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Abstract. The rapidly expanding Himalayan road network connects rural mountainous regions. However, the fragility of the 

landscape and poor road construction practices lead to frequent mass movements along-side roads. In this study, we 10 

investigate fully or partially road-blocking landslides along the National Highway (NH-) 7 in Uttarakhand, India, between 

Rishikesh and Joshimath. Based on an inventory of >300 landslides along the ~250 km long corridor following exceptionally 

high rainfall in October and September 2022, we identify the main controls on the spatial occurrence of mass-movement 

events. Our analysis and modelling approach conceptualizes landslides as network-attached spatial point pattern. We 

evaluate different gridded rainfall products and infer the controls on landslide occurrence using Bayesian analysis of an 15 

inhomogeneous Poisson process model. Our results reveal that slope, rainfall amounts, and lithology are the main 

environmental controls on landslide occurrence. The individual effects of aggregated lithozones is consistent with previous 

assessments of landslide susceptibilities of rock types in the Himalayas. Our model spatially predicts landslide occurrences 

and can be adapted for other rainfall scenarios, and thus has potential applications for efficiently allocating efforts for road 

maintenance. To this end, our results highlight the vulnerability of the Himalayan road network to landslides. Climate 20 

change and increasing exposure along this pilgrimage route will likely exacerbate landslide risk along the NH-7 in the future.  

1 Introduction 

Roads are at the heart of the Himalayan transport infrastructure. They are vital for national and international trade and 

passenger movement, and strategically important in border areas. India has improved and expanded its road network in 

mountainous states under the national Bharatmala Pariyojana (“Road to Prosperity”) initiative, established in 2015. Key 25 

objectives of this highway development program are to improve the efficiency and connectivity of the transport 

infrastructure and to provide road access to remote border regions and rural areas. Yet, in mountainous environments, roads 

are exposed to various degrading processes. Among these processes, mass movements particularly inflict severe structural 

damage and heavily degrade road serviceability (Meyer et al., 2015). Traffic disruptions due to mass movements can have 
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severe consequences, if they impede accessibility and compromise rescue operations during extreme events such as 30 

cloudbursts, floods and earthquakes. Ensuring accessibility and connectivity thus requires considerable maintenance efforts 

(Uniyal, 2021). 

 

According to the National Crime Records Bureau (2022), 160 people died due to landsliding in Uttarakhand in the last four 

years. These figures exclude other extreme events like heavy rainfalls, floods or the 2021 Chamoli rock and ice avalanche 35 

with over 200 fatalities (Shugar et al., 2021). Several studies have addressed mass movements and their relation to transport 

infrastructure in the Indian and Nepal Himalayas. The studies range from purely phenomenological descriptions (e.g., 

Bartarya & Valdiya, 1989; Sarkar & Kanungo, 2006), to statistical (Das et al., 2012; Devkota et al., 2013; Sur et al., 2020) 

and physically based modelling approaches (e.g., Kanungo et al., 2013; Prasad & Siddique, 2020). In fact, the space 

limitation in steep terrain often requires road construction to undercut slopes beyond their angle of repose, reducing slope 40 

stability and increasing landslide susceptibility (e.g., Barnard et al., 2001; Haigh & Rawat, 2011; Li et al., 2020). Therefore, 

particular attention has focused on detailed stability assessments of road cut slopes (e.g., Kundu et al., 2016; Siddique et al., 

2017; Siddique & Pradhan, 2018; Singh et al., 2014) and the development of appropriate remedial measures (e.g., Adhikari 

et al., 2020; Asthana & Khare, 2022; Koushik et al., 2016; Rawat et al., 2016), but fewer studies have attempted to predict 

the spatial occurrence of mass movements along roads. Knowledge about where and when landslides preferably detach is 45 

important for early warning but also for efficiently allocating efforts of road maintenance and slope enforcements (Haigh, 

1984). Using data on occurrences of landslides, susceptibility studies aim to quantify the spatial propensity of hillslopes to 

fail and to determine the controlling factors such as terrain attributes e.g., slope angle and aspect, and geo-environmental 

variables e.g., rainfall intensity and lithology. 

