Point-by-point response:

There are four comments from Referee 1 (RC1–4) and one comment from Referee 2 (RC5). The RC2 and 3 are the same, which makes a total of three comments from Referee 1 (RC1, 2, and 4).

Response to RC1 of Referee 1:

Comment	Reply	Change in revised manuscript
(1) Lines 94-95: Why did you assume the	Lines 94–95 (A modern surge maximum of	The sentence is rephrased as 'In this study,
wave height of the 100-year return period is	1.8 m a.s.l. is tentatively inferred to as the	the modern surge maximum of 1.8 m a.s.l.
1.8 m? Have you done any probabilistic study	100 year surge in this study.) are focused on	tentatively serves as an approximation for a
for this assumption? Because Table 1 shows	the typhoon surge. The 50- and 100-year	100-year surge.' (Lines 93–94).
100-year significant wave height is greater	significant wave heights are presented in	
than 10 m.	Table 1 and Lines 86–87.	
	There are previous probabilistic studies on	
	the 50- and 100-year significant wave heights	
	(see references in Table 1) and yet no	
	previous probabilistic studies on the 100 year	
	surge on the Penghu Islands. The 1.8 m a.s.l.	
	is inferred from the modern 1.8 m surge	
	maximum of the 2019 Typhoon Mitag among	
	the 118 observed surges from 1997 to 2021	

	(Lines 91–94). This surge maximum of the	
	period of current global warming may be very	
	close to the 100 year surge and comparable to	
	the maximum in the 17th century of the Little	
	Ice Age period.	
(2) Table 1 – what is "observation"? Is it the	The 'observation' will be revised as 'number	Revised as 'number of measurements' in
number of waves?	of measurements' to better label this column	Table 1 (p. 5).
	of the table that lists the total measurements	
	at the selected buoys in certain months over	
	the past 10 or 15 years.	
(3) Nandasena et al. (2022) formulas do not	The first four formulas in this study are the	Revised in Line 166 of Table 2 (p. 10).
calculate the minimum wave height but the	modified Nott's formulas of wave heights	
minimum flow velocity to initiate boulder	that were deduced from the flow velocity	
transport. Therefore, the first four formulas	formulas. The flow velocity formulas were	
given in the manuscript cannot be referred	modified by a series of previous studies that	
from Nandasena et al. (2022). The given	took virtual boulder dimensions, maximum	
formulas have a significant difference	lifting surface, lift force, fundamental	
(perhaps typos) compared to the formulas in	physics, effect of the bed slope, and transport	
Nandasena et al. (2022). Therefore, the	mode sediment sources, transport distances,	
authors must include a section to explain how	and shore slope angle into account (see	
they derived their equations based on	references in Lines 60-64).	
Nandasena et al. (2022).		

	In the revised manuscript, Nott (2003) and	
	Nandasena (2020) are to be added to the	
	source references of the four formulas in the	
	footnote of Table 2. Nandasena (2020)	
	reviewed most of the modifications except	
	virtual boulder dimensions that were latter	
	examined by Nandasena et al. (2022).	
(4) Line 135: Hudson formula is used for the	Hudson formula was only applied to the	The sentence is rephrased as 'The Hudson
design of armor-breakwaters against gravity	storm waves in this study (Tables 2 and 3).	formula is then adopted for independent
waves (sea and swells). The formula was not	The application follows the study of Lorang	storm wave estimates of the beach-intertidal
validated for tsunamis and storms. However,	(2011), which also used the formula and the	zone (Lorang, 2011; Hudson, 1953).' (lines
Esteban et al. (2014) applied the Hudson	modified Nott's formulas on storm wave	139–140).
formula to assess the damage to breakwaters	estimates (Lines 135–136).	
by tsunamis. The authors may cite their paper		
to support the application of the Hudson		
formula in this study.		
(5) Lines 136-137: the assumption of $Fr = 1$	From the authors' perspective, the use of	1. Lines 131–134 are added for comment
and 2 for storms and tsunamis, respectively,	fixed Froude numbers is not outdated and low	5.3; The wave height/flow depth estimate
is outdated (comment 5.1). Because both the	in scientific value, and the suggestion of flow	is delineated a step further from flow
high-energy events can have similar Froude	velocity may not be the best policy. In	velocity, as it has been deemed the most
numbers varying from as small as 0.5 to as	addition to Froude number, there are many	useful parameter in the analysis of ancient
high as 2.5 or more. It is difficult to predict	other coefficients with limits in use in the	wave events and deposits (cf. Nandasena

