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Abstract. Heat extremes and associated impacts are considered the most pressing issue for German regional governments with

respect to climate adaptation. We explore the potential of an unique high-resolution convection permitting (2.8 km), multi-GCM

ensemble with COSMO-CLM regional simulations (1971-2100) over Germany regarding heat extremes and related impacts.

We find an improved mean temperature beyond the effect of a better representation of orography on the convection permitting

scale, with reduced bias particularly during summer. We find a systematically reduced cold bias especially in summer in the5

convection permitting simulations compared to the driving simulations with a grid size of 7 km and parametrized convection.

The projected increase in temperature and its variance favors the development of longer and hotter heat waves, especially in late

summer and early autumn. In a 2° (3°) warmer world, a 26 % (100 %) increase in the Heat Wave Magnitude Index is anticipated.

Human heat stress (UTCI>32°C) and local-specific parameters tailored to climate adaptation, revealed a dependency on the

major landscapes, resulting in significantly higher heat exposure in flat regions such as the Rhine Valley, accompanied by10

the strongest absolute increase. A non-linear, exponential increase is anticipated for parameters characterizing strong heat

stress (UTCI>32°C, tropical nights, very hot days). Providing local-specific and tailored climate information, we demonstrate

the potential of convection permitting simulations to facilitate improved impact studies and narrow the gap between climate

modelling and stakeholder requirements for climate adaptation.

1 Introduction15

The last two decades have been characterised by an increased number of summer heat waves (HWs), some of them of unprece-

dented magnitude and impact (e.g. Schär and Jendritzky, 2004; García-Herrera et al., 2010; Barriopedro et al., 2011; Russo

et al., 2015). HWs are the most visible sign of ongoing global warming in Central Europe (IPCC, 2021), which lead to an

increased awareness in our society and stakeholders (Lee et al., 2015; Moser, 2016). As a result, both government agencies

and the private sector have not only developed plans for long-term investments towards climate protection but also for the20

development of sustainable adaptation strategies, which are are now regularly finding their way into policy agenda (Biesbroek

et al., 2010). In Germany, local governments are key actors implementing adaptation strategies (Hackenbruch et al., 2016).

Nearly one fourth of the German cities had climate adaptation plans in place by 2018 (Reckien et al., 2018), documenting
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an increasing interest in the subject. Moreover, the German federal government has launched large research activities like the

RegIKlim consortium (regional information for action on climate change) to further strengthen this development.25

From the perspective of administrations in municipalities in Southern Germany, the greatest need for action lies indeed in

the adapting to heat extremes (Hackenbruch et al., 2017). HWs – increased temperature over several consecutive days – are

a threat to ecosystems, economy and human health (e.g. Basu and Samet, 2002; Poumadere et al., 2005). HWs are in fact

the weather hazard causing the highest number of deaths in Europe (Zuo et al., 2015). E.g., for the European HW in 2003

alone, up to 80000 additional deaths were recorded accumulated over Europe in the twelve over twelve European countries30

concerned by excess mortality (Robine et al., 2007). However, there is no unified definition of a HW. Different thresholds for

e.g. length and temperature can be found in the literature, and a variety of indices have been developed for classification, e.g.

Warm Spell Duration Index (WSDI) (Alexander et al., 2006), the Heat Wave Magnitude Index (HWMId) (Russo et al., 2014),

or excess heat factor (EHF) (Nairn and Fawcett, 2015). Recent efforts have gone towards quantitative approaches and a higher

comparability between methods (e.g. Perkins and Alexander, 2013; Russo et al., 2014; Becker et al., 2022), leading to a better35

understanding of the strengths, weaknesses and range of applicability of the individual indices. Irrespective of the index used,

there is a clear consensus in the scientific community (IPCC, 2021) that HWs will become more severe in terms of duration,

frequency and magnitude with increasing global warming, also in Central Europe.

Climate information on the regional to local scale is needed for the development of tailored climate adaptation measures.

This can be achieved with regional climate models (RCM), which perform a downscaling of the climate projections from40

global climate models (GCMs) to the required spatial and time scales, as it is done in the Coordinated Regional Downscaling

Experiment CORDEX (e.g. Jacob et al., 2014). Novel developments include RCM simulations performed with a grid spac-

ing under 4 km, which resolves convection permitting scales and thus parametrizations of deep convection are not required

(convectiveconvection permitting models, CPM) (Prein et al., 2015). Due to the very high resolution on the scale of urban

districts, relevant data fields can be either derived directly or allow a direct coupling with impact models. Several recent stud-45

ies have documented the advantages of this these convection permitting simulations, both in terms of dominant convective

precipitation but also in and regions with strong spatial heterogeneity as present in mountainous or urban areas (Prein et al.,

2015). Regarding the representation of temperature, there is not yet a consensus of on added value in convection permitting

simulations. Whereas Prein et al. (2013) and Brisson et al. (2016) attribute improvements of the temperature output to the better

resolution of orography, Ban et al. (2014) even found an increasing bias on the convection permitting scale but improvements of50

the diurnal cycle of temperature in a domain covering the alpine region. In contrast, an improvement of mean temperature was

found in Hohenegger et al. (2008) for most of her study area and in investigations by Hackenbruch et al. (2016) over Germany.

In addition, Tölle et al. (2018) found an added value for temperature extremes. Mixed results with a regional dependency were

found in Soares et al. (2022), concluding a gain for temperature due to an improved spatial representation of local atmospheric

circulations and land-atmosphere interactions.55

To quantify the associated uncertainties of the regional climate projections, ensemble simulations are required. As the com-

putational costs in CPM are (very) high, many climate studies are based on single model projections, and only few studies using

CPM ensembles exist (Prein et al., 2015). Very first ensembles of convection permitting climate projections exist e.g. from the
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CORDEX Flagship Pilot Study on Convection (FPSConv; Pichelli et al. (2021); Ban et al. (2021)). There, several GCMs from

the Coupled Model Intercomparison Project CMIP5 (Taylor et al., 2012) using the RCP8.5 scenario (Van Vuuren et al., 2011)60

were downscaled by multiple RCMs to a common grid with 3 km resolution covering the larger Alpine area (ALP-3). They

used 10-year time-slices for the historical period (1996-2005) and two future periods (2041-2050 and 2090-2099). The current

study applies a different ensemble approach, that is a four-member ensemble of convection permitting climate projections per-

formed by a single RCM, downscaling four GCMs under the scenario RCP8.5. All simulations cover the period from 1971 to

2100 in a quasi-transient manor manner, where the projection is composed of several time slices. To our best knowledge, an65

ensemble of this temporal extendt is currently unique. Such a long simulation period allows for a better statistical representa-

tion of extremes and the application of approaches used for typical coarser scale transient GCM or RCM ensembles, like e.g.

the analysis for different Global Warming Levels (GWL) as it is used in the IPCC AR6 (Lee et al., 2021) to compare climate

change signals for GCMs with different climate sensitivity or between different emission scenarios.

Our focus in this study is heat extremes and related impacts under global warming compared to recent climate conditions.70

Specifically, we were motivated by three guiding questions:

1. What are the benefits of convection permitting models for temperature extremes in Germany? (Section 3)

2. What can we learn from a convection permitting ensemble about future regional temperature trends and HW character-

istics? (Section 4 & 5)

3. What is the impact of these changes on heat stress and other regionally mapped tailored climate parameters? (Section 6)75

The paper is structured as follows: Section 2 describes the methodology and the used datasets. Section 3, 4, 5, and 6 focus on

the results guided by the three research questions, while a summary and discussion concludes the paper in section 7.

2 Data and method

2.1 The COSMO-CLM ensemble

The simulations analysed in this study have been generated in the context of the projects KLIWA (Klimaveränderungen und80

Konsequenzen für die Wasserwirtschaft) and been extended within the project ISAP (Integrative urban-regional adaptation

strategies in a polycentric growth region: Model region – Stuttgart Region). The regional climate simulations are conducted

using the RCM COSMO5.0-CLM9 (CCLM, Rockel et al. (2008)). CCLM originates from the German weather service forecast

model COSMO (Baldauf et al., 2011), which is a three-dimensional, non-hydrostatic, fully compressible numerical model for

the atmosphere including a multi-layer soil-vegetation transfer model TERRA-ML (Schrodin and Heise, 2001). The RCM has85

been applied for multiple studies over different CORDEX domains (Sørland et al., 2021) and on the kilometre-scale within the

CORDEX Flagship Pilot Study on convection (Ban et al., 2021; Pichelli et al., 2021).