 50 

In this study we carry out a landslide susceptibility analysis for a ~250 km long stretch of the National Highway 7 (NH-7) 

that connects the cities of Rishikesh and Joshimath, Uttarakhand, India (Fig.1). We conducted a detailed survey of partially 

or fully road-blocking landslides along the road following a period of intense rainfalls in September and October 2022. In 

contrast to previous studies, which focused on the spatial prediction of landslides in two spatial dimensions, our analysis and 

modelling approach conceptualizes landslides as network-attached spatial point pattern (Baddeley et al., 2021). One of the 55 

critical covariates in our modelling approach is the spatial distribution of accumulated rainfall amounts. We thus evaluate 

different rainfall products. Finally, we infer the controls on landslide occurrence using Bayesian analysis of multivariate 

loglinear models. We present our results and discuss uncertainties and potential shortcomings of our approach. We conclude 

with recommendations for refinement of the approach and further research avenues.     
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2 Study site  60 

The NH-7 ascends from 400 m at Rishikesh to approximately 2000 m at Joshimath, crossing steep terrain with soil mantled 

slopes that range in inclination from 20° to 40°. Mean annual rainfall (1970–2019) varies from 1500–2000 mm around 

Rishikesh to 1000–1200 in Joshimath with 80–86 % and 60–70 % delivered by the Indian summer monsoon (June to 

September), respectively (Pai et al., 2014; Swarnkar et al., 2021). Air temperature in Rishikesh is always above freezing and 

ranges between 4 and 40 °C, whereas the temperature in Joshimath varies between -10 and 20 °C. This climatic gradient is 65 

reflected in a gradual change in vegetation. Accordingly, in the lower lying subtropical region dense deciduous forest 

dominates, which is replaced by a temperate broadleaf mixed forest and temperate shrub and grassland communities where 

forest has not been preserved. 

 

The geological framework of the study area is largely determined by the ongoing Indo–Asian collision that causes crustal 70 

thickening and exhumation along large-scale detachment zones and thrust faults. Most of the study area lies within the 

Lesser Himalaya, between the Main Boundary Thrust in the south and the Main Central Thrust in the north, which are splays 

of the root detachment, the Main Himalayan Thrust (Figure 1). As the present-day India–Eurasia convergence is on the order 

of 36–40 mm yr
-1

 (e.g., Wang et al., 2001) and approximately half of this is accommodated within the Himalayas (e.g., Lavé 

& Avouac, 2000), the region is seismically active and bears the potential for large earthquakes (e.g., Kayal et al., 2003; 75 

Bollinger et al., 2014; Rajendran et al., 2017). 

 

The highway runs perpendicular to the strike of the orogen and crosses rocks of the Lesser Himalayan Sequence (LHS) and 

the High Himalayan Crystalline (HHC) that represent the ancient passive Indian margin, and which are separated by the 

Main Central Thrust (MCT). The LHS is mainly composed of sedimentary and low-grade metasedimentary rocks; quartzite, 80 

shale, phyllites and slate with occasional limestone and dolomite, whereas the HHC is characterized by high-grade schist, 

gneiss and quartzite. These rocks feature a high density of discontinuities like faults, fractures and joints that are important 

seepage pathways. In locations, where the road cuts through weathered rocks and intersects with major faults, the hillslopes 

are particularly fragile (Prasad & Siddique, 2020). 

 85 

During the week before we conducted our survey, almost the entire Indian north experienced a strong positive rainfall 

anomaly. The state of Uttarakhand registered a departure of 1040 % from the average. The districts of Tehri Garhwal, Pauri 

Garhwal, Rudraprayag and Chamoli, through which the NH-7 runs, recorded a weekly surplus of 419 %, 679 %, 218 % and 

1855 %, respectively (https://mausam.imd.gov.in/imd_latest/contents/rainfall_statistics_2.php, supplementary data). Given 

that the mean monthly rainfall in October is around 35 mm, approximately three times the monthly average rainfall occurred 90 

in only one week, which is close to the rate that prevails during the monsoon. 
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The NH-7 is a lifeline for socioeconomic development which is mainly based on agriculture, trade, tourism, mining and 

hydropower. Furthermore, the highway is vital for the Indian military to transport personnel and equipment to their outposts 

up to the Indian/Chinese-Tibetan border. During the pilgrimage season (May – Oct) more than one million people visit the 95 

holy shrines of Badrinath and Kedarnath using this highway. Moreover, as it follows the course of the Ganges and its 

tributary Alaknanda, the road passes the river confluences known as the five Prayags, namely Devprayag, Rudraprayag, 

Karnaprayag, Nandaprayag and Vishnuprayag (Fig. 1). In Hinduism these confluences are considered sacred and attract 

pilgrims to bathe in the flows before worshiping the rivers. Finally, there are ten hydroelectric power plants within 20 km 

distance to the road and numerous more are planned or are under construction, highlighting the road’s importance in terms of 100 

energy security and economic value.  

 

3 Methods 

Travelling to fieldwork in the Chamoli area on Oct 15, 2022, we recognized numerous, partially road-blocking landslides 

along the road. We thus spontaneously decided to inventory these landslides as road workers already began to clean the road 105 

from the debris, thus rapidly removing evidence of smaller landslides that detached in close vicinity to the road. We mapped 

landslides along the road both on our way towards Chamoli on Oct 15 and 16, as well as on our way back on Oct 18, 2022. 

