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Abstract. We present a procedure to detect landslide events by analysing in sequence data acquired from regional broadband 
seismic networks and spaceborne radar imagery. The combined used of these techniques is meant to exploit their 
complementary elements and mitigate their limitations when used singularly. To test the method, we consider a series of six 
slope failures associated to the Piz Cengalo rock avalanche recently occurred in the Swiss Alps, a region where we can 

benefit from high spatial density and quality of seismic data, as well as from the high spatial and temporal resolution of the 15 
ESA Copernicus Sentinel-1 radar satellites. The operational implementation of the proposed approach, in combination with 
the future increase in availability of seismic and satellite data, can offer a new and efficient solution to build and/or expand 
landslide catalogues based on quantitative measurements, and thus help in hazard assessments and definition of early 

warning systems at regional scales. 

1 Introduction 20 

Landslides cause globally fatalities and devastation, with remarkable effects especially on low-income and/or developing 
countries (Froude and Petley, 2018). While the spatial occurrence of landslides is related to intrinsic geo-morphological, and 
climatic characteristics (Stead and Wolter, 2015), catastrophic failures arise when slope materials reach a critical damage 

state (Petley, 2004). In many cases, the ultimate trigger towards failure events is related to anthropic activities, extreme 
meteorological events, and earthquakes (Bayer et al., 2018; Huang et al., 2017; Lacroix et al., 2019).  25 
Quantitative and accurate data on timing, location and size of landslides events are crucial to study the relationships between 
local and regional preconditioning factors, to recognize potential causes, as well as to identify the potential effects of 
climatic forcing. Moreover, efficient early warning systems at regional scale rely on the availability of accurate and complete 

landslide catalogues (Gariano and Guzzetti, 2016). Despite recent efforts, the knowledge on spatial and temporal landslide 
distribution is incomplete. The information about landslide volume, runout, velocity, etc. is usually available only when the 30 
events threat life or damage infrastructures, as well as when they are associated with large earthquakes or exceptional 
meteorological occurrences. These catalogues, however, deliver only a partial picture of the impact of such events on the 
landscape. In addition, many landslide events are unreported because they occur in remote regions and do not have 

immediate and/or relevant impacts on human activities. This strongly hinders the completeness of inventories used for 
hazard assessment and for calibration of early warning systems at regional scales (Guzzetti et al., 2019).  35 
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In recent years, two methods have emerged in the panorama of landslide event detection, i.e. satellite remote sensing and 
seismic data analyses. This is mainly due to the increased availability and quality of these datasets at global scale, as well as 

to the open data access policies. In particular, Earth Observation (EO) data acquired through different satellite missions are 
more and more exploited by systematic visual interpretation, as well as supervised and unsupervised automatic classification 
methodologies, in order to build catalogues of landslide events triggered by large earthquakes and/or extreme meteorological 40 
events (Mondini et al., 2019; Tanyaş et al., 2017). These methodologies strongly depend on the availability of the images, 
which are usually not adequate for systematic early landslide detection. Further, despite the identification of signatures of 

landslide events in seismic networks deployed for earthquake monitoring is not a new observation (Govi et al., 2002; 
Weichert et al., 1994), technical advances and diffusion of broadband seismic sensors have increased the possibility to detect 
and locate also landslide events of small-moderate size at regional scales. Automatic or semi-automatic procedures adapted 45 
from earthquake location routines have demonstrated fair performances (Chao et al., 2017; Dammeier et al., 2011; Ekstrom, 
2006; Fuchs et al., 2018); however, while uncertainties of several km can be tolerated in case of earthquake epicentral 

locations, landslides are extremely confined phenomena affecting a single slope (or only small portions of it). A more 
accurate location of the events can be achieved with local networks specifically designed to identify mass movements 
(Dietze et al., 2017; Cook and Dietze, 2022). Despite, such procedures are impractical at the scales of a mountain chain.  50 
In this work, we jointly use broadband seismic data and spaceborne radar imagery to show a procedure allowing for a 

systematic detection and location of landslides, as well as an initial definition of their area of impact, and their magnitude. 
We present results over the region recently affected by the Piz Cengalo, a steep granitic massive located in the central Alps 
at the border between Switzerland and Italy (see Figure 1), The area was repeatedly affected by large (> 1 Mm3), rock slope 
failure processes in the past decades, with  the main event on August 23, 2017, being the largest (>3 Mm3) and most 55 
catastrophic reported in recent years, causing 8 fatalities as well as damages in the range of 50M$. A detailed description of 

the event, its preconditioning factors, potential causes, the dynamics of the rock slope failure and the subsequent debris flow 
reaching the village of Bondo, is beyond the scope of this work. Thus, the readers are referred to the recent literature for 
more information on these specific topics (Mergili et al., 2019; Walter et al., 2019). 