the exact Froude number at the pre-transport location of the boulders without knowing flow characteristics (flow depth and flow velocity). Therefore, the results based on this assumption have a low scientific value (comment 5.2). Alternatively, I suggest the authors to conclude based on flow velocities if permitted (5.3). formulas that may results in uncertainties, which is well known to the authors and has been dealt with by numerous previously reported studies (Lines 58–65 and Sect. 3 Materials and methods). These responses have been agreed upon by the referee in his RC4, 'I am satisfied with the authors' responses... This is a good piece of work despite the limitations of the hydrodynamic formulas used in geo-science.'

Please see our previous responses in the interactive discussion online.

The responses are accommodated in the resubmitted manuscript (see the column on the right).

et al., 2022). Moreover, only the wave height records of historical and modern tsunamis and typhoons are available for comparison in the study area.

- Lines 140–143 are added for comment 5.2; The Froude Number is set at 2.0 for tsunami waves and 1.0 for storm waves. The choice is based on the tendency of these waves to induce highly supercritical and critical flows, respectively (Nott, 2003). It is worth noting that various supercritical flow regimes are associated with both tsunami and storm waves (Cox et al., 2020; Nandasena, 2020), which will be addressed in Sect. 4.1.
- 3. New subsection 4.1.1 Storm wave height (line 212) and lines 220–226 are added for comment 5.2 to address the supercritical onshore flows induced by storm waves with the unfixed Froude Number between 1.0 and 1.6.
- 4. New subsection 4.1.2 Tsunami wave height (lines 227–262) are added for

		comment 5.2 to address the supercritical to critical flows induced by tsunami waves with the Froude Number between 1.0 and 2.0.
(6) Table 3: Some tsunami periods are highly unrealistic. For example, 3.4 S, and 3.6 S. Tsunamis are considered long-period waves. The calculated numbers fall in short-period waves. The authors need to declare which formulas used to calculate wave period (Lorang or Barbano) (6.1) and describe their results carefully following the established scientific definitions (6.2).	 (Reply to 6.1) The formulas used to calculate wave periods were already declared in Table 2. (Reply to 6.2) The authors do agree that the tsunami waves with 3.4 and 3.6 s periods in the supratidal zone are undistinguishable from the storm waves. It may indicate that the present formulas need to be improved to better estimate the tsunami waves in the supratidal setting, which is out of the scope of the present study. Or the successive shortening of the estimated period in the intertidal–supratidal zone probably responds to the deceleration of the tsunami wave during shoaling that also causes a landward decrease in wavelength alongside an increase 	The sentence is rephrased for comment 6.2 (lines 274–276); The successive shortening of the estimated period in the intertidal– supratidal zone likely corresponds to the deceleration of the tsunami waves through shoaling, which also causes a landward decrease in wavelength and a landward increase in wave height.

in the wave height (Table 2 and Lines 244–	
245).	

References

Central Weather Bureau: Wave Statistics, https://www.cwb.gov.tw/V8/E/C/MMC STAT/sta wave.html, 2022.

Chen, Y.-G. and Liu, T.-K.: Sea level changes in the last several thousand years, Penghu Islands, Taiwan Strait, Quat. Res., 45, 254–262, https://doi.org/10.1006/gres.1996.0026, 1996.

Cox, R., Ardhuin, F., Dias, F., Autret, R., Beisiegel, N., Earlie, C. S., Herterich, J. G., Kennedy, A., Paris, R., Raby, A., Schmitt, P., and Weiss, R.: Systematic review shows that work done by storm waves can be misinterpreted as tsunami-related because commonly used hydrodynamic equations are flawed, Front. Mar. Sci., 7, <u>https://doi.org/10.3389/fmars.2020.00004</u>, 2020.

