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Abstract. The Italian historical earthquake record is among the richest worldwide; as such it allows the development of ad-

vanced techniques for retrieving quantitative information by calibration with recent earthquakes. Building on a pilot elaboration

of northern Italy earthquakes, we developed a procedure for determining the hypocentral depth of all Italian earthquakes from

macroseismic intensity data alone. In a second step the procedure calculates their magnitude, taking into account the inferred

depth.5

Hypocentral depth exhibits a substantial variability countrywide, but so far received little attention: pre-instrumental earth-

quakes were routinely “flattened” at upper crustal level (∼ 10 km), on the grounds that the calculation of hypocentral depth is

heavily dependent on the largely unknown local propagation properties.

We gathered a learning set of 42 earthquakes documented by reliable instrumental data and by numerous macroseismic

intensity observations. We observe (1) that within 50 km from the epicenter the ground motion attenuation rate is primarily10

controlled by hypocentral depth and largely independent of magnitude; (2) that within this distance the fluctuations of crustal

attenuation properties are negligible countrywide; and (3) that knowing both the depth and the expected epicentral intensity

makes it possible to estimate a reliable magnitude.
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1 Introduction

In addition to earthquake magnitude, the severity of seismic ground shaking at any given site is primarily controlled by its15

geometric spreading, by elastic and anelastic attenuation of the upper crustal rocks, and by hypocentral distance, i.e. the

combination of horizontal distance from
::
the

:
epicenter and earthquake depth. Other parameters controlling the ground shaking

include the earthquake radiation pattern, the rupture directivity, if any, and the inevitable site amplification effects.

When dealing with
:::::::
damaging

:
instrumental earthquakes, the magnitude, depth and focal mechanism – which in its turn

determines the radiation pattern – are generally well known, and even the rupture directivity may be at least hypothesized if the20

recording network is dense enough. Things change drastically when dealing with historical earthquakes. For the vast majority

of these events the severity of shaking is expressed by the macroseismic intensity reported at a number of sites, a proxy of a

set of accelerometric records (Worden et al., 2012); for all the other parameters we can only make “informed inferences”.

Nevertheless, given the limited length of the available instrumental record, historical earthquakes are the primary source

of information for the assessment of seismic hazard, at any scale and with any approach. Historical catalogues are especially25

relevant for assessing seismic hazard in Italy (e.g., Meletti et al., 2021); a country where average recurrence intervals for

damaging earthquakes generated by individual sources are very long compared with the length of the instrumental record (e.g.,

Galli, 2020), but where the historical record of the effects of strong ground shaking is extraordinarily long, spanning over a

millennium (Guidoboni et al., 2019). For all of these reasons, it is crucial to establish what information can be actually derived

from intensity patterns and how reliable this information is.30

When estimating macroseismic intensity, all potential diagnostic effects are jointly evaluated to assess which degree of the

scale best matches those effects. Typically, however, the effects may belong to contiguous degrees: this circumstance results

from multiple reasons, including the geological nature of the outcropping lithology near building foundations, differences

in the vulnerability of adjacent buildings, or — for the lowest shaking levels — differences in the perception of seismic

vibration depending on the number of stories comprising the building, on whether the observer is still or is moving, and35

so on (Sbarra et al., 2012, 2014; Oliveira and Ferreira, 2021) . Estimation of the shacking effects is even more uncertain for

older earthquakes and when only few historical sources are available. The resulting macroseismic intensity is an integer,

although the half-degree is often used even in direct field surveys in case of uncertainty between two contiguous degrees.

This latter approach implies that intensity values must be processed as real numbers and that an uncertain assessment is

either approximated to a half-integer, as proposed by Gasperini (2001), or simply discarded from the data set, as proposed40

by Albarello and D’Amico (2004). Nevertheless, assigning macroseismic intensities using web-based questionnaires entails

greater precision, because it involves using decimal intensities rather than simply integer values (Wald et al., 2006). It has

been demonstrated that this procedure leads to lesser scatter than if the calculated intensities were truncated to integers

(e.g., Dengler and Dewey, 1998; Dewey et al., 2002).

Italy affords a unique opportunity to explore this often overlooked problem
::::
what

::::
type

::
of
:::::::::::

information
:::
can

:::
be

::::::::::
realistically45

::::::
derived

::::
from

::::::::
intensity

::::
data. In the early 1990’s macroseismic intensity data started being organized into analytical historical

catalogues (see the Catalogue of Strong Italian Earthquakes, or CFTI: Boschi et al., 1995, 2000; Guidoboni et al., 2019, 2018),
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i.e. computer databases where all available individual intensity reports were stored in an orderly fashion, ready to be used for

automatic and reproducible elaboration. Later on, the implementation of efficient, Internet-based data acquisition platforms

has allowed the systematic investigation of intensity observations also at weak-motion levels, opening new avenues in the50

interpretation of seismic waves propagation and site response. Starting in 2007
::::
Over

:::
the

:::
past

:::
15

::::
years, the platform Hai Sentito

Il Terremoto (HSIT, Tosi et al., 2007; Sbarra et al., 2019b; De Rubeis et al., 2019) has collected over 1,290,000 felt reports

supplied by ordinary people for Italian earthquakes of any size, mostly for weak motions.

Starting at the end of the 1990’s, and following the inception of analytical historical catalogues, different workers developed

computer algorithms for calculating the eqrthquake
:::::::::
earthquake location, its magnitude, and even the presumed rupture orienta-55

tion and length, for many well-documented pre-instrumental earthquakes (e.g., Musson, 1996; Bakun and Wentworth, 1997; Gasperini et al., 1999; Bakun et al., 2003; Bakun and Scotti, 2006)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Musson, 1996; Bakun and Wentworth, 1997; Gasperini et al., 1999; Bakun et al., 2003; Bakun and Scotti, 2006; Sirovich et al., 2013)

.

Unlike instrumental data, which offer a variety of relevant independent observations (arrival times, amplitudes, phase delays),

historical earthquake data are essentially mono-variable, meaning that all seismological parameters must be inferred from the60

same observation
::::::::::
observations: the earthquake macroseismic intensities. Nevertheless, the spatial variation of intensities allows

some of the source parameters to be derived. Within this line of research, Sbarra et al. (2019a) proposed a method for estimating

the depth of pre-instrumental earthquakes of northern Italy, whereas other workers (e.g., Valensise et al., 2020) explored the

possibility of inferring from intensity data also an indication of rupture directivity.

Aside from the inevitable uncertainties that may arise from such a limited and often poorly distributed dataset, the mono-65

variable nature of the data inevitably leads to the existence of a trade-off among magnitude and depth, because a deeper

earthquake will generate smaller shaking, and may thus simply appear as a smaller event. In most cases the magnitude has

been estimated without considering the depth, or by fixing it in advance. Other methods were based on a joint inversion of

intensity data to obtain magnitude and depth (Traversa et al., 2018; Provost and Scotti, 2020). In any case, depth affects the

observed macroseismic intensity and thus the magnitude estimation of any earthquake (Jánosi, 1906; Kövesligethy, 1907;70

Blake, 1941; Sponheuer, 1960; Ambraseys, 1985; Burton et al., 1985; Levret et al., 1996; Musson, 1996).

Gasperini et al. (1999) and Gasperini (2001) were certainly aware of these trade-offs (for example, see the discussion in

Appendix 2 of Gasperini et al., 1999), but chose to take no countermeasure to minimize their impact. And since the learning

set used for calibrating their method included almost exclusively instrumental earthquakes that ruptured within the shallowest

portion of the crust, the magnitude values supplied by their method are accurate only for earthquakes occurring in that specific75

depth interval. Given the large variability of earthquake depth —- in Italy as much as elsewhere — determining a reliable

magnitude requires that earthquake depth be properly taken into account, especially in the case of lower crustal or subcrustal

events.

At least in Italy, the limited consideration of the depth variability of damaging crustal earthquakes (in this work we are

not concerned with subduction zone events) has often been explained with the inherent difficulty in evaluating the depth of80

historical earthquakes, motivated by an allegedly large variability in the propagation characteristics of the upper crust (e.g.

Mele et al., 1997). Due to the known trade-off between earthquake depth and the properties of seismic wave propagation, this
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viewpoint — and the resulting decision to fix the depth of historical earthquakes — led the natural variability of earthquake

depth to be mapped in terms of variability of crustal properties. For all of these reasons, it is important to use a method capable

of estimating depth and magnitude separately.85

In this work we explore these issues, building
:::::::
Building

:
on the findings of Sbarra et al. (2019a). More specifically,

::
in

::::
this

::::
work

:::
we

::::::::::
characterize

:::
the

:::::
depth

:::
and

:::
the

:::::::::
magnitude

::
of

::::::
Italian

::::::::::::::
pre-instrumental

::::::::::
earthquakes.

::
In

:::::::::
particular:

– we first extend their experimental method
:::
first

:::
we

::::::
extend

:::
the

:::::::::::
experimental

::::::
method

::::
put

:::::::
forward

::
by

:::::
these

:::::::::::
investigators

to the whole Italian territory and to the whole pre-1984 earthquake catalogue (CPTI15 v 2.0, the Parametric Catalogue

of Italian Earthquakes, Rovida et al., 2019, 2020). This method was shown to be independent of magnitude, meaning90

that the steepness of the attenuation curve calculated within 50 km
::
(+5

:::
km

::::::
buffer)

:
from the epicenter is affected only by

earthquake depth, not by earthquake size
::
not

:::::::
affected

:::
by

:::::::::
earthquake

::::
size,

:::
but

::::
only

::
by

::::::::::
earthquake

:::::
depth;

– then we
::
we

::::
then

:
develop a scheme for ranking objectively the quality of an intensity dataset, and hence for selecting

only earthquakes that are suitable for the calculation of
:::::::::
calculating

:
a reliable source depth;

– similarly to what was done by Sbarra et al. (2019a) for a northern Italy dataset, we derive steepness-depth equations95

::::::::
equations

::::::::
describing

:::
the

::::::::
steepness

::
of

:::
the

::::::::::
attenuation

::::
curve

:::
vs.

:::::::::
earthquake

:::::
focal

:::::
depth from a learning set, i.e. a set of rel-

atively recent Italian earthquakes for which both instrumental and macroseismic evidence is available, and
::::::::::
observations

:
is
:::::::::
available.

:::
We

::::
then use these equations to estimate the depth of the pre-instrumental events comprising our analyzed

set. The approach adopted in the present ;
:

–
:::::
finally,

:::::
from

:::
the

::::::::
learning

:::
set

:::
data

:::
we

::::::
derive

:
a
::::::::

multiple
:::::::::
regression

:::::::
equation

:::::::
relating

::::::::
expected

:::::::::
epicentral

:::::::
intensity

:::
to100

::::::::
magnitude

::::
and

::::::::::
hypocentral

:::::
depth,

::
so

:::
as

::
to

:::::::
estimate

::::
also

:::
the

::::::::
magnitude

:::
of

:::::::::::::
pre-instrumental

:::::::::::
earthquakes.