2. Materials and Methods   60 

We consider Piz Cengalo as an exemplary case to demonstrate the potential and the limits of the combination of seismic and 

spaceborne radar data to provide quantitative information on landslide occurrence in an alpine scenario. We benefit from the 
high spatial density of the AlpArray seismic network (Hetényi et al., 2018) and from the unprecedented spatial and temporal 
resolution of Sentinel-1 Synthetic Aperture Radar (SAR) imagery (Torres et al., 2012). In the following, we describe the 
steps to initially define a candidate location region with seismic data, and then apply change detection investigations on 65 
Sentinel-1 SAR imagery to refine the location and identify the slope failure event. Hereafter, we will use the term 

“landquake” to define “landslide events recorded by seismic sensors”, as increasingly proposed in literature (Chen et al., 
2013). However, this term is not meant to provide additional details on specific landslide characteristics. 
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 70 

Figure 1: Overview of the area of investigation. (a) View of the Val Bondasca, with approximate outline of the area affected by the 
Piz Cengalo (46.29475° N, 9.602056° E) rock avalanche and subsequent debris flows, © Google Earth 2021; (b) Detail of the release 
area, August 25, 2017; (c) Detail of the deposits, August 30 2017. © Photos VBS swisstopo Flugdienst. 

 

2.1 Seismic data processing 75 

We consider a total of six events occurred at Piz Cengalo between August 21 and October 10, 2017 (see Table 1). The 
landquakes are characterized by different magnitude in terms of volumes and runout, and occurred all in the same slope but 

different stages of the progressive failure process: LQ1 occurred two days before the main failure, three events on August 
23, 2017, (LQ2-LQ4), while LQ5 about a month later and LQ6 about two months later). Figure 2 shows the distribution of 
the AlpArray stations and examples of the signals for the LQ2 detected at different distances from the source. The apparent 80 
velocities are on the order of 3 km/s, thus compatible with surface waves generated by surficial mass movements (e.g., 
Dammeier et al., 2011). The Swiss Seismological Service (SED) routinely recognizes landslide phenomena in seismic 

records of stations located in Switzerland and in the vicinity of the national borders. Despite monitoring procedures are not 
optimized to detect mass movements, these are systematically reported. After an event detection (at least 3 stations triggered 
on the SED network), a first order manual solution is obtained by identifying coherent energy at multiple stations, 85 
identifying these typically as S-waves, by using a regional 3D velocity model. In general, locations are more accurate when 

seismic stations are close to the event and there is good azimuthal distribution of observations. For the Piz Cengalo 
landquake event associated to the largest failure (LQ2), the closest station is at ~25km and the location accuracy has 
uncertainties on the order of ±5 km.  
 90 
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To perform our back analysis on the Piz Cengalo sequence, we define a temporal window of 10 minutes centred on the date 
and time provided by SED with the manual procedure described above. We consider the waveforms recorded by all the 

AlpArray broadband stations available for each event and focused on the HHZ channel (i.e., the vertical velocity component 
of high broad band sampled at or above 80Hz, generally 100 or 200 Hz). The choice of the HHZ channel is justified by 
previous studies showing that such component usually entails the largest energy in case of landquakes (e.g., Dammeier et al., 95 
2011). We apply a STA/LTA detection (see details and parameters in the Supporting Information, table S1) to find the onset 
time of the event at each station. Then, we compute the time delay between the first triggered station, assumed to be the 

closest to the event, and all the other stations identifying an event in the same temporal window. The resulting values are 
interpolated on a regular grid of 0.25 x 0.25 degrees, spatially smoothed with an average filter (3x3 kernel), and then 
normalized to obtain a new function defined here as “Likelihood of Landquake Location” (LLL). The candidate region of 100 
interest (ROI) potentially affected by a landquake is defined by considering LLL>0.95, and to target the change detection 
processing on a spatial subset of available Sentinel-1 radar scenes. 