We used handheld GPS devices to map the locations at which landslides intersected with the road between Rishikesh and 

Joshimath, Uttarakhand (Figure 1). We only mapped landslides with runouts affecting the road, thus partially or fully 

blocking it (Figure 2). We considered partial blockages as those where the emplaced deposits either substantially narrowed 110 

the road, or, if the road was marked, marginal strips were crossed by the debris. Very small landslides with an area of less 

than ~10 m
2
 were not considered. We checked each landslide location using Google Earth using the latest and historic 

imagery and classified each location as (1) new landslide, (2) road-blocking landslide visible before the Sep–Oct 2022 

rainfall anomaly, and (3) reactivated landslide. We assigned the last category to those landslides where a slip surface and 

scar were well-identifiable in the imagery. This was not always straightforward since landslide scars cannot always be 115 

clearly distinguished from unvegetated engineered slopes and road widening.     

 

We conceptualize landslides along the road as network-attached spatial point process. A spatial point process is a stochastic 

mechanism, which controls the spatial distribution of events or occurrences (Baddeley et al., 2015). As our mapped 

landslides are events that occur along the road – and only these have been mapped – these events are constrained to lie on a 120 

network of lines (Baddeley et al. 2021, Okabe et al. 2006). In our case, the network is rather simple as it consists of only one 

polyline, but we emphasize that our approach can be extended to more complicated network topologies.   
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We use TopoToolbox (Schwanghart and Scherler, 2014) and its numerical object PPS (Schwanghart et al., 2021) to analyze, 

visualize, and model the density of landslides along the road. PPS has been designed to work with point patterns on stream 125 

networks, but it can be applied to dendritic, undirected networks of any kind. The numerical approach consists of a fine-pixel 

approximation which is controlled by the geometry of the digital elevation model (DEM) from which the data is retrieved. 

This means that the vector shape of the road is pixelated with the same geometry as the DEM (Schwanghart et al., 2021). We 

model landslide densities with an inhomogeneous Poisson process, which is described by its intensity function 𝜆(𝑢) with 𝑢 

being the horizontal distance along the road. A common parametric model of the intensity is the loglinear model:  130 

𝝀(𝒖) = exp⁡(𝛽0 + 𝜷𝑿),           (1) 

where 𝑿 is a matrix of predictor variables (covariates), 𝛽0 is an intercept and 𝜷 is a vector of model parameters. A key 

property of the model is that the events are independent from each other. Spatial dependence of events can occur in different 

ways leading to clustering, i.e., points tend to occur close to other points, or inhibition, i.e., there is a characteristic distance 

or regularity in the spacing between the points. Spatial clustering of landslide events has previously been addressed by 135 

Lombardo et al. (2018, 2019) using a Cox Process model to emulate the latent spatial effects of unobserved variables, 

whereas inhibition can be observed, for example, in data where areal non-overlapping phenomena are represented as points 

(Evans, 2012; Schwanghart et al., 2021). At this stage, we will not include these potential second-order effects on the density 

of landslides, but we will investigate their possibility using the inhomogeneous K-function defined by Ang et al., (2012) 

once we have modelled first-order effects.  140 

 

We use following candidate predictor variables in the loglinear model introduced above. First, we hypothesize that steep 

hillslopes gradients next to the road are more susceptible to mass wasting events. Based on the Copernicus 30 m DEM 

(European Space Agency, 2021), we thus calculate surface gradients. We identify those areas that lie right or left to the road, 

and which are higher than the road itself within a buffer zone of ~210 m (or 7 pixels). We identify the nearest DEM pixels 145 

and map the mean gradients of these nearest pixels to the road network. These values vary greatly over short distances and 

thus we smooth them using the algorithms (with smoothness penalty parameter K = 5) described by Schwanghart and 

Scherler (2017). Next to gradient, we consider that rainfall patterns exert a strong influence on the occurrence of landslides. 