:::::
Notice

::::
that

:::
the

::::::::
approach

:::
we

:::::::
adopted

::
in

:::
this

:
work was specifically designed for analysing

::::::::
analyzing also larger magnitude

earthquakes (Mw ≥ 6.75), because, due to their magnitude, their
:::::
based

::
on

:::
the

:::::::::
awareness

:::
that

:

•
::::
their causative fault cannot be assumed to be a point sourceand ,

:

• they are often characterized by sizable directivity effects; in addition to this, the macroseismic datasets were always105

analyzed within a distance of ,
::::
and

•
:::::
based

::
on

:::::::::
empirical

::::::::::
relationships

::::::::::::::::::::::::::::::
(e.g., Wells and Coppersmith, 1994)

:
,
:::
the

:
55 km that

::::::::
maximum

::::::::
distance

:::
we

:::::::
adopted

::
in

:::
our

:::::::
analysis

:
is comparable to the expected length of the causative source of these large magnitude eventsbased on

empirical relationships (e.g., Wells and Coppersmith, 1994);

– finally, we derive from the learning set data a multiple regression equation relating expected epicentral intensity to110

magnitude and hypocentral depth, in order to also estimate the magnitude of historical earthquakes from macroseismic

data.
::::
such

:::::
larger

::::::
events;

:
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In the process we aim to 1
:
(a) use our learning set to evaluate the properties of seismic wave propagation inside the crust

::::
wave

::::::::::
propagation

:
(within 50 km of the epicenter)

:
in

:::
the

:::::
crust versus the variability of source depth, i.e. to explore

::::::::
exploring

the trade-off between these two parameters in different tectonic settings; and 2
::
(b) discuss the potential implications of these115

developments for the estimation of seismic hazard. The inferred distribution of earthquake depth has also
:::
may

::::
have

:
important

seismotectonic implications, but these are beyond the scopes of this work and will be discussed in a further, dedicated paper.

2 Seismotectonic complexity and depth variability of Italian earthquakes

The Italian peninsula is located along the complex Africa-Europe convergent plate boundary. Due to this complexity, the

causative sources of Italian earthquakes exhibit highly variable kinematics and geometrical parameters, as shown by focal120

mechanisms (Pondrelli et al., 2020) and active stress indicators (Italian Present-day Stress Indicators, IPSI database, Mariucci

and Montone, 2020), and as summarized by the Basili et al. (Database of Individual Seismogenic Sources (DISS, ) 2008); DISS Working Group (Database of Individual Seismogenic Sources (DISS, ) 2021)

:::::::
Database

::
of
:::::::::
Individual

:::::::::::
Seismogenic

:::::::
Sources

::::::
(DISS)

:::::::::::::::::::::::::::::::::::::::
(Basili et al., 2008; DISS Working Group, 2021). More specifically:

– normal faulting dominates along the hinge of the Apennines chain and in the Calabrian Arc;

– thrust and reverse faulting is widespread along the external fronts of the Southern Alps and of the northern and central125

Apennines, in the northern and southern Tyrrhenian domain and in the Sicilian-Maghrebian Chain; and

– strike-slip faulting is found in northeastern Italy, in the most external portions of the central and southern Apennines and

in the corresponding foreland areas (Figure. 1).

In addition, an active slab related to the subduction of the Ionian lithosphere exists below the Calabrian Arc: the slab is

bounded by tear faults along its edges (Maesano et al., 2017, 2020).130

The active faults and seismogenic sources identified so far in the Italian region belong both to extensional or compressional

fault systems that formed during the presently active stress regime (“new faults”), or to structures that formed during previous

tectonic phases and were later reactivated with different kinematics (“inherited faults”). While the new faults cut through the

Alps and Apennines fold-and-thrust belts at relatively shallow depth, and are the expression of the ongoing compressional

activity or extension due to back-arc stretching or ridge-top collapse, the inherited faults are generally rooted at deeper depth135

into the crust of the lower plate and are reactivated mostly with compressional and transcurrent faulting mechanisms. Their

depth generally increases moving from the foreland areas, where they can
:::
may

:
be exposed at the surface (e.g. the Mattinata and

Scicli-Ragusa fault systems in the Adriatic and Hyblean foreland areas; Di Bucci et al., 2010), towards the axes of the chain,

following the increasing depth of the regional foreland monocline.

The inherited faults have been interpreted either as Mesozoic extensional structures characterizing the African northern140

passive margin and separating fossil paleogeographic domains (e.g., Scardia et al., 2015), or as long-lived faults of various

origin, often perpendicular to the architecture of the more recent thrust belts (Zampieri et al., 2021). In addition to this general

rule, the recent 2016 Central Italy earthquake sequence has shown that also some large and older thrust faults occurring close
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Figure 1. Location of the 42 earthquakes of the learning set used in this work and regional-scale tectonic information from the DISS

database (DISS Working Group, 2021). The areas with different patterns indicate active tectonic domains that exist in the Italian peninsula

and surrounding areas (from Vannoli et al., 2021). The learning set includes earthquakes that occurred in northern Italy, shown in blue (Table

1, IDs from 1 to 20 and 23), and in central and southern Italy, shown in red (Table 1, IDs from 21 to 42, except for 23).

to the extensional hinge of the chain may be negatively reactivated if favorably oriented with respect to the current stress field,

thus becoming the causative sources of significant normal faulting earthquakes (Bonini et al., 2019; Buttinelli et al., 2021).145

Finally, further evidence of the seismotectonic complexity of the Italian region is supplied by the control exerted by the

inherited structural and paleogeographic grain of the African paleomargin, which resulted in the segmentation and differential

retreat of independent panels of the “foreland monocline”, i.e. of the subducting Adriatic, Ionian and Pelagian lithosphere

(Mariotti and Doglioni, 2000; Scrocca et al., 2007). As a result of this process, major discontinuities perpendicular to the main
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structural trends of the Apennines fold-and-thrust belt developed at the boundaries of different foreland monocline panels (e.g.,150

Rosenbaum and Piana Agostinetti, 2015; Vannoli et al., 2015); these discontinuities are highlighted by alignments of geofluid

emissions and earthquake swarms (Vannoli et al., 2021), often characterized by transcurrent mechanisms and generally located

at deeper depth with respect to the new faults, either extensional or compressional.

As a result of this framework, Italian earthquakes exhibit an unusually broad depth range, mainly as a function of their

faulting mechanism and of their location in the upper or lower plate (e.g., Chiarabba and De Gori, 2016). They can be grouped155

in at least four independent depth classes:

– very shallow in the active volcanic areas of the Perityrrhenian margin and of Sicily (≤ 5 km);

– shallow (< 15 km depth) in both the internal and external domains of the orogen;

– shallow-intermediate (> 15 km) in the foreland areas and along large lithospheric tears cutting through the Adriatic

monocline and the Apennines (Vannoli et al., 2015);160

– deep (up to 600 km depth) in the subduction system below the Calabrian Arc (Chiarabba et al., 2008).

The earthquakes generated by the new faults and by the inherited faults are often geographically overlapped, as seen in the

Po Plain (Sbarra et al., 2019a), which makes their seismotectonic interpretation rather difficult if only the epicentral location

is available. Conversely, assigning each pre-instrumental earthquake to a specific depth class helps assigning that event to its

relevant domain, thus greatly supporting its seismotectonic interpretation and the calculation of accurate global earthquake165

budgets and rates.

3 Methodology and data analysis

We updated and extended the method proposed in Sbarra et al. (2019a) to make it suitable for use on earthquakes of the entire

Italian peninsula through an automated procedure.

We adopt a distance binning method and we use only well-located instrumental earthquakes (the best available source for170

each event was chosen by expert evaluation based on all available literature sources; Table 1 reports the exact bibliographic

source of its depth and magnitude). Whenever a specific study about a given earthquake exists, we used the relocated depth

(if available).
:::
see

::::::
section

::::
3.1).

:
We first calculate the intensity average of individual Macroseismic Data Points (MDPs) falling

within 10 km-wide ring-shaped moving windows, so as to obtain an intensity attenuation curve interpolating the resulting 10

intensity averaged points. In most cases the trend of this curve shows an abrupt drop in the attenuation beyond an epicentral175

distance of about 50 km, as described in Fah and Panza (1994) and Gasperini (2001) and empirically observed by Sbarra et al.

(2019a) for earthquake in Northern Italy. For this reason, we calculate the steepness of the line that best fits only the first 50

km of the attenuation curve.

:
A
:::::
furter

:::::
issue

:::::::
concerns

:::
the

::::::::
treatment

:::
of

:::::::
intensity

::::
data

::
as

:::::::
integers

::
or

:::
real

::::::::
numbers.

::::::
When

::::::::
estimating

::::::::::::
macroseismic

::::::::
intensity,

::
all

::::::::
potential

::::::::
diagnostic

::::::
effects

:::
are

::::::
jointly

::::::::
evaluated

::
to
::::::
assess

:::::
which

::::::
degree

:::
of

:::
the

::::
scale

::::
best

:::::::
matches

:::::
those

::::::
effects.

:::::::::
Typically,180
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:::::::
however,

:::
the

::::::
effects

:::
may

::::::
belong

::
to

:::::::::
contiguous

:::::::
degrees:

::::
this

:::::::::::
circumstance

:::::
results

::::
from

::::::::
multiple

::::::
reasons,

::::::::
including

:::
the

:::::::::
geological

:::::
nature

::
of

:::
the

::::::::::
outcropping

::::::::
lithology

::::
near

:::::::
building

:::::::::::
foundations,

:::::::::
differences

::
in
:::
the

:::::::::::
vulnerability

::
of

::::::::
adjacent

::::::::
buildings,

::
or

:::
—

:::
for

::
the

::::::
lowest

:::::::
shaking

:::::
levels

:::
—

:::::::::
differences

::
in

:::
the

:::::::::
perception

::
of

:::::::
seismic

:::::::
vibration

:::::::::
depending

:::
on

:::
the

::::::
number

::
of

::::::
stories

::::::::::
comprising

::
the

::::::::
building,

:::
on

:::::::
whether

:::
the

::::::::
observer

::
is

:::
still

:::
or

::
is

:::::::
moving,

:::
and

:::
so

::
on

:::::::::::::::::::::::::::::::::::::::::::::
(Sbarra et al., 2012, 2014; Oliveira and Ferreira, 2021)

:
.
:::::::::
Estimation

::
of

:::
the

:::::::
shaking

::::::
effects

::
is
:::::

even
:::::
more

::::::::
uncertain

:::
for

:::::
older

::::::::::
earthquakes

::::
and

:::::
when

::::
only

::::
few

::::::::
historical

:::::::
sources

:::
are185

::::::::
available.

:::
The

::::::::
resulting

:::::::::::
macroseismic

:::::::
intensity

::
is

::
an

::::::
integer,

::::::::
although

:::
the

:::::::::
half-degree

::
is

::::
often

::::
used

:::::
even

:
in
:::::
direct

::::
field

:::::::
surveys

::
in

:::
case

:::
of

:::::::::
uncertainty

:::::::
between

:::
two

::::::::::
contiguous

:::::::
degrees.

::::
This

::::
latter

::::::::
approach

::::::
implies

::::
that

:::::::
intensity

:::::
values

:::::
must

::
be

::::::::
processed

::
as

::::
real

:::::::
numbers

:::
and

::::
that

::
an

::::::::
uncertain

:::::::::
assessment

::
is
:::::
either

::::::::::::
approximated

::
to

:
a
:::::::::::
half-integer,

::
as

::::::::
proposed

::
by

::::::::::::::
Gasperini (2001)

:
,
::
or

::::::
simply

::::::::
discarded

::::
from

:::
the

::::
data

:::
set,

:::
as

::::::::
proposed

::
by

:::::::::::::::::::::::::
Albarello and D’Amico (2004)

:
.
:::::::::::
Nevertheless,

::::::::
assigning

::::::::::::
macroseismic

:::::::::
intensities

::::
using

:::::::::
web-based

::::::::::::
questionnaires

::::::
entails

::::::
greater

::::::::
precision,

:::::::
because

:
it
:::::::
involves

:::::
using

:::::::
decimal

::::::::
intensities

:::::
rather

::::
than

::::::
simply

::::::
integer190

:::::
values

:::::::::::::::
(Wald et al., 2006)

:
.
::
It

:::
has

::::
been

::::::::::::
demonstrated

:::
that

::::
this

::::::::
procedure

:::::
leads

::
to

:::::
lesser

::::::
scatter

::::
than

:
if
:::
the

:::::::::
calculated

:::::::::
intensities

::::
were

::::::::
truncated

::
to
:::::::

integers
:::::::::::::::::::::::::::::::::::::::::::

(e.g., Dengler and Dewey, 1998; Dewey et al., 2002)
:
.
::::
Web

::::::
based

:::::::::::
macroseismic

::::
data

::::
are

:::::::
decimal

:::::::::
intensities,

:::::
while

::
the

::::::::
historical

:::::::::
catalogues

:::::::
include

:::::::::
half-degree

:::::::::
intensities.