 
 

 

Event 

ID 

 

Date/Time (UTC) 

 

ML 

 

MD* 

 

ML/MD 

 

Vol (Mm3) 

LQ1 2017-08-21T09:29:09 2.3 3.03 0.75 0.078 - 0.167 

LQ2 2017-08-23T07:30:27 3.0 3.71 0.80 1.65 - 2.61 

LQ3 2017-08-23T09:03:57 1.3 2.86 0.45 0.02 - 0.14 

LQ4 2017-08-23T09:36:16 2.1 3.22 0.65 0.12 - 0.50 

LQ5 2017-09-15T20:04:36 2.3 3.26 0.70 0.23 - 0.41 

LQ6 2017-10-10T02:58:41 1.1 2.65 0.41 0.014 - 0.035 

 105 
Table 1. Summary of the landquakes analysed in this study and associated to the Piz Cengalo slope failure. ML are estimated by 
SED, while average magnitude duration (MD) and volumes are computed following Manconi et al., 2016, by considering the event 
duration on all triggered AlpArray stations. Note that all LQ events have ML/MD have ML/MD less or equal to 0.8, i.e. they can 
be discerned from earthquake events which typically have ML/MD ~ 1. 

 110 

2.2 Sentinel-1 SAR data processing  

We adopt the change detection processing proposed in (Mondini, 2017), here specifically modified to tackle single events 

instead of populations of landslides. The analysis is performed to identify potential variations of surface backscattering 
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occurred between the pre- and post-event images, over the area with LLL>0.95 (projected into SAR coordinates). After data 
acquisition, pre-processing of the radar imagery includes radiometric, and geometric corrections, multi-looking, and filtering 115 

of the intensity values to obtain the radar brightness coefficient (Beta Nought, b0) with a cell resolution of about 14 m x 14 

m. Changes of b0 have demonstrated to be a suitable indicator for the detection of landslide events of different size and 

occurred in different geographic scenarios (Mondini et al., 2019). In the maps of b0, changes, landslides appear as clusters of 

similar values in a bulk of speckles. The b0 changes map is then segmented using a parametric watershed approach 

(Roerdink and Meijster, 2000) in which the scale level and the moving window kernel size parameters of the intensity 120 
algorithm are automatically assigned minimizing a cost function (Mondini, 2017). The segmentation process is aimed at 
identifying in the candidate area LLL>0.95 a unique segment (i.e., the largest, potentially delineating changes associated to 

the landquake) and a number of small segments intercepting the speckle-like effect present in the b0 changes map. Thus, the 

landquake is recognized as an outlier in the segment’s distribution of the areas. The boundaries of the outlier segment, re-
projected from SAR to ground coordinates, provide the potential location of the landquake. 125 
 

 
Figure 2. Seismic network and data (left) The AlpArray network of broad band stations. (right) Selected signals (vertical 
component HHZ) recorded by AlpArray stations located at different distances from event LQ2 (see table 1), occurred on August 
23, 2017 (i.e., the main Piz Cengalo rock avalanche event).    130 

 

3. Results 

Figure 3 shows the exemplary results obtained by analysing the seismic data available for the LQ2 event. This is the largest 
landquake, and its seismic signature was detected by tens of stations up to ~400 km distance from the source (see also 
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Supporting Information). The computed LLL function is approximately centred on Piz Cengalo massive. The area within 135 
LLL>0.95 is in the order of 10,000 km2, i.e. ~1% of the entire seismic network considered (the AlpArray covers ~1 Million 

km2). However, this is still very large for an accurate identification of a slope failure event affecting an area of about 1 km2 
(Walter et al., 2019).  
The initial candidate region defined by the LLL function is used to first identify the available Sentinel-1 imagery in terms of 
time of acquisition and orbit. In this specific case, the suitable Sentinel-1 orbits are the T015, ascending, and T066, 140 
descending, respectively. Then, the change detection processing is not applied to the entire image, but only to the area with 