We consider five rainfall products (see Table 1) to comprehend the rainfall patterns from various perspectives. IMD1 solely 

takes into account gauge-based measurements from a network of stations provided by the Indian Meteorological Department 150 

(Pai et al., 2014). Gauge measurements and IMERG final run estimates are merged in IMD2 (Mitra et al., 2009). MSWEP v2 

is another merged product that incorporates reanalysis-based, gauge, and satellite-derived rainfall estimates (Beck et al., 

2017). CHIRPS v2 provides a high-resolution record by combining gauge and satellite data from NOAA (National Oceanic 

and Atmospheric Administration) (Funk et al., 2015). The Japan Aerospace Exploration Agency developed the GSMaP 

dataset by blending multi-satellite rainfall estimations (Kubota et al., 2007). We resample the rainfall grids to the resolution 155 

of the DEM and extract the values for each road pixel. Finally, we obtained a digitized version of the lithology of 
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Uttarakhand in the scale of 1:2M, from the Geological Survey of India (2022). The data contains both stratigraphic as well as 

lithological information. Accordingly, the NH-7 crossed 34 different lithologies along the stretch from Rishikesh to 

Joshimat. To reduce the number of potential categories, we summarized and aggregated the lithological information into 

lithozones with less focus on the stratigraphic context. This simplification resulted in five lithozones that are dominated by 160 

carbonate rocks (1), phyllite and shale (2), quartzite (3), quartzite and igneous rocks (4) and crystalline high grade 

metamorphics (5). The reclassification is shown in Table 2. Again, we gridded this data and assigned corresponding 

lithozones to each road pixel. 

 

We adopt a Bayesian strategy to infer and identify predictor variables using the function bayesloglinear of the PPS numerical 165 

class (Schwanghart et al., 2021). The function provides an interface to bayesreg (Makalic and Schmidt, 2016), a MATLAB 

toolbox that enables efficient Bayesian modelling and regularization of high-dimensional data. We use a Bayesian lasso 

estimator with Laplace prior distributions for the regression coefficients. The sampling creates 1000 burnin samples before 

calculating 1000 posterior samples. To avoid autocorrelation of the posterior samples, we use a level of thinning of five 

samples. To this end, we find that 1000 samples are sufficient to characterize the posterior distributions.   170 

 

Finally, we evaluate the model based on the Receiver-Operating Characteristics (ROC) Area under the Curve (AUC) 

approach. We visualize the predictions and inspect and analyze spatial densities obtained from random realizations of the 

fitted inhomogeneous Poisson process model. In addition, we test whether additional covariates provide opportunities for 

further improving the model. The selected attributes include terrain roughness and total curvature as well as land cover 175 

derived from the Copernic Global Land Operations (CGLOPS-1, Moderate dynamic land cover 100 m, version 3) (Buchhorn 

et al., 2020), which we reclassify according to Table 3. We investigate these models using a frequentist modelling approach 

(see PPS-function fitloglinear) and compare models with additional covariates with the Akaike Information Criterion (AIC). 

4 Results 

We recorded 309 fully or partially road-blocking landslides along the 247 km long road between Rishikesh and Joshimath 180 

(Figure 1) which amounts to an average landslide intensity of 1.25 landslides per km. The average nearest distance between 

adjacent landslides is 315 m which demonstrates that the points are unevenly distributed along the road. A two-sample 

Kolmogorov-Smirnoff test between the road distance (uniform distribution between start and end of the surveyed road), and 

the road distances measured at the landslides rejects the null hypothesis with p ≈ 0 that landslide locations follow a 

completely spatial random distribution. Yet not all field-mapped landslide occurrences can be attributed to the anomalously 185 

high rainfall period during September and October 2022. Visually inspecting the locations using Google Earth reveals that 

21.4 % of the recorded landslides with road blockages existed before (Figure 1). 17.8 % of the landslides were most likely 

reactivated by the excessive rainfall because they could not be identified to be road-blocking before the rainfall period. Most 
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landslides (60.8 %) were not identifiable as such in the Google Earth imagery available for several dates before and 

including March 2022.   190 

 

The spatial distribution and amounts of accumulated rainfall during September and October 2022 differ between the rainfall 

products (Figure 3). Since independent measurements based on rain gauges are unavailable, we investigate the performance 

of the rainfall products to explain the spatial distribution of landslides. The approach uses the AIC to iteratively evaluate 

models including one of the rainfall products at a time, as well as hillslope gradient and lithozones. AIC values vary between 195 

1886 and 1916 with CHIRPS v2 having the lowest AIC. GSMaP also correlates positively with landslide density, but less 

than CHIRPS v2, whereas IMD1, IMD2 and MSWEP show no significant correlation. We thus use CHIRPS v2 in the 

development of the subsequent models. We emphasize that including different rainfall products in the model has no strong 

effect on the remaining model parameters that determine the influence of slope and lithozones. In other words, the choice of 

rainfall product does not affect our results and conclusions about the topographic and lithologic controls on landslide 200 

occurrence. 

