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Abstract. The shallow waters off the coast of Norderney in the southern North Sea are characterised by a higher frequency
of rogue wave occurrences than expected. Here, rogue waves refer to waves exceeding twice the significant wave height. The
role of nonlinear processes for the generation of rogue waves at this location is currently unclear. Within the framework of
the Korteweg—de Vries (KdV) equation, we investigated the discrete soliton spectra of measured time series at Norderney
to determine differences between time series with and without rogue waves. For this purpose, we applied a nonlinear Fourier
transform for the Korteweg—de Vries equation with vanishing boundary conditions (vKdV-NLFT). At measurement sites where
the propagation of waves can be described by the KdV equation, the solitons in the discrete nonlinear vKdV-NLFT spectrum
correspond to physical solitons. We do not know whether this is the case at the considered measurement site. In this paper,
we use the nonlinear spectrum to classify rogue and non-rogue time series. That is, we investigate if the discrete nonlinear
spectra of measured time series with visible rogue waves differ from those without rogue waves. Whether or not the discrete
part of the nonlinear spectrum corresponds to solitons with respect to the conditions at the measurement site is not relevant
in this case because we are not concerned with the question how these spectra change during propagation. For each time
series containing a rogue wave, we were able to identify at least one soliton in the nonlinear spectrum that contributed to the
occurrence of the rogue wave in that time series. The amplitudes of these solitons were found to be smaller than the crest height
of the corresponding rogue wave and interaction with the continuous wave spectrum is needed to fully explain the observed
rogue wave. Time series with and without rogue waves showed different characteristic soliton spectra. In most of the spectra
calculated from rogue wave time series, most of the solitons clustered around similar heights, while the largest soliton was
outstanding with an amplitude significantly larger than all other solitons. The presence of a clearly outstanding soliton in the
spectrum was found to be an indicator pointing towards enhanced probability for the occurrence of a rogue wave in the time
series. Similarly, when the discrete spectrum appears as a cluster of solitons without the presence of a clearly outstanding
soliton, the presence of a rogue wave in the observed time series is unlikely. These results suggest that selitenssoliton-like and

nonlinear processes substantially contribute to the enhanced occurrence of rogue waves off Norderney.
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1 Introduction

Rogue waves are commonly defined as individual waves exceeding twice the significant wave height, that is the average
height of the highest third of waves in a record. The occurrence of a rogue wave is a rare incident in the framework of a
second-order process (Haver and Andersen, 2000). Due to their exceptional height and unexpected nature, they pose a threat
to ships and offshore platforms (Bitner-Gregersen and Gramstad, 2016). Rogue waves have not only been observed in the
deep and shallow water depths of the ocean, but also approaching coastlines (Didenkulova, 2020). There has been a lively
discussion on whether the occurrence frequency of rogue waves in the open ocean is well described by common wave height
distributions. Both Rayleigh (Longuet-Higgins, 1952) and Weibull distributions (Forristall, 1978), which are based on the
linear superposition of wave components, have been used to describe the distributions of wave and crest heights. Later theories
include second-order steepness contributions in wave height distributions (e.g., Tayfun and Fedele, 2007). Distributions were
assessed for measurement data collected by surface-following buoys (e.g., Baschek and Imai, 2011; Pinho et al., 2004; Cattrell
et al., 2018), by radar devices (e.g., Olagnon and v. Iseghem, 2000; Christou and Ewans, 2014; Karmpadakis et al., 2020), and
laser altimeters (e.g., Soares et al., 2003; Stansell, 2004), as well as by acoustic Doppler current profilers (ADCPs) (Fedele

et al., 2019). Independent of the measurement device, some authors found measured wave heights to agree well with the
established distributions (e.g., Casas-Prat et al., 2009; Waseda et al., 2011; Christou and Ewans, 2014), while others found
the frequency of rogue wave occurrences overestimated (e.g. Olagnon and v. Iseghem, 2000; Baschek and Imai, 2011; Orzech
and Wang, 2020) or underestimated (e.g. Stansell, 2004; Pinho et al., 2004). Numerous authors describe local differences
in rogue wave occurrence frequency between their measurement stations (Baschek and Imai, 2011), depending on the wave
climate (Stansell, 2004) and especially in coastal waters, where waves interact with the seabed (Cattrell et al., 2018; Orzech
and Wang, 2020). Massel (2017) stated that the wave height distribution is dependent on the water depth, which, however, is
not explicitly included in the common models. Karmpadakis et al. (2020) found that while different models can describe wave
height distributions well within narrow ranges of sea state conditions, no model is able to describe measured wave heights for
a wide range of sea states accurately. Mendes and Scotti (2021) recently introduced a new exceedance probability distribution
for rogue waves by geometrically combining some commonly used distributions. The combined distribution is more flexible
than the individual distributions, as it is additionally dependent on sea state variables. The distribution is capable of describing
rogue waves in a wide range of sea states and able to describe the uneven rogue wave distributions in storms that were observed
by Stansell (2004).

In a previous study, we have analysed measurement data from various stations in the southern North Sea (Teutsch et al., 2020)
and found rogue wave occurrence frequencies to vary spatially and by measurement device. For data obtained from wave
buoy measurements, we generally found rogue wave frequencies slightly overestimated by the Forristall distribution, which
is a special form of the Weibull distribution, fit to wave data recorded during hurricanes (Forristall, 1978). An exception was
one measurement buoy, which was located in the shallow waters off the coast of the island Norderney, Germany (Fig. 1). For
this buoy, enhanced rogue wave occurrence was observed, which could not be explained by the Forristall distribution. This

suggests that nonlinear processes and interactions may play a role in increasing the rogue wave occurrence frequency at this
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specific location. In order to understand the impact of nonlinear processes at this location better, we analyse surface elevation

time series from this location using a so-called nonlinear Fourier transform® (NLFT) (Ablowitz et al., 1974; Osborne, 2010).

There exist different NLFTs for different wave evolution equations and boundary conditions. Before the contributions of our

work are detailed, we therefore first discuss the most common NLFTs and their use in connection with rogue waves.
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Figure 1. Map of the German Bight, showing the location of the measurement buoy close to the island Norderney.

So far, the nonlinear behaviour of deep-water rogue waves has received considerably more attention than that of shallow-
water rogue waves. The evolution of the complex envelope of unidirectional wave trains in deep water can be described by

the cubic nonlinear Schroedinger (NLS) equation (Onerate-et-al-2001:Shinyaev,2005)(Zakharov, 1968; Whitham, 1974). The NLS

equation is a weakly nonlinear, narrow-banded approximation of the fully nonlinear water wave equations-including both-nonlin-

earity-and-dispersion-(Serio-et-al-2006)(ibid.) that can be solved exactly using an appropriate NLFT (Zakharov and Shabat, 1972). In

deep water, rogue-wave occurrence beyond the second-order model has been explained, for example, by a nonlinear instability

that was also found in numerical simulations and tank experimentsDysthe-et-al-2008). See, e.g., Dysthe et al. (2008) and the

“>Nonlinear Fourier transforms are also known as scattering transforms in the literature.
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references therein. Here, uniform wave trains are modulationally unstable to small side-band perturbations and disintegrate

into groups, in which the highest wave becomes significantly larger than the wave height in the original train (Benjamin and

Feir, 1967). The instability is therefore also known as modulational instability. Thisnenlinearfoeusing mechanism-doesnot-only-increase

07)-The NLS equation has seme-exact

solutions ¢-known as breathers¢- that s-have been suggested as an analytical

model of rogue waves in a unidirectional case (Dysthe and Trulsen, 1999). Here a-uniform wave train-develops-into-a-number-of breathers;

bility-growth for-a-speeifie-initial perturbation.Just like rogue waves, breathers seem to "appear from nowhere and disappear without a

trace" (Akhmediev et al., 2009). This impressive effect was demonstrated experimentally by Chabchoub et al. (2011). Slunyaev

and Shrira (2013) investigated the behaviour of breathers beyond the NLS equation numerically, using the full two-dimensional

Euler equations. Breather solutions are known to occur after the modulational instability has been triggered for randomly per-

turbed plane waves (e.g., Soto-Crespo et al., 2016; Randoux et al., 2016; Grinevich and Santini, 2018). Furthermore, it was

found that random sea states can lead to similar results (Onorato at el., 2001; Onorato et al., 2006). The relevance of the mod-

ulational instability for the formation of oceanic rogue waves however has been doubted based on the analysis of real-world

events (Fedele et al., 2016). The recent review Dudley et al. (2019) discusses these and many other works in this area.