:

In the following step we plot the instrumental depth of the earthquakes used as a learning set versus the steepness of the

attenuation curve. By fitting these values we obtain a logarithmic function that is then used for the last step, that is, to infer the195

depth of the non-instrumental earthquakes of our analyzed set.

Notice that the radius of our ring
::::::::::
ring-shaped moving windows is now calculated from the instrumental earthquake epicenter

rather than from
::::
based

:::
on the distance from the epicenter of the innermost MDP within the first 10 km, as proposed by Sbarra

et al. (2019a). This minor update makes the algorithm more uniform across the full earthquake magnitude range, and avoids

a differential shifting from epicenter for each earthquake (according to the
:::::
actual

:
distance of the closest MDP to

::::
from the200

epicenter). The new approach is summarized in Figure 2 with reference to a specific recent earthquake (20 May 2012; ID 13

of Table 1). After drawing the first 10 km-wide, circular search area centered in the instrumental epicenter (for all learning

set events), and the following nine 10 km-wide ring-shaped search areas, each one shifted by 5 km from the previous one

(0–10, 5–15, 10–20, 15–25, 20–30, 25–35, 30–40, 35–45, 40–50 and 45–55 km: magenta and purple lines in Figure 2b
:
), up

to the distance of 55 km from the epicenter, the resulting 10 averaged MDPs intensities are used to build the attenuation205

diagram (Figure 2c).
:::::::::::
Subsequently,

:::::
using

:::
the

::::
data

:::::
from

:::
the

:::::::
learning

:::
set

:::
we

:::::
derive

::
a

:::::::
multiple

::::::::
regression

::::::::
equation

::
to

::::::::
calculate

::
the

:::::::::
magnitude

:::
of

::
the

::::::::
historical

:::::::::::
earthquakes.

3.1 Data selection criteria

To compose our learning set (Table 1) we searched the whole Italian territory, selecting all instrumentally well documented

earthquakes, i.e. events whose location uncertainties are small and that also feature good quality macroseismic information.
:::
For210

::::
each

::::
event

:::
the

::::
best

::::::::
available

::::::
source

:::
was

::::::
chosen

:::
by

::::::
expert

::::::::
evaluation

:::::
based

:::
on

:::
all

:::::::
available

::::::::
literature

:::::::
sources;

:::::
Table

::
1

::::::
reports

::
the

:::::
exact

:::::::::::
bibliographic

::::::
source

::
of

:::
its

::::
depth

::::
and

:::::::::
magnitude.

:::::::::
Whenever

:
a
:::::::
specific

:::::
study

:::::
about

:
a
:::::
given

:::::::::
earthquake

::::::
exists,

:::
we

::::
used

::
the

::::::::
relocated

:::::
depth

:::
(if

:::::::::
available). We built a learning set comprising macroseismic data obtained either from a direct survey

or collected through the web, so as to gather information to be used as a sort of “Rosetta stone” for obtaining the parameters
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of historical earthquakes. For pre-2008 events we used the data stored in the DBMI15 v2.0 catalogue (Locati et al., 2019), a215

compilation of macroseismic intensities for Italian earthquakes that occurred in the time window 1000 CE-2017, whereas for

more recent events of Mw ≤ 5.9 we used either intensity data from the web-based HSIT catalogue (Tosi et al., 2007; De Rubeis

et al., 2019; Sbarra et al., 2019b), or the MDPs collected by targeted post-earthquake surveys conducted by experienced INGV-

QUEST personnel (QUick Earthquake Survey Team; http://www.ingv.it/quest/index.php/rilievi-macrosismici; last accessed on

20 December 2021
::
16

:::::::::
December

::::
2022). Only for the Mw 5.5, 18 January 2017 event we had to make an exception to this rule,220

due to the incompleteness of HSIT data caused by the evacuations following the Mw 6.0 mainshock of 24 August 2016.

The use of web-based data was fundamental to accomplishing our goals because these data were almost always the only

observations available, especially for deeper earthquakes (>30 km). Furthermore, the use of macroseismic data obtained from

direct surveys of earthquake damage was fundamental for the correct analysis of the attenuation curves, especially in the

epicentral area. The combination of web-based HSIT data and dedicated traditional studies does not affect the results of the225

learning set because the earthquakes included in our learning set
:::
that

:::
we

::::::::::
considered

:
are all relatively recent and the

::::
their

macroseismic field was estimated through a direct field survey. In general, intensity maps drawn for historical earthquakes

show more scattered patterns of damage than those revealed by spatially rich, web-based intensity data for similar-sized,
::::::
recent

events (Hough, 2013, 2014). This problem particularly affects earthquakes whose effects are estimated through written sources.

The same is true if only written sources (e.g., newspapers) are used to estimate the intensities of recent earthquakes; they will230

inevitably end up being overestimated (Sbarra et al., 2010; Hough, 2014).

The events comprising the learning set were further selected based on the following criteria:

1. pre-2007 earthquakes must have Mw ≥ 5.0, but events of Mw ≥ 4.5 are also accepted if there exists an associated
::::
they

::
are

:::::::
backed

::
by

:
a
:
targeted study;

2. post-2007 earthquakes must have Mw ≥ 4.0 if their depth is > 25 km, or Mw ≥ 4.5 if their depth is ≤ 25 km;235

3. the earthquake depth must not have been fixed a priori by INGV’s National Seismic Network;

4. only for pre-2012 earthquakes, the event must not be an aftershock occurring within a week of the mainshock, or a

foreshock that occurred less than 24 hours before the mainshock;

5. all earthquakes having Mw ≤ 5.8 must not be aftershocks of the central Italy sequence of 2016;

6. the earthquake must be documented by at least 100 MDPs, at least 60 of which must fall within the first 55 km from the240

epicenter;

7. the MDPs falling at a 10–55 km distance from the epicenter must be distributed in an azimuth range >= 180◦
::::::::
azimuthal

::::
range

:::::::
≥ 180◦;

8. the attenuation steepness must be calculated based on six or more averaged points, thus at least 6 of the 10 rings must

contain suitable MDPs;245
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9. the standard error of the estimated attenuation steepness must be ≤ 0.01.

All 42 earthquakes listed in Table 1 fulfill these rather strict criteria with the only exception of #6 and #17 (MDP < 60), two

deeper events that were already included in the learning set of Sbarra et al. (2019a) as they are crucial for characterizing lower

crustal and subcrustal seismicity.

Notice that the selection criteria 1–4 had already been adopted by Sbarra et al. (2019a). The additional criteria (5 through 9 )250

were added in consideration that the present work deals with the entire Italian territory, and hence with a much larger diversity

of the potentially concerned earthquakes. More specifically:

– criterion #5 was added due to the recurring lack of data in the epicentral areas of the main aftershocks of the 2016–2017,

central Italy sequence, due to the widespread evacuations following the Mw 6.0 mainshock of 24 August 2016 and to

the superposition of the effects of subsequent shocks;255

– criterion #6 was added after various experimental tests, in order to achieve more reliable and stable estimates of the

attenuation;

– criteria #7 and #8 were introduced to discard earthquakes located offshore or near the coastline, whose epicentral location

generally exhibits greater uncertainty;

– criterion #9 was adopted to retain only earthquakes for which we could calculate a reliable attenuation steepness.260

3.2 Analysis of the learning set

We analyzed separately two data subsets, respectively comprising only earthquakes located in Northern Italy, and earthquakes

located in the rest of the Italian peninsula. We made this choice because the dataset used in Sbarra et al. (2019a) included

only earthquakes from a region whose lithospheric structure and wave propagation properties are homogeneous (Mele et al.,

1997; Gasperini, 2001). Conversely, in this work we wanted to evaluate the possible influence of variable attenuation properties265

resulting from the full range of tectonic and geodynamic diversity characterizing the Italian peninsula.

Due to the intervening minor updates in our methodology — and specifically in the calculation of the starting point of our

moving window, which implies a slightly different steepness for the first 50 km of the attenuation curve (Mean= -0.00015;

Max= 0.007) — we first recalculated the attenuation steepness for all the 20 earthquakes comprising the learning set used by

Sbarra et al. (2019a) (Table 1, ID from 1 to 20; see Figures 1 and 3). We added to this dataset the 1996, Emilia earthquake (ID270

23), originally rejected because its depth from the ISIDe catalogue (ISIDe Working Group, 2007) was fixed at 10 km; for this

event we now use the depth evaluated by Selvaggi et al. (2001). We then analyzed the earthquakes we selected for the rest of

Italy and calculated their intensity attenuation steepness (Figures 1, 4; Table 1, from #21 to #42, except for #23).

As discussed earlier, in both datasets, which together form our new learning set, we observed a distinct break in steepness at

an epicentral distance of about 50 km (see Figures 3, 4,). In describing this feature of the Italian attenuation curves, Gasperini275

(2001) contended that within a ∼ 50 km epicentral distance the ground shaking is dominated by direct seismic phases, whose

propagation is highly sensitive to earthquake depth, whereas Moho-reflected phases dominate at larger distances. According to
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this hypothesis, the exact distance of the transition would be controlled by the average Moho depth along the source-receiver

path.

For all the earthquakes of the learning set we then plotted the steepness (S; intensity/km), i.e. the absolute value of the280

:::::::::
attenuation slope, versus focal depth (D; km), and found two separate but very similar best-fitting logarithmic functions (Figure

5). For northern Italy we found

S = (−0.020± 0.006) lnD+0.093± 0.018 (1)

whereas for central and southern Italy we found

S = (−0.016± 0.007) lnD+0.079± 0.019 (2)285

The coefficients of each function fall within the 95% confidence interval of the the other function, suggesting that our method

does not detect any statistically significant change in the attenuation of macroseismic intensity between the two domains, at

least over the first 50 km of epicentral distance. This finding also suggests that an approach based on averaging the intensity

values distributed over circular search areas has the ability to smooth out most of the inevitable azimuthal differences in crustal

propagation properties.290

We decided to calculate a new logarithmic function using all 42 earthquakes of the learning set, so as to obtain a law that

may be used over the whole Italian region (green line in Figure 5):

S = (−0.018± 0.004) lnD+0.087± 0.013 (3)

The regression F-test of the three regressions is acceptable at a significant probability level P < 0.0001. As we expected, Eq.