 

Bayesian loglinear modelling of the landslide density (Figure 4, Figure 5a, b) reveals a credible influence of the covariates 

rainfall (Figure 5c), slope (Figure 5d),  and lithozones (Figure 5e) (see Figure 4 for posterior means and 95 % highest density 

intervals and Figure 6 for individual effects). A Bayesian feature rank algorithm based on the absolute magnitude of the 205 

parameters in each posterior sample (Makalic and Schmidt, 2011) ranks slope as the top covariate in terms of explanatory 

power, followed by rainfall and lithozones. Among the lithozones, zones 4 and 2 stand out as important categories improving 

the explanatory power of the model. The individual effects of the covariates reveal a positive influence of rainfall and slope 

on landslides (Figure 6a, b). Predictions of landslides densities in lithozone 4 are credibly lower than in lithozone 2 given 

equal rainfall and slope. The spatial pattern of predicted landslide density (Figure 5f) is consistent with observed spatial 210 

density variations, but the higher variability reflects the importance of slope as predictor variable. 

 

The AUC is an aggregated metric for a point pattern model across thresholds and ranges between 0.5 and 1. Our loglinear 

model has an AUC value of 0.76 (Figure 7a). The inhomogeneous K-function shown in Figure 7b quantifies the expected 

number of points as a function of distance from each point, adjusted for the modelled inhomogeneous intensity of the point 215 

pattern. Distances between individual landslides are calculated as the shortest-path distance along the road rather than the 

direct Euclidean distance. Acceptance intervals around the theoretical K function derive from repeated simulations of the 

inhomogeneous Bayesian loglinear model. The actual point pattern’s K function is outside these acceptance intervals, 

suggesting a clustering that cannot be explained by the covariates. A comparison of 100 randomly simulated and actual point 

densities (Figure 7c) shows that the modelled and observed spatial landslide densities are consistent although the second, 220 

smaller peak of landslide densities close to Joshimath are not well captured by the model. 
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Can the model be improved by incorporating more explanatory covariates? Our impression in the field was that landslides 

detach independently of planform hillslope geometry as they occurred both on spurs and convex hollows. Nevertheless, we 

calculated total curvature and topographic roughness as potential predictor candidates. In addition, we used landcover (Table 225 

3) and distance to faults (Figure 1) as they are commonly used in susceptibility studies (e.g., Stanley and Kirschbaum 2017, 

Li et al., 2020, Ozturk et al., 2021). All in all, these metrics barely contribute to improving the model fit and their 

incorporation in the model would, according to the AIC, lead to overfitting (Figure 8). 

5 Discussion 

We recorded more than one landslide per road kilometer along the NH-7 highway between Rishikesh and Joshimath. The 230 

fact that this road is strongly affected by landslides has been previously described and attributed to the region’s fragility of 

slopes, focused rainfall and frequent seismicity (Sati et al., 2011). In addition to the environmental conditions, road 

construction and widening have contributed to the formation of new landslides which are often shallow and small, but which 

nevertheless inflict fatalities, severe damages to infrastructure and traffic disruption (Sati et al., 2011). We conducted a 

systematic survey of landslides and derived a statistical model that aims at quantifying landslide susceptibility along the NH-235 

7 at a high spatial resolution.  

 

Our analysis relied on a GPS-based survey of landslides while travelling from Rishikesh to Joshimath shortly after a period 

of anomalously high rainfall. Using this approach, we mapped landslides irrespective of cloud cover and without acquiring 

high-resolution satellite imagery which is needed to detect small landslides. A drawback, however, is that we may have 240 

missed landslides where debris had already been removed by road works. Also, detailed mapping of the areal extent of the 

landslides was not possible during drive-by so that we did not quantify the size of landslides. Thus, our modelling approach 

treats all landslides the same, irrespective of their areal extent and volume. To this end, however, this enables us to adopt a 

modelling approach which conceptualizes landslides as unmarked network-attached point pattern (Baddeley et al., 2021; 

Okabe and Sugihara, 2012). Representing landslides as network-attached points and not as areal features entails advantages 245 

and disadvantages. Constraining landslide locations to lie on roads demands that all predictor variables also need to be 

mapped to the road network, which entails some generalization and additional degrees of freedom about the choice and 

aggregation of 2D variables. For landslide susceptibility analysis, for example, this means that spatial variables 

characterizing the source area (e.g., hillslope gradient) are projected onto the road.  At the same time, model development 

and fitting benefits from smaller sample sizes as data amounts are moderate and computational demands during Bayesian 250 

posterior sampling remain manageable. 

 

We detected a profound difference between rainfall products, for which a detailed analysis is outside the scope of this study. 