Initial and boundary data are provided by four GCMs (cf. Table 1) from the CMIP5 generation under the scenario RCP8.5

(Van Vuuren et al., 2011). The selected GCMs cover a wide range of climate sensitivities (Nijsse et al., 2020), that is

3



parametrized over the equilibrium climate sensitivity (ECS) – the global mean surface air temperature increase that results90

from a doubling of atmospheric CO2 (Table 1). In addition, an evaluation simulation, downscaling ERA40 (Uppala et al.,

2005) over the period 1971-2000 is included (Hackenbruch et al., 2016), using the same setup as the projections.

The ensemble was generated in a three-step nesting approach (Table 2; Fig. 1a) with a first nest over Europe with 0.44 °

grid resolution, an intermediate nest over Central Europa with 7 km resolution, and an inner nest that encompasses the area of

Central/Southern Germany and the Alpine area with 2.8 km resolution. The convection for the first two nests is parametrized95

using the Tiedtke-scheme (Tiedtke, 1989). For the innermost domain, this parametrization is only used for shallow convection

as in Hackenbruch et al. (2016). In the current setup, the boundary zone between the inner nests is relatively narrow. However,

we can benefit from a relatively small horizontal resolution step (less than a factor of 3) between the nests, which is smaller than

common convection permitting setups used today (Ban et al., 2021). This is likely to decrease boundary effects and enable a

tighter nesting. Nevertheless, the boundary zone that was excluded for the analysis of the innermost domain was considerably100

large (48 grid points, 137 km). Our examination of the results revealed that anomalies of temperature temperature, as well

as mean and extreme precipitation, occur well outside the evaluation area. The first two nesting levels were performed in a

transient way. The third nest was originally performed in 30-year time-slices preceded by a three year spin-up (1968-2000;

2018-2050; 2068-2100; Schädler et al. (2018)). These time-slices were later on extended (2001-2020; 2051-2070) to provide

a quasi-transient ensemble for the whole period. The overlapping periods (2018-2020 and 2068-2070) were compared (not105

shown). No significant climatological relevant differences were found several months after simulation start, in accordance with

the findings from Lavin-Gullon et al. (2022).

This continuous time-series data enabled us to apply the concept of Global Warming Levels (GWLs) (Lee et al., 2021),

allowing an improved comparability from the downscaling of GCMs with differing climate sensitivities or different emission

scenarios. Therefore, this approach mitigates parts of the GCM and scenario uncertainties and provides more specific infor-110

mation about the effects of climate change given a certain threshold of warming. Specifically, we analyse the +2 K and +3 K

GWLs, which was possible for all GCMs due to the use of the high-end scenario RCP8.5. An overview about of the simula-

tions is given in Table 1. The period 1971-2000 is used as a historical reference period, which is attributed a global warming

of 0.46 K. Table 1 lists the 30-year periods for the GCMs, which are centered around the respective year of the threshold

exceedance similar to Teichmann et al. (2018).115

As a strong dependency of the temperature output on the major landscape was detected, the area is narrowed down to a

geographically more homogeneous area (Fig. 1b), including the Central Uplands, the South German Scarplands and the Alpine

Foreland. Therefore, the domain focuses on the hilly parts of Germany, excluding the flat regions – in Northern Germany –

and the mountainous regions – the Alps – in the very south. This domain, later referred to evaluation area, is bordered in red in

Fig. 1b and is used in this study when statistics are applied over several grid points. The analysis in the paper is largely focused120

on HWs and associated impacts in the warm season. Since we observed the largest changes in late summer and early fall, we

limit the analysis in this case to the months of May through October. This period is referred to as the summer half-year below.

To evaluate the skill of the convection permitting simulation, a comparison of observation data with the second, convection

parametrizing nest withand the third, convection permitting nest is performed on the raw, uncorrected model output in Sec. 3.
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Figure 1. In (a) the three nesting levels are shown. (b) shows the model domain Nesting in (a) and model domain, with the sponge area

truncated and the used evaluation area in red in (b). The borders of the German major landscapes were added in black. Important major

landscapes for the evaluation are the Rhine Valley, the Black Forest, the Swabian Alps, and the Harz (Shapefiles of the major landscapes:

Bundesamt für Naturschutz (BfN), 2015).

Table 1. Name, realization, Equilibrium Climate Sensitivity (ECS; cf. Nijsse et al. (2020) supplementary), 30-year periods corresponding to

GWL +2 and +3 degrees relative to pre-industrial conditions and main reference for the CMIP5 GCMs downscaled for the ensemble.

.

GCM Realization ECS in ◦C GWL2 GWL3 Reference

CNRM-CM5 r1i1p1 3.28 2029 - 2058 2052 - 2081 Voldoire et al. (2013)

MPI-ESM-LR r1i1p1 3.66 2029 - 2058 2052 - 2081 Giorgetta et al. (2013)

EC-EARTH r12i1p1 4.18 2026 - 2055 2051 - 2080 Prodhomme et al. (2016)

HadGEM2-ES r1i1p1 4.64 2016 - 2045 2037 - 2066 Collins et al. (2011)

, using the gridded observation dataset HYRAS (Rauthe et al., 2013; Rauthe et al., 2020) as reference. The HYRAS dataset125

is used as observation, which is based on station data that are aggregated to a gridded dataset using the REGNIE method of

combining a regression model and inverse distance weighting (Rauthe et al., 2013; Razafimaharo et al., 2020). The comparison

is conducted for the reference period 1971-2000 for the evaluation run driven by ERA40 as well as for all ensemble members.

Simulation data was were interpolated on the HYRAS grid with a grid spacing of 5 km. In addition, a height correction of

temperature was applied along with the interpolation, assuming a vertical gradient of 0.0065 K/m. The correction compensates130

the effect of a height-dependent temperature that is favored by higher resolution of orography. The evaluation of the model

skill was conducted prior to the bias correction.
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Table 2. Model setup.

Nesting level Grid spacing Grid dimensions Remarks

(lat, lon, level)

1st nest 0.44°, 50 km 118× 110× 40 Convection parametrized (Tiedtke, 1989)

2nd nest 0.0625°, 7 km 160× 200× 40 Convection parametrized (Tiedtke, 1989)

3rd nest 0.025°, 2.8 km 322× 328× 49 Only shallow convection parametrized

2.2 Bias correction

In order to obtain reliable data and to correct for a systematic error in climate simulations, it is common practice to apply a bias

correction (e.g. Gudmundsson et al., 2012). Among the most popular methods is Quantile Mapping (QM). The distribution of135

the modeled variable Pm(x) is transformed to a new distribution that equals the distribution Po(x) of the observed variable in

an evaluation period:

Po = h(Pm) (1)

The transformation is defined as Eq. (2) using the cumulative density function F of the model output and observation in the

evaluation period, indicated with the subscript hist.140

Po = F−1
o,hist(Fm,hist(Pm)) (2)

We use a parametric-based QM for the correction of temperature as there are indications of a more robust mapping function

than in an empirical approach (Lafon et al., 2013). Here Fo and Fm are derived by fitting a distribution to the data, which

is the normal distribution for temperature (Berg et al., 2012; Berg et al., 2021). In contrast the empirical approach is used

for precipitation, as no added value was found with the distribution-based method with e.g. a gamma distribution as in145

Piani et al. (2010) or Ehmele et al. (2022). In addition, a dry day correction following Ehmele et al. (2022) was applied prior

to QM for precipitation.

In order to correct for a systematic error in climate simulations to obtain reliable data for impact assessment, it is common

practice to apply a bias correction (Maraun, 2016). Following the assumption that the model bias remains constant over time

for each quantile of the model data, we apply quantile delta mapping according to Cannon et al. (2015). Its application to150

a modeled variable xmod,pred at time step t in the prediction period (pred) is based on its non-exceedance probability Pt,

which is evaluated over the cumulative distribution function F (Eq. (3)). A quantile mapping of the value with the same non-

exceedance probability Pt in the historical period (hist) is performed based on observed reference data (obs). To preserve the

relative changes between the historical and the prediction period, the climate change signal ∆m of the corresponding quantile

is multiplied to obtain the corrected value ymod,pred (Eq. (4) and (5)).155

6



Pt = Fmod,pred(xmod,pred(t)) (3)

∆m(t) =
xmod,pred (t)

F−1
mod,hist (Pt)

(4)

ymod,pred (t) = F−1
obs,hist(Pt) ·∆m (t) (5)160

A normal distribution was fitted to the distribution of absolute temperature to derive the transfer function. For the correction

of precipitation, the empirical approach is used in contrast, as no added value was found with the distribution-based method

using e.g. a gamma distribution. In addition, a dry-day correction following Ehmele et al. (2022) was applied prior to the

correction for precipitation.