LLL>0.95, which is 20% of the acquired SAR scene. Figure 4 shows the best results of the change detection analysis 
obtained on the ascending T015 imagery (see Supporting Information, Table S2). Due to the temporal proximity of the LQ1-
LQ4 sequence (occurred within two days, see Table 1), the LQ2 event cannot be singularly discriminated, because the 
Sentinel-1 constellation (when both Sentinel-1A and 1B are operative) revisit time in Europe is of six days. The LQ2, 145 
however, has been certainly the main cause of the surface changes, and for this reason we refer hereafter mainly to this 

event. The outlier segment that identified covers an area of ~0.9 km2, about two orders of magnitude larger than the average 
areas of the segment’s distribution. The footprint and the dimensions of this segment are in very good agreement with the 
area affected by the rock avalanche (Walter et al., 2019). The events LQ5 and LQ6 are smaller in magnitude, and the 
changes on the SAR image cannot be univocally defined as for the LQ2 (see Supporting Information, Figure S2 and S3). 150 

Nevertheless, the location of the largest segments identified within the Bondasca valley fall very near to the area affected by 
the Piz Cengalo landquake sequence. 

4. Discussion  

Seismic data are capable to provide an indirect evidence of the time of landslide occurrence also in inaccessible locations, 
but independent verification of the location is necessary for event confirmation and classification (Ekström and Stark, 2013). 155 

On the other hand, remote sensing data can deliver direct evidence of the areas hit by landslide events, but independent 
observations are necessary to identify the exact time of occurrence (Guzzetti et al., 2012). We propose an approach 
exploiting seismic and remote sensing (specifically, space borne SAR data), which is suitable for the development of 
automatic pipelines aimed at a systematic identification, location and first evaluation of landslides. We have shown as an 
exemplary case the application to a sequence of events recently occurred in the Swiss Alps. Our results provide several hints 160 

on the potential application of this approach in operational scenarios. We have applied a STA/LTA approach for the 
identification of the event on an arbitrary constrained temporal window. The STA/LTA method has shown to be suitable for 
the automatic detection of mass movements in continuous seismic records also for early warning purposes, although specific 
calibration of the parameters used is necessary and depend on the sensors, the network configuration, and local conditions 
(Coviello et al., 2019).  165 
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Figure 3. Likelihood of Landquake Location (LLL) based on the arrival time of seismic signals recorded by AlpArray stations. 
This basic analysis of the seismic data is used to constrain the approximate location where a landslide event has occurred. (a) LLL 170 
over the entire AlpArray network (b) Zoom on the areas with high likelihood. The area 0.95<LLL<1.0 is used to confine the 
change detection analysis. True location of the Piz Cengalo event (white star) is also shown. 

 
One of the main arguments against the use of the STA/LTA approach in the detection of mass movement signals lies in the 

inaccuracy for the determination of the event’s onset, which might cause errors on the subsequent location procedures (Fuchs 175 
et al., 2018). Since we refine the location using the remote sensing imagery, the STA/LTA approach is sufficient to constrain 
the candidate region for the change detection task. Inaccuracies up to seconds of the STA/LTA detection that would cause 
large inaccuracies in location routines based on seismic data only, would cause only negligible changes on the LLL function. 

Despite the candidate location is identified with a basic proximity approach, the source region is already reasonably well 
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constrained for all six LQ events considered (see also Supporting Information, Figure S1). This result is possible only when 180 
a relatively high spatial density of seismic sensors is available, such as the AlpArray network. More advanced location 

routines can be applied, but homogenization of procedures across large areas like entire alpine chain is not straightforward. 
In addition, an increased level of complexity would not correspond to an increase of accuracies for landslide location.  
Another important problem after detection is the distinction and/or classification of the signals recorded in continuous 
seismic waveforms (e.g., earthquakes, explosion, mass movements, anthropic sources, etc.). Several authors proposed 185 
empirical based relationships, signal processing and/or or machine learning strategies, achieving good performances 

(Dammeier et al., 2016; Hibert et al., 2014; Moore et al., 2017). Here we considered the method proposed in (Manconi et al., 
2016), based on the ratio between the local magnitude and the duration magnitude, to distinguish between local earthquakes 
and landquakes. The results show that with this approach the Piz Cengalo sequence could have been automatically classified 
as landquakes (see Table 1). This strategy, including the empirical evaluation of the rockslide volumes based on the 190 
empirical relationship observed with the duration magnitude, has been recently implemented in an operational regional 

system in Taiwan showing encouraging results (Chang et al., 2020).  

