is more convenient 

to use. Therefore, the calculation time of each regression method is greatly reduced. The time cost of KRR was shortened from 
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240.39s to 83.28s. It should be noted that although KRR algorithm has good model performance and robustness, its time cost 

is too high, reaching 241.28s under Rec strategy, which is difficult to meet the requirements of update calculation within 5 

minutes. LR, TR and RR can all be updated within three seconds due to their simple structures. RFR has a high time cost 525 

because it has to traverse all trees. However, it can meet the requirement of update time (only 65.13s under MO strategy). 

Table 6: Model performance statistics with different strategies applied 

Strategy ACC-

30min 

Average 

indicator 

Evaluation 

indicator 

Regression methods 

LR TR RFR RR KRR 

Rec 86.17% 

Avg (MAE) 0.01526 MAE-Rec 0.0905  0.0194  0.0160  0.0131  0.0127  

Avg 

(MAPE) 

0.13834 MAPE-Rec 0.1188  0.1582  0.1675  0.1301  0.1171  

Avg (VAE) 0.00022 V (AE)-Rec 0.0002  0.0003  0.0003  0.0002  0.0001  

Avg (VAPE) 0.0175 V (APE)-Rec 0.0079  0.0339  0.0321  0.0072  0.0064  

Avg 

(TimeC) 

75.914s Time cost-

Rec(s) 

0.19  2.38  135.60  0.12  241.28  

SOC 81.40% 

Avg (MAE) 0.01842 MAE-SOC 0.0167  0.0257  0.0162  0.0169  0.0166  

Avg 

(MAPE) 

0.18604 MAPE-SOC 0.1435  0.3037  0.1629  0.1664  0.1537  

Avg (VAE) 0.00034 V (AE)-SOC 0.0003  0.0008  0.0002  0.0002  0.0002  

Avg (VAPE) 0.05334 V (APE)-SOC 0.0124  0.2112  0.0202  0.0118  0.0111  

Avg 

(TimeC) 

77.194s Time cost-

SOC(s) 

0.20  2.40  142.84  0.14  240.39  

MO 85.69% 

Avg (MAE) 0.01648 MAE-MO 0.0167  0.0160  0.0162  0.0169  0.0166  

Avg 

(MAPE) 

0.14332 MAPE-MO 0.1305  0.1616  0.1384  0.1502  0.1359  

Avg (VAE) 0.00026 V (AE)-MO 0.0003  0.0003  0.0002  0.0003  0.0002  

Avg (VAPE) 0.01036 V (APE)-MO 0.0105  0.0111  0.0129  0.0091  0.0082  

Avg 

(TimeC) 

29.94s Time cost-

MO(s) 

0.09  1.14  65.13  0.06  83.28  

 
In conclusion, LR, TR, RFR, RR and KRR are superior to other methods, which is consistent with the results on the testing 

set. Models using Rec or MO strategies have better performance and robustness, with average accuracy more than 85% for 530 

predicting waterlogging depth in the next 30 minutes. For short-term prediction, such as 15 minutes prediction, the accuracy 

can reach 93%, and the robustness of the model will be further improved. As can be seen from Figure A 1 to Figure A 3 in 

appendix, when s = 3, the prediction curves of RFR, LR, KRR and other methods basically match actual value, and AE and 

APE of each group are almost within tolerance. 

5 Conclusions 535 

The prediction and early warning of urban rainstorm and waterlogging disaster has always been a key problem. It is challenging 

and meaningful to predict the rapid water level rise caused by short-term heavy rainfall in advance. 

Waterlogging caused by rainstorms usually accumulates in low-lying areas of the city, such as poorly drained blocks and roads, 

underpass tunnels, bridge culverts, municipal plumbing manholes, and underground shopping malls or parking lots. Accurate 

prediction of waterlogging is essential for emergency decision-making and disaster response. Government emergency 540 

departments can timely issue warning information to the public, notify traffic management departments to rush to the scene to 
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block the relevant roads, culverts, tunnels, etc. Effective prediction and monitoring will help minimize casualties and property 

losses. 

A Multi-strategy-mode-waterlogging-prediction framework for waterlogging is proposed, which contains how to preprocess 

raw data, select training modes for different machine learning algorithms. In this framework, different prediction strategies 545 

were discussed and used to predict multiple dimensions of waterlogging. Results show that the mode of expanded-multi-R and 

multi-D performs better than any other modes; five regression algorithms are more suitable for waterlogging prediction. 