These differences have been recognized before by several studies along the Himalayan orographic front and have either been 
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attributed to the network of rain gauges, which is particularly sparse at high elevations, or, if rainfall estimates are based on 255 

remote sensing data, to irregular return times, owing to which individual rainfall events may be missed (Andermann et al., 

2011, Hu et al., 2016). To this end, these uncertainties are crucial for capturing the spatial patterns of landslides (Ozturk et 

al., 2021). We found that CHIRPS v2 performed best in predicting the spatial landslide patterns along NH-7 but the 

employed search strategy must be viewed critically as the reverse conclusion, that landslides are controlled by these patterns 

is not necessarily true. Indeed, studies come to different conclusions about the performance of CHIRPS v2 and other gridded 260 

rainfall products (Kumar et al., 2021). Based on the analysis of 18 extreme precipitation events during 2014–16 in the 

northwest Himalaya (including our study site), however, Jena et al. (2020) conclude that CHIRPS v2 provides the most 

reliable precipitation estimates. Moreover, the two-peaked rainfall pattern of CHIRPS v2 is most consistent with long-term 

rainfall patterns obtained from the interpolation of 44 rainfall gauge records averaging over the period from 1901 to 1950 

which show highest values along the Himalayan Front and the physiographic transition to the High Himalaya (Basistha et al., 265 

2008; Bookhagen, 2010). 

 

Lithozones derived from a geological map contributed to the explanatory power of the model, thus highlighting the role of 

lithological properties in modulating landslide susceptibility. As we did not measure the actual geotechnical and -mechanical 

properties or e.g., bedding and foliation along our route, we can only provide a first order reasoning of the prediction 270 

capacity of the lithozones. The high landslide density in lithozone 2 is likely related due to the pronounced fissility and 

cleavage of the dominating shales and phyllites associated with material softening, percolation and weathering, causing a 

general decrease in rock strength. Tectonic activity adds to a general decrease in rock strength by creating shear surfaces 

with low friction angles (Stead, 2016). In addition, road segments, where the adjoining hillslopes parallel bedding, joints or 

foliation planes are particularly vulnerable (e.g., Bartarya and Valdiya, 1989). Conversely, lithozone 4 is characterized by 275 

quartzite and igneous rocks. These have undergone low- to high-grade metamorphism and are generally harder and have a 

more irregular fabric that restrains the formation of planar slide surfaces. Moreover these rocks tend to develop more stable 

regolith mantles (Gerrard, 1994), and are thus less susceptible to landsliding. Our model shows that under same topographic 

conditions and rainfall amounts, the rock types of lithozone 2 are 2–6 times more susceptible to landslides than those in 

lithozone 4 (Figure 6c). The remaining lithozones are not credibly different from each other, which can partly be attributed 280 

to the small fraction of road distance along them (Table 2). Notwithstanding, a general trend towards lower landslide 

susceptibility from lithozone 1–5 are consistent with a previous review study about lithological controls on the occurrence of 

mass movements in the Himalaya (Gerrard, 1994).  

 

Our model may miss important predictor variables that control the occurrence of landslides. We included variables that 285 

characterize environmental conditions and found that slope, rainfall and lithology largely explain the variability in landslide 

density. Variables such as landuse or topographic derivatives do not improve the performance of the model as measured by 

the AIC. Yet, previous studies indicate that human activities have played a crucial role in predisposing slopes to failure (Li et 
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al., 2020; van Westen et al., 2008). The map in Sati et al. (2011) indicates an intriguing spatial agreement between recent 

constructions for road widenings and landslide occurrences in our study region. The road was widened by removing 290 

vegetation and excavating soil and rocks, potentially creating unstable slopes (Barnard et al., 2001; Haigh & Rawat, 2011; 

Sati et al., 2011; Li et al., 2020). In fact, these disturbances have led to frequent landslides along the NH-7 previously as Sati 

et al. (2011) also report about ~300 landslides occurring along the road more than 10 years ago. Our data indicates that 20–

40 % of the recorded landslides are reactivated slope failures which underscores that slopes are recurrently unstable during 

periods with intense rainfall (Joshi and Kumar, 2006). During mapping, we also noticed that some slopes were engineered 295 

during the last years with retaining walls, yet many of which also failed.  

 

Our model hindcasts the spatial pattern of road-blocking landslides and we posit that it can be used as time-predictive model 

as well. Rainfall is one of the main covariates in the model and is also the one with the largest uncertainties as shown by the 

discrepancies of gridded rainfall products. A denser network of rain gauges and a better availability of this data would likely 300 

contribute, together with weather forecasting, to more accurate estimates of landslide occurrences which ultimately would 

facilitate a more efficient allocation of resources for road maintenance. Also, recurrent slope failures should be monitored 

more closely to direct efforts for slope reinforcements. The land cover data, which we included in the model, is too coarse to 

capture the widespread lack of vegetation along the road. As many of the landslides were shallow, revegetating slopes may 

contribute to their stabilization.   305 

 

To this end, the NH-7 is a key arterial road and landslides make transport of goods and people difficult thus causing serious 

economic disruption. Moreover, slope failures along the road have led to fatalities in parts where roads were widened. 