The bias correction was derived for the parameters daily mean temperature Tmean, daily minimum temperature Tmin, daily165

maximum temperature Tmax, and the daily precipitation sum Psum. As reference, the observation dataset HYRAS with a

resolution of 5 km was used, that was interpolated to the model grid. Along with the interpolation, a height correction of Tmean,

Tmin and Tmax was applied assuming a vertical gradient of 0.0065 K/m. The available 30 years of the historical time slice from

1971 to 2000 were used as a reference period. To account for seasonal dependencies, To account for seasonal dependencies, as

discussed in Pierce et al. (2015), evaluation was done over a three month window. To minimize discontinuities at the edges of170

the time window (Pierce et al., 2015), the bias correction was applied for each month i of the year separately, using a transfer

function derived and applied over month i− 1 to month i+1.

This approach was chosen because it preserves the climate change signal of the quantiles, which is important for the relative

description of heat waves used in the study. Furthermore, the method allows an application of the correction in a future climate

where the temperature may exceed the range of temperatures in the historical period, which is only possible to a limited175

extent with classical quantile mapping (Maraun, 2016). However, the underlying assumption and the resulting constant transfer

function might not be valid in a future climate (Pierce et al., 2015), leading to potential errors. Furthermore, the use of a

parametric approach of fitting an assumed distribution to the data to derive the transfer function is still arbitrarily discussed.

Several studies, e.g. Pastén-Zapata et al. (2020); Qian and Chang (2021), apply a normal distribution for temperature to get

a more robust transfer function. Using a fitted function has the additional advantage that the transfer function is independent180

of any smoothing interval that may be defined (Kerkhoff et al., 2014). On the other hand, parametric approaches introduce

additional bias, if the distribution of a variable does not accurately match the theoretical distribution. Especially for extreme

values, a deviating statistic is assumed according to the extreme value distribution. Quantile approaches, allowing different

statistical models for extremes, could potentially reduce uncertainty (e.g Vrac and Naveau, 2007; Berg et al., 2012; Schubert

et al., 2017)185

As shown in Fig. 2, major improvements can be achieved by the distribution based QM using the example of Tmean. In

panel (a) the reference data HYRAS is shown averaged over the summer half-year. Comparing this reference data to the
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Figure 2. Impact of the bias correction of Tmean in the summer half-year (May to October) comparing the ERA40 driven model run with

observation. (a) shows the mean summer temperature 1971-2000 in the reference dataset HYRAS, (b) the RMSE of the ERA40 driven model

run compared to HYRAS and (c) the MSESS of the bias corrected run compared to the uncorrected.

simulations driven by ERA40, a root mean square error (RMSE) between 1.95 ◦C and 2.18 ◦C (5. to 95. percentile) is visible

in the evaluation area (Fig. 2b). The skill of the applied bias correction is expressed overby the mean squared error skill score,

MSESS, using the mean square error, MSE (Eq. (6)). MSESS is positive all over the domain (Fig. 2c), thus the correction190

leads to a better alignment of the simulation data with the observation. Stronger improvements coincide with regions of higher

deviations of the uncorrected data.

MSESS = 1− MSEcorr,obs

MSEraw,obs
(6)

2.3 Heat wave and impact indices

Different aspects of heat stress are addressed with this study. We start with the classical approach of describing the meteoro-195

logical aspects of HWs. Secondly, we will focus on the impact on human health using a thermo-physiological description of

heat. Finally, user-oriented parametrizations are tested. Finally, climate parameters – threshold-based indices that are tailored

to the need of stakeholders in different fields of action – are evaluated. All metrics used are presented in the following.

2.3.1 Heat wave indices

A number of consecutive days with elevated temperature is called a HW. However, a universally fitting definition does not200

exist, but several definitions can be found in the literature. We here use the definition by Russo et al. (2014), in which a HW

is defined as an uninterrupted series of at least three days where the daily maximum temperature Tmax exceeds Tmax,90%, the

daily 90th percentile of Tmax within a 31-day centered window over the reference period. Several metrics describing different

aspects of HWs exist. The length of a HW is derived as the number of consecutive HW days, and its frequency is the average
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Table 3. Assessment scale of heat stress using the UTCI. Cold stress for UTCI ≤ 9 ◦C is not shown here.

UTCI in ◦C Category

9 to 26 no thermal stress

26 to 32 moderate heat stress

32 to 38 strong heat stress

38 to 46 very strong heat stress

above 46 extreme heat stress

number of HW-days per year. As a measure for the HW temperature, we introduce the maximum excess temperature ∆Tmax205

above the 90th percentile threshold. Russo et al. (2014) proposed a Heat Wave Magnitude Index (HWMId), an index that can

be compared across regions and time, taking HW length as well as temperature into account. The HWMId is calculated asover

HWMId =
Tmax −Tmax,25%

Tmax,75% −Tmax,25%
(7)

with Tmax,25% and Tmax,75% the daily 25th and 75th percentile of Tmax within a 31-day centered window in the reference

period. The event sum over the heat event characterizes the magnitude of a HW.210

2.3.2 Human heat stress

Apart from air temperature, there are additional elements such as clothing, humidity, mean radiant temperature, air movement,

and metabolic rate that determine a person’s level of thermal comfort (Fanger, 1970). With the requirement to transform this

complex system into an application-friendly model, the universal thermal climate index (UTCI) was developed in 2009 from

an interdisciplinary collaboration between human thermophysiology, physiological modeling, meteorology and climatology215

(Jendritzky et al., 2008). The index is defined as the air temperature of a reference condition causing the same thermal comfort

as the actual response. The reference conditions were determined as a wind speed WS= 0.5ms−1 at 10 m height and a mean

radiant temperature Tmrt equal to air temperature Tair. vapor pressure pv that represents a relative humidity of RH= 50%.

At high air temperatures (Tair ≥ 29 ◦C) the reference humidity is constant at 20 hPa The relative humidity in the reference

environment is 50 % for temperatures below 29 ◦C. However, for temperatures above 29°C, the water vapour pressure is220

instead kept constant at a level of 20 hPa (Błażejczyk et al., 2013). In Table 3, the defined categories for heat stress are listed.

UTCI = f (Tair;Tmrt;WS;pv) = Tair +offset(Tair;Tmrt;WS;pv) (8)

Tmrt =
(
T 4
g +

hCg

ϵd0.4
g

(Tg −Tair)
) 1

4

, with hCg = 1.1 · 108WS0.6 (9)

The calculation of the UTCI (Eq. (8)) is based on Fiala’s multi-segment model of human physiology and thermal comfort225

(Fiala et al., 2012), coupled with a clothing model by Havenith et al. (2012). Details can be found in e.g. Jendritzky et al.
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(2012); Fiala et al. (2012); Havenith et al. (2012). Tmrt was calculated as in Eq. (9) (Kántor and Unger, 2011), with a wet bulb

globe temperature Tg that was approximated according to Liljegren et al. (2008). In Eq. (9) the emissivity is ϵ≈ 0.95 and the

diameter of the globe d= 50mm. The hourly model results were taken as input for the calculation of UTCI in this study. Due

to missing hourly, gridded observations, no bias correction was applied.230

2.3.3 User-tailored Climate Indices

More and more sophisticated indices were developed, focusing on different aspects of heat stress. However, in order to take

action in the local governments, the exact information on the change of climatic conditions is not always helpful – on te

contrary. The so-called “climate information usability gap” is the barrier about what scientists see as useful and what users

consider useful for their decision-making. One key aspect of narrowing the gap is the customization and tailoring of the data235

to the user’s need to improve the usability of climate information (Lemos et al., 2012), often as a co-design approach. In the

case of climate adaption strategies, the measures of interest are according to Hackenbruch et al. (2017) meteorological events

leading to an effect on people/health risks (for example, hot days), influence on capital investments or municipal budgets (for

example, winter services) or property damage (for example, heavy precipitation events).