3 is similar to the previous two equations, and exhibits narrower 95% confidence bands (Davis and Sampson, 2002) resulting295

from the larger number of available data points. Eq. 3 can be applied for a steepness interval 0.058≤ S ≤ 0.010, which

corresponds to a depth interval 5≤D ≤ 73 km. Notice that the function is not constrained beyond these limits, and hence

should not be used for shallower or deeper events. For depths greater than 35 km and steepness less than 0.02, the uncertainty

is larger. Consequently, the confidence bands of Eq. 3 in Figure 5 exhibits wider limits, yet they still provides
:::::::
provide valuable

information on depth estimation, albeit with
:::::
within

:
a wider error range. Notice also that for epicentral distances > 50 km300

the curves shown in Figures 3 and 4 exhibit different attenuation
::::::
slightly

::::::::
different

::::::::
steepness

:
between the northern and the

central-southern Italy datasets
::::::::::
(respectively,

:::::
0.01

:::
and

:::::
0.02), but are remarkably similar in the first 50 km, in agreement with

the observations made by Gasperini (2001). Thus,
:::::::::
Conversely,

::
as

:::::::::
mentioned

::::::
above, in the first 50 km of the attenuation curve

there does not seem to be any influence by crustal attenuation properties, hence in this case a trade-off exists only between

magnitude and depth. In contrast, the intensity attenuation for epicentral distances >50 km earthquakes occurring in northern305

Italy, where the crust is generally thicker than in the rest of the country, frequently shows a characteristic, very gently sloping
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plateau that has been interpreted as due to Moho reflected seismic waves by Bragato et al. (2011). A further element to be

taken into account is the difference in seismic wave propagation between the Tyrrhenian and Adriatic sides of Italy, most likely

resulting from a rather different efficiency of the seismic energy propagation of the crust-upper mantle system (Mele et al.,

1997; Lolli et al., 2015; De Rubeis et al., 2016; Di Bona, 2016). But again, no differences are appreciated in our analysis310

for earthquakes located on the Tyrrhenian or Adriatic sides for
::::
with

::::::::
epicentral

:
distances up to 50 km from the epicenter (see

Figures 1, 3 and 4).

3.3 Independence of the method to infer the earthquake depth from magnitude

The steepness of the first 50 km of the attenuation curves calculated for the earthquakes of our learning set (Figures 3, 4) is

independent from magnitude, as already empirically observed by Sbarra et al. (2019a) for a smaller sample of events. To prove315

this statement we correlated the steepness with Mw in addition to the natural logarithm of depth (see Eq. 3) and found that

its coefficients are not significant (95% confidence interval includes the null value). As an example of the independence of

the steepness from magnitude we plotted in Figure 6a the attenuation curves for four earthquakes falling in the
::::
rather

:::::
wide

Mw range 4.8–6.5, but having a similar instrumental depth, in the range 7.3–8.7 km (#4, 16, 24, 39; see Table 1). Figure 6a

shows that all the calculated steepness values fall in a rather narrow range (0.045–0.051), regardless of magnitude. Figure 6b320

shows that the same behavior is observed also for four deeper earthquakes (#8, 10, 11, 26; see Table 1
:
), which share a similar

instrumental depth (24.5–29.2 km) but exhibit a different Mw (4.0–5.6).

The invariance of the attenuation steepness with magnitude for learning set events is a key point as it makes our ap-

proach suitable for analyzing historical earthquakes even if their size is not well constrained. On the contrary, nearly all the

methodologies developed in the past to calculate earthquake depth use magnitudeas an essential input parameter (Jánosi, 1906; Kövesligethy, 1907; Blake, 1941; Sponheuer, 1960; Ambraseys, 1985; Burton et al., 1985; Levret et al., 1996; Musson, 1996; Traversa et al., 2018; Provost and Scotti, 2020)325

.
::::::
Instead,

:::::
other

:::::::::::::
methodologies

:::::::::::::::::::::::::::::::::::::::
(Traversa et al., 2018; Provost and Scotti, 2020)

:::
are

::::::
subject

::
to

::
a
::::::::
trade-off

:::::::
between

:::::
depth

::::
and

:::::::::
magnitude,

::
as

::::
both

:::::::::
parameters

:::
are

::::::
treated

::
as

::::::::
unknown.

::::
Our

:::::::
approach

::
is

::::::
similar

::
to

:::
that

::
of

:::::::
previous

:::::::::::
investigators

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jánosi, 1906; Kövesligethy, 1907; Blake, 1941; Sponheuer, 1960; Burton et al., 1985; Musson, 1996)

:
,
::::
who

:::::
based

::::
their

::::::::
analyses

:::
on

::::::::
manually

::::::
drawn

::::::::::
isoseismals,

:::
but

:::::::
directly

::::
uses

:::
the

:::
fit

::
of

::::
the

:::::::::
attenuation

:::::
curve

:::::::::
computed

:::
on

:::::::
averages

::
of

:::
the

:::::::
original

:::::
MDP

:::::
falling

::::::
inside

::::::
moving

:::::::
circular

::::::::
windows.

3.4 Comparison with synthetic models330

We analyzed the possibility of reproducing the empirical trend of Figure 5 through predictive models, expressing the macro-

seismic intensity (Intensity Prediction Equations, IPE) or the Peak Ground Acceleration (PGA) as a function of the earthquake

magnitude and distance. It is worth noting that many of the IPEs and GMPEs (Ground Motion Prediction Equations) proposed

in the literature (e.g., Douglas, 2003, 2021) assume a predetermined depth for all earthquakes considered. The difficulty in

considering this parameter is due to the uncertainty associated with the depth itself, not only for historical earthquakes but335

also for recent events located in areas that are geologically complex, or not monitored by a dense seismic network, or both.

To explore the variation of the attenuation steepness with depth we therefore used three of the models that explicitly include

this parameter: the IPE by Tosi et al. (2015), the IPE by Musson (2013), and the GMPE by Cauzzi and Faccioli (2008). We

chose these functions because they feature a simple functional form which determines a magnitude-independent attenuation
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steepness, as suggested by real earthquake data. Conversely, a functional form containing both
:
a
:::::
term

:::::::::
combining magnitude340

and distance as independent terms would lead to a change in the shape of the attenuation curve with distance and to a variation

of the steepness for a variable magnitude.

We then used two different conversion equations (Faenza and Michelini, 2010; Masi et al., 2020) to convert the PGA

values obtained with the adopted GMPEs into MCS macroseismic intensities, so as to also test
:::
test

:::
also

:
the influence of the

conversion process. We used these equations to compute the macroseismic intensities caused at several epicentral distances by345

a hypothetical Mw 5.0 earthquake located at variable depth. We then applied the same 10 km-moving window average method

used for the analyzed earthquakes and calculated the regression line within a distance of 50 km.

Figure 7a shows some of the average intensity values obtained using the IPE proposed by Musson (2013) for a magnitude

Mw 5.0, along with their regression lines. We remark that, although the macroseismic intensity is proportional to the logarithm

of the hypocentral distance, the linear regression of intensity versus epicentral distance gives statistically significant results350

in the adopted distance range. In addition we show that, eve
::::
even

:
using an IPE, 50 km is a reasonable limit for a linear

regression that well approximates the first part of the attenuation curve. Figure 7b shows the steepness of the regression lines

thus calculated as a function of the earthquake focal depth, and the values, calculated with the same method, derived from

PGA (using the GMPE proposed by Cauzzi and Faccioli (2008), converted into macroseismic intensity. It is worth noting that

differences caused by the use of two different conversion equations are greater than the differences caused by the use of the355

IPE in place of the GMPE. At any rate, in all three cases the trend of the values as a function of the depth is similar to that

::
the

:::::
trend

:
we found empirically. The greater difference is observed for depth larger than 35 km, probably because the empirical

regression is less constrained for such deep events. This is reflected in the wider confidence bands of (Eq. 3) (see Figure 5), due

to fewer learning-set earthquakes at those depths. Having been obtained with a completely different kind of data, this result

suggests that the approach followed for deriving Eq. 3 is adequate and reliable.360

3.5 Reliability and validation of the depth estimation method

The reliability of the steepness of the first 50 km of the attenuation curve depends on the quality and spatial distribution of

the available MDPs and on the accuracy of the epicentral locations. Italian macroseismic data are systematically stored in

the DBMI database v2
::
v4.0 (Locati et al., 2019)

:::::::::::::::
(Locati et al., 2022); as a rule of thumb, the older is the earthquake, the less

complete and reliable are the historical sources from which macroseismic intensities were derived (e.g., Guidoboni and Ebel,365

2009).

To test our procedure we investigated the minimum number of MDPs of the macroseismic field that are needed to obtain an

estimate of the attenuation steepness. To this end we intentionally and randomly depleted the macroseismic field of the 20 May

2012, Mw 5.8, Emilia earthquake (#13), a well-recorded event for which over two hundred spatially well-distributed MDPs are

available, using data from the HSIT database (De Rubeis et al., 2019); see Figure 2a. For each of the ten ring-shaped search370

areas (see Figure 2b, 2c) we performed a gradually increasing
::::::
gradual reduction of the number of MDPs (from 1% to 99%),

the same for each step and for all areas (see Figure 8). For example, let us consider three adjacent ring-shaped areas: the first

with 32 MDPs, the second with 18, and the third with 9 MDPs. The depletion procedure would lead (among others) to the
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following steps: a 35% depletion will leave 21 MDPs in the first area, 12 MDPs in the second, and 6 MDPs in the third; a 68%

depletion will leave 10, 6 and 3, respectively; a 97% of depletion will leave 1, 1 and 0 MDPs.375

The linear fit of the attenuation trend was calculated 1,000 times for each depletion step, so as to evaluate the steepness

variability through its standard deviation.

Figure 8 shows the number of MDPs versus the standard deviation of the steepness, which is equal to 0.01 when only 14% of

the total data are left, corresponding to 30 MDPs; this implies that the most likely steepness values (68%) fall within a standard

deviation equal to ±0.01.380

Our depletion test shows that we may obtain an acceptable attenuation steepness even for historical earthquakes for which

at least 30 MDPs are available, provided that they are homogeneously distributed for each distance window.

Moreover we calculated the depth reliability by estimating the depths corresponding to the confidence bands eq. 3 for each

calculated steepness of the analyzed set earthquakes (see Figure 5); these values are shown in Table S1.

:::
We

:::
also

:::::::::
calculated

:::
the

:::::
depth

::
of

:::
the

::
42

::::::
events

::
in

:::
our

:::::::
learning

:::
set

:::::
using

:::
the

::::::::
proposed

:::::::::::
methodology

:::::
(Table

:::
S2,

:::::::::::::
supplementary385

:::::
Figure

::::
S1)

:

3.6 A two-step method for estimating magnitude based on intensity and depth

While the inferred hypocentral depth is independent of magnitude and can be obtained simply based on the steepness of

the line that best fits the first 50 km of the attenuation curve, the estimation of the magnitude itself affects the y-intercept

(the expected intensity at the epicenter, IE) of the linear fit (Figure 6): for a constant depth the y-intercept increases for an390

increasing magnitude (Figure 6), and decreases if depth increases for a constant magnitude. Therefore, a reliable magnitude

determination based on macroseismic data must necessarily take into account earthquake depth.

We devised a two-step procedure where depth is estimated first (Step 1), then Mw is empirically estimated using our learning

set data to derive a standard least squares regression equation among D (depth), IE and Mw (Step 2):

Mw = (0.18± 0.19) lnD+(0.56± 0.11)IE +(1.44± 1.06) (4)395

Eq. 4 can be applied for a depth interval 5≤D ≤ 73 km and 3.5≤ IE ≤ 8.1. Figure 9 shows the learning set data used in

the regression, together with the magnitude isolines of Eq. 4. This relationship shows the extent of geometric attenuation of

intensity due to the propagation of seismic waves from the hypocenter to the epicenter.

For lnD the 95% confidence interval of the coefficient includes the null value, however, the coefficient becomes significant

at a slightly smaller confidence level (93%). Magnitudes obtained through this procedure are referred to as y-intercept Mw.400

In this perspective the attenuation curve becomes a sort of ‘earthquake identity card’, as it contains all the elements needed

to retrieve magnitude and depth from the observed intensities, provided that a reliable calibration scheme is available. Such

calibration can be regarded as an application to Seismology of the principle of actualism popularized by British naturalists in

the late 18th century: “Observing modern earthquakes to understand those of the past”.
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Deriving magnitude using only well-studied earthquakes with their expected epicentral intensities provides a better estimate405

of magnitude
:::
Mw:

because it is based on larger intensities than that obtained by inverting an IPE Sbarra et al. (2019a).