Recursive and Multi-Output strategies have a better performance and robustness, but MO prediction strategy has not only 

higher performance but also more efficient. We note that Recursive strategy is poor in the research of Ben (2012). This is 

mainly because of the periodic characteristics of the data. In this study, physical characteristics of waterlogging determine that 550 

water level change is generally a process of monotonically increasing or decreasing, so Rec can also have a good performance 

on the prediction of non-periodic data with obvious trends. 

In this paper, we were concerned only with the lead time for an identified site. In the future, increasing the number of sensors 

can improve the geographic information of waterlogging point location, including more DEM, slope, positive and negative 

terrain, infiltration rate and other information. This kind of model can be extended to the spatial dimension for prediction. 555 

Through grid analysis, all position points in the study area can be traversed and waterlogging risk map can be drawn. 
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Appendix 

Table A1: Testing result of mode (1) Only multi-R input. 
 Evaluation 

Indicator 

Regression methods 

Mode LR TR RFR KNN RR KRR LaR ETN 

m=6 

MAE 0.0191(4) 0.0191(2) 0.0189(4) 0.0177(4) 0.0191(4) 0.0204(4) 0.0199(4) 0.0191(4) 

RMSE 0.0325(4) 0.0434(2) 0.0338(4) 0.0337(1) 0.0325(4) 0.0329(4) 0.0306(4) 0.0312(4) 

R2score 0.1209(4) -0.5649(1) 0.0474(4) 0.0540(1) 0.1209(4) 0.1008(4) 0.2206(3) 0.1905(4) 

m=12 

MAE 0.0181(3) 0.0198(3) 0.0181(3) 0.0174(2) 0.0181(3) 0.0191(3) 0.0194(3) 0.0186(3) 

RMSE 0.0310(3) 0.0444(4) 0.0324(3) 0.0347(2) 0.0310(3) 0.0313(3) 0.0300(2) 0.0304(3) 

R2score 0.1800(3) -0.6803(3) 0.1078(2) -0.0264(2) 0.1800(3) 0.1632(3) 0.2339(2) 0.2133(3) 

m=18 

MAE 0.0168(2) 0.0198(3) 0.0180(2) 0.0174(2) 0.0168(2) 0.0175(2) 0.0191(1) 0.0181(2) 

RMSE 0.0286(2) 0.0442(3) 0.0323(2) 0.0366(4) 0.0286(2) 0.0289(2) 0.0293(1) 0.0290(2) 

R2score 0.2808(2) -0.7160(4) 0.0861(3) -0.1730(4) 0.2808(2) 0.2666(2) 0.2465(1) 0.2648(2) 

m=24 

MAE 0.0156(1) 0.0189(1) 0.0168(1) 0.0168(1) 0.0156(1) 0.0163(1) 0.0191(1) 0.0175(1) 

RMSE 0.0261(1) 0.0432(1) 0.0307(1) 0.0359(3) 0.0261(1) 0.0264(1) 0.0301(3) 0.0276(1) 

R2score 0.3954(1) -0.6576(2) 0.1654(1) -0.1438(3) 0.3954(1) 0.3825(1) 0.1980(4) 0.3269(1) 

Underlined indicator 3 0 0 0 3 3 0 0 

Table A2: Testing result of mode (2) Multi-R and single-D input. 

 Evaluation 

Indicator 

Regression methods 

Mode LR TR RFR KNN RR KRR LaR ETN 

m=6 

n=1 

MAE 0.0013(4) 0.0016(4) 0.0011(2) 0.0167(1) 0.0022(2) 0.0020(1) 0.0199(4) 0.0191(4) 

RMSE 0.0044(4) 0.0079(4) 0.0055(1) 0.0331(1) 0.0050(4) 0.0050(4) 0.0306(4) 0.0312(4) 

R2score 0.9842(4) 0.9477(4) 0.9731(1) 0.0917(1) 0.9791(4) 0.9792(4) 0.2206(3) 0.1905(4) 

m=12 

n=1 

MAE 0.0012(3) 0.0015(3) 0.0012(4) 0.0171(3) 0.0021(1) 0.0020(1) 0.0194(3) 0.0186(3) 

RMSE 0.0043(3) 0.0069(3) 0.0057(1) 0.0346(2) 0.0049(3) 0.0049(3) 0.0300(2) 0.0304(3) 