 
Figure 4. Results of the change detection analysis. The red polygon shows the area identified as potential landquake location for 
the main Landquake event (i.e., LQ1-LQ4) identified by processing the Sentinel-1 pre- and post-event, while the grey polygon is 195 
the area hit by the rock avalanche (cf. Walter et al., 2019). The white star and the yellow star show the locations of the largest 
segments for LQ5 and LQ6, respectively, identified within the Bondasca valley. The black dots show the epicentral locations 
provided by SED (see Table 1). 
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As far as the change detection analysis on the Sentinel-1 SAR data is concerned, the location of landquakes as the LQ2 (i.e. 200 
in this case the LQ1-LQ4 sequence) is straightforward. The event was large and caused a relevant drop of the backscattering 

coefficient in the post event image, spatially over sizing the surrounding random changes always present in SAR images 
(speckling-like effect). Furthermore, other environmental changes in the area are not relevant, and in this specific case, 
mostly in the direction of an increase of the backscattering coefficient. The results of the segmentation are unambiguous in 
all the images whatever the acquisition mode and the polarization are, even if the final segments can be slightly different. 205 
Additionally, post processing, like smoothing or gap-filling filtering, can also change partially the final shape of the segment 

and the identified area. On the contrary, the identification of the LQ5 and LQ6 events shows more complexity and it is not 
straightforward. According to seismic data, their sizes are smaller compared to LQ2, and then corresponding changes of the 
backscattering coefficient are expected to be less prominent in the bulk of random speckles. When the signs left on the SAR 
image amplitude have a size comparable the speckling-like segments, landslides cannot be univocally recognized. Regarding 210 
LQ5, the entire area of investigation was also affected by distributed environmental changes dropping the backscattering 

coefficient, which can be affected by snow and/or other atmospheric disturbances. Only a supervised post processing (i.e., 
further filtering) over the valley, which facilitated the segmentation, allowed to highlight a potential cluster of interest. For 
LQ6, a small but clear signal is present in the catchment, along the slope, but is not the largest in size considering the entire 
distribution of segments. There are other signals present in the neighbouring valleys that could mislead the analysis. For LQ5 215 

and LQ6, the signals emerge only in the ascending imagery with VH polarization, another possible indication of the change 
of roughness along the slope (Sung and Holzer, 1976). A potential adaption for the operational implementation of our 
approach could be running the change detection task on progressively increasing LLL thresholds (e.g., 0.95, 0.975, etc.). 
This could provide additional hints on possible hot-spots, which can be verified with subsequent SAR acquisitions and/or 
supplementary remote sensing imagery (space-borne or air-borne).   220 

5. Conclusions  

The key take-home message of this study is to show how the systematic combination of seismic and remote sensing data can 
be useful for identification and mapping of landslide events. The use of SAR satellites shows the advantages of all weather, 
day and night, and systematic acquisitions at global scale. When available, optical imagery and/or SAR imagery acquired 
with different bands, full polarimetric, or with higher spatial resolution can eventually contribute to an increase the quality 225 

and the quantity of the information. We believe that combining seismic and spaceborne data is a viable approach for a future 
operational monitoring system at the scale of the Alps, and for this reason this work can be the starting point to raise 
awareness in the community, as well as to foster cooperation and the funding necessary for such an endeavour. We conclude 
remarking that our approach is not intended to be used for early recognition of landslides or as early warning tool. The main 
goal of an operational implementation could be to systematically populate landslide catalogues relying on quantitative and 230 

accurate information on timing, magnitude, and frequency also in remote areas. Improved catalogue completeness is very 
important for the calibration of regional early warning systems based on rainfall thresholds, as well as on regional hazard 
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assessments (Guzzetti et al., 2019). The availability of remote sensing imagery with daily or sub-daily revisit times could 
lead to an employment in early detection of landslide events and possibly also in disaster response scenarios, but these 

potential applications have to be evaluated in future studies. 235 
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