The method summarized by Eqs. 3 and 4 is simpler and more intuitivethan the methods based on a joint inversion of

magnitude and depth (Musson, 1996; Bakun and Wentworth, 1997; Sirovich et al., 2013; Traversa et al., 2018; Provost and Scotti, 2020)

:::::
simple

::::
and

:::::::
intuitive, plus it may allow a geological verification of the depth before estimating the magnitude. Our Step 2 uses

a method similar to that proposed by Gutdeutsch et al. (2002), who applied it
:::
only

:
to carefully selected datasetsonly, so as to410

minimize the bias caused by a poorly constrained depth or by an incomplete macroseismic field.

In conclusion, starting from our empirical observations of the independence of the attenuation steepness from magnitude, we

were able to mitigate the trade-off between magnitude and depth when estimating both these parameters from macroseismic

data.

3.7 Influence of macroseismic cumulative effects on the depth and magnitude estimation415

It is hard to estimate macroseismic intensities for individual earthquakes occurring close in time and space (multiple events,

strong aftershocks, etc.; e.g. Grünthal, 1998; Grimaz and Malisan, 2017; Graziani et al., 2019), particularly in cases
:::
the

::::
case

of historical eventsand for larger ones. Macroseismic data may then reflect accumulated effects, a circumstance that would

ultimately affect the attenuation steepness and hence contaminate the inferred earthquake depth and magnitude. This is a

recurring problem in historical earthquake catalogues; a condition that is hard to overcome even for modern earthquakes, and420

even if a very rapid damage survey is carried out, because the first large shock inevitably causes an increase in the vulnerability

of the building stock whose effects on later shocks are virtually impossible to identify.

For instance,
::
To

:::::::
quantify

:::
the

::::::
effect

::
of

:::::::
multiple

::::::
events

::
on

::::
the

:::::::::::
determination

:::
of

:::::::::
earthquake

:::::
depth

:
we analyzed the 29 May

2012, Mw 5.7, Emilia earthquake, one of the learning set events, using the MDPs from DBMI15 instead of those supplied by

HSIT (ID 14 in Table 1).For this event the DBMI macroseismic field425

(Tertulliani et al., 2012, https://emidius.mi.ingv.it/ASMI/event/20120529_0700_000) includes the effects of the 20 May event

(Mw 5.9; https://emidius.mi.ingv.it/ASMI/event/20120520_0203_000), which occurred nearby. These
:::
As

::::::::
expected,

::::
these

:
cir-

cumstances misled our method, causing a drastic overestimation of the earthquake depth (36.8 km). Conversely, thanks to the

rapidity in the response given by citizens and to the ensuing lack of contamination, the HSIT dataset method returned a depth

≤ 5 km, much closer to instrumental estimate (8.1 km).430

A similar case of contamination could be that of two earthquakes that occurred seven months apart in two distinct but

relatively close areas of the northern Apennines; the 10 November 1918, Mw 6.0, Appennino forlivese, and the 29 June 1919,

Mw 6.4 Mugello shocks (IDs 101 and 102 in Table S1, respectively). Our work estimates a depth range of 19–27 km for

the 1919 earthquake (see Table S1). This result is incompatible with the presumed
::::::::
estimated

:
depth of the DISS seismogenic

source
:::
that

:
is
:::::::
deemed

:
responsible for the 1919 event (ITIS086; depth range of 1–7 km based on seismotectonic evidence; DISS435

Working Group, 2021). We suspect that this anomalous depth estimate (19–27 km) could be explained by a sort of overlap

between the two macroseismic fields, actually
::::::
because

:
a portion of the intensity pattern of the 1919 earthquake overlaps the

region struck by the 1918 shock (Rovida et al., 2021), consequently, the .
:::
As

:
a
::::::
result,

::
the

:::::::::
(apparent)

:
intensity pattern of the 1919
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earthquake could be
::
is

:::::
likely contaminated by the effects of the 1918 event. Both in the case of the 2012 sequence and in the case

of the 1918-1919 earthquakes, the second mainshock has deeper inferred depths than the instrumental /geological one
:::::::
inferred440

::::
depth

:::
of

:::
the

::::::
second

:::::::::
mainshock

::
is

::::::
deeper

::::
than

::::
that

:::::
shown

:::
by

::::::::::
instrumental

:::::
data,

::
or

:::::::::
suggested

::
by

:::::::::
geological

:::::::::::
observations, due

to the overlap between the two macroseismic fields. The intensity fields for 29 May 2012 and 29 June 1919 appear wider

::::
more

::::::
spread

:::
out

::::
than

::::
they

:::::::
should, due to the presence of intensity data of

:::::::::::
contamination

:::::
from the previous earthquakesand,

consequently, ;
:
this entails a lower steepness of the attenuation curve — an apparent

::::::::::::
corresponding

::
to

::
an

::::::::::
apparently lower

attenuation of macroseismic intensity — and hence in
::::
which

:::::::::
ultimately

::::::::
translates

::::
into

:
a
:
deeper depth.445

3.8 Dealing with larger magnitude earthquakes

Our approach works well if the size of the seismic source is negligible relative to the epicentral distances, but it may not be

immediately applicable to estimate the attenuation of the macroseismic intensity for a large magnitude earthquake (Gasperini,

2001; Albarello and D’Amico, 2004; Pasolini et al., 2008). To test the validity and possible limitations of this assumption we

evaluated the maximum magnitude for which the use of a point-source approximation is granted, using both our learning set450

and our analyzed set.

We used the empirical relationships proposed by Wells and Coppersmith (1994) to calculate the rupture area and the expected

length of the seismogenic source based on the y-intercept Mw (Eq. 4). Assuming a dip angle of 45◦ for every fault, irrespective

of its kinematics and tectonic setting, we calculated the surface projection area of each rectangular source and the radius Re

of the equivalent circle (i.e. a circle having the same projected area as the fault: thus Re is a function of Mw). We found Re455

greater than 10 km only for earthquakes of Mw ≥ 6.75 (10 km is our standard radius of the moving circular search areas);

but not having any such earthquakes in the learning set (Table 1), we used a geometric correction only to infer the depth of 21

earthquakes of the analyzed set (see discussion at the end of this section and in Table S1).

Then we applied to this group of larger magnitude earthquakes a procedure that we call “variable moving windows”. More

specifically, we used as the first search area a circular window of radius Re, inside which we averaged the MDPs intensi-460

ties, while for the subsequent windows — each one shifted by 5 km, as usual — we adopted the standard 10 km radius

increase. For the 13 January 1915, Mw 7.1, Marsica (central Apennines) earthquake, one of the largest in Italian history

and for which there exist
:::::
exists a very reliable mocroseismic

:::::::::::
macroseismic

:
dataset, we made a test using the RJB distance

Joyner and Boore (following the method implemented by 1981)
::::::::
following

:::
the

::::::
method

:::::::::::
implemented

::
by

:::::::::::::::::::::
Joyner and Boore (1981)

and calculating the average of the MDPs inside a rectangular rather than a ring-shaped area. We singled out this earthquake be-465

cause it was a single mainshock event and its macroseismic field should not have been contaminated by the effects of previous

or later significant events (see section 3.7)

The comparison of the attenuation steepness calculated using the RJB distance or using the moving window or variable

moving window methodology proposed here shows only modest fluctuations. For the 1915 earthquake we found a steepness of

0.044, 0.044 and 0.047, respectively using the RJB approach, the moving window approach and the variable moving window470

approach. These steepness fluctuations imply a difference of about 1.5 km in the expected depth. Given the uncertainty about

our knowledge of the source geometry for historical earthquakes and the limited impact of using the RJB distance in the
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window approach, we decided to recalculate all distances for earthquakes having Mw ≥ 6.75 using the variable moving

windows method only, which analyses the MDPs over circular search areas.

In conclusion, using an extended source approach for the largest earthquakes has a minimal influence on the steepness.475

Conversely, the effect on the y-intercept (IE) is not negligible. The correct way of calculating their magnitude would be using

RJB distances, but due to the lack of information on source geometry we use the variable moving windows method and apply

a geometric correction to the intercept value. As a result, for 21 earthquakes having Mw ≥ 6.75 (see Table S1) we assumed

an extended source with a radius of Re. Consequently, the distances of the relevant MDPs were systematically reduced by Re,

leading to a geometric correction of the regression line and of its intercept: IE = IE −S ∗Re where S is the steepness.480

Finally, we recalculated the magnitude of these 21 earthquakes using Eq. 4.

3.9 Reliability of the magnitude estimation method

Since our is a two-step method and magnitude is calculated after estimating depth, we provided the estimate of the error

associated with the magnitude of the analyzed set earthquakes, based on the confidence limits of depth, by applying Eq. 4 for

the lower and higher depth limit based on 95% confidence band (Table S1).485

As a countercheck we used our method to calculate the depth first (Eq. 5) and then the magnitude (Eq. 4) of the 42 events

of our learning set (Figure 10, Table S2, see also magnitude residuals in supplementary Figure S1
::
S2), so as to analyze the

difference from the instrumental magnitudes listed in Table 1. We obtained differences in the range 0.68 to -0.41 magnitude

units (supplementary Fig. S1
:::::
Figure

:::
S2), respectively, with an average of -0.03 and a standard deviation of 0.28.

We then compared the macroseismic magnitudes calculated through our method with those calculated through the Boxer490

method ((Gasperini et al., 1999))
:::::::::::::::::::
(Gasperini et al., 1999), using the very same intensity dataset from DBMI15. Notice, however,

that the parameters of the earthquakes comprising our learning set were computed using also data from other sources, such

as HSIT, CFTI5Med etc. (Table 1). Table 2 lists the magnitude of all learning set earthquakes for which the comparison was

possible. Notwithstanding the significant differences between the two methods, the root mean squared error between instru-

mental magnitudes and those estimated with Boxer and our method are comparable, as they are
:::::
turned

:::
out

::
to

::
be

:::::::::::
comparable;495

::::::::::
respectively 0.38 and 0.35respectively.

Finally, the reliability of the y-intercept Mw is primarily a function of the accuracy of the macroseismic field , from which IE

is derived, but even by
::::
also

::
of the estimated depth. For instance, we examined the 13 January 1909, Northern Italy earthquake

(https://emidius.mi.ingv.it/ASMI/event/19090113_0045_000), whose macroseismic field is suggestive of a rather deep source.

We obtained a depth of 44 km, yielding a Mw 5.5; should this earthquake be much shallower (e.g. 5 km), Eq. 4 would return a500

substantially smaller Mw (5.1).
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4 Application to the CPTI15/DBMI15 catalogues

We applied our methodology to the pre-1984 earthquakes of the DBMI15 v2.0 catalogue (Locati et al., 2019). We analyzed

only pre-1984 events because their parameters were computed from intensity data as their instrumental location is generally

unreliable, although there are notable exceptions (see discussion in Rovida et al. (2021)).505

We first selected the earthquakes to be analyzed: they must meet all criteria listed in Sect. 3.1 except for
:::::
“Data

::::::::
Selection

:::::::
criteria”.