Hudson, R. Y.: Wave forces on breakwaters, Trans. Am. Soc. Civil Eng., 118, 653-674, https://doi.org/10.1061/TACEAT.0006816, 1953.

Lorang, M. S.: A wave-competence approach to distinguish between boulder and megaclast deposits due to storm waves versus tsunamis, Mar. Geol., 283, 90–97, <u>http://dx.doi.org/10.1016/j.margeo.2010.10.005</u>, 2011.

Nandasena, N. A. K.: Chapter 29: Perspective of incipient motion formulas: boulder transport by high-energy waves, in: Geological records of tsunamis and other extreme waves, edited by: Engel, M., Pilarczyk, J., May, S. M., Brill, D., and Garrett, E., Elsevier, 641–659, <u>https://doi.org/10.1016/B978-0-12-815686-5.00029-8</u>, 2020.

Nandasena, N. A. K., Scicchitano, G., Scardino, G., Milella, M., Piscitelli, A., and Mastronuzzi, G.: Boulder displacements along rocky coasts: A new deterministic and theoretical approach to improve incipient motion formulas, Geomorphology, 407,

https://doi.org/10.1016/j.geomorph.2022.108217, 2022.

Nott, J.: Waves, coastal boulder deposits and the importance of the pre-transport setting, Earth Planet. Sci. Lett., 210, 269–276, https://doi.org/10.1016/S0012-821X(03)00104-3, 2003.

Response to RC2 of Referee 1:

Comment	Reply	Change in revised manuscript
The first formula has typos. Please follow the	The formula is revised accordingly in Table	Revised in Tables 2 (the first formula; p. 9)
attached document.	2.	and 3 (the results of sliding; p. 14) and lines
	The new results from the corrected formula are listed in Table 3.	203–205.
	The interpretation and discussion are revised accordingly.	

Response to RC4 of Referee 1:

Comment	Reply	Change in revised manuscript
I am satisfied with the authors' responses and	The authors are grateful for the kind and	See the changes listed in the above two tables
hope these revisions will be appeared in the	positive reply of the referee. The revisions in	for RC1 and RC2.
final manuscript.	our previous replies will be included in the	
	final version of the manuscript.	
This is a good piece of work despite the		
limitations of the hydrodynamic formulas		
used in geo-science.		

Response to RC5 of Referee 2:

Comment	Reply	Change in revised manuscript
(1) The paper reports on matrix-supported	The authors are encouraged by the positive	1. The sentences in lines 26-27, 110-115,
boulder On this basis alone I am convinced	comment on one of the major contributions of	and 291–350 are rephrased by the
that these are tsunami deposits rather than	the present study, i.e., presenting facies	Elsevier Language Editing Plus service.
typhoon deposits.	constraints on the sediment transport of the	
	paleotsunami gravels and basalt boulders on	
	the Penghu Islands. The key points	
	summarized by the referee are comparable to	
	lines 26–27, 110–115, and 291–350/Sect. 4.2	
	of the submitted manuscript.	
(2) I also believe the authors should	a. One of the suggested references was	See additions of the suggested references in
established a more solid comparison with	already cited in the previously submitted	lines 338 and 417.
similar deposits and their characteristics, as	manuscript, namely Paris et al. (2018)	
this is would strengthen the argumentation of	which described the tsunami deposits in	
the paper.	Hawaii (Lines 300–302).	
	b. As suggested by the referee, Madeira et	
Perez-Torrado et al. 2006. The Agaete	al. (2020) and Pérez-Torrado et al. (2006)	
tsunami deposits (Gran Canaria): evidence of	are included, showing similar facies	
tsunamis related to flank collapses in the	characteristics of the tsunami deposit	
	studied.	