To assess the impact of changing temperature, we present several user-tailored climate parameters following Hackenbruch240

et al. (2017). The selected parameters, their definition, and field of action are summed up in Table 4. All parameters are related

to regional temperature changes but cover different fields of action and therefore are of concerns of different stakeholders. The

aim of the choice is to show the diversity of the effects of climate change and to present the potential of high-resolution climate

models for climate adaptation.

3 The added value of temperature in a convection permitting ensemble245

An evaluation of the uncorrected raw output of the Evaluating ERA40 driven CCLM simulations compared to the observations

shows there is a cold bias in the simulations over Germany. Figure 3a shows that in the reanalysis-driven simulation, the

meanmedian monthly temperature over the evaluation domain in the 7 km simulation (blue thick solid line) is always lower

than in the observation (gray thick solid line). This deviation is larger in the summer months. A similar pattern is found for

further percentiles of the distribution, as shown for example for the 10th and 90th percentiles (thin lines in Fig. 3a), as they250

are generally underestimated, especially in summer. However, the 7 km output occasionally exceeds the observation in single

autumn and winter months (October for the 90th and January for the 10th percentile). In the CPM convection permitting

simulation (2.8 km), the monthly median temperature in the warm season is comparably higher than in the coarser simulation,

leading to a reduced cold bias. in the summer and In autumn it even exceeds the observation by 0.5 K0.6 K. However, there is

no strong improvement in the mean temperature during the winter months, and the cold bias persists. A consistent reduction255

of the cold bias is found for the 10th and 90th percentiles, but possible overestimation of higher percentiles seems to become

more frequent, especially in late summer and autumn. In the convection permitting ensemble, monthly mean temperature is
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Table 4. Definition and field of action of the tailored climate parameters related to temperature development based on the KLIMOPASS

project (Schipper et al., 2016). T is daily mean, max or min temperature, TJJA and PJJA are the mean daily temperature and precipitation

sum from June to August. The subscript clim refers to the climatological mean, that was calculated over the reference period 1971-2000. The

lower limits of Tmax for walking weather are: 0 ◦C for Dez, Jan, Feb, 5 ◦C for Mar and Nov, 10 ◦C for Apr, May, Sep,and Oct, and 15 ◦C for

Jun, Jul, and Aug.

Climate Index Definition Field of action

Very hot days Tmax > 35 ◦C Road construction: Damage to roads and so-called „blow ups“ occur due to strong

heating of the road concrete.

Health: Decrease in mental and physical performance.

Tropical nights Tmin > 20 ◦C Health: impaired regeneration

Growing days Tmean > 5 ◦C Conservation: Critical to ecosystem composition and development

Forestry: Determines the window of opportunity for forest work

Agriculture: Impacts the growing zones for certain crops

Dry hot summers

and years in be-

tween

TJJA > TJJA,clim +1 ◦C

&

PJJA < 0.8×PJJA,clim

Agriculture, Forestry: Reduced primary productivity of forest and grassland as well

as tree mortality at higher extremes

Urban planning: Adaption of tree species and assessment of necessary irrigation.

The interval in between hot dry summers is essential for recovery. E.g. 5 years are

estimated for tree recovery.

Conditions for

drosophila suzukii

Tmean > 10 ◦C

&

Tmax < 30 ◦C

Agriculture: Changing climate can influence pests. For each crop and pest, condi-

tions have to be assessed separately. The drosophila suzukii, which is a major pest

for fruit production in Central Europe is taken as one exemplary quantity.

Walking weather Tmax < 25 ◦C & Tmax >

variable lower threshold

(see table description)

Tourism

improved similarly as shown in dashed lines in Fig. 3a. Again, the largest improvement is in the summer. However, the mean

bias in the ensemble median is larger than in the reanalysis, especially in the winter.

Averaged over all grid points, the mean error in the reanalysis-driven simulations is reduced from −1.1 ◦C to −0.13 ◦C in the260

summer half-year (Fig. 3b). Moreover, the spread is increased. In the winter half-year a smaller. but still significant reduction

according to a Wilcoxon signed-rank test with significance level of 0.05 is visible and the median is reduced from −0.69 ◦C for

7 km to −0.56 ◦C for 2.8 km. Which is a smaller but still significant reduction confirmed by a Wilcoxon signed-rank test. The

test was applied to the two fields of mean error of the coarser (7 km) and convection permitting (2.8 km) simulations. The null

hypothesis of zero difference between the errors was rejected by the test based on a significance level of 0.05. Those trends265

patterns in the temperature output from coarse to high resolution are similar in the ensemble as in the reanalysis-driven run.
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Figure 3. Raw output of 2 m temperature in the 2nd (7 km) and 3rd grid (2.8 km) in comparison with the observation dataset HYRAS for

the reference period. The analysis was performed on the grid points in the evaluation area. (a) shows the monthly mean temperature in

observation, reanalysis and ensemble median. (a) shows the monthly mean temperature in the observation (black solid lines) compared to

the reanalysis results (colored solid lines) and the median of the ensemble members (dashed lines). The thick line represents the median in

the reference period and in the evaluation area, the thin lines show the 10th and 90th percentiles respectively. (b) visualizes the mean error

of ERA40 time series compared to the observation for summer (May–Oct) and winter half-year (Nov–Apr). The boxplot shows the spread

over the grid points.

For further information on the performance of the single ensemble members, please refer to the supplementary information

(Fig. S1).

To reveal spatial patterns, the mean summer half-year temperature of the 2nd, 7 km nest (Fig. 4a) and the 3rd, 2.8 km nest

(Fig. 4b) of the reanalysis-driven run are compared to the observation (Fig. 2a). Whereas there is a negative bias at nearly all270

grid points for the coarser nest (Fig. 4a), local differences are visible for the convection permitting simulation (Fig. 4b). Here, a

negative bias is still present in the north of the domain, especially in the hilly regions. In the south of Germany, predominantly

positive anomalies are visible. Even though the regions with positive bias are not correlated with altitude, they do not seem to

be independent of orography. The largest positive bias is found in the South German Scarplands (lon ≈ 9.0◦, lat ≈ 48.5◦) –

located directly between two major mountain ridges, the Black Forest and the Swabian Alps.275

For nearly all grid points, there is an improvement with the convection permitting simulation, which is indicated by a positive

MSESS in Fig. 4c comparing the second and third nest with respect to the reference dataset HYRAS. There are a few grid points

with negative MSESS. Those are associated with a positive bias and an overshoot of the convection permitting simulation.

The density distribution of daily summer temperature shows nearly perfect agreement of observation and the convection

permitting reanalysis run (Fig. 4d). In comparison, the distribution for the reanalysis-driven 7 km simulations is shifted towards280

colder temperatures and has a lower spread. Especially the highest summer temperatures are better resolved by convection

permitting simulations. An improvement is also visible for the 2.8 km median of the ensemble simulations compared to the

7 km output. However, especially the high summer temperatures are still underestimated by the CPM. Low temperatures, from

approximately −3 ◦C to 10 ◦C, are overestimated.
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Figure 4. Evaluation of ERA40 driven simulation on a convection parametrizing (7 km) and convection permitting (2.8 km) scale for the

summer half-year (May–Oct) in the period 1971-2000 compared to the reference observation datas et HYRAS. The difference of the raw

output of mean summer temperature is shown (a) for the 7 km simulation and (b) for the 2.8 km simulation. In (c) the MSESS of 2.8 km

compared to 7 km is mapped and (d) displays the density distribution of 2.8 km and 7 km in the evaluation area for the reanalysis driven run

(solid lines) and the median of the ensemble in the reference period (dashed lines).

Overall, we identify a significant reduction of the mean bias for the convection permitting resolution, which is especially285

pronounced during summer. Over Germany, the convection permitting simulation reproduces a realistic frequency distribution

of daily 2 m temperature. The remaining mean errors shows a trend from negative bias in the north toward positive bias in the

south. Other local patterns are partly associated with the predominant landscape regions. Based on the added value found in

the 2.8 km resolution, its output is used for the following analysis.

4 Regional temperature trends290

Annual cycle Future temperature is not expected to develop evenly over the year. In the study area, the smallest increase is

observed in spring, largest in the late summer and during the winter (Fig. 5a). The behavior is similar for GWL2 and GWL3.