:::
We

:::::
made

:::
an

::::::::
exception

::::
only

:::
for

::::::::::
earthquake #6, which we relaxed by reducing

::
for

:::::
which

:::
we

:::::::
reduced

:
the minimum

number of MDPs from 60 to 30 , based on the conclusions drawn in Sect. 3.5 “Reliability and validation of the depth estimation

method”. These criteria were passed by 206 out of 2,679 earthquakes (Figure 11 and Table S1), which comprise the analyzed

set of this work. Unfortunately, most
::
the

::::
vast

:::::::
majority

:
of the events listed in DBMI15 (80%) exhibit less than 30 MDPs within510

the first 55 km from the epicenter, and therefore had to be discarded. To estimate the depth of the 206 events that were retained

we first calculated the steepness of the line that best fits the first 50 km of the attenuation curve of each event, then we used Eq.

5, which is simply the reverse of Eq. 3:

D = e
0.087−S
0.018 (5)

We recall that D is the depth and S is the steepness (see section 3.2 for the application ranges).515

In Sect. 3.2 we clarified that we can calculate a reliable depth only for events whose steepness falls in the interval 0.058 to

0.012 (Figure 5), which corresponds to the depth interval 5.0–73.0 km, respectively (Table S1). This implies that an inferred

5.0 km depth must be intended as ≤ 5.0 km, and similarly, a 73.0 km depth stands for ≥ 73.0 km.

We wish to stress once again that the reliability of the magnitude and depth determinations shown in Figure 11 and Table

S1 depends on both the quality of the macroseismic data and
::
on

:
the accuracy of the epicentral locations. For completeness of520

information, Table S1 also reports the full details of the processing for each of the selected events; in addition the supplementary

.zip files S1 and S2 contain the histograms of the number of MDPs in ranges of distances up to 50 km from the epicenter (as in

Figure 2), and the attenuation curves of the 206 analyzed set earthquakes
:
, thus allowing a detailed examination of all analyzed

data. The uncertainty associated with the inferred depths is determined by the confidence bands shown in Figure 5, and is

hence larger for deeper earthquakes (Table S1 shows the depth range obtained by calculating the lower and upper limits of the525

95% confidence band). In addition, Eq. 3 and Eq. 5 are affected by the accuracy of the instrumental location of the learning

set earthquakes, on the basis of which the logarithmic curve data are fitted. Some of the inferred depths have larger confidence

intervals, due to inherent uncertainties that are reflected in the determination of the steepness and of the y-intercept (as defined

in Sect. 3.8): these may include the cumulation of damage (see section Sect. 3.7) from subsequent shocks, unpredictable

anomalies in wave propagation, strong source directivity and site amplification effects, all of which may also cause a sizable530

shift in the epicentral location.

Once the depth of the 206 selected earthquakes is known, we can estimate their magnitude using Eq 4. All estimated depths

and magnitudes are shown in Figure 11 (see Table S1). We used the equations on the analysed set even beyond the application

limits of IE to still estimate an indicative magnitude (in these cases magnitudes are marked in Table S1 with an asterisk).
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Before comparing the Mw estimates obtained with our approach and those listed in the CPTI15 catalogue we must recall535

that all Mw estimates supplied by this catalogue are inherently hybrid. When the catalogue reports both an instrumental and

a macroseismic epicenter, the decision to adopt the macroseismic or the instrumental value as ‘preferred’ is made on a case-

by-case basis by the catalogue compilers. To minimize the ambiguities that may arise from these circumstances our analyzed

set includes only 206 pre-1984 events that satisfy all our selection criteria; for the
:::
For

:::
the

:
vast majority of these

:::
206

:
events

CPTI15 adopted as preferred the intensity-based magnitude
::
as

:::
the

::::::::
preferred

:::
Mw:

(Rovida et al., 2021).540

Figure 12 shows a comparison of the magnitude obtained with our methodology with the corresponding magnitude listed

in CPTI15 (Table S1). The two sets of estimates are generally consistent, yet on average the magnitudes calculated in the

present work show a difference of +0.25 magnitude units. Moreover, Vannucci et al. (2021) stated that the magnitudes of all

pre-instrumental earthquakes in CPTI15 might be overestimated by 0.1–0.2 units due to differences in the response of pre-1960

seismographs relative to the response of more recent and better calibrated electromagnetic sensors. Recalibrating the Boxer545

coefficients for magnitude calculation using only events from 1960 to 2009 results in macroseismic moment magnitudes that

are lower than those reported by the CPTI15 by 0.144
::::::::
magnitude

:::::
units, on average (Vannucci et al., 2021). If this were the

case, the difference between our estimates and the CPTI15 estimates summarized in Figure 12 would be even larger.

The calculated Mw may also vary if we consider macroseismic intensities assigned using the MCS or the EMS scale;

according to Vannucci et al. (2021), using one or the other may cause differences in the macroseismic location.550

It is important to be aware , for both Boxer and our methodology, that the calculation of Mw from macroseismic data
:
,
:::::
using

:::::
either

:::::
Boxer

::
or

::::
our

:::::::::::
methodology,

:
is controlled by a number of variables whose relative weight is critical: assigning proper

weights, however, is not an easy task, regardless of the quality of the data and of the reliability of the adopted algorithm.

The +0.25 magnitude unit difference we found implies that on average our seismic moments are 2.3 times larger than those

obtained using the Boxer method; a conclusion that may have strong implications for the assessment of seismic hazard.555

5 Conclusions

In this study we present a two-step procedure for deriving the depth and magnitude of Italian non-instrumental
:::::::::::::
pre-instrumental

earthquakes from official, publicly accessible macroseismic intensity datasets: the traditional macroseismic historical dataset

supplied by DBMI15, and the new web based macroseismic HSIT dataset. The main merit of the proposed methodology is its

objectivity and ease of application.560

Web-based macroseismic systems
:::::::
platforms

:
allow a large amount of data to be collected through crowd-sourcing, and

:
;
::::
they

are often the only available source of information concerning the effects of low-to-medium magnitude earthquakes, and in
::
of

the far-field also for the
:::::
effects

:::
of larger events. In fact, HSIT data were critical to perform this work because — especially

for deeper earthquakes (> 30 km) — they were almost always the only available macroseismic observations available for our

learning set .565
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We proved that the initial 50 km of the attenuation curve contain all the elements needed to retrieve not only the depth,

but also the magnitude of any given earthquake. The methodology was tested for Italian earthquakesbut we think
::
on

::::::
Italian

::::::::::
earthquakes,

:::
but

:::
we

:::::::
maintain

::::
that it can be extended to other countries, following the necessary calibrations.

The first step of our procedure involves the calculation of the earthquake depth (Eq. 5). Based on our empirical observations

we show that the steepness of the attenuation curve in the first 50 km from the epicenter does not vary much due to regional570

differences in seismic wave propagation properties (Figure 5), so that for these distances the only existing
::::::::
significant

:
trade-off

is that between depth and magnitude. We also show that, at least in our learning-set
::::::
learning

:::
set, the steepness of the attenuation

curve in the first 50 km from the epicenter appears to be independent of magnitude and so solely
:::
but

::
is

::::::
largely a function of

source depth. This finding implies that these
::
the

:::::::::::
propagation properties do not change much countrywide, despite the well-

known complexity of Italian geodynamics and despite the ensuing geological heterogeneity, and that
:
;
::
as

::
a
:::::
result,

:
our new575

relations are valid for the whole Italian territory (Figure 5).

The second step involves estimating the magnitude using
::::::
through

:
an empirical law obtained from a regression function that

relates the expected epicentral intensity to the depth and magnitude of the 42 earthquakes comprising our learning set (Eq. 4).

We applied this methodology to 206 earthquakes from the CPTI15 catalogue, after removing all events whose macroseismic

field is too sparse or too inhomogeneous to return reliable results.580

Our approach allowed us to verify that the inferred depth is consistent with the presumed earthquake-causative tectonic

structures, and is essential to obtain a well-calibrated magnitude value. We contend that the new methodology may be crucial

for mitigating the trade-off between earthquake depth and magnitude; this is a pre-condition for calculating reliable depth

estimates — and hence reliable magnitudes — for earthquakes of the pre-instrumental era.

In Italy the historical record is still the main pillar of any seismic hazard analysis, conducted at any scale and using any585

approach. We maintain that the revised framework discussed in this work may ultimately serve for exploiting more systemati-

cally the enormous potential of historical earthquake data, and ultimately for providing inherently more reliable input data for

seismic hazard assessment.
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aquilano del 6 aprile 2009, https://doi.org/10.13127/QUEST/20090406, 2009.

Gasparini, C., Conte, S., and Vannucci, C.: Bollettino macrosismico 2001-2005, 2011.

Gasperini, P.: The Attenuation of Seismic Intensity in Italy: A Bilinear Shape Indicates the Dominance of Deep Phases at Epicentral Distances

Longer than 45 km, Bulletin of the Seismological Society of America, 91, 826–841, https://doi.org/10.1785/0120000066, 2001.

Gasperini, P., Bernardini, F., Valensise, G., and Boschi, E.: Defining seismogenic sources from historical earthquake felt reports, Bulletin of690

the Seismological Society of America, 89, 94–110, https://doi.org/10.1785/BSSA0890010094, 1999.

Govoni, A., Marchetti, A., De Gori, P., Di Bona, M., Lucente, F. P., Improta, L., Chiarabba, C., Nardi, A., Margheriti, L., Agostinetti,

N. P., Di Giovambattista, R., Latorre, D., Anselmi, M., Ciaccio, M. G., Moretti, M., Castellano, C., and Piccinini, D.: The 2012

Emilia seismic sequence (Northern Italy): Imaging the thrust fault system by accurate aftershock location, Tectonophysics, 622, 44–55,

https://doi.org/https://doi.org/10.1016/j.tecto.2014.02.013, 2014.695

Graziani, L., Del Mese, S., Tertulliani, A., Arcoraci, L., Maramai, A., and Rossi, A.: Investigation on damage progression during the 2016–

2017 seismic sequence in Central Italy using the European Macroseismic Scale (EMS-98), Bulletin of Earthquake Engineering, 17,

5535–5558, https://doi.org/10.1007/s10518-019-00645-w, 2019.

Grimaz, S. and Malisan, P.: How could cumulative damage affect the macroseismic assessment?, Bulletin of Earthquake Engineering, 15,

2465–2481, https://doi.org/10.1007/s10518-016-0016-3, 2017.700

Grünthal, G.: European macroseismic scale 1998, Tech. rep., European Seismological Commission (ESC), 1998.

Guidoboni, E. and Ebel, J.: Earthquakes and Tsunamis in the Past. A Guide to Techniques in Historical Seismology, Cambridge University

Press, 2009.

Guidoboni, E., Ferrari, G., Mariotti, D., Comastri, A., Tarabusi, G., Sgattoni, G., and Valensise, G.: CFTI5Med, Catalogo dei Forti Terremoti

in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500), https://doi.org/10.6092/INGV.IT-CFTI5, 2018.705

Guidoboni, E., Ferrari, G., Tarabusi, G., Sgattoni, G., Comastri, A., Mariotti, D., Ciuccarelli, C., Bianchi, M. G., and Valensise, G.:

CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area, Scientific Data, 6, 80,

https://doi.org/10.1038/s41597-019-0091-9, 2019.

Gutdeutsch, R., Kaiser, D., and Jentzsch, G.: Estimation of earthquake magnitudes from epicentral intensities and other focal parameters in

Central and Southern Europe, Geophysical Journal International, 151, 824–834, https://doi.org/10.1046/j.1365-246X.2002.01804.x, 2002.710

24

https://doi.org/10.1111/j.1365-246X.2009.04467.x
https://doi.org/10.4401/ag-4141
https://doi.org/https://doi.org/10.1016/j.tecto.2017.05.026
https://doi.org/10.13127/QUEST/20090406
https://doi.org/10.1785/0120000066
https://doi.org/10.1785/BSSA0890010094
https://doi.org/https://doi.org/10.1016/j.tecto.2014.02.013
https://doi.org/10.1007/s10518-019-00645-w
https://doi.org/10.1007/s10518-016-0016-3
https://doi.org/10.6092/INGV.IT-CFTI5
https://doi.org/10.1038/s41597-019-0091-9
https://doi.org/10.1046/j.1365-246X.2002.01804.x


Hough, S. E.: Spatial variability of “Did You Feel It?” intensity data: Insights into sampling biases in historical earthquake intensity distri-

butions, Bulletin of the Seismological Society of America, 103, 2767–2781, 2013.