R2score 0.9845(3) 0.9591(2) 0.9721(2) -0.0167(2) 0.9794(3) 0.9795(3) 0.2339(2) 0.2133(3) 

m=18 

n=1 

MAE 0.0011(2) 0.0013(2) 0.0011(2) 0.0174(4) 0.0022(2) 0.0020(1) 0.0191(1) 0.0181(2) 

RMSE 0.0036(2) 0.0068(2) 0.0067(4) 0.0365(4) 0.0046(1) 0.0046(1) 0.0293(1) 0.0290(2) 

R2score 0.9888(2) 0.9589(3) 0.9606(4) -0.1713(4) 0.9815(1) 0.9815(1) 0.2465(1) 0.2648(2) 

m=24 

n=1 

MAE 0.0010(1) 0.0010(1) 0.0010(1) 0.0167(1) 0.0024(4) 0.0023(4) 0.0191(1) 0.0175(1) 

RMSE 0.0035(1) 0.0055(1) 0.0058(3) 0.0359(3) 0.0048(2) 0.0047(2) 0.0301(3) 0.0276(1) 

R2score 0.9894(1) 0.9730(1) 0.9706(3) -0.1410(3) 0.9800(2) 0.9801(2) 0.1980(4) 0.3269(1) 

Underlined indicator 3 2 3 0 2 3 0 0 
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Table A3: Testing result of mode (3) Single-R and multi-D input. 
 Evaluation 

Indicator 

Regression methods 

Mode LR TR RFR KNN RR KRR LaR ETN 

m=1 

n=6 

MAE 0.0008(4) 0.0014(1) 0.0010(2) 0.0073(4) 0.0016(1) 0.0016(4) 0.0199(4) 0.0191(4) 

RMSE 0.0039(3) 0.0073(2) 0.0052(1) 0.0233(4) 0.0052(1) 0.0051(1) 0.0306(4) 0.0312(4) 

R2score 0.9871(3) 0.9558(2) 0.9797(1) 0.5474(4) 0.9779(1) 0.9779(1) 0.2206(3) 0.1905(4) 

m=1 

n=12 

MAE 0.0007(2) 0.0014(1) 0.0011(4) 0.0073(4) 0.0016(1) 0.0014(3) 0.0194(3) 0.0186(3) 

RMSE 0.0040(4) 0.0076(3) 0.0062(4) 0.0226(3) 0.0055(2) 0.0055(2) 0.0300(3) 0.0304(3) 

R2score 0.9866(4) 0.9512(3) 0.9674(3) 0.5669(3) 0.9745(2) 0.9746(2) 0.2339(2) 0.2133(3) 

m=1 

n=18 

MAE 0.0007(2) 0.0015(4) 0.0010(2) 0.0071(2) 0.0017(3) 0.0013(1) 0.0191(1) 0.0182(2) 

RMSE 0.0029(1) 0.0079(4) 0.0062(4) 0.0220(2) 0.0057(3) 0.0056(3) 0.0293(1) 0.0291(2) 

R2score 0.9925(1) 0.9447(4) 0.9665(4) 0.5742(2) 0.9718(3) 0.9721(3) 0.2467(1) 0.2558(2) 

m=1 

n=24 

MAE 0.0006(1) 0.0014(1) 0.0009(1) 0.0070(1) 0.0018(4) 0.0014(3) 0.0192(2) 0.0180(1) 

RMSE 0.0029(1) 0.0068(1) 0.0053(2) 0.0217(1) 0.0058(4) 0.0057(4) 0.0298(2) 0.0281(1) 

R2score 0.9925(1) 0.9594(1) 0.9750(2) 0.5828(1) 0.9705(4) 0.9710(4) 0.2143(4) 0.2993(1) 

Underlined indicator 3 1 3 0 2 3 0 0 
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Table A4: Testing result of mode (4) Multi-R and multi-D input. 