The form of the NLFT for the NLS equation (NLS-NLFT) depends on the boundary conditions. Initially, the NLS-NLFT was

developed for vanishing boundary conditions, where localised wave packets with sufficient decay are considered (Zakharov

and Shabat, 1972). The NLS-NLFT for vanishing boundary conditions decomposes a wave packet into solitons and a radiative

part (Ablowitz and Segur, 1981). An NLS-NLFT for periodic boundary conditions was developed by Its and Kotlyarov (1976)

(Kotlyarov and Its, 2014, for English translation). The periodic NLS-NLFT instead represents a periodic wave using Riemann

theta functions. This representation can be interpreted as nonlinearly interacting stable modes (i.e., Stokes waves) and unstable

modes (Osborne, 2010). Special solutions of the NLS equation such as solitons and breathers have distinctive representations

in both nonlinear Fourier domains (ibid.). The periodic NLS-NLFT therefore has been used to analyse rogue wave data by

various authors. Osborne et al. (2000) proposed to interpret unstable modes in the nonlinear Fourier spectrum as (potentially

small) rogue wave components (also see Osborne, 2010). A recent study of a real storm using this approach was presented

in Osborne et al. (2019). Islas and Schober (2005) observed with the help of the periodic NLS-NLFT that rogue waves in

random JONSWAP data are close to homoclinic solutions of the NLS equation (also see Calini and Schober, 2017). Randoux

at al. (2016) proposed to classify rogue waves based on the periodic NLS-NLFT of their local periodisation and applied this

technique to rogue waves formed in simulations of a dam break and the modulational instability. In Randoux et al. (2018),

this technique was applied to experimental data of Peregine breathers. Onorato et al. (2021) applied it to a giant wave packet

measured in the ocean.
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vanishing NLS-NLFT, which detects envelope solitons and radiation in deep-water wave packets, has been applied to rogue

waves as well. As pointed out by Slunyaev (2006), the vanishing NLS-NLFT is easier to compute and interpret. Furthermore,

breather solutions typically consist of one or more solitons that interact with a periodic background (ibid.). In Slunyaev (2006),

the NLS-NLFT was used to detect envelope solitons for a measured rogue wave and estimate their parameters like amplitude,

velocity and position. Slunyaev (2018) estimated the accuracy of this procedure for strongly nonlinear waves. The NLFT
was applied to the interpretation of deep-water waves, the extraction of soliton-like groups and the prediction of their further
dynamics. Carrying this work further, Slunyaev (2021) identified a wave group in numerical simulations as a stable envelope

soliton, which could be related to rogue wave events. Next to the periodic NLS-NLFT, Onorato et al. (2021) also applied the

vanishing NLS-NLFT to the giant wave packet. One

The role of nonlinear processes with respect to rogue wave generation in shallow water has received considerably less attention

than for deep water. Shallow-water wind waves substantially differ from deep-water wind waves and it is not appropriate to

simply scale the deep-water nonlinear interaction to shallow-water waves (Janssen and Onorato, 2007). Shallow-water in-thecontext

2629).As the water depth becomes more and more shallow, a wave-induced current develops and less wave energy is available

for nonlinear focusing (Benjamin and Feir, 1967; Janssen and Onorato, 2007). Although waves in shallow water can also
destabilise due to oblique perturbations (Toffoli et al., 2013), the modulational instability in shallow water does not enhance
the formation of extreme waves (Fernandez et al., 2014). Didenkulova et al. (2013) supported by observations that the influence
of the modulational instability on rogue wave generation becomes less probable in shallow water. Fedele et al. (2019) stated
that waves in shallow water break before they can start to “breathe” and become rogue waves. Already Glukhovskiy (1966)

expected high individual waves in shallow water to occur less frequently than predicted by the Rayleigh distribution, due to
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depth-induced wave breaking. Therefore, some authors expect the rogue wave probability to decrease in shallow water (e.g.,
Slunyaev et al., 2016). Other authors referred to the large ratio between nonlinearity and dispersion in shallow water (Kharif
and Pelinovsky, 2003) and concluded that Gaussian statistics are not sufficient for the description of shallow-water waves and
that rogue waves are likely to occur more frequently as the water depth decreases (Garett and Gemmrich, 2009; Sergeeva et al.,
2011). The nonlinear processes in shallow water are mainly a result of the interaction of waves with the sea floor (Prevosto,
1998). Refraction, shoaling and higher-order nonlinear effects change the shapes of waves and their energy spectrum (Bitner,
1980; Tayfun, 2008). Soomere (2010) found that in shallow water, compared to deep water, due to wave-bathymetry interaction,
additional processes associated with the generation of extreme waves, like wave amplification along certain coastal profiles,
redirection of waves or the formation of crossing seas, are relevant, and therefore more rogue waves should be expected in
nearshore regions.

In shallow water, the wave evolution is described by the Korteweg—de Vries (KdV) equation (Korteweg and de Vries, 1895). It
describes weakly nonlinear and dispersive progressive unidirectional free-surface waves in shallow water with constant depth

(Peregrine,1983)(Whitham, 1977).-Sh

.Osborne and Petti (1994) point out that kh, with k£ and i denoting

wave number and water depth, respectively, should not be much larger than one for the KdV equation because of how the

dispersion relation is approximated. The threshold £/ < 1.36 marks the point at which the modulational instability disappears

(ibid.). Following Osborne (1995), we use this threshold to define shallow-water conditions in this work. The regular wave

solutions of the KdV are stable, in that the wave amplitude does not alter significantly when the initial wave train is perturbed.

ity. Therefore, the modulational

The KdV equation can again be solved using suitable NLFTs. The NLFT for the KdV equation (KdV-NLFT) with vanishing

boundaries was found by Gardner et al. (1967). Its and Matveev (1975) presented the Riemann theta form of the periodic
KdV-NLFT. As in the NLS case does the vanishing KdV-NLFT decompose a signal into solitons and radiation (Ablowitz and

Segur, 1981), while the periodic KdV-NLFT can be interpreted as a superposition of cnoidal waves plus their nonlinear inter-

actions (Osborne, 2010). While there seems to be no work on applying the KdV-NLFT to rogue waves, it has been exploited

to investigate potentially hidden solitons in shallow water.

Zabusky and Kruskal (1965) discussed, by numerically solving the KdV equation, the decomposition of a cosine signal into
a train of eight solitons. They-fisst documented that the sizeamplitude and shape of solitons remain unaffected by nonlinear

interactions with each other. Hamma
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in-Osborne and Bergamasco (1986) applied

the NLFT forthe KdV-equationperiodic KAV-NLFT and found theresults-ofit could detect the solitons in the numerical experiment
of Zabusky and Kruskal (1965) before they become visible.-en-soli

ions-In Osborne

et al. (1991), they used this method to analyse surface-wave data from the Adriatic Sea. (Osborne-et-als1991)-showedforperiodie

ditions-that-soliton e-hidden-in-measurement-time-series—which n-be-found-b olvine-the Kd\-eg ron-bv-the NLE o e 014
o at-sontons-a aa asy 5 ai-be-touna-by-so d gquation—o —Costaet-a-—2Y

d-Christov (2009) used the periodic
KdV-NLFT to analyse internal waves in the yellow sea. Costa et al. (2014) used the periodic KdV-NLFT to confirm the soliton

content of low-pass filtered time series measured in the Currituck Sound during a storm. Briihl and Oumeraci (2016) and,

independently, Trillo et al. (2016) confirmed in-labe

and-Segur, 1981 Chapter 1-7e)the findings of Osborne and Bergamasco (1986) experimentally. A comprehensive comparison of the

vanishing and periodic NLFT with the conventional Fourier transform for the detection of hidden solitons in bores has been

presented recently by Briihl et al. (2022)..