Canary Islands. Mar. Geol. 227 (1–2), 137–	c. In the submitted manuscript, the tsunami	
149.	deposit studied were compared with those	
Paris et al., 2011. Tsunami deposits in Santiago Island (Cape Verde archipelago) as possible evidence of a massive flank failure of Fogo volcano. Sediment. Geol. 239, 129– 145. Paris et al., 2018. Mega-tsunami conglomerates and flank collapses of ocean island volcanoes. Marine Geology, 395, pp.168-187.	reported on the Japan Sea and Pacific coasts of Hokkaido (Fujiwara and Kamataki, 2008; Nanayama and Shigeno, 2006). The common occurrences of articulated bivalves and stranded pumices in the tsunami deposits reported on the Pakistan coast (Lines 374–376; Donato et al., 2008) and on the northern coast of Taiwan (Lines 310–311; Yu et al., 2022) were also used for comparison.	
Ramalho et al., 2015. Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci. Adv. 1 (2015), e1500456. Madeira et al., 2020. A geological record of multiple Pleistocene tsunami inundations in an oceanic island: the case of Maio, Cape		

(3) Below are a few passages of the text that I	The authors are indebted to the referee for the	In addition to the referee's suggestions, the
suggest revising, given that they are (in my	editing advices. Most of them are	resubmitted manuscript has been edited by
view) confusing and not very clear, as well as	accommodated and the responses and	the Elsevier Language Editing Plus service.
a few minor language edits I suggest.	changes are here listed.	
Line 78 – what do you mean by "more than	The units are replaced by volcanic islands.	The sentence is rephrased as 'The southern
90 units of Miocene basalt platform"? I really		part of the strait comprises the Penghu
do not understand what the authors mean		Islands, which consist of more than 90
here the term "units" in geology generally		volcanic islands made of Miocene basalt.'
refers to stratigraphic units, yet I presume the		(lines 75–77).
authors here use the term with the meaning of		
individual boulders or clasts so I suggest		
revising this to a more objective term –		
perhaps "more than 90 boulders derived from		
the Miocene basaltic platform"?		
Line 81 – the authors describe sea-level fall	It is revised as 'local sea level'.	The sentence is rephrased as 'Accordingly,
I presume they refer to local relative sea-level		the local sea level in this area has been
fall is this correct? Please be more	It was previously reported that the Holocene	controlled by the global sea level fluctuations,
precise/objective and state if you refer to	local sea level changes were dominated by	falling at approximately 5.1 cm per century
relative or eustatic sea level, and please	the global sea level (eustatic) fluctuations due	from a 2.4 m highstand since 4.7 ka (Chen
provide more information as to the nature of	to the local tectonic quiescence. Please refer	and Liu, 1996).' (lines 80-81).
	to Lines 80-84 and references therein.	

this sea-level change (climate-related?		
Subsidence/uplift related?)		
Line 110 - another reference to largest	The units is replaced by 'clast'.	The sentence is rephrased as 'The largest
boulder unit again I presume the authors		boulder clast, hereafter referred to as
refer to a particular clast or boulder and not a		'Chungtun-1 boulder,' was selected for
unit composed of boulders if so please		analysis due to its significantly larger size
remove the term "unit" from this phrase.		compared to the others in the outcrop (Fig.
		3a).' (lines 110–111).
Line 111 – I find the following phrases really	The referee's suggestion is appreciated and	Lines 111–115 are rephrased as 'These
confusing "The cliff-top boulders are	will be adopted with a slight modification to	boulder clasts form a cluster in a mud-matrix-
supported by a gravel and mud matrix that	feature the 'pinch-out' bedform that marks	supported gravel layer that is laterally
forms a lateral gravel layer (MECT-1) that	the minimum run-up level.	continuous and gradually thins out upward
pinches out from 2.5 to 4.0 m a.s.l. Marine		from 2.5 to 4.0 m a.s.l. This layer is referred
shells and rounded pumice pebbles that are		to as 'Chungtun-1 layer' (Fig. 3a). Marine
abundant in both matrix and gravel layer, and		shells and rounded pumice pebbles are
are also found on modern beaches in the		abundant in the matrix and also on the
region (Fig. 3b), are absent in the underlying		channel beach (Fig. 3b); however, they are
basalt basement, basal soil, and overlying		absent in the underlying basalt basement and
angular-gravel colluvium." Could you please		basal soil, as well as the overlying angular-
reformulate these phrases and make it more		gravel colluvium. Accordingly, it is assumed
concise?		that the cliff-top boulder and gravel layer
		have a marine sediment origin.'