The stronger late summer increase leads to a shift of the summer peak of maximum temperature by 12 days in GWL3 compared

to 1971-2000.
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A closer view in the ensemble spread shows that throughout the year, there seems to be good agreement within the three295

simulations driven by EC-EARTH, MPI-ESM-LR and CNRM-CM5. There is an average ensemble variance of 0.6 K2 for the

mean temperature averaged over the study area in GWL3. In contrast, warming – especially in the winter and autumn – is

significantly more pronounced in the simulation driven with HadGEM2-ES (Fig. 5a, dotted line). Averaged over the year, the

temperature increase is 1.5 K higher than for the other simulations by GWL3. HadGEM2-ES is the member with the highest

climate sensitivity of the driving GCM within this ensemble (cf. Nijsse et al. (2020); Table 1). In the following, the presented300

results of HadGEM2-ES will stand out repeatedly as it appears that the nature of its projected climate change signal differs

from that in the other three ensemble members EC-EARTH, MPI-ESM-LR, and CNRM-CM5 with lower climate sensitivity.

Temperature distribution Figure 5b shows the density of the daily mean summer temperatures over the evaluation area. In

the evaluation period the distribution is skewed left and The peak of the distribution in the evaluation period is at 14.2 ◦C. The

shape of the distribution is reproduced well compared to the observation, however, the ensemble overestimates the probability305

at the peak of the distribution. In a warmer world, the mode shifts to higher temperatures that are 15.4 ◦C in GWL2 and 16.6 ◦C

in GWL3. Moreover, higher maximum temperatures up to 27.4 ◦C (99th percentile) in GWL3 are reached. There is a decline

in temperatures left of the peak, respectively. However, especially for low temperatures, the magnitude of decrease is relatively

small, leading to an increased width of the distribution. A parametrization of the spread of the distribution is made in terms

of the Full Width of Half Maximum (FWHM), which is defined as the width of the distribution at the level of the half peak310

value. As shown in Fig. 5c the full width of half maximum (FWHM) FWHM in the ensemble average increases from 10.4 to

12.1 ◦C. Three out of four ensemble members agree on a steady increase of the width. Only the simulation run by HadGEM2-

ES does not confirm an increase of FWHM in the period from 1971-2000 to GWL2. Regarding the temperature distribution,

an increasing FWHM indicates a more variable daily temperature, leading to higher amplitudes and to a stronger increase in

the frequency of warm extremes on the right side of the curve compared to the shift of the curve median.315

Spatial patterns The average summer temperature (May–Oct) varies significantly over the evaluation area as already shown

for the observational data in Fig. 2a and provided in the supplementary information (Fig. S2) for the ensemble mean. It ranges

from 12.3 to 15.5 ◦C (5. and 95. percentile). As expected, the highest temperatures are found at low altitudes. The Rhine Valley

stands out with the highest average temperatures up to 16.6 ◦C. The lowest average temperatures are accordingly observed in

complex regions with pronounced orography: Examples are the Harz (average 12.5 ◦C) in the Central Uplands or the Black320

Forest (average 13.0 ◦C) in the south. Moreover, spatial heterogeneity is increased in those complex regions.

The summer temperature increases over the whole evaluation area with global warming. From the reference period (Global

warming at 0.46 ◦C) to GWL2, the increase is in average 1.55 ◦C (Fig. 6a). All in all, warming is rather uniform with a range

from 1.45 to 1.64 ◦C (5. and 95. percentile). The strongest increase is observed in the north of the study domain, in the uplands

and farther in the south in the Black Forest and Swabian Alps. Less warming is expected in the Alpine Foreland and in the325

flatter regions of the South German Scarplands. The ensemble spread seams only partially dependent on the orography and

landscape. Moreover, data show a trend superimposed from northwest to southeast with decreasing spread (Fig. 6b).

In GWL3, summer temperature increases further by 2.44 to 2.76 ◦C (5. and 95. percentile) compared to the evaluation

period (Fig. 6c). The spatial patterns of summer temperature increase remain similar with slightly higher increase in hilly
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Figure 5. The different aspects of the evolution of daily mean temperature Tmean from reference period (gray) over GWL2 (blue) to GWL3

(orange) are shown. (a) displays its annual cycle averaged over the study area and over a 31-day running window. (b) shows the density

distribution of daily mean temperature in the summer half-year (May–Oct) and (c) its full width at half maximum (FWHM). Different line

styles correspond to different driving GCMs – solid: MPI-ESM-LR, dashed: EC-EARTH, dash-dotted: CNRM-CM5, dotted: HadGEM2-ES,

the thick lines correspond to the ensemble mean.

regions. Especially in the south, the uplands (Black Forest and Swabian Albs) show an increased warming compared to the330

surrounding flatter regions. The ensemble spread in the projection of temperature in the distant future has slightly widened

(Fig. 6c). It ranges from 1.12 to 1.48 ◦C (5. and 95. percentile). It is especially high in the north west of the domain and in areas

with higher elevation. Lowest spread is visible in the flat Rhine Valley. The higher deviations at the locations of the large lakes

in Southern Germany (Lake Constance (lon 9.4; lat 47.6), Lake Ammersee (lon 11.1; lat 48.0), Lake Starnberg (lon 11.3; lat

47.9), Lake Chiemsee (lon 12.5; lat 47.9)) are caused by interpolation of the water surface temperatures from the coarse grid,335

since no lake module was applied.

The summer temperature increases with global warming over the whole evaluation area. From the reference period (global

warming at 0.46 ◦C) to GWL2, the increase is on average 1.55 ◦C (Fig. 6a). From the reference period to GWL3, the average

increase is 2.60 ◦C (Fig. 6c). When integrated over the year, the ensemble shows a slightly stronger warming than only over the

summer months, indicating that summer temperatures are less sensitive than the annual mean (Fig. 5a). However, the differences340

are still in the range of 0.11 ◦C (0.09 ◦C) above the global warming in GWL2 (GWL3). Therefore, the regional warming in the

evaluation area in the considered GCM-RCM combinations is close to the global average and only slightly enhanced. This is
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Figure 6. Mean development of Tmean in the summer half-year (May–Oct) as ensemble mean compared to the reference period for GWL2

(a) and GWL3 (c) and the according ensemble spread calculated as range between minimum and maximum prediction for each grid point in

GWL2 (b) and GWL3 (d).

less than suggested by the theory of greater warming over land than over the ocean and as generally projected (IPCC, 2021).

The impact of the bias correction is considered to be negligible, as the uncorrected data integrated over the year show a nearly

identical warming of 0.11 ◦C (0.07 ◦C) above the global average in GWL2 (GWL3) in the evaluation area.345

Geographical dependence leads to regional variations of warming. Over the evaluation area, warming ranges from 1.45 to

1.64 ◦C (5th And 95th percentiles) in GWL2 and from 2.44 to 2.76 ◦C in GWL3. As shown in Fig. 6a and 6c, the strongest

increase is observed in the uplands in the north of the domain (GWL2), and in the Black Forest and Swabian Alps in the south

(GWL2 and GWL3). Less warming, below the global average, is expected in the Alpine Foreland (GWL2 and GWL3).

The ensemble spread increases from GWL2 with 1.06 to 1.47 ◦C to GWL3 with 1.12 to 1.48 ◦C (5. and 95. percentile). Data350

show a trend superimposed from north to south with decreasing spread (Fig. 6b and d) Moreover, the ensemble spread seems to

depend partially on the orography and landscape. It is especially high in the north west of the domain and in areas with higher

elevation. Lowest spread is visible in the flat Rhine Valley. The higher deviations at the locations of the large lakes in Southern

Germany (Lake Constance (lon 9.4; lat 47.6), Lake Ammersee (lon 11.1; lat 48.0), Lake Starnberg (lon 11.3; lat 47.9), Lake

Chiemsee (lon 12.5; lat 47.9)) are caused by interpolation of the water surface temperatures from the coarse grid, since no lake355

module was applied.
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Summing upOverall, the mean temperature over Germany rises in a warmer climate predominantly in late summer as well as

in the winter half-year, with the smallest increase in spring. This leads to a general shift of the summer maximum temperatures

to later summer. The increase is spatially largely homogeneous, with slightly stronger warming expected in mountainous

regions. Moreover, the temperature distribution in a warmer climate is expected to be wider (larger variability), indicating that360

extreme temperatures will experience a greater change compared to the average warming.