The nonlinear interaction of solitons in shallow water has been discussed with regard to its role in rogue wave generation.
Based-on-the KdV-NLET,-Pelinovsky et al. (2000) showed that dispersive focusing is possible in-the-nonlinear-casefor the vanishing
KdV equation, but mentioned that "the *nonlinear’ [wave] train should include a soliton" (Pelinovsky-et-al-2000). Equivalently
to the linear case, in which rogue waves evolve from the superposition of wave components, nonlinear focusing is then the
interaction between one or, in principle, multiple solitons with dispersive waves, due to their velocity difference. For the
unidirectional case, several authors (Kharif and Pelinovsky, 2003; Soomere and Engelbrecht, 2005) found that the interaction
of KdV solitons does not lead to a significant increase in surface elevation. Soomere (2010) considered that since soliton
interaction in the unidirectional case does not lead to an enhancement in surface elevation, a higher nonlinearity should even
lead to a decrease in rogue wave occurrence probability. Since this is not consistent with observations, he concluded that
directionality must play a role for the rogue wave generation in shallow water. Indeed, crossing solitons are known to be able

to produce large amplitudes (Peterson et al., 2003).

interacting-In contrast to linear superposition, the interaction of two crossing solitons may produce a crest up to four times higher

than the incoming waves Peterson-etal—+2003)(ibid.).
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SinceAt the moment, rogue wave occurrence in shallow water that-gees-beyond-second-order-has not been sufficiently explained

beyond second order.-and-aAlmost all investigations in previous work are furthermore based on theoretical considerations,

numerical simulations or laboratory experiments;swe-censide

h. In this study, we in-

stead leverage the vanishing KAdV-NLFT to analyse the soliton spectrum of a large number of time series with and without

rogue waves that have been measured off the coast of Norderney in the southern North Sea. For this location, wave height

distributions based on linear superposition have been shown to underestimate rogue wave occurrence (Teutsch et al., 2020).

We apply vKdVv-NLETthe KdV-NLFT for vanishing boundaries (vKdV-NLFT) as a spectral analysis method to explore to what

extent the presence of solitons might contribute to the enhanced rogue wave occurrence off Norderney. For this-purpose, we-compare
the-soliton-spectra-of samples-with-and-samples-without rogue-waves: Following Sugavanam et al. (2019), we use the NLFT only as a signal
processing tool. Our goal is to classify time series by their nonlinear spectra. We do not assume that the nonlinear soliton spectra
remain constant during propagation beyond the measurement site, which would be the case only if the propagation conditions
are well approximated by the KdV equation. The paper is structured as follows. Section 2.1 describes the measurement site
and the dataset and gives a definition for rogue waves. In Sect. 2.2, the application of vKdV-NLFT to the measurement data
is explained. Sect. 3 consists of two parts. In Sect. 3.1, we explore the direct association of solitons calculated from NLFT
with rogue waves, while Sect. 3.2 discusses statistical differences in the soliton spectra of time series with and without rogue
waves. In Sect. 4, we discuss the time windows and location for which our results are valid, and suggest further investigations.

In Sect. 5 our conclusions are presented.

2 Methods
2.1 Measurement site and dataset

We analysed wave elevation data measured by a surface-following buoy off the coast of the island Norderney in the German
Bight in the time period between 2011 and 2016. The measurement buoy was deployed at a nominal water depth of i = 10 m,
which was assumed to be constant for the following analyses. Actually, the water depth off the coast of Norderney is not
constant, as the bathymetry at the location is spatially highly variable with strong gradients (Fig. 2). The bed slope perpendicular
to the wave direction varies between 1:500 (offshore direction) and 1:200 (onshore direction). Since the buoy is restricted only
by its mooring, it has the possibility to move horizontally. The actual water depth i below the horizontally moving buoy may
then be subject to rapid changes. In addition, the tidal range at the site is about 2.5 m (NLWKN, 2021), which further causes
the water depth to vary.
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the German reference height system, and the position of the measurement buoy.
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Figure 3. Mean directional wave spectrum from the time period 2011-2016, obtained by use of DIWASP (Johnson, 2002).

The wave data were measured at a frequency of 1.28 Hz and are available as a set of time series (samples) of 30 minute
length. To exclude low-energy sea states in the following, only samples with a significant wave height H above the long-term
70th percentile of the significant wave height, H, 70 = 1.29 m, were included in the analysis. The significant wave height H
is here defined as the mean of the highest 30 % of the wave heights in a 30 minute sample. H, 7o was calculated from the
significant wave heights H; of all 30 minute samples during the six years of available measurement data. On the one hand, this
excludes possible measurement uncertainties caused by short waves that are only described by a few points, and on the other
hand, it includes only rogue waves of heights relevant for offshore activities. Since the KdV equation for shallow water was
to be applied to the data, only samples satisfying shallow-water conditions in terms of the validity of the KdV equation were
included in the study. The definition of shallow water depths for the applicability of the KdV equation is different from the
commonly used definition of shallow water in the engineering context, kh < 7/10 (Dingemans, 1997). £As explained in the

introduction, the shallow-water condition used in this study was-(Osberne-and-Petti; 1994, p-1731: Osborne, 1995, p-2629)

h
7 <0220rkh <136 (1)

10
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with water depth h and wavelength L. The wavelength was calculated as
L=T,c ©

from the peak period T}, = f, ! of each sample, with f,, the peak frequency in the linear fast Fourier transform (FFT) spectrum
of the sample, and the linear phase speed ¢ = /gh with gravity g. Following Eq. (1) and Eq. (2), the condition for the peak
period may be written as
T, > & (3)
For a water depth of i = 10 m, the peak period thus had to satisfy the condition 7}, > 4.6 s, in order for a sample to classify
for shallow depth conditions, in which the KdV equation is valid. We based the shallow-water condition on the peak period T},
of the entire sample to assume that shallow-water wave properties as described by the KdV equation strongly contribute to the
wave processes in the sample. Nevertheless, it was additionally ensured that each of the individual rogue waves (or the highest
wave in each sample that did not contain a rogue wave) satisfied the depth conditions required for the applicability of the KdV
equation, based on its period T1,,x. Of all the selected samples above H 7¢, the required shallow depth conditions applied in
more than 98 % of the cases and were thus the dominant condition in these samples. The 2 % of the samples not satisfying the
condition of shallow depth were discarded and not considered in the analysis. In the considered samples, kh ranged between

0.38 and 1.36.

Rogue waves are commonly defined as waves with an individual height H from crest to trough of (Haver and Andersen, 2000)

H>2.0 H, “)
and/or waves with a crest height C' above still water level of (Haver and Andersen, 2000)
C >1.25 H,. 5)

In a previous study based on measurement data from the southern North Sea (Teutsch et al., 2020), we found that the rogue
wave frequency significantly deviated from the Forristall distribution for wave heights larger than 2.3 H. Therefore, in the

present study we further define "extreme rogue waves" by a more strict height criterion of
H>23H,. (6)

For the definition of a wave, the zero-upcrossing method was used.

The measured time series were subdivided into five categories:
" " M M
non-rogue samples''- measurement samples that did not include any rogue wave.

""height rogue samples''- measurement samples that include a rogue wave only according to the height criterion defined
in Eq. (4), while excluding the extreme rogue waves according to Eq. (6) and excluding the double rogue samples (see

below).