Damages and fatalities may become even more frequent in the future. The entire Upper Ganga basin is susceptible to 

extreme rainfall events (Joshi and Kumar, 2006), and climate change projections – although subject to high uncertainties – 310 

indicate a trend towards more frequent extreme events due to elevation-dependent warming and a likely increase of summer 

monsoon precipitation by 4–25 % (Krishnan et al., 2019). In addition, exposure to landslides is likely to increase. Road 

construction and increased traffic volumes attract more people, who will strive for new economic opportunities associated 

with roadside sites (Fort et al., 2010). These sites are often more susceptible to landslides as construction often implies 

vegetation removal and slope destabilization (Petley et al., 2007, Li et al., 2020). A reduction of traffic may disrupt the cycle 315 

of increasing hazard and exposure. The commissioning of the currently constructed 125 km long broad-gauge railway 

between Rishikesh and Karnprayag (Azad et al., 2022) might be an important step towards this goal. 

6 Conclusions 

Road construction is soaring in the Himalayas. During the last five years, ~11,000 km road were built in the Indian 

Himalayan states (The Tribune, 2022). Yet, the fragility of the Himalayan landscape as well as slope undercutting and poor 320 
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construction practices make maintenance of these roads challenging. Our study of landslides along the NH-7 demonstrates 

the scale of this challenge as we detect more than one partially or fully road-blocking landslide per road kilometer between 

Rishikesh and Joshimath. We contribute to a better understanding and prediction of these landslides by the mapping of a 

landslide inventory and the adoption of a novel approach to landslide susceptibility analysis which treats the landslides as 

unmarked network-attached spatial point phenomena. Together with inhomogeneous Poisson process models, this inventory 325 

enables us to identify the main controlling variables, i.e. slope angle, rainfall amount and lithology. Further development 

could potentially involve a conceptualization of landslides as marked point process by incorporation of additional attributes, 

e.g. landslide size classes. Because of the reduction of the amount of required data, the method can be extended to more 

complicated road networks with larger spatial extents, while maintaining a high spatial detail and computational efficiency. 

 330 
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Figures 

 

Figure 1: Map of the study site. Landslides, lithozones and major faults along NH-7 from Rishikesh to Joshimath. The 520 

highest density of landslides occurs between Rishikesh and Srinagar within lithozone 2 and between Pipalkoti and Joshimath  

in lithozone 1. For description of the lithozones see Table 2. Note that lithozones 0 and 6 are not crossed by the road and are 

therefore omitted from the description. We subdivided the landslides into new ones, reactivated ones and those that were 

blocking the road before September 2022. Lithozones and faults were modified from digital maps provided by the 

Geological Survey of India (2022). Stars indicate locations of the 1999 Mw 6.6 Chamoli earthquake (Kayal et al., 2003; 525 

USGS, 2022) and the 2021 Chamoli rock and ice avalanche (Shugar et al., 2021). MBT: Main Boundary Thrust, BIT: Bijni 

Thrust, NAT: North Almora Thrust, BT: Baijnat Thrust, MCT: Main Central Thrust, VT: Vaikrita Thrust. 
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Figure 2: Examples of partially road-blocking landslides along the highway NH-7. Panels a) and c) show locations, where hillslopes 

parallel the foliation/bedding. 530 
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Figure 3: Accumulated rainfall amounts from different rainfall products. The black line indicates the road between Rishikesh and 

Joshimath (see Fig. 1). 
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 535 

Figure 4: Posterior parameter samples of the loglinear model of landslide occurrence along the NH-7. CHIRPS v2 is the gridded 

rainfall product, gradient determines the slope within 210 m to the road and lithozones were aggregated from a geological map. Note that 

Lithozone 1 is missing since the parameter is encapsulated in the intercept. 
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Figure 5: Predictor and response variables used in the model. a) shows the occurrences of the fully and partially road-blocking 540 
landslides together with the elevation profile of the road. b) Landslide density along the road using a Gaussian kernel and 15 km 

bandwidth as well as bootstrapped confidence bounds. c) Accumulated rainfall during September, 1-30 and October, 1-12, 2022 from 

CHIRPS v2. d) Mean upslope gradient within a distance of 210 m around the road. The shaded area denotes the 5 and 95 % bounds using 

a nonparametric quantile regression and highlights the larger scale variability of gradient. e) Lithozones along the road (see also Fig. 1). f) 

Predicted landslide density using a model involving rainfall, slope and lithozones as covariates.   545 
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Figure 6: Main effects of predictors in the loglinear model of road-blocking landslides along the NH-7. a) Effect of accumulated 550 
rainfall amount during September, 1-30, and October, 1-12, 2022, on the occurrence of landslides, averaging out the effects of the other 

predictors. The orange lines indicate the occurrences of landslides. b) Effect of hillslope gradient and c) of lithozone. 