Hough, S. E.: Earthquake intensity distributions: A new view, Bulletin of earthquake engineering, 12, 135–155, 2014.

ISIDe Working Group: Italian Seismological Instrumental and Parametric Database (ISIDe), https://doi.org/10.13127/ISIDE, 2007.

Jánosi, I.: Makroszeizmikus rengések feldolgozása a Cancani-féle egyenlet alapján, Az, pp. 77–82, 1906.715

Joyner, W. B. and Boore, D. M.: Peak horizontal acceleration and velocity from strong-motion records including records from the 1979

imperial valley, California, earthquake, Bulletin of the Seismological Society of America, 71, 2011–2038, 1981.

Kövesligethy, R. v.: Seismischer Stärkegrad und Intensität der Beben, Gerlands Beitr. Geoph., Bd, 8, 24–103, 1907.

Levret, A., Cushing, M., Peyridieu, G., and de protection et de sûreté nucléaire (France), I.: Étude des caractéristiques de séismes historiques

en France: Atlas de 140 cartes macroscopiques. Volume I, Institut de protection et de sûreté nucléaire, 1996.720

Locati, M., Camassi, R., Rovida, A., Ercolani, E., Bernardini, F., Castelli, V., Caracciolo, C. H., Tertulliani, A., Rossi, A., Azzaro, R.,

D’Amico, S., and Antonucci, A.: Database Macrosismico Italiano (DBMI15), versione 2.0, https://doi.org/10.13127/DBMI/DBMI15.2,

2019.

Locati, M., Camassi, R., Rovida, A., Ercolani, E., Bernardini, F., Castelli, V., Caracciolo, C. H., Tertulliani, A., Rossi, A., Azzaro, R.,

D’Amico, S., and Antonucci, A.: Database Macrosismico Italiano DBMI15, versione 4.0, https://doi.org/10.13127/DBMI/DBMI15.4,725

2022.

Lolli, B., Gasperini, P., Mele, F. M., and Vannucci, G.: Recalibration of the Distance Correction Term for Local Magnitude (ML) Computa-

tions in Italy, Seismological Research Letters, 86, 1383–1392, https://doi.org/10.1785/0220150020, 2015.

Maesano, F. E., Tiberti, M. M., and Basili, R.: The Calabrian Arc: three-dimensional modelling of the subduction interface, Scientific reports,

7, 1–15, 2017.730

Maesano, F. E., Tiberti, M. M., and Basili, R.: Deformation and Fault Propagation at the Lateral Termination of a Subduction Zone: The

Alfeo Fault System in the Calabrian Arc, Southern Italy, Frontiers in Earth Science, 8, https://doi.org/10.3389/feart.2020.00107, 2020.

Mariotti, G. and Doglioni, C.: The dip of the foreland monocline in the Alps and Apennines, Earth and Planetary Science Letters, 181,

191–202, https://doi.org/https://doi.org/10.1016/S0012-821X(00)00192-8, 2000.

Mariucci, M. T. and Montone, P.: Database of Italian present-day stress indicators, IPSI 1.4, Scientific data, 7, 1–11,735

https://doi.org/10.1038/s41597-020-00640-w, 2020.

Masi, A., Chiauzzi, L., Nicodemo, G., and Manfredi, V.: Correlations between macroseismic intensity estimations and ground motion mea-

sures of seismic events, Bulletin of Earthquake Engineering, 18, 1899–1932, https://doi.org/10.1007/s10518-019-00782-2, 2020.

Mele, G., Rovelli, A., Seber, D., and Barazangi, M.: Shear wave attenuation in the lithosphere beneath Italy and surrounding regions: Tectonic

implications, Journal of Geophysical Research: Solid Earth, 102, 11 863–11 875, https://doi.org/https://doi.org/10.1029/97JB00262, 1997.740

Meletti, C., Marzocchi, W., D’amico, V., Lanzano, G., Luzi, L., Martinelli, F., Pace, B., Rovida, A., Taroni, M., Visini, F., et al.: The new

Italian seismic hazard model (MPS19), Annals of Geophysics, 64, 2021.

Michele, M., Chiaraluce, L., Di Stefano, R., and Waldhauser, F.: Fine-Scale Structure of the 2016–2017 Central Italy Seis-

mic Sequence From Data Recorded at the Italian National Network, Journal of Geophysical Research: Solid Earth, 125,

https://doi.org/https://doi.org/10.1029/2019JB018440, 2020.745

Musson, R.: Updated intensity attenuation for the UK, 2013.

Musson, R. M.: Determination of parameters for historical British earthquakes, Annals of Geophysics, 39, https://doi.org/10.4401/ag-4035,

1996.

25

https://doi.org/10.13127/ISIDE
https://doi.org/10.13127/DBMI/DBMI15.2
https://doi.org/10.13127/DBMI/DBMI15.4
https://doi.org/10.1785/0220150020
https://doi.org/10.3389/feart.2020.00107
https://doi.org/https://doi.org/10.1016/S0012-821X(00)00192-8
https://doi.org/10.1038/s41597-020-00640-w
https://doi.org/10.1007/s10518-019-00782-2
https://doi.org/https://doi.org/10.1029/97JB00262
https://doi.org/https://doi.org/10.1029/2019JB018440
https://doi.org/10.4401/ag-4035


Oliveira, C. S. and Ferreira, M. A.: Following the video surveillance and personal video cameras: New tools and innovations to health monitor

the earthquake wave field, International Journal of Disaster Risk Reduction, 64, 102 489, 2021.750

Olivieri, M. and Ekström, G.: Rupture depths and source processes of the 1997-1998 earthquake sequence in central Italy, Bulletin of the

Seismological Society of America, 89, 305–310, https://doi.org/10.1785/BSSA0890010305, 1999.

Pasolini, C., Albarello, D., Gasperini, P., D’Amico, V., and Lolli, B.: The Attenuation of Seismic Intensity in Italy, Part II: Modeling and

Validation, Bulletin of the Seismological Society of America, 98, 692–708, https://doi.org/10.1785/0120070021, 2008.

Piccinini, D., Chiarabba, C., Augliera, P., and (M.E.G.), M. E. G.: Compression along the northern Apennines? Evidence from the Mw 5.3755

Monghidoro earthquake, Terra Nova, 18, 89–94, https://doi.org/https://doi.org/10.1111/j.1365-3121.2005.00667.x, 2006.

Pondrelli, S., Visini, F., Rovida, A., D’Amico, V., Pace, B., and Meletti, C.: Style of faulting of expected earthquakes in Italy as an input

for seismic hazard modeling, Natural Hazards and Earth System Sciences, 20, 3577–3592, https://doi.org/10.5194/nhess-20-3577-2020,

2020.

Provost, L. and Scotti, O.: QUake-MD: Open-Source Code to Quantify Uncertainties in Magnitude–Depth Estimates of Earthquakes from760

Macroseismic Intensities, Seismological Research Letters, 91, 2520–2530, https://doi.org/10.1785/0220200064, 2020.

Rosenbaum, G. and Piana Agostinetti, N.: Crustal and upper mantle responses to lithospheric segmentation in the northern Apennines,

Tectonics, 34, 648–661, https://doi.org/10.1002/2013TC003498, 2015.

Rossi, A., Tertulliani, A., Azzaro, R., Graziani, L., Rovida, A., Maramai, A., Pessina, V., Hailemikael, S., Buffarini, G., Bernardini, F.,

et al.: The 2016–2017 earthquake sequence in Central Italy: macroseismic survey and damage scenario through the EMS-98 intensity765

assessment, Bulletin of Earthquake Engineering, 17, 2407–2431, https://doi.org/10.1007/s10518-019-00556-w, 2019.

Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 2.0,

https://doi.org/10.13127/CPTI/CPTI15.2, 2019.

Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P.: The Italian earthquake catalogue CPTI15, Bulletin of Earthquake Engineer-

ing, pp. 1–32, 2020.770

Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., and Antonucci, A.: Catalogo Parametrico dei Terremoti Italiani (CPTI15),

versione 3.0, https://doi.org/10.13127/CPTI/CPTI15.3, 2021.

Sbarra, P., Tosi, P., and De Rubeis, V.: Web-based macroseismic survey in Italy: Method validation and results, Natural Hazards, 54, 563–581,

2010.

Sbarra, P., Tosi, P., De Rubeis, V., and Rovelli, A.: Influence of observation floor and building height on macroseismic intensity, Seismological775

Research Letters, 83, 261–266, 2012.

Sbarra, P., Tosi, P., and De Rubeis, V.: How observer conditions impact earthquake perception, Seismological Research Letters, 85, 306–313,

2014.

Sbarra, P., Burrato, P., Tosi, P., Vannoli, P., e Rubeis, V., and Valensise, G.: Inferring the depth of pre-instrumental earthquakes from macro-

seismic intensity data: a case-history from Northern Italy, Scientific reports, 9, 1–13, https://doi.org/10.1038/s41598-019-51966-4, 2019a.780

Sbarra, P., Tosi, P., De Rubeis, V., and Sorrentino, D.: HSIT macroseismic questionnaire database 2007-2018, version 1,

https://doi.org/10.13127/HSIT/Q.1, 2019b.

Scardia, G., Festa, A., Monegato, G., Pini, R., Rogledi, S., Tremolada, F., and Galadini, F.: Evidence for late Alpine tectonics in the Lake

Garda area (northern Italy) and seismogenic implications, GSA Bulletin, 127, 113–130, https://doi.org/10.1130/B30990.1, 2015.

26

https://doi.org/10.1785/BSSA0890010305
https://doi.org/10.1785/0120070021
https://doi.org/https://doi.org/10.1111/j.1365-3121.2005.00667.x
https://doi.org/10.5194/nhess-20-3577-2020
https://doi.org/10.1785/0220200064
https://doi.org/10.1002/2013TC003498
https://doi.org/10.1007/s10518-019-00556-w
https://doi.org/10.13127/CPTI/CPTI15.2
https://doi.org/10.13127/CPTI/CPTI15.3
https://doi.org/10.1038/s41598-019-51966-4
https://doi.org/10.13127/HSIT/Q.1
https://doi.org/10.1130/B30990.1


Scrocca, D., Carminati, E., Doglioni, C., and Marcantoni, D.: Slab Retreat and Active Shortening along the Central-Northern Apennines, in:785

Thrust Belts and Foreland Basins, edited by Lacombe, O., Roure, F., Lavé, J., and Vergés, J., pp. 471–487, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2007.

Selvaggi, G., Ferulano, F., Di Bona, M., Frepoli, A., Azzara, R., Basili, A., Chiarabba, C., Ciaccio, M., Di Luccio, F., Lucente, F., et al.: The

MW 5.4 Reggio Emilia 1996 earthquake: active compressional tectonics in the Po Plain, Italy, Geophysical Journal International, 144,

1–13, 2001.790

Sirovich, L., Pettenati, F., and Cavallini, F.: Intensity-based source inversion of the destructive earthquake of 1695 in the southern Apennines,

Italy, Journal of Geophysical Research: Solid Earth, 118, 6241–6257, https://doi.org/10.1002/2013JB010245, 2013.