11



""crest rogue samples''- measurement samples that included a rogue wave only according to the crest criterion defined

in Eq. (5), while excluding the double rogue samples.

"double rogue samples''- measurement samples that included a rogue wave that fulfilled both the criteria defined in

Eq. (4) and Eq. (5) at the same time, while excluding the extreme rogue waves according to Eq. (6).

285 ""extreme rogue samples''- measurement samples that included a rogue wave according to the height criterion defined

in Eq. (6), while excluding the double rogue samples.

Examples of each time series category are shown in Fig. 4. Table 1 shows the number of samples and its percentage in each

category.

12
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Figure 4. 200 s sections taken from example time series illustrating rogue waves for each of the four rogue wave categories, and a non-rogue

sample with a similar value of H; for comparison. Vertical red lines mark the two zero-upcrossings of the rogue wave. Rogue wave/crest

heights are indicated in red/green.
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Table 1. Number of samples and total number of individual waves in the considered time series categories.

Category Non-rogue Height rogue Crestrogue Double rogue Extreme rogue Total
No. of samples 13,984 833 95 151 93 15,156
Total no. of waves 4,759,663 287,617 32,354 52,520 32,117 5,164,271
Sample percentage 923 % 55% 0.6 % 1.0% 0.6 % 100 %

2.2 Application of the Korteweg—de Vries equation with vanishing boundary conditions to the measurement data

AThe vKAV-NLFT was applied to the data, to obtain the discrete soliton spectrum of each time series. The KdV equation
was introduced by Korteweg and de Vries (1895). It describes the evolution of weakly nonlinear and dispersive progressive
unidirectional free-surface waves in shallow water ¢-»-L—1<0.22)with constant depth. For the analysis of space series (fixed at

one point in time), the space-like KdV equation (sKdV) is given e.g. in Osborne (2010)-withreference-to-Korteweg-and-de Vries(1895)
as

Up +C Uy + U Uy + B Ugge =0, (7

in which v = u(z,) is a free-surface space series, developing in space x and time ¢. The subscripts  and ¢ denote partial
derivatives, c is the phase speed in shallow water, o = (3¢)(2h)~! and 3 = (ch?)/6 are constants, depending on the phase
speed c and the water depth h. Equation (7) can be adapted to the analysis of time series (fixed at one point in space, like e.g.

buoy measurements). For the case of a free-surface elevation time series u(xg,t) (see fexe.g. Fig. 5) at base-pointlocation o,

itthe spatial evolution is then described by the time-like KdV equation (tKdV) (Osborne, 1993)

Ug +¢ up+ o wug+ B up =0, ®)

in which ¢ =c¢™1 = (y/gh)™!, o’ = —a (¢?)~! and 8 = —3 (c*)~!. For our application of the KdV-NLFT, we assumed

initial conditions with vanishing boundaries, i.e.

lim w(zo,t)=0 9)

t—+oo

sufficiently fast. Since we were mainly interested in the soliton part of the nonlinear spectrum and solitons are not periodic, we

preferred vanishing ¢-KeV-NLET)to periodic (pKdV-NLET)-boundary conditions.

For

vanishing boundary conditions, the initial wave packet develops into a train of solitons followed by an oscillatory trail that

vanishes over time (e.g., Ablowitz and Segur, 1981). The soliton spectrum therefore completely describes the behaviour of the

wave train in the far field-(Prins-and Wahls;2019). The surface elevation in the far field is then described by

N
u(z,t) ~ ZﬂnsechQ(k:na:—wnt—(bn), (10)

n=1
i.e., as the linear superposition of independent solitons after the oscillatory waves have dampened out, with ,, = 2k2 and

wy, = 4k3
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3);(Ablowitz and Kodama, 1982, Eq. 2.20a). In-the

m- | he nonlinear spectrum of the vKdV-NLFT consists of a

discrete spectrum representing solitons, and a continuous spectrum representing oscillatory waves. We applied the vKdV-NLFT

by using the MATLAB (2019) interface to a development version (commit 681191c¢) of the software library FNFT (Wahls et al.,
2018)development version-(commit 681191e).

Figure 5 shows an example of a measurementmeasured time series, its linear FFT spectrum, the nonlinear continuous spectrum

and the discrete nonlinear soliton spectrum. In this paper, only the discrete soliton spectrum will be discussed further. Each of
the solitons in the discrete spectrum would be a physical soliton if the signal is propagated according to the KdV equation with
vanishing boundary conditions. After sufficiently long propagation, the solitons will separate and their characteristic shapes
become clearly visible. For visualisation of the role of solitons in the time series, the upper plot in Fig. 5 shows the soliton
train that was obtained by nonlinear superposition of the solitons (considering their interactions, but neglecting the continuous
spectrum) using the algorithm from Prins and Wahls (2021). Although the surface elevation-compesing-a soliton does not cross the
still water level, a mathematical definition of the angular frequency can be obtained from the soliton solution of the tKdV
(Briihl et al., 2022, Eq. 12), as

3Ag
Q=2m-F=/ 0. an

Since this equation relates the frequency F' to the amplitude A of the soliton, the frequency sorts the solitons in the spectrum
by their amplitude. Following the convention in Briihl and Oumeraci (2016), the solitons in the discrete spectrum (lower panel

of Fig. 5) are displayed on a negative frequency axis. The vKdV-NLFT was applied to all 15,156 samples listed in Table 1.
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Figure 5. Example of a time series including a rogue wave at approx. 820 s, and its corresponding FFT and NLFT spectra. The nonlinear
spectra were calculated from vKdV-NLFT. The time series with Hyay H; ' = 2.58, Hiax = 7.00 m and H, = 2.71 m, was measured on 17
October 2013, starting at 11:30. The upper panel additionally shows the soliton train, as obtained by nonlinear superposition of the solitons

in the discrete spectrum (Prins and Wahls, 2021). The required soliton phase shifts were computed using the method of Prins and Wahls

(2019). Note that inverting large soliton spectra is numerically difficult (Prins and Wahls, 2021). Therefore, a shortened time series was used

in the upper panel. 16
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2.3 Attribution of solitons to rogue waves

091: Brithl-and-Oumeraci 2016) The present study-supports this finding: solitons were found-in-allsamples—with-and-withoutrosue-waves—The aim of

g 3

the study wasis to explore the role of the individual solitons for the generation of rogue waves. Jn-the-first-part-of the-studys-it-wasinves-

tigated The following procedure was used to check whether individual solitons in the NLFT spectrum could be associated with

the recorded rogue waves. For-this-purpese;First, the KdV-NLFT of the original time series was computed. Then, all free-surface

elevations between the two zero-upcrossings of a rogue wave (or largest wave, for non-rogue samples) were scaled down to
80 % (Fig. 6). The KAV-NLFT was then repeated for the modified time series, which resulted in a new soliton spectrum. It was

monitored which of the solitons had changed in amplitude A (and, therefore, in frequency F'), due to the change in wave height

of the modified rogue wave. These solitons were assumed to have the same position in the time series as the rogue/ maximum

3 Results

Regular and irregular wave trains in very shallow water are known to often contain solitons, even without the presence of

rogue waves (e.g., Osborne et al., 1991; Briihl and Oumeraci, 2016). Our data support this finding: solitons were found in all

samples, with and without rogue waves. In the following, we therefore first investigate whether individual solitons in the NLFT

spectrum can be associated with the recorded rogue waves. Afterwards, we explore whether the soliton spectra calculated from

rogue wave time series show differences when compared to those calculated from non-rogue time series.