5 Heat wave characterization

This section characterizes HWs in the future based on their different features – frequency, length, temperature, and magnitude,

and frequency. Be aware that throughout this section we are focusing on a relative definition of these events – an anomaly

versus the 90th percentile from the reference period (Sec. 2.3.1). The relationship between HW magnitude, duration, and excess365

temperature is examined for the most severe HWs in each year in terms of the cumulative HW magnitude in the evaluation area

(Fig. 7). The according figure providing absolute HW temperatures is provided in the supplementary (Fig. S3).

In Fig. 7a to c, the variance between the ensemble members is studied. Observed average HW duration of the strongest HWs

a year ranges from 3 to 12 days. The temperature excess ∆Tmax above the 90th percentile ranges from 1.5 to 6.3 ◦C. The

excess temperature does not correlate strongly with the duration (r = 0.22) but the longest HWs are usually associated with370

high temperatures. The observed HWMId has a range of 5 to 22 with an average of 8.8. HWMId increases with average HW

length (r = 0.99). Firstly, the observed HW characteristics in the reference period (1971-2000) are analyzed, as shown in black

in Fig. 7a. The average duration of the strongest HWs a year ranges from 3 to 12 days. The temperature excess ∆Tmax above

the 90th percentile ranges from 1.5 to 6.3 ◦C. The longest observed HW reaches up to 12 days, however, the correlation with

excess temperature is weak (r = 0.22). The observed HWMId has a range of 5 to 22, with an average of 8.8. HWMId increases375

with HW length (r = 0.99).

To evaluate the representation of the three HW characteristics in the ensemble projection, the results of observation and

simulations in the reference period are compared (Fig. 7a). The HW duration is reproduced well by all ensemble members

and no significant deviation from the observed distribution of duration (marginal distribution on the abscissa) is visible,

which is confirmed by a two-sample Kolmogorov-Smirnov test on the level of significance of 0.05. Also for the HWMId,380

the test confirms no significant deviation between simulation and observation. For the excess temperature, no significant de-

viation from the observed distribution is found for three out of four ensemble members. However, significant differences

for the results of the CNRM-CM5-driven simulation and an underestimation of the simulated excess temperature is visi-

ble in the marginal distribution on the ordinate (Fig.7a). Moreover, there is a peak around ∆Tmax = 4 ◦C in the observation

that is not reproduced by any ensemble member. The ensemble of climate simulations shows no significant deviation from385

the observed distributions in the reference period for the characteristics duration and HWMId, confirmed by a two-sample

Kolmogorov-Smirnov test on a level of significance of 0.05. For the excess temperature, the test results support no significant

deviation from the observed distribution for three out of four ensemble members but significant differences for the results of
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Figure 7. Bubble plot of the strongest HW in each summer half-year (May–Oct) in every projection run. The considered events are identified

over the maximum of the HWMId integrated over the area. The HW-features of all involved grid points are averaged. The bubble plots show

the strongest HW in each summer half-year (May-Oct) in every projection run with respect to duration on the abscissa and excess temperature

on the ordinate. Bubble size indicates mean HWMId over all grid point results affected by the HW. Marginal plots show the distribution of

duration of the heat waves in days (abscissa) and the distribution of the excess temperature (ordinate). Panel a to c show the single ensemble

members and comparison with the observation: a for 1971-2000, b for GWL2, and c for GWL3. In Panel d the ensemble members of one

GWL are merged to display the evolution over time. Panel d shows the total set of all of the heat waves from the single ensemble members

for 1971-2000, GWL2 and GWL3. The black data point corresponds to the HW in 2003 derived from HYRAS data.

the CNRM-CM5-driven simulation. The underestimation of the modelled excess temperature is shown in Fig.7a. Moreover, a

peak around ∆Tmax = 4 ◦C is visible in the observation that is not reproduced by any ensemble member.390

The spread between the ensemble members widens over GWL2 (Fig. 7b) to GWL3 (Fig. 7c). CNRM-CM5 develops lowest

excess temperature, shortest HWs in the ensemble, and therefore lowest HWMId. The pattern agrees with the underestimation

of temperature in the reference period. Hence, the trend seems to persist in the future. For MPI-ESM-LR, the projection leads

predominantly towards higher HW temperatures with a maximum excess temperature of 15 ◦C in GWL2 and GWL3 but HW

duration is about average. EC-EARTH shows an average distribution of length and temperature compared to the other members395

of the ensemble. In contrast, HadGEM2-ES shows long HW duration with average excess temperature, leading to highest
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HWMId in average. Discrepancies in HW duration indicate different dynamics in the driving models. In fact, HadGEM2-ES

is described as one of the best performing CMIP5 GCMs in past climate for weather types (Perez et al., 2014) and blocking,

which is underestimated in CMIP5 models in general (Brands, 2022). Presented extremely long HWs should therefore not

be discounted as an outlier. All ensemble members agree on an increased width of the temperature and duration distribution400

compared to the reference period.

Superimposing the three GWLs, a clear picture of HW intensification emerges (Fig. 7d). Following trends for duration,

temperature and HWMId are derived. Significance of all trends is confirmed by a two-sample Kolmogorov-Smirnov test on a

level of significance of 0.05.

– There is a shift towards higher HW excess temperatures up to 5.3 (GWL2) and 6.9 ◦C (GWL3) as median. With a HW405

temperature in the reference period that ranges from 2.6 ◦C to 4.5 ◦C (25 and 75 % confidence interval) hardly any HW

are occurring today, that will be a common scenario in the future.

– For the HW duration there is a shift towards longer HWs. The average increases from 4.3 (reference) over 5.1 (GWL2)

to 7.5 days (GWL3). Moreover, the spread increases drastically which leads to maximum duration up to 21 days.

– HWMId, which is mainly correlated with HW duration, shows an increasing spread. A 26 % (100 %) increase in the410

median of HWMId is expected from reference to GWL2 (GWL3) (reference: 8.2, GWL2: 10.3, GWL3: 16.5).

The climate change signal of excess temperature (1), duration (2), and magnitude (3) develops differently in the four ensem-

ble members (Fig. 7b and c), but superimposing the three GWLs, a clear picture of HW intensification emerges (Fig. 7d). (1)

All ensemble members agree on an increase of average excess temperature and an increased width of its distribution compared

to the reference period. The highest excess temperatures are found for MPI-ESM-LR-driven simulation up to ∆Tmax = 15 ◦C415

in GWL2 and GWL3. The lowest excess temperatures are projected by the simulation driven by CNRM-CM5, that already

showed an underestimation in the reference period. In the ensemble median, there is a shift towards higher HW excess tempera-

tures up to 5.3 (GWL2) and 6.9 ◦C (GWL3) (Fig. 7d). This implies that with HW excess temperatures from 2.6 ◦C to 4.5 ◦C (25

and 75 % confidence interval) in the reference period hardly any HW are occurring today, that will be a common scenario in the

future. (2) Also for HW duration, a future increase in mean and spread of the distribution is detected by all ensemble members.420

Again, the smallest changes are projected by the simulation driven by CNRM-CM5. The simulation driven by HadGEM2-ES

projects in general the longest HWs. These discrepancies in HW duration indicate different dynamics in the driving models.

In fact, HadGEM2-ES is described as one of the best performing CMIP5 GCMs in past climate for weather types (Perez

et al., 2014) and blocking, which is underestimated in CMIP5 models in general (Brands, 2022). Presented extremely long

HWs should therefore not be discounted as an outlier, but treated with caution. In the ensemble average, there is a clear shift425

towards longer HWs. The average duration increases from 4.3 (reference) over 5.1 (GWL2) to 7.5 days (GWL3). Moreover,

the spread increases drastically which leads to maximum HW duration up to 21 days. (3) The development of HWMId is

strongly correlated with HW duration in the simulations. In the ensemble, a 26 % (100 %) increase in the median of HWMId

is expected from reference to GWL2 (GWL3) (HWMId in reference: 8.2, GWL2: 10.3, and GWL3: 16.5). The significance
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Figure 8. The ensemble mean of average number of HW days per summer half-year (May–Oct) in 1971-2000 (a), GWL2 (b), and GWL3

(c).

of the increase of duration, excess temperature and HWMId are confirmed by a two-sample Kolmogorov-Smirnov test on the430

level of significance of 0.05.