Sponheuer, W.: Methoden zur Herdtiefenbestimmung in der Makroseismik, Freiberger Forschungsh, Freiberger Forschungshefte, C88, 1960.

Tertulliani, A. and Azzaro, R.: QUEST - Rilievo macrosismico in EMS98 per il terremoto di Amatrice del 24 agosto 2016,

https://doi.org/10.5281/zenodo.160707, 2016.795

Tertulliani, A. and Azzaro, R.: QUEST - Rilievo macrosismico in EMS98 per la sequenza sismica in Italia Centrale: aggiornamento dopo il

18 gennaio 2017, https://doi.org/10.5281/zenodo.556929, 2017.

Tertulliani, A., Arcoraci, L., Berardi, M., Bernardini, F., Brizuela, B., Castellano, C., Del Mese, S., Ercolani, E., Graziani, L.,

Maramai, A., Rossi, A., Sbarra, M., and Vecchi, M.: The Emilia 2012 sequence: a macroseismic survey, Annals of Geophysics,

https://doi.org/10.4401/ag-6140, 2012.800

Tosi, P., De Rubeis, V., Sbarra, P., and Sorrentino, D.: Hai Sentito Il Terremoto (HSIT), https://doi.org/10.13127/HSIT, 2007.

Tosi, P., Sbarra, P., De Rubeis, V., and Ferrari, C.: Macroseismic intensity assessment method for web questionnaires, Seismological Research

Letters, 86, 985–990, 2015.

Traversa, P., Baumont, D., Manchuel, K., Nayman, E., and Durouchoux, C.: Exploration tree approach to estimate historical earthquakes Mw

and depth, test cases from the French past seismicity, Bulletin of Earthquake Engineering, 16, 2169–2193, https://doi.org/10.1007/s10518-805

017-0178-7, 2018.

Valensise, G., Vannoli, P., Burrato, P., and Fracassi, U.: From Historical Seismology to seismogenic source models, 20 years on: Excerpts

from the Italian experience, Tectonophysics, 774, 228 189, https://doi.org/10.1016/j.tecto.2019.228189, 2020.

Vallée, M. and Di Luccio, F.: Source analysis of the 2002 Molise, southern Italy, twin earthquakes (10/31 and 11/01), Geophysical Research

Letters, 32, https://doi.org/10.1029/2005GL022687, 2005.810

Vannoli, P., Burrato, P., and Valensise, G.: The seismotectonics of the Po Plain (northern Italy): Tectonic diversity in a blind faulting domain,

Pure and Applied Geophysics, 172, 1105–1142, https://doi.org/10.1007/s00024-014-0873-0, 2015.

Vannoli, P., Martinelli, G., and Valensise, G.: The Seismotectonic Significance of Geofluids in Italy, Frontiers in Earth Science, 9,

https://doi.org/10.3389/feart.2021.579390, 2021.

Vannucci, G., Lolli, B., and Gasperini, P.: Inhomogeneity of Macroseismic Intensities in Italy and Consequences for Macroseismic Magnitude815

Estimation, Seismological Research Letters, 92, 2234–2244, https://doi.org/10.1785/0220200273, 2021.

Wald, D. J., Quitoriano, V., and Dewey, J. W.: USGS “Did you feel it?” Community internet intensity maps: Macroseismic data collection

via the internet, in: First European Conference on Earthquake Engineering and Seismology, p. 10, 2006.

Wells, D. L. and Coppersmith, K. J.: New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and

Surface Displacement, Bulletin of the Seismological Society of America, 84, 974–1002, https://doi.org/10.1785/BSSA0840040974, 1994.820

27

https://doi.org/10.1002/2013JB010245
https://doi.org/10.5281/zenodo.160707
https://doi.org/10.5281/zenodo.556929
https://doi.org/10.4401/ag-6140
https://doi.org/10.13127/HSIT
https://doi.org/10.1007/s10518-017-0178-7
https://doi.org/10.1007/s10518-017-0178-7
https://doi.org/10.1007/s10518-017-0178-7
https://doi.org/10.1016/j.tecto.2019.228189
https://doi.org/10.1029/2005GL022687
https://doi.org/10.1007/s00024-014-0873-0
https://doi.org/10.3389/feart.2021.579390
https://doi.org/10.1785/0220200273
https://doi.org/10.1785/BSSA0840040974


Worden, C. B., Gerstenberger, M. C., Rhoades, D. A., and Wald, D. J.: Probabilistic Relationships between Ground-Motion

Parameters and Modified Mercalli Intensity in California, Bulletin of the Seismological Society of America, 102, 204–221,

https://doi.org/10.1785/0120110156, 2012.

Zampieri, D., Vannoli, P., and Burrato, P.: Geodynamic and seismotectonic model of a long-lived transverse structure: The Schio-Vicenza

Fault System (NE Italy), Solid Earth, 12, 1967–1986, https://doi.org/10.5194/se-12-1967-2021, 2021.825

28

https://doi.org/10.1785/0120110156
https://doi.org/10.5194/se-12-1967-2021


Figure 2. Workflow of the moving windows procedure. a) Macroseismic field of the 20 May 2012 earthquake (ID 13 in Table 1) from the

HSIT database (available from: https://e.hsit.it/772691/index.html). The highest intensities are showed in the foreground; b) map showing the

first 50 km from the instrumental epicenter and the ten ring-shaped search areas centered in the instrumental epicenter (shown by magenta

and purple lines), each one shifted by 5 km with respect to the previous one; c) plot of the 10 intensity values obtained averaging the MDPs

falling in each of the rings: #1 reports the average intensity calculated for the 0-10 km search area, #2 the average intensity for the 5-15 km

search area, and so on.
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Figure 3. Attenuation curves obtained for the northern Italy earthquakes of the learning set (Table 1, from #1 to #20, plus #23; blue symbols

in Figures 1, 5. Individual intensity data points were obtained by averaging the intensity values as shown in Figure 2. We obtained the linear

fit for the first 50 km of each curve and calculated the resulting steepness.
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Figure 4. Attenuation curves obtained for the central and southern Italy earthquakes of the learning set (Table 1, from #21 to #42, except for

#23; red symbols in Figures 1 and 5). Individual intensity data points were obtained by averaging the intensity values as shown in Figure 2.

We obtained the linear fit for the first 50 km of each curve and calculated the resulting steepness.
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Figure 5. Depth versus attenuation steepness for the 42 earthquakes used as a learning set. Blue and red symbols indicate the northern Italy

and the central and southern Italy datasets, respectively: the corresponding best fitting logarithmic functions are shown in blue (Eq. 1) and

red (Eq. 2), respectively, along with their 95% confidence bands. The best fitting function obtained for the whole dataset (Eq. 3) is shown in

green. Each earthquake is labelled with a unique identifier (see Table 1) and is plotted along with its standard error (shown by a vertical bar

of ± standard error).

33



Figure 6. Attenuation curves obtained for two groups of earthquakes featuring a similar hypocentral depth but a different magnitude: (a) for

the shallow events #4, 16, 24, and 39; (b) and for the deep events #8, 10, 11 and 26 (see Table 1 for further details). The steepness of the

best-fitting line in the first 50 km is similar among the four events reported for each group, providing empirical evidence for the independence

of inferred depth from magnitude in our methodology.
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Figure 7. Attenuation curves and steepness simulated with different intensity or ground motion models for a Mw 5.0 earthquake located at

increasing depths. a) averaged intensity calculated using the IPE by Musson (2013) and the corresponding regression lines. b) attenuation

steepness of intensities calculated using the IPE by Musson (2013) (stars), the IPE by Tosi et al. (2015) (crosses), and the GMPE by Cauzzi

and Faccioli (2008); the PGAs predicted by this latter equation have been converted into MCS using the equations provided by Faenza and

Michelini (2010) (squares) and by Masi et al. (2020) (triangles), respectively. All predictions are compared with the empirical Eq. 3, shown

by the green line in panel b.
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Figure 8. Application of the depletion test to the macroseismic field of the 20 May 2012 earthquake (Figures 1, 2; ID 13 in Table 1) taken

from the HSIT database (available from: https://e.hsit.it/772691/index.html), for which there exist 207 MDPs falling within a radius of 55

km from the epicenter. The % of MDPs falling within each ring-shaped area (see Figure 1) was gradually depleted from 1% to 99%, and the

steepness was calculated 1,000 times for all the different depleted datasets. So a total of 100,000 calculation was done. The Y-axis shows the

variability of the calculated steepness, expressed through the standard deviation of the steepness obtained for the depleted datasets with the

same number of MDPs.
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Figure 9. Magnitude as a function of the natural logarithm of depth, and expected intensity at the epicenter IE for all earthquakes of the

learning set (colored dots). The multiple regression function (Eq. 4) is shown with colored lines of equal magnitude for Mw 4.0 (blue), Mw

5.0 (green), and Mw 6.0 (orange).
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Figure 10. Correlation between the Mw calculated with the y-intercept approach proposed in this work and the instrumental Mw reported in

Table 1 (Rovida et al., 2020) for all the events of the learning set. Earthquakes falling above or below the line exhibit a larger (up to +0.61

magnitude units) or smaller (up to -0.41 magnitude units) Mw, respectively.
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Table 2. Comparison of Mw estimates. The source of Mw (Boxer code) is the CPTI15 catalogue, v2.0 (Rovida et al., 2019), with the only

exception of the last three events, whose Mw is from Rossi et al. (2019). The Mw (y-intercept) is from this work.

Event date Time UTC
Mw

(instrumental)

Mw

(y-intercept-

This work)

Mw

(Boxer code)
Source of instrumental Mw

9-Nov-1983 16:29:52 5.0 5.47 5.14 CSTI1.1

2-May-1987 20:43:53 4.7 5.38 4.91 Italian CMT

26-May-1991 12:25:59 5.1 5.52 5.22 Di Luccio et al., 2005

15-Oct-1996 09:55:59 5.4 5.47 5.19 Selvaggi et al., 2001

26-Sep-1997 09:40:26 6.0 6.17 5.89 Italian CMT

10-May-2000 16:52:11 4.8 4.39 4.40 Italian CMT

1-Nov-2002 15:09:01 5.8 5.43 5.21 Vallee and Di Luccio, 2005

31-Oct-2002 10:32:59 5.8 5.68 5.33 Vallee and Di Luccio, 2005

14-Sep-2003 21:42:53 5.3 5.19 4.83 Piccinini et al., 2006

6-Apr-2009 01:32:40 6.1 5.75 6.19 Chiaraluce et al., 2011

20-May-2012 02:03:52 5.9 5.56 5.15 Govoni et al., 2014

29-May-2012 07:00:03 5.7 5.73 5.43 Govoni et al., 2014

24-Aug-2016 01:36:32 6.0 5.82 6.46 Michele et al., 2020

30-Oct-2016 06:40:17 6.5 6.31 7.00 Michele et al., 2020

18-Jan-2017 10:14:09 5.5 6.03 5.60 Michele et al., 2020
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Figure 11. Estimated depth calculated using our approach (colour coded) for the 206 earthquakes of the analyzed set, shown with symbol

size scaled with the magnitude calculated in this work.The areas with different patterns indicate active tectonic domains that exist in the

Italian peninsula and surrounding areas (same as Figure 1); (from Vannoli et al., 2021).
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Figure 12. Correlation between the Mw calculated with the y-intercept approach proposed in this work and the Mw reported in the latest

version of the pre-1984 CPTI15 catalogue (Rovida et al., 2021) for the 206 events of the analyzed set (Table S1). Earthquakes falling above

or below the blue line exhibit a larger (up to +1.12 magnitude units) or smaller (up to -0.48 magnitude units) Mw, respectively. The global

average is +0.25 magnitude units.
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