 

 

Figure 7: Evaluation of the loglinear model including rainfall, slope and lithozones. a) Receiver-operating-characteristics (ROC) 555 
curve. The area-under-the-curve (AUC) metric is 0.76. b) The inhomogeneous K-function corrects for the influence of an inhomogeneous 

Poisson point process model and tests for second order effects (e.g., spatial clustering). Acceptance intervals of a theoretical model without 

point independence are shown in gray. The red line is the empirical inhomogeneous K-function, which indicates clustering. c) Comparison 

of observed landslide densities (black line) with densities obtained from 100 random realizations (gray lines) from the model.  
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Figure 8: Forward stepwise selection of additional explanatory covariates in the loglinear model of road-blocking landslides. 

 

Tables 

Table 1. Overview of the rainfall products. 

Product Full form Spatial resolution Link to source Reference 

 IMD1 
Indian Meteorological 

Department 1 
0.25° x 0.25° 

http://www.imdpune.gov.in/C

lim_Pred_LRF_New/Grided_

Data_Download.html  

Pai et al., 2014 

 IMD2 
Indian Meteorological 

Department 2 
0.25° x 0.25° 

http://www.imdpune.gov.in/C

lim_Pred_LRF_New/Grided_

Data_Download.html  

Mitra et al., 2009 

MSWEP v2 
Multi-Source Weighted-

Ensemble Precipitation 
0.1° x 0.1° http://www.gloh2o.org/  Beck et al., 2017 

 CHIRPS v2 

Climate Hazards group 

Infrared Precipitation with 

Stations 

0.05° x 0.05° 

ftp://chg-

ftpout.geog.ucsb.edu/pub/org/

chg/products/CHIRPS-2.0/ 

Funk et al., 2015 

GSMaP 
Global Satellite Mapping of 

Precipitation 
0.1° x 0.1° 

https://sharaku.eorc.jaxa.jp/G

SMaP_NOW/index.htm  

Kubota et al., 

2007 
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Table 2. Definition of lithozones. 

Lithozone Aggregated lithologies Id Percentage of road 

1 

limestone, dolomitic limestone with shale 2072 

17 % 

shale with lenticles of limestone 2073 

argillaceous limestone and clay 2074 

limestone, dolomite, shale, carb. phyllite/slate 2480 

limestone 2457 

dolomite 2456 

2 

shale, quartzite, limestone and conglomerate 2109 

33 % 

phyllite, qtz, shale, dolomite, tuff with dolerite 2108 

splintery shale with nodular limestone 746 

massive sandy limestone 1799 

limestone, dolomite, shale and cherty quartzite 2482 

quartzite, slate, lensoidal limestone and tuff 2486 

massive sandy limestone 1799 

3 

quartzite, limestone and occassional conglomerate 1943 

6 % 
quartzite, siltstone, chert and phosphatic shale 1944 

diamictite, quartzite, slate and boulder bed 2081 

carbonaceous shale, slate, greywacke 2078 

4 

quartzite and slate with basic metavolcanics 2464 

30 % 
basic meta-volcanics 2458 

basic / intermediate intrusive 2453 

porphyritic nonfoliated granite 2452 

5 

sericite quartz schist, chlorite schist 2463 

14 % 

chlorite schist, hornblende-albite-zoisite schist 2461 

phyllite with chloritic, graphitic & carbonaceous 2462 

schist, augen gneiss, quartzite & amphibolite 3702 

quartz-sericite-chlorite schist & limestone 3701 

schist, gneiss, marble and basic intrusives 3747 

gneiss, kyanite schist, quartzite, calc-silicate 3752 

quartzite and quartz mica schist 3744 

calc silicate, quartzite, schist, marble band 3743 

a
Id refers to the UID given in the original data (Geological Survey of India, 2022)  
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Table 3. Aggregation of land cover classes derived from the Copernicus Global Land Service version 3 Globe 2015-2019. Remaining map 

codes in the original data were not concerned along the NH-7. 

Aggregated land cover class Map codes 

Closed forest 111-116 

Open forest 121-126 

Shrubland 20, 30 

Cropland 40 

Built-up 50 
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