In order to put the results into perspective, they are compared with an actual reference event for Germany – the HW in

2003. A HW with a strong economic and environmental impact and cause of thousand deaths, referred to as a record HW

(e.g., De Bono et al., 2004). Performing an analog analysis on 2003 HYRAS data, this HW had an average length of 12.7

days, maximum excess temperature of 7.4 ◦C and HWMId of 26.7. It is visualized in black in Fig. 7d. As expected the event435

is extremely unlikely in the reference period. Only one simulated summer in the reference period by HadGEM2-ES exceeds

the measured event in 2003. In a warmer world, events with such a strength occur with higher probability. In GWL3 such an

event is in the 25 % confidence interval of 5.3 ◦C to 8.4 ◦C . For duration, the HW 2003 exceeds the 25 % confidence interval

of 5.1 to 10.4 days in GWL3 and its duration is ranked 16th in the projections of 4× 30 years, corresponding to an 8-year

return period in GWL3. For HWMId, its rank of 21 in GWL3 leads to a 6-year period. It should be noted that in this case440

no distinction is made between ensemble members. The variations between ensemble members discussed earlier indicate the

range of uncertainty in this projection. Moreover, the analysis considers only the local observations of 2003 limited to the

simulation area. Summing up, an event like HW 2003 will become more likely, but is projected to stay an extreme event with

a return period of 5 to 10 years.

To assess regional patterns, the cumulative number of HW days as measure of HW frequency is analyzed (Fig. 8). Again the445

summer half-year is considered only. In the reference period, averaged over 30 years, few HW days are observed per summer

half-year. In the evaluation area, the number of HW days ranges from 8.7 to 9.9 (5th to 95th percentile) and is distributed

relatively uniformly across space. An overall increase to from 18.8 to 23.0 (5th to 95th percentile) HW days is simulated in

GWL2. With even more warming in GWL3, spatial features become visible. The increase affects predominantly the southwest.

Moreover, slightly enhanced HW occurrence is projected in regions with higher elevation as the Black Forest. Over the domain,450

28.7 to 36.9 (5th to 95th percentile) HW days are expected in GWL3.
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Figure 9. Probability of large HW (coverage ≥ 50% of the evaluation area) over the summer (May–Oct) calculated over a 31-day running

window. The thick line corresponds to the ensemble median, whereas the different line styles of the thin lines correspond to different driving

GCMs – solid: MPI-ESM-LR, dashed: EC-EARTH, dash-dotted: CNRM-CM5, dotted: HadGEM2-ES.

The analysis of the seasonal changes reveals that HW severity is distributed inhomogeneously over the summer (Fig. 9). In

the reference period the occurrence of large HWs, defined as HW with a coverage of at least 50 % of the study area, is relatively

flat distributed. There is a declining trend of the probability throughout the summer. From GWL2 to GWL3, it is apparent that

there is an increased HW occurrence in late summer, around August and September. All members of the ensemble agree on this455

trend. However, the magnitude and timing of the adjustment varies. The highest HW probabilities are projected by EC-EARTH

and HadGEM2-ES. Some ensemble members even depict a decrease in the occurrence of large HW in early summer in GWL2

(May to June). An intensified HW season especially in late summer, is consistent with the annual cycle of temperature increase

discussed above.

Analysis of both regional and seasonal patterns supports that HW frequency is closely linked to the future temperature460

increase, for which a similar spatial pattern and annual cycle of the change signal was found. However, it should be noted,

that while the average temperature increases by only 2.6 °C from the reference period to GWL3 (Sec. 4), this translates into an

enormous increases of HW frequency of more than factor three. This amplified increase of HW frequency is attributed mainly

to a higher change of higher percentiles compared to the increase in mean temperature (Sec. 4). Furthermore, more persistent

weather patterns potentially enhance the severity of HWs in a future climate (Kyselỳ, 2008).465

In summary, future HWs are characterised by significantly higher temperatures and longer HW duration. Thus, the magni-

tude of HWs increases dramatically in a warmer future, namely by 26 % (100 %) in GWL2 (GWL3). Furthermore, enhanced

variability is projected for the HW characteristics. While the increase of HW days is spatially largely homogeneous, there is

clear seasonality, with a strong increase in HW occurrence in late summer.
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Figure 10. Ensemble median of number of days per year with strong human heat stress defined by UTCI > 32 ◦C for 1971-2000 (a), GWL2

(b), and GWL3 (c).

6 Impacts of temperature and heat increase470

The meteorological perspective leaves open the question of the impacts of heat extremes, which will be addressed in the fol-

lowing section. The focus is first on human heat stress, then the analysis is extended to further heat-related climate parameters.

Human heat stress The number of days with UTCI > 32 ◦C are defined as days with strong human heat stress. As outlined

in methods, UTCI is derived from hourly data. Due to missing gridded hourly observations, it was not subjected to bias

correction. As a consequence, there is a larger ensemble spread in the UTCI. Whereas three ensemble members agree on similar475

range, the simulation of HadGEM2-ES simulates significantly higher numbers of HW days correlated with higher uncorrected

summer temperature and seems to be an outlier. There is good agreement between three of the four ensemble members,

showing a similar range of UTCI over the reference period 1971-2000. The simulation driven by HadGEM2-ES results in a

significantly higher number of days with UTCI > 32 ◦C. We attribute this difference mainly to higher summer temperatures in

this simulation, which unlike the previous analysis of daily data, was not subject to bias correction. To minimize the influence of480

possible outliers, we consider the ensemble median in the following analysis. Therefore the median of the ensemble for every

grid point The spatial distribution is displayed in Fig. 10. In the reference period hardly any days per year with strong heat

stress are found. The range over the evaluation period is 0.0 to 0.6 days per year (5 to 95 % confidence interval). A maximum

number of up to 2.0 days per year averaged over the reference period in flat regions is visible in the ensemble.

The average number of days with strong heat stress rises in the future GWL2 all over the domain – inon average by 0.6485

days per year – but with notable spatial differences. Again highest numbers of heat stress days are in the flat Rhine Valley

with up to 5.1 days per year (Fig. 11a). Moreover, this region shows the strongest increase from reference to GWL2 which is

inon average 1.8 days per year. For GWL3, this pattern intensifies with an non-linear, rather exponential increase with global

warming (Fig. 11a). Up to 10.7 days per year with strong heat stress are projected in the hottest region. Also in regions with
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Figure 11. Ensemble median of UTCI and climate parameters over global warming. The global warming level of the reference period is

assumed to be 0.46 K based on Teichmann et al. (2018). The empty box plot visualizes the distribution over the evaluation area, striped boxes

represent results in the Black Forest, and dotted in the Rhine valley.

higher elevation, there is a significant increase of future heat exposure, inon average 2.3 days are for example expected in the490

Black Forest by GWL3. For comparison, this exceeds the heat stress that prevailed in the mild, flat Rhine Valley during the

reference period.

User-tailored climate parameters The analysis of the six tailored climate parameters shows how changing temperature

affects further fields of action (Fig. 11b-g). To visualize regional effects, results of two German landscape regions are added

to the graph in addition to the entire the evaluation area: the flat and warmest region of the model domain, the Rhine Valley495
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(dotted boxes) and as counterpart, striped boxes show the Black Forest region, which is geographically directly adjacent to the

Rhine Valley and, as a low mountain range, has a high altitude and complex orography (cf. Fig. 1).

Most drastic changes of the mean values are projected for very hot days, tropical nights and dry hot summers (Fig. 11b, c,

d). In addition, for very hot days and tropical nights a non-linear, rather exponential increase with global warming is projected.

This coincides with a significant increase of variance. The behavior of very hot days and tropical nights is comparable to500

UTCI (Fig. 11a), implying that this amplified, non-linear increase might be preferentially associated with strong heat stress.

The pattern is observed for all shown landscape regions. Differences appear in the absolute values: Heat stress is especially

pronounced in the Rhine Valley at low altitude where it exceeds the values in the adjacent Black Forest by a factor of 3.7 (very

hot days) or 2.8 (tropical nights) in GWL3.

An about mean linear increase with global warming is visible for dry hot summers and growing days (Fig. 11d and e).505

Growing days are expected to increase inon average by 39 (evaluation area), 40 (Black Forest), 37 (Rhine Valley) days from

reference to GWL3, indicating that dependency of the change signal on the region is negligible. Existing regional patterns and

variability within a landscape region appear to be preserved in a warmer climate and mean values are subjected to a shift only.

The probability of dry hot summers increases approximately linear as well, accompanied by increasing spatial variance.

Here, largest increase is observed in the Black Forest, the smallest in the Rhine Valley. Overall, the probability of a dry510

hot summer increases drastically: From the reference to GWL3, the projected mean increase corresponds to a factor of 4

(Evaluation area and Black Forest) or 3.2 (Rhine Valley).