3.1 Attribution of solitons to rogue waves

Solitons were attributed to specific rogue waves, following the procedure described in Sect. 2.2. We found in each case that the
amplitude of one large soliton significantly decreased for a reduced rogue wave (or maximum wave) height. Also in the group
of smaller solitons, slight changes in amplitudes were observed. Since for solitons, amplitude A and frequency F are related
according to Eq. (11), the reduction in amplitude corresponded to a simultaneous shift in frequency, which can be seen in the
soliton spectrum (Fig. 6). The reduced solitons can be regarded to be associated with the rogue wave in the time series, while
the other solitons in the spectrum maintained their amplitudes. The solitons with constant amplitudes can be regarded not to
be associated with the rogue wave. We refer to the amplitudes of the [ = 1...n solitons associated with the rogue wave as A%,
with A} denoting the largest attributed soliton. Although often the case, the largest soliton attributed to the rogue wave was

not necessarily the largest soliton in the spectrum (Fig. 7).
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Figure 6. From top to bottom: (a) extreme rogue wave time series frqg 17 October 2013, starting at 11:30; (b) magnified view of the rogue
wave (blue curve) and reduction of its elevation to 80 % (red curve); (c) soliton spectra of the original (blue circles) and the modified time

series (red triangles), resulting from vKdV-NLFT.
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Figure 7. From top to bottom: (a) double rogue wave time series from 27 April 2016, starting at 20:30; (b) magnified view of the rogue wave
(blue curve) and reduction of its elevation to 80 % (red curve); (c) s(l‘l?ton spectra of the original (blue circles) and the modified time series

(red triangles), resulting from vKdV-NLFT.
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We extracted the amplitude of the largest attributed soliton A} for each time series and compared it to the rogue wave height
H (for rogue waves according to any of the two height criteria, including double rogue waves, Fig. 8(a)) or the crest height C
of the rogue wave (for rogue waves according to the crest criterion, including double rogue waves, Fig. 8(b)). A comparison
of the soliton amplitude AY, to the largest wave height Hy,,x and the largest crest height Cyyax in non-rogue samples has been
added for reference (Fig. 8(c) and (d)). The slopes of the linear regression curves express increasing A} with increasing H or
Hmax and C or Cyax. For the analysed samples, the scatter of the data suggests an upper limit of A} between 2 m and 3 m.
The goodness of fit of each curve to the data is given in terms of the coefficient of determination

S Sres
R2 _ res ’
SStotal

(12)

in which S5 is the sum of squares of residuals with respect to the regression curve, and S.Siota) i the sum of squared
residuals with respect to the average value of the data and thus a measure of the variance. R? indicates that the linear curves
fit the results from height and extreme rogue wave samples better than the results from non-rogue, double and crest rogue
samples. R? is higher in Fig. 8(a) than in Fig. 8(b)-(d).

Moreover, it is seen that the amplitude of the largest soliton is always smaller than the rogue wave crest/ height itself. This
is in agreement with results by Osborne et al. (1991), who identified solitons in measurement data from the Adriatic sea by
applying the NLFT with quasi-periodic boundary conditions to the KdV equation. Our investigation revealed that in all cases
some smaller solitons were additionally associated with a rogue wave. Typical values of the amplitude of the second-largest

soliton A% are 20-30 % of A%. The amplitude of the third-largest attributed soliton A% is typically 10-20 % of A§.
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So far, the results show that high soliton amplitudes in the spectrum are associated with high absolute values of wave heights
or crests. However, this does not necessarily imply that high solitons play a role in forming individual waves that are exceptional
with respect to the surrounding wave field. To be able to compare different measurement samples, the soliton amplitudes A§
were normalised by the significant wave height H of the corresponding sample. By relating the normalised soliton amplitudes
to the different time series categories, the importance of solitons for the relative height of rogue or maximum waves was inves-
tigated (Fig. 9). If solitons are to play a major role for the presence of rogue waves, their normalised amplitudes are expected
to increase from non-rogue samples with H (H,)~! < 2.0 through height and double rogue waves (2.0 < H (H,)~! < 2.3) to
extreme rogue waves (H (H;)~! > 2.3). In fact, the median values of A} (H;)~! are higher for rogue wave samples than for
non-rogue samples, meaning the distributions calculated from the rogue wave samples are shifted towards higher normalised
soliton amplitudes with respect to the distribution calculated from non-rogue samples (Fig. 9). Additionally, the rogue wave
sample distributions, and especially those calculated from crest and extreme rogue samples, show heavier tails. The differences
in the distributions suggest that solitons play a role in rogue wave generation. It is striking that not only extreme rogue waves,
but also crest rogue waves had a tendency to be associated with higher solitons. This makes sense when recalling that a soliton
is not an oscillating wave and because of its shape contributes more to wave crests than to wave heights. However, although
differences in normalised soliton amplitudes A% (H,) ™! are present for the different categories, the distributions overlap and
the positive trend with increasing relative wave height is not as pronounced as the positive trend of A} with increasing maxi-
mum wave height, as presented in Fig. 8. This emphasises the relevance of the considered sea state for the soliton amplitude,
in that large solitons are only found in high sea states. Large solitons correspond to high wave heights H and high crest heights

C, but not necessarily to high relative wave heights H (H,) ! or high relative crest heights C' (H,) ™.
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Figure 9. Amplitude of the highest soliton attributed to the rogue wave or maximum wave in the time series, normalised by the significant
wave height, for the different categories of time series. Distributions are shown as box-and-whisker plots (box: interquartile range; whiskers:

1.5 times the interquartile range; horizontal line inside the box: median; red crosses: data outside the whiskers).

Since we were interested in the importance of nonlinear processes in the rogue wave generation at the buoy location, we
intended to quantify the nonlinearity of the rogue waves. In shallow water, the nonlinearity of waves can be described by the
Ursell number (Ursell, 1953). Diff iti S

[, HL?> _ 16 1-21.2
Ur="5—=782k%

with-J{the complete-elliptic integral-of the firstkind;-and the- modulus k-According to Osborne (2010, Eq. (10.151) and Eq. (10.154)), the

Ursell number in its time-like form is given by

OnsS-o he e number-exi A _common-defin 11on-1 Dean nd-D rvmple 00 E 0
S S tHRO St d S an-and HTY 5 Er 0

Ur

g (HL2) - i) (13)

T 3272\ 3 o2
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with the modulus m. ¢!

classify wave types. In Briihl (2014), solitary-like waves are defined by a modulus of m > 0.99. According to this classification

and by applying Eq. (14), Ursell numbers Ur > 0.559 are obtained for solitary-like waves. Waves with Ur < 0.559 are classified
as oscillatory waves.

According to Eq. (14), the Ursell number is defined either by the modulus m or by height H and wavelength L of a single wave
oscillation over depth h. Thus, we can calculate the Ursell number for the identified rogue waves using the H and L obtained
by zero-upcrossing. In our case, the amplitudes of the largest attributed solitons show an almost linear positive trend with
increasing Ursell number up until approximately Ur = 0.5 (Fig. 10). For our data, in which the bulk of waves are located below
Ur = 0.559, this means that most rogue waves are not classified as solitons. This is in agreement with several previous studies,
which have shown that rogue waves in shallow water, despite their large amplitudes, have very small ratios of nonlinearity
to dispersion (Ursell numbers), thus are almost linear (Pelinovsky et al., 2000; Kharif and Pelinovsky, 2003; Pelinovsky and
Sergeeva, 2006). Another observation made from Fig. 10 is an upper limit in soliton amplitude between A} =2.0 m and
AL = 2.8 m, depending on the time series category, for Ursell numbers larger than approximately Ur = 0.5. Referring to the
classification given above, this implies that for the most nonlinear waves, which are those satisfying solitary wave theory,
soliton amplitudes are limited. A limit in soliton height as a result of breaking is expected at amplitudes of approximately
A =8 m for a water depth of h =10 m, as the breaking criterion for solitary waves is A h=! = 0.78 (McCowan, 1891) or
A h~! =0.83 (Lenau, 1966). Therefore, shallow-water wave breaking at the location of the buoy can be excluded. The reason
for the limit in soliton amplitude already at AL = 2.5 m to A} = 3 m could be limited energy input by wind (see Middleton
and Mellen (1985) for soliton generation by wind), or a shoal in front of the measurement buoy causing the larger waves to

break before they reach the buoy.