 Evaluation 

Indicator 

Regression methods 

Mode LR TR RFR KNN RR KRR LaR ETN 

m=6 

n=3 

MAE 0.0010(7) 0.0012(2) 0.0010(1) 0.0166(1) 0.0022(7) 0.0020(7) 0.0199(7) 0.0191(7) 

RMSE 0.0039(5) 0.0062(4) 0.0049(1) 0.0330(1) 0.0058(4) 0.0058(5) 0.0306(7) 0.0312(7) 

R2score 0.9872(5) 0.9684(4) 0.9803(1) 0.0918(2) 0.9723(3) 0.9725(4) 0.2206(5) 0.1905(7) 

m=12 

n=3 

MAE 0.0008(1) 0.0012(2) 0.0010(1) 0.0171(5) 0.0021(4) 0.0019(5) 0.0194(5) 0.0186(5) 

RMSE 0.0039(5) 0.0060(3) 0.0057(3) 0.0346(3) 0.0058(4) 0.0058(5) 0.0300(3) 0.0304(5) 

R2score 0.9870(7) 0.9692(3) 0.9726(3) -0.0167(4) 0.9713(6) 0.9715(6) 0.2339(3) 0.2133(5) 

m=18 

n=3 

MAE 0.0008(1) 0.0012(2) 0.0010(1) 0.0174(7) 0.0019(1) 0.0017(1) 0.0191(1) 0.0181(3) 

RMSE 0.0029(1) 0.0065(5) 0.0068(8) 0.0365(7) 0.0055(2) 0.0055(2) 0.0293(1) 0.0290(3) 

R2score 0.9924(1) 0.9628(6) 0.9593(8) -0.1713(7) 0.9723(3) 0.9735(2) 0.2465(1) 0.2648(3) 

m=24 

n=3 

MAE 0.0008(1) 0.0010(1) 0.0010(1) 0.0167(3) 0.0019(1) 0.0017(1) 0.0191(1) 0.0175(1) 

RMSE 0.0029(1) 0.0050(1) 0.0060(5) 0.0359(5) 0.0054(1) 0.0054(1) 0.0301(5) 0.0276(1) 

R2score 0.9924(1) 0.9778(1) 0.9678(6) -0.1410(5) 0.9739(1) 0.9742(1) 0.1980(7) 0.3269(1) 

m=6 

n=6 

MAE 0.0010(7) 0.0013(5) 0.0010(1) 0.0166(1) 0.0022(7) 0.0020(7) 0.0199(7) 0.0191(7) 

RMSE 0.0039(5) 0.0071(8) 0.0049(1) 0.0330(1) 0.0057(3) 0.0057(3) 0.0306(7) 0.0312(7) 

R2score 0.9871(6) 0.9586(8) 0.9796(2) 0.0920(1) 0.9730(2) 0.9733(3) 0.2206(5) 0.1905(7) 

m=12 

n=6 

MAE 0.0008(1) 0.0013(5) 0.0010(1) 0.0171(5) 0.0020(3) 0.0018(3) 0.0194(5) 0.0186(5) 

RMSE 0.0039(5) 0.0067(7) 0.0060(5) 0.0345(3) 0.0058(4) 0.0057(3) 0.0300(3) 0.0304(5) 

R2score 0.9869(8) 0.9623(7) 0.9696(4) -0.0166(3) 0.9717(5) 0.9720(5) 0.2339(3) 0.2133(5) 

m=18 

n=6 

MAE 0.0008(1) 0.0013(5) 0.0010(1) 0.0174(7) 0.0021(4) 0.0018(3) 0.0191(1) 0.0181(3) 

RMSE 0.0030(4) 0.0065(5) 0.0064(7) 0.0365(7) 0.0060(7) 0.0059(7) 0.0293(1) 0.0290(3) 

R2score 0.9924(1) 0.9631(5) 0.9639(7) -0.1714(8) 0.9685(7) 0.9690(7) 0.2465(1) 0.2648(3) 

m=24 

n=6 

MAE 0.0008(1) 0.0012(2) 0.0010(1) 0.0167(3) 0.0021(4) 0.0019(5) 0.0191(1) 0.0175(1) 

RMSE 0.0029(1) 0.0056(2) 0.0059(4) 0.0359(5) 0.0062(8) 0.0062(8) 0.0301(5) 0.0276(1) 

R2score 0.9923(4) 0.9725(2) 0.9694(5) -0.1410(5) 0.9660(8) 0.9664(8) 0.1980(7) 0.3269(1) 

Underlined indicator 3 3 3 0 0 2 0 0 
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Figure A 1:Predicted value and actual value of different strategies. (The x-axis represents predicted steps within each group) 
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 690 
Figure A 2:Absolute Error (AE) of different strategies. (The x-axis represents predicted steps within each group) 
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Figure A 3:Absolute Percent Error (APE) of different strategies. (The x-axis represents predicted steps within each group) 
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