The two remaining parameters are examples designed for specialized applications in individual, often region-specific chal-

lenges – here walking weather for tourism strategy (Fig. 11f) or pests e.g. drosophila suzukii for agricultural planning (Fig. 11g).

Using days with walking weather as an example, their number increases in the Black Forest and the variability decreases. The515

trend in the Rhine Valley is opposite, a decreasing number of days with walking weather with increasing variance. Hence in

GWL3, relatively similar numbers of days are to be expected in the two contrasting regions. Also for days with conditions for

drosophila suzukii, no common trend can be identified and the examples show a climate change signal that depends crucially

on local conditions. Such behaviour is mainly attributed to the more complex definition of the parameters with an upper and a

lower limit. The evaluations indicate that the more complex the parameter – or the underlying challenge in climate adaptation520

– the more important the regional consideration becomes.

We conclude that the changes regarding UTCI and user-tailored climate parameters do not necessarily scale linearly with

global warming. An over-proportional increase of the climate parameter with global warming is preferably the case for param-

eters that describe strong heat stress. Moreover, the change signal of climate parameters depends crucially on the landscape

region. In particular for parameters describing strong heat stress, the absolute change signal is highest in flat regions that are525

already exposed to the greatest heat today. For specialized applications, parametrized over more complex climate parameters,

region-specific trends are expected.
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7 Discussion and conclusion

In the presented analysis of heat extremes and related impacts in a convection permitting climate ensemble for Germany, we

could draw three main conclusions:530

1. We found an added value for simulated temperature in the convection permitting ensemble, especially for hot tempera-

tures, that goes beyond better representation of the topography only. The improvement is particularly prominent in the

summer half-year.

2. Mean temperature in the warm season in Germany increases largely homogeneous in space. An increase in temperature

variability is found in future projections, which favors the development of longer and hotter HWs, especially in late535

summer. Heat wave magnitude is expected to increase by 26 % (100 %) in GWL2 (GWL3).

3. The changes in human heat stress (UTCI) and tailored climate parameters show a clear dependence on the major land-

scapes. Heat stress is particularly prominent for low land areas like the Rhine Valley. An over-proportional increase of

parameters associated with strong heat stress is found. For the change signal of more complex tailored climate parame-

ters, linear behaviour and/or strong dependency on the landscape can be identified.540

Our results show an improved representation of 2 m-temperature for CPM due to a reduced cold bias in CCLM. The improved

results cannot be attributed solely to the temperature’s altitude dependence, which is better represented by higher resolution of

orography. This confirms the findings by Hackenbruch et al. (2016), Hohenegger et al. (2008), and Laube (2019). Moreover,

the results show that the improvement is largest in the summer (smaller cold bias). Our results show an improved representation

of the 2 m-temperature in the CP raw model output compared to the coarser 7 km grid with parametrized convection. The545

improvement found is largest in the summer, where the cold bias in the coarser simulation was substantially reduced. This

applies to both the median temperature and the more extreme percentiles (10th and 90th) of the temperature distribution over

the model domain in the historical period. The found improvement of the temperature output on the convection permitting

scale, confirms the findings by Hackenbruch et al. (2016), Hohenegger et al. (2008), and Laube (2019). However, recent

studies have shown that this temperature bias, especially in daily minimum and maximum, can still be addressed in CCLM550

with an improved formulation of the 2 m temperature in the land surface scheme (Schulz and Vogel, 2020). Moreover, it needs

to be clarified whether the improved temperature output in convection permitting simulation justifies the higher computational

cost for high-resolution simulations. While systematic biases between raw model temperature output and observations remain

in our CPM ensemble, we show a clear benefit from a relatively large simulation area across different landscapes. We find a

dependency of the remaining error on the landscape type and an association with orography – especially in transition areas555

between different major landscape types. Therefore we support a region-specific magnitude of the added value as in Soares

et al. (2022). In general, climate change studies focusing on high temperatures and the effects of increasing heat stress are

expected to benefit from the better representation of high temperatures and the associated lower impact of bias correction. In

order to provide information for climate change impact studies or user-oriented studies, in this case focusing on heat stress,

there is still a need for bias correction. Especially for threshold-based parameters, bias correction is a necessity to obtain560
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meaningful values. Nevertheless, we expect that such studies will benefit from the better representation of high temperatures

on the convection permitting scale due to the smaller impact of bias correction and thus a smaller source of error.

The analysis allows for the first time a very high resolution projection of temperature and temperature extremes over Ger-

many in a 2 and 3 degree warmer world. The regional, high resolution analysis confirms general warming over the whole region

and a slightly higher change signal in mountainous regions. As in Vautard et al. (2014), the smallest temperature increase was565

found in spring. Indeed, the peak of summer temperatures in a warmer climate shifts to later in the summer. Moreover, the

analysis confirms a wider distribution of temperature with global warming, implying a greater change of extreme temperature

compared to the average warming in the future (e.g. Mearns et al. (1984); Schär et al. (2004); Giorgi et al. (2004); Kjellström

et al. (2007); Vidale et al. (2007); IPCC (2021)). Our study shows, that HW probability is expected to increase significantly

over Germany and especially in late summer large HWs are anticipated. HW severity is projected to rise dramatically, indicated570

by a 26 % (100 %) percent increase from 1971-2000 to a 2◦ (3◦) warmer world. Increasing variability in HW characteristics

is projected for the future. This is consistent with past trends of HW temperature and duration derived from observational data

(Della-Marta et al., 2007). Our study thus suggests that the trend is likely to continue in the future.

Apart from meteorological insights, a closer look at human heat stress and other tailored climate parameters shows the

potential of using convection permitting simulations in different fields of application and highlights the importance of individual575

consideration. Strong human heat stress – parameterized via UTCI>32° as well as associated with very hot days or tropical

nights – is prevalent in the flat regions such as the Rhine Valley. Moreover, the largest absolute increase is expected for these

regions, comparable to Brecht et al. (2020). The change signal of tailored climate parameters does not always scale linearly

with global warming – as is the case for the relative quantity dry hot summers or growing days, a quantity that targets for

moderate conditions. Especially for extreme heat stress (UTCI>32°, very hot days, or tropical nights) we see a non-linear580

but rather exponential increase with global warming. In particular for specialized applications – expressed e.g. over more

complex climate parameters – behaviour depends crucially on the prevailing landscape and might even lead to opposing trends.

Therefore, the analysis supports previous results of spatial patterns (Schipper et al., 2019; Brecht et al., 2020) and shows the

benefit of CPM, which allows the representation of distinct characteristics in clearly defined areas.

Limitations of the study are that the assessment of uncertainty is restricted with four GCMs and only one RCM. However,585

the magnitude of the uncertainty associated with the RCM choice is typically smaller than from the large-scale GCM forcing

(Kjellström et al., 2011). In the future, larger ensembles on the convection permitting scales are expected to be available,

enabling assessment of GCM- and RCM-uncertainty. Currently, ongoing downscaling of the CMIP6 GCMs are is a promising

source of future driving data for high-resolution climate simulations. In particular, the improved representation of northern

hemisphere blocking in the new generation of climate models (Schiemann et al., 2020) will necessitate additional analysis590

of HWs and is anticipated to provide complementary insights to the results shown. Moreover, long convection permitting

projections would profit from the implementation of variable land surface characteristics over time, as e.g. recently provided

by FPS-LUCAS (Hoffmann et al., 2021). Moving from constant to variable input fields could yield valuable information for

heat stress in impact studies. Especially for climate adaptation studies, development is still anticipated for urban areas and the
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evaluation of according urban parametrization schemes. Since no parametrization is used in this study, further improvements595

for urban areas are to be expected (e.g. Trusilova et al., 2016; Daniel et al., 2019).

Heat extremes and related impacts derived from a convection permitting ensemble document that the climate change signal

depends on major landscape regions. Therefore, such convection permitting projections have the potential to facilitate tailored

impact studies and can help to narrow down the gap between climate research and the requirements of stakeholders e.g. for

sustainable risk management and climate adaptation. This presented finding stresses the need of climate adaptation strategies600

on a local level and supports the regional approach in climate adaptation research e.g. in the BMBF RegIKlim project: basic

research is done in a pilot region, concentrating on region-specific key issues to develop, evaluate, communicate, and test the

implementation of adaptation strategies with the aim of an up-scaling in the concerning region in the future.
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