“I Different definitions of the Ursell number exist. A common definition is (Dean and Dalrymple, 1991, Eq. (11.109))

HL?> 16
U= = —K?%k?, 14
1= 73 3 (14)
with K the complete elliptic integral of the first kind, and the modulus k. Comparison of Eq. (13) and Eq. (14) shows the Ursell numbers to differ by a

factor of 3/(3272). The moduli in Eq. (13) and Eq. (14) are related by m = k2. Thus, different Ursell number definitions will yield different thresholds for

the separation of wave theories. In this study, we use the definition given in Eq. (13) and adjust the cited threshold values accordingly. (For consistency with

Eq. (14), the wave amplitude a in the original equation of Osborne (2010) has been replaced by the wave height a = H/2.)
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Figure 10. Upper panel: amplitude of the highest soliton attributed to the maximum wave in the time series as a function of the Ursell number
of the maximum wave in the time series. Lower panel: amplitude of the highest soliton attributed to the rogue wave as a function of the Ursell

number of this rogue wave.

3.2 Soliton spectra for time series with and without rogue waves

When investigating the attribution of solitons to rogue waves in Sect. 3.1, we found in the majority of cases that the largest
soliton in the nonlinear spectrum could be attributed to the rogue wave. In addition, this soliton was often outstanding from the
other solitons in the spectrum, with a much larger amplitude than the remaining solitons in the spectrum (see the example in
Fig. 6). We were therefore interested in whether the existence of an outstanding soliton in the nonlinear spectrum was typical
for rogue wave samples off Norderney. We investigated this question statistically by comparing soliton spectra, calculated
from vKdV-NLFT, for non-rogue samples and the four different categories of rogue wave samples. In fact, while all 15.156
considered time series yielded discrete spectra with a large number of solitons, we identified two characteristic classes of

soliton spectra. The typical appearance of a soliton spectrum calculated from a time series without rogue waves, was a cluster
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of solitons (Fig. 11). On the contrary, soliton spectra calculated from time series including a rogue wave in the majority of cases
435 showed one outstanding soliton with an amplitude much larger than that of the remaining cluster of solitons in the spectrum
(Fig. 5).
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Figure 11. Example of a non-rogue time series without rogue waves, and its corresponding soliton spectrum, calculated from vKdV-NLFT.
The soliton spectrum displays a cluster of solitons, found to be typical for the majority of spectra calculated from non-rogue time series. The
time series was measured on 26 December 2016, starting at 11:30, with the parameters Hynax = 4.44 m, Hy = 2.46 m and Humax (Hs) ™' =
1.80.

To distinguish between clustered soliton spectra and those featuring an outstanding soliton, we compared the amplitudes of

the largest soliton, A;, and the second-largest soliton, A, in the discrete spectrum. From the visual inspection of the spectra,
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we identified a threshold of the ratio Ay (A1) ™!, below which the largest soliton could be called outstanding:

Az
—2<08. 15
Al_os (15)

Thus, a soliton spectrum had an outstanding soliton if the second-largest soliton was at least 20 % smaller than the largest
soliton in the spectrum. The choice of this threshold was further supported by the fact that the threshold As (A1)~! =0.8
coincides with the median value of Ay (A;)~! for maximum wave heights just below the rogue wave criterion H (H)™1 > 2.0
(Fig. 12). This reveals that our threshold chosen for the distinction between clustered spectra and those featuring an outstanding
soliton, at the same time indicates a difference between the spectra calculated from non-rogue and those calculated from rogue

wave time series.
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Figure 12. Distribution of the ratio between the second-largest and the largest soliton in the discrete spectrum calculated from non-rogue
time series. H (H,) " bins of width 0.05 are shown up until H (H,)™* < 2.0, which corresponds to the definition of height rogue waves
(Eq. (4)). Distributions are shown as box-and-whisker plots (box: interquartile range; whiskers: 1.5 times the interquartile range; horizontal

line inside the box: median; red crosses: data outside the whiskers).

Equation (15) is valid for 30 minute samples at the measurement site, which is the standard window size of measurement
samples delivered by Datawell Waverider buoys. Since the ratio between soliton amplitudes might be dependent on the window
size, it is not clear if Eq. (15) would apply to other than 30 minute time windows. The effect of a larger time window size will
be discussed in Sect. 4. Table 2 shows the share of outstanding solitons and clustered soliton spectra in each of the categories
defined in Sect. 2.1. It is seen that the typical appearance of the soliton spectrum for 30 minute wave measurement samples off
Norderney without rogue waves is a cluster of solitons (64 % of the samples), while at the same time it is not unlikely to obtain

a soliton spectrum with one outstanding soliton from vKdV-NLFT (36 % of the samples). For 30 minute rogue wave samples
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in contrast, it is more likely to obtain a soliton spectrum with one outstanding soliton than a clustered soliton spectrum. This is
true for height rogue samples (57 %), and even more pronounced for crest rogue samples (64 %), double rogue samples (72 %)
and, finally, extreme rogue samples (87 %). The conclusion can be drawn that the absence of an outstanding soliton is a strong
indicator for the absence of an extreme rogue wave. The differences between the four rogue wave categories, indicating that
the presence of an outstanding soliton is not equally expressive for all types of rogue waves, may lead to the presumption that

not all rogue waves found off Norderney can necessarily be explained by the same theory.

Table 2. Share of samples in each category showing an outstanding soliton or a clustered soliton spectrum, respectively.

Non-rogue Height rogue Crestrogue Double rogue Extreme rogue
Outstanding soliton 36 % 57 % 64 % 72 % 87 %
Clustered solitons 64 % 43 % 36 % 28 % 13 %

The question whether inferences can be made from the time to the spectral domain and vice versa, is answered by a con-
tingency table (Fig. 13). Here, all previously defined rogue wave categories are combined into one joint group of rogue wave
samples. Two statements can be made based on the table. On the one hand, the probability that an NLFT spectrum calculated
from a normal sample shows an outstanding soliton, is 4986/13.984 = 36 %, while the probability that a spectrum calculated
from a rogue wave sample shows an outstanding soliton, is 726/1172 = 62 %. This indicates that, although not all rogue waves
can necessarily be explained by the same theory, outstanding solitons occurred in connection with the majority of observed
rogue waves off Norderney. While in the combined group of rogue waves, outstanding solitons play a role in 62 % of the
cases, the share differs between the rogue wave categories (Table 2). On the other hand, although rogue waves are more likely
to be observed when an outstanding soliton is present in the NLFT spectrum, the presence of an outstanding soliton alone is
not sufficient as an indicator for the detection of rogue waves. The main difficulty is the imbalance in sample size between

non-rogue and rogue wave samples.
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Figure 13. Contingency table of forecast/event pairs. a- hits. b- false alarms. c- misses. d- correct negatives.

In Fig. 14, the ratio between the amplitudes of the second-largest and the largest soliton in the nonlinear spectrum, A, (A1)~ %,

is visualised in a boxplot for each of the time series categories. A ratio above Ay (A1) ™! = 0.8, meaning that the second-largest
soliton has a rather similar amplitude to the largest soliton, implies that the soliton spectrum is clustered (Eq. (15)). For non-
rogue samples, this is the case for the bulk of time series. The median of the ratio Ay (A;)~! decreases from the most-left to
the most-right category on the right axes in Fig. 14. For height rogue waves, the median of Ay (A7)~ ! is below the 80 %-line,
with the distribution extending above and below. For double and extreme rogue waves, the gap between the soliton amplitudes
may become much larger than for height rogue waves. In some cases, the amplitude A, amounts to less than 30 % of the
amplitude A;. In all categories except extreme rogue samples, there are samples for which the first and second solitons are
almost similar in amplitude (A2 (A;)~! & 1). On the contrary, for all extreme rogue wave samples, A, is below 93 % of A;.