Here is a possible suggestion: "The cliff-top		
boulders are supported by a gravel and mud		
matrix that forms a laterally-continuous layer		
(MECT-1) with variable thickness and		
extending from 2.5 to 4.0 m a.s.l. Marine		
shells and rounded pumice pebbles are also		
abundant in the matrix, can be also found on		
modern beaches in the region (Fig. 3b), but		
are distinct from the underlying basalt		
basement, and are absent in the basal soil and		
overlying angular-gravel colluvium."		
Lines 119-121 – change the existing phrase to	The sentence is rephrased.	Lines 120–122: The rephrased sentence;
"An intertidal rock exposure that is located		'There is an intertidal rock exposure at 0.5 m
0.5 m below sea level and is covered by		below sea level, which exhibits well-
isolated and stacked boulders of sizes and		developed joint fractures and rock debris
shapes that are comparable to the CTB may		similar in size and shape to the boulder clasts
be the source of the studied boulder (Fig. 3d)"		of the Chungtun-1 outcrop (Fig. 3a and d).
Lines 173-175 – this phrase is also very	The word 'obtain' is replaced as suggested.	The sentence is rephrased as 'To obtain a
confusing I suggest changing "better	The 'gravel layers that were deposited during	better understanding of the facies and
obtain" to "understand" also, what do you	a marine event' is revised as 'gravel layers	stratigraphic constraints on the transport and
mean by "during a marine event"? Are you	that are associated with events of marine	deposition of the cliff-top boulder, the
	inundation and deposition'.	Chungtun-1 outcrop and three additional

referring to a storm? A typhoon? Another tsunami? please be more concise Lines 200-203 – similar to my comment to line 81, I find the statement "During this period, the maximum water depth in the CT Channel could increase from 2.5 to 4.5 m because the sea level was approximately 0.2 m higher than it is at present" confusing first I would suggest changing "could increase from 2.5 to 4.5 m" to "was 2.5 to 4.5 m higher than today". Presumably you are also referring to relative sea-level change –	The 'sea level' is revised as the 'local sea level'. We tried to precisely express that the maximum water depth in the Chungtun Channel could increase from 2.5 to 4.5 m. It is 2.5 m, as measured in the fair-weather conditions by the authors and may be 4.5 m at a 100 year surge considering the higher local sea level in the 16th–17th centuries (Fig. 2a).	outcrops with gravel layers of marine sediment origin were investigated;' (lines 179–180). The sentence is rephrased as 'During this period, the maximum water depth in the Chungtun Channel could have reached 4.5 m because the local sea level was approximately 0.2 m higher than it is at present, allowing a 100-year surge of 1.8 m a.s.l. to occur (Fig. 2c; Chen and Liu, 1996; Central Weather Bureau, 2022).' (lines 211–213).
could you be more precise/objective here? Lines 213-214 – I also find this phrase really confusing and grammatically incorrect: "The CTB is floored by the pumice-bearing gravel and mud matrix above the cliff basement (Fig. 4d) and the gravel layer are matrix- supported" – could you please revise this phrase to improve clarity?		The sentence is rephrased as 'The boulder is underlain by the pumice-bearing gravel and mud matrix above the cliff basement (Fig. 4d) and evidently part of the matrix-supported Chungtun-1 gravel layer (Fig. 3a–b).' (lines 239–240).

Finally, in my view the text overuses	We appreciate the advice.	Please see the changes in the resubmitted
acronyms/abbreviations, making it really difficult to read	The CTB for CT boulder is removed.	manuscript.
	The terms 'marine event' and 'ME' is removed.	
	The coding and naming of the key gravel layers are removed.	
	Only the common abbreviations are preserved, such as a.s.l. for above sea level.	