The large part of soliton spectra from extreme rogue samples shows an outstanding soliton.
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Figure 14. Boxplots of the ratio between the second-largest soliton (A2) and the largest soliton (A1) in the spectrum for the different
categories of time series. Distributions are shown as box-and-whisker plots (box: interquartile range; whiskers: 1.5 times the interquartile
range; horizontal line inside the box: median; red crosses: data outside the whiskers). Below the horizontal line of 80 %, the highest soliton

in the spectrum is classified as outstanding.

Figure 15 presents the ratio As (A;)~! in a scatter plot with one data point for each individual time series. According to
this representation, although the presence of an outstanding soliton with A5 (4;)~! < 0.8 is not a useful indicator of whether
a rogue wave is present in the time series or not, the presence of a rogue wave becomes much more likely when one soliton
in the nonlinear spectrum is strongly outstanding with A (A7)~ < 0.3: of all 23 samples satisfying Az (A1)~ < 0.3, only
4/23 = 17 % are non-rogue samples, while 19/23 = 83 % of the samples are rogue wave samples (1 height, 1 crest, 8 double,

9 extreme rogue wave samples).
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is classified as outstanding. Below the horizontal line of 30 %, the highest soliton in the spectrum is referred to as strongly outstanding.

4 Discussion

We investigated discrete nonlinear soliton spectra obtained by the application of the vKdV-NLFT to time series measured by a
surface-following buoy off the coast of the island Norderney in the southern North Sea. The impulse for investigating the data
at this specific site by using nonlinear methods was given by a previous study (Teutsch et al., 2020). There, it was found that
while the Forristall distribution was sufficient to describe rogue wave occurrences at nearby buoy stations in somewhat deeper
water (see kh ranges of buoy stations in Table 1 of Teutsch et al. (2020)), the Norderney buoy recorded a larger number of

rogue waves than expected according to the Forristall distribution. The results described in this paper suggest that nonlinear
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processes may explain the enhanced rogue wave occurrence at this specific site. The results were derived by the application
of vKdV-NLFT and are therefore strictly valid for shallow-water conditions in the context of the applicability of the KdV
equation. In a future study, it may be interesting to extend the investigation to additional sites in shallow water depths.

Throughout the study, indications were found that although solitons play a role for the presence of rogue waves at Norderney,
the soliton spectrum alone does not yield a satisfactory explanation of the formation of extreme waves/ crests. A first hint is
given in the upper panel of Fig. 5, which shows the reconstructed soliton train along with the measured time series. Here,
solitons (and their interactions) neither account for the full height of the observed rogue wave nor provide the observed wave
trough. Fig. 8 supports the finding that the solitons were not large enough to explain the full heights of the associated rogue

waves. From Fig. 9, it is seen that the presence of a large soliton is not necessarily connected to the presence of a rogue wave.

Fig—10

moestrogue-wave crests-are-not-soliten-like-In addition, Kharif and Pelinovsky (2003) found that the interaction of unidirectional KdV

solitons does not result in exceptional increases in wave elevation. As a consequence, one may speculate that the formation of
the rogue waves in our data set was a result of nonlinear interactions of one or more solitons with the underlying oscillating
wave field. This hypothesis will need further analyses to be validated.

The bathymetry below the measurement buoy at Norderney is characterized by a strong decrease in water depth. Non-
Gaussian wave characteristics as a result of decreasing water depth have already been described e.g. by Huntley et al. (1977)
in the context of wave run-up. It has gained increased attention in the context of rogue wave occurrence (e.g., Sergeeva et al.,
2011). Increased rogue wave frequencies behind slopes or steps were confirmed by numerous numerical (e.g., Sergeeva et al.,
2011; Majda et al., 2019) and experimental studies (e.g., Trulsen et al., 2012; Kashima et al., 2014; Ma et al., 2014; Raustgl,
2014; Jorde, 2018; Bolles et al., 2019; Zou et al., 2019; Zhang et al., 2019; Trulsen et al., 2020). The main subject that the
mentioned studies are concerned with is that waves propagating over a slope, step or bar, are forced into new equilibrium
conditions (Zeng and Trulsen, 2012). This mechanism is associated with strong non-Gaussian statistics and an increased rogue
wave probability (Zhang and Benoit, 2021). The reason for the enhanced rogue wave probability was identified as the higher
degree of nonlinearity in the shallow water behind the slope or step, which leads to an enhancement of second-order harmonic
bound waves (Gramstad et al., 2013). Zheng et al. (2020) and Li et al. (2021) confirmed numerically and theoretically that
second-order terms (made up from bound waves and free waves released by the interaction of bound waves with the slope)
are responsible for peaks in skewness and kurtosis. Zhang and Benoit (2021) stated that both second- and third-order effects
evolving from the non-equilibrium dynamics at the depth transition significantly enhance the local kurtosis and the occurrence
of rogue waves. For these effects to occur, the shallow domain must be sufficiently shallow and the slope of the bathymetry
change plays a major role (Fu et al., 2021). The largest peaks in kurtosis and skewness and the highest rogue wave probabilities
were found for the steepest slopes (Gramstad et al., 2013; Zheng et al., 2020; Fu et al., 2021; Lawrence et al., 2021). Doeleman
(2021) recently showed in tank experiments that the findings-are-not-valideffect of slope is weakened in shallow water. Mendes et al.

(2022) confirmed theoretically that a strong amplification may be found in intermediate water (0.5 < kh < 1.5). They stated
that "Whether rogue waves are enhanced in strong bathymetry changes throughout most oceans or regionally under suitable

conditions is yet to be assessed" (Mendes et al., 2022). Zeng and Trulsen (2012) anticipate that the described mechanisms may
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explain the spatially varying occurrence frequency of rogue waves on the continental shelf, where waves enter from the deep
sea. Therefore, the described processes associated with a strong decrease in depth might be an explanation for the observed
increased rogue wave occurrence off the coast of Norderney (Teutsch et al., 2020). A connection between rogue waves and
solitons in this context was established by Sergeeva et al. (2011). The authors showed by applying a KdV equation, that the
number of solitons increases in the shallow water behind a slope. They linked this increased soliton occurrence to an increased
rogue wave probability.

The solutions of the KdV equation for a given free-surface elevation time series strongly depend on the water depth (see
Eq. (7)). While for our calculations, we assumed a constant water depth of h =10 m, there are in fact major uncertainties
regarding the water depth at the actual location of the buoy, due to tidal changes and bathymetry gradients, together with the
movement of the buoy, as mentioned in Sect. 2.1 (Fig. 2). The mean tidal range at Norderney is approximately 2.5 m, while
due to an additional movement of the buoy of 2 m to each side of the slope a total deviation from the nominal water depth of
42 m is reasonable. We performed a sensitivity analysis to test the robustness of the results with respect to these uncertainties.
To do so, we repeated the computation of the soliton spectrum for water depths of A = 8 m and 12 m, respectively, while using
the same free-surface data as in the previous analysis. A changed water depth leads to a different depth range in which the
KdV equation is valid (Eq. (3)). For the calculation with a depth of h = 12 m, we repeated the identification of the samples
that fulfill shallow-water conditions in the KdV context, as samples and maximum waves due to the larger water depth now
had to satisfy the condition T}, or T' > 5 s, in order to classify as shallow depth samples/ waves for the applicability of the
KdV equation. Therefore, only 14.206 samples, that is, approximately 94 % of the original sample size, were available for the
calculation at h = 12 m. For the calculation with a depth of 1 =8 m, we used the same samples as for the calculation with
h =10 m, because these automatically fulfilled shallow depth conditions at h = 8 m. Irrespective of the water depth adopted
in the calculation, the result remained that samples with rogue waves, and especially extreme rogue waves, were more likely
to contain an outstanding soliton in the nonlinear spectrum than samples without rogue waves (Table 3). Thus, the results are

robust with respect to potential uncertainties in water depth.

Table 3. Share of samples in each category showing an outstanding soliton in the soliton spectrum, for the respective water depth adopted
in the NLFT calculation. Note that for a water depth of A = 12 m, the shallow -depth criterion in Eq. (3) changes to T, > 5 s, which left

approximately 94 % of the samples for the calculation at a water depth of 12 m.

Water depth  Non-rogue Height rogue Crest rogue Double rogue Extreme rogue

8m 32% 57 % 61 % 73 % 75 %
10 m 36 % 57 % 64 % 2% 87 %
12 m 36 % 53 % 62 % 70 % 76 %

The KdV equation is only valid for unidirectional waves. Although Osborne (1993) recommends the application of the
NLFT for KdV to measurement data only for samples in which the largest part of the energy is in the dominant propagation

direction, we applied the KdV-NLFT outside the limits that are given in the literature. At our measurement site, the sea state
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was always multidirectional, with a directional spreading of the wave energy approximately between 28° and 55°, while in the
dataset of Osborne (1993), only 5 % of the energy were perpendicular to the dominant direction of propagation. We repeated
the first part of the analysis, for which the results are described in Sect. 3.1, for the approximately 10 % of samples in each
category with the lowest directional spread. This corresponded to a threshold in directional spread of 35° for most categories,
except crest rogue waves, which tended to occur in broader sea states (threshold at 36.5°) and extreme rogue waves, which
statistically occur in more narrow sea states (Christou and Ewans, 2014) (threshold at 34°). We found our result- that an out-
standing soliton is more typical for a rogue wave time series than for a non-rogue time series- confirmed and partly emphasised
(Table 4). Therefore, we rate vKdV-NLFT, although assuming unidirectionality in multidirectional measurement samples, an

appropriate tool to evaluate the connection between solitons and rogue waves off Norderney.

Table 4. Share of samples in each category showing an outstanding soliton, for the approximately 10 % most narrow samples.

Non-rogue Height rogue Crestrogue Double rogue Extreme rogue
No. of samples 1614 91 12 17 10
Outstanding soliton 31 % 57 % 67 % 88 % 90 %

In our study, we have applied the vKdV-NLFT as a trace method for (extreme) rogue waves and demonstrated for the first
time that certain distinctive patterns in the NLFT spectrum of real-world time series indicate extreme rogue waves. The method
may provide further information on possibly dangerous time series in future applications. Further research is required on the
applicability of the KdV equation to our data, which cannot be validated on the basis of single-point measurements. If wave
propagation at Norderney is well described by KdV theory, the NLFT spectrum is approximately constant during propagation.
The method may then identify time series with the potential of forming extreme rogue waves. Moreover, even if the KdV
equation does not describe the propagation well, we still consider the NLFT a more appropriate transform than the linear FFT,
which is often applied even if waves are nonlinear. Similar to the FFT in the linear case, our method should be treated as a
signal transform (Sugavanam et al., 2019). Our study provides insights into the spectral characteristics at the considered site.

We would like to put an emphasis on the limitation of our suggested definition of an outstanding soliton (Eq. (15)) to the size
of the measurement window. Our criterion was chosen based on the inspection of soliton spectra from 30 minute time series.
However, the gap size might change depending on the chosen window size. An increase in window size, meaning more waves
in the time series, will introduce additional solitons to the spectrum. If these are larger than A; or emerge in between A; and
A, the gap size between the two largest solitons will be influenced. If these are smaller than A, their emergence will not alter
the gap between A; and A,. Similarly, a reduction in window size would exclude waves in the time series and remove solitons
corresponding to these waves. If this modification leads to the removal of the largest or second-largest soliton, the gap between
the new A; and A5 will become larger or smaller than for a 30 minute time window. If this modification only affects solitons
smaller than Ao, the size of the gap between A; and A5 will not be influenced. We applied the ratio between As and A; merely

as a measure to statistically evaluate differences in the soliton spectra calculated from 30 minute non-rogue and rogue wave
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time series. For different window sizes, it might be necessary to define new criteria.

Due to the limited recording frequency of the wave buoy, one might question the correct assignment of time series to the
different categories (Table 1). Wave crests might be missed by the discrete measurement points, leading to a possible under-
estimation of rogue or extreme rogue waves (Stansell et al., 2002). However, even if extreme rogue time series were assigned
incorrectly to the category of height rogue waves, this misinterpretation is conservative: none of the time series in the category
"extreme rogue samples" has been assigned incorrectly. Furthermore, according to the sampling theorem (Shannon, 1949), the
buoy sampling rate of 1.28 Hz is sufficient to sample time series whose FFT spectra decay at approximately 0.6 Hz (Fig. 5,
second panel). Therefore, we consider the buoy sampling frequency sufficient for our purpose.

Our result that rogue wave samples have a higher probability of showing an outstanding soliton in the nonlinear spectrum
compared to non-rogue samples becomes most obvious in the categories of double and extreme rogue samples. In these cat-
egories, differences from non-rogue samples are visible not only in the percentage of outstanding solitons, but also in the
magnitude of the amplitude gap between the first and second solitons in the spectrum. Height rogue waves, on the contrary,
do not seem to differ very much from high waves in non-rogue samples, both in terms of the gap between first and second
soliton in the spectrum, and the height of the solitons associated with the maximum wave. The fact that differences between
time series with and without rogue waves become apparent only in some of the chosen categories, raises the question whether
the choice of rogue wave definitions has been reasonable for the considered location. The rogue wave definitions serving as
a basis to this study have been introduced by Haver and Andersen (2000) for deep water waves. The relative height and crest
values in their definitions represent outliers, being exceeded in 1 of 100 cases when applying a second-order model to the
deep-water sea-surface elevation (Haver, 2000). The definitions have been taken up numerous times in the literature. Authors
have been investigating whether rogue waves according to Haver and Andersen’s definition (2000) are outliers with respect to
typical wave distributions in the real ocean as well (e.g., Forristall, 2005; Gemmrich and Garrett, 2008). The question has been
raised whether the rogue wave definition by a certain height or crest threshold is useful in practice (Hifner et al., 2021). Several
authors have, based on large measurement datasets, come to the conclusion that these rogue waves are rare, but nevertheless
realisations of commonly used wave distributions (e.g., Waseda et al., 2011; Christou and Ewans, 2014). In a previous study
(Teutsch et al., 2020), we were able to confirm this conclusion at buoy measurement stations in intermediate water. However,
at the buoy station off Norderney in comparably shallow water depth, which showed a larger number of rogue waves than
expected according to the common wave distributions, the interaction of solitons with oscillating waves might be a mechanism

explaining the increased occurrence of rogue waves.

5 Conclusions

Rogue wave occurrence recorded off the coast of the island Norderney is not sufficiently explained by the Forristall distribution
of wave heights. We investigated the role of solitons as components of the discrete vVKdV-NLFT spectrum in the enhanced rogue

wave occurrence. Our main results for this specific measurement site are the following.

— Each measured rogue wave could be associated with at least one soliton in the NLFT spectrum.
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The soliton heights were always smaller than those of the rogue waves. Samples with rogue waves were more likely to

contain an outstanding soliton in the NLFT spectrum than samples without rogue waves.

The soliton spectrum analysis is a good indicator of extreme rogue waves in the corresponding time series.

The presence of a strongly outstanding soliton, with a ratio between the second-largest and the largest soliton in the

nonlinear spectrum of Ay (A;)~! < 0.3, was found to be a strong indicator for the presence of a rogue wave.

Conversely, the absence of an outstanding soliton in the spectrum is a strong indicator for the absence of an extreme

rogue wave of H (H,)~1 >2.3.

We conclude that nonlinear processes are important in the generation of rogue waves at this specific site and may explain
the enhanced occurrence of such waves beyond common wave height distributions. Rogue waves at Norderney are likely to
be a result of the interaction of solitons with the underlying field of oscillatory waves. The nature of this interaction should be

subject to further research.
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