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Abstract. The shallow waters off the coast of Norderney in the southern North Sea are characterised by a higher frequency

of rogue wave occurrences than expected-aceerding to-second-erder-theory. Here, rogue waves refer to waves exceeding twice the

significant wave height. The role of nonlinear processes for the generation of rogue waves at this location is currently unclear.

Within the framework of the Korteweg—de Vries (KdV) equation, we investigated the discrete soliton spectra of measured time
series at Norderney to determine differences between time series with and without rogue waves. For this purpose, we applied a
nonlinear Fourier transform for the Korteweg—de Vries equation with vanishing boundary conditions (vVKdV-NLFT). At mea-

surement sites where the propagation of waves can be described by the KdV equation, the solitons in the discrete nonlinear

vKdV-NLFT spectrum correspond to physical solitons. We do not know whether this is the case at the considered measure-

ment site. In this paper, we use the nonlinear spectrum to classify rogue and non-rogue time series. That is, we investigate if the

discrete nonlinear spectra of measured time series with visible rogue waves differ from those without rogue waves. Whether

or not the discrete part of the nonlinear spectrum corresponds to solitons with respect to the conditions at the measurement

site is not relevant in this case because we are not concerned with the question how these spectra change during propagation.

For each time series containing a rogue wave, we were able to identify at least one soliton in the diserete nonlinear vKdV-NLET
spectrum that contributed to the occurrence of the rogue wave in that time series. The amplitudes of these solitons were generally
found to be smaller than the crest height of the corresponding rogue wave and interaction with the continuous wave spectrum
is needed to fully explain the observed rogue wave. Time series with and without rogue waves showed different characteristic
soliton spectra. In most of the spectra calculated from rogue wave time series, most of the solitons clustered around similar
heights, while the largest soliton was outstanding with an amplitude significantly larger than all other solitons. The presence of
a clearly outstanding soliton in the spectrum was found to be an indicator pointing towards enhanced probability for deteetingthe
occurrence of a rogue wave in the time series. Similarly, when the discrete spectrum appears as a cluster of solitons without

the presence of a clearly outstanding soliton, the presence of a rogue wave in the observed time series is unlikely. Under-the hy-

~These results suggest that solitons and nonlinear

processes substantially contribute to the enhanced occurrence of rogue waves off Norderney.
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1 Introduction

Rogue waves are commonly defined as individual waves exceeding twice the significant wave height, that is the average height

of the highest third of waves in a record. The occurrence of a rogue wave is a rare incident in the framework of a second-order

process (Haver and Andersen, 2000). Due to their exceptional height and unexpected nature, they pose a threat to ships and

offshore platforms (Bitner-Gregersen and Gramstad, 2016). Rogue waves have not only been observed in the deep and shallow

water depths of the ocean, but also approaching coastlines (Didenkulova, 2020). There has been a lively discussion on whether

the occurrence frequency of rogue waves in the open ocean is well described by second-ordermodelscommon wave height dis-

tributions. Both Rayleigh (Longuet-Higgins, 1952) and Weibull distributions (Forristall, 1978), which are based on the linear

superposition of wave components, have been used to describe the distributions of wave and crest heights. Later theories in-

clude second-order steepness contributions in wave height distributions (e.g., Tayfun and Fedele, 2007). Distributions were

assessed for measurement data collected by surface-following buoys (e.g., Baschek and Imai, 2011; Pinho et al., 2004; Cattrell
et al., 2018), by radar devices (e.g., Olagnon and v. Iseghem, 2000; Christou and Ewans, 2014; Karmpadakis et al., 2020),
and laser altimeters (e.g., Soares et al., 2003; Stansell, 2004), as well as by ADCPs (Fedele et al., 2019). Independent of the
measurement device, some authors found measured wave heights to agree well with the established distributions (e.g., Casas-

Prat et al., 2009; Waseda et al., 2011; Christou and Ewans, 2014), while others found the frequency of rogue wave occurrences

over-estimated (e.g., Olagnon and v. Iseghem, 2000; Baschek and Imai, 2011; Orzech and Wang, 2020) or underestimated
(e.g., Stansell, 2004; de Pinho et al., 2004). For-e

ive Numerous

authors describe local differences in rogue wave occurrence frequency between their measurement stations (Baschek and Imai,
2011), depending on the wave climate (Stansell, 2004) and especially in coastal waters, where waves interact with the seabed

(Cattrell et al., 2018; Orzech and Wang, 2020). Massel et al. (2017) stated that the wave height distribution is dependent on

the water depth, which, however, is not explicitly included in the common models. Karmpadakis et al. (2020) found that while

different models can describe wave height distributions well within narrow ranges of sea state conditions, no model is able

to describe measured wave heights for a wide range of sea states accurately. Mendes and Scotti (2021) recently introduced a

new exceedance probability distribution for rogue waves by geometrically combining some commonly used distributions. The

combined distribution is more flexible than the individual distributions, as it is additionally dependent on sea state variables.

The distribution is capable of describing rogue waves in a wide range of sea states and able to describe the uneven rogue wave

distributions in storms that were observed by Stansell (2004).

In a previous study, we have analysed measurement data from various stations in the southern North Sea (Teutsch et al.,
2020) and found rogue wave frequencies to vary spatially and by measurement device. For data obtained from wave buoy
measurements, we generally found rogue wave frequencies slightly overestimated by the Forristall distribution, which is a

special form of the Weibull distribution, fit to wave data recorded during hurricanes (Forristall, 1978). An exception was one
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measurement buoy, which was located in the shallow waters off the coast of the island Norderney, Germany (Fig. 1). For this
buoy, enhanced rogue wave occurrence was observed, which could not be explained by the Forristall distribution,-was-ebserved.

This suggests that nonlinear processes and interactions may play a role in e

inincreasing the rogue wave

occurrence frequency at this specific location.
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Figure 1. Map of the German Bight, showing the location of the measurement buoy close to the island Norderney.

So far, the nonlinear behaviour of deep-water rogue waves has received considerably more attention than that of shallow-
water rogue waves. The evolution of the complex envelope of unidirectional wave trains in deep water can be described by the
cubic nonlinear Schroedinger (NLS) equation (Onorato et al., 2001; Slunyaev, 2005). Deep-water-in-this-context-is-defined-in-terms-of

. . . - - . “The

NLS equation is a weakly nonlinear, narrow-banded approximation of the fully nonlinear water wave equations, including both

nonlinearity and dispersion (Serio et al., 2006). In deep water, rogue-wave occurrence beyond the second-order model has been
explained, for example, by a nonlinear instability that was also found in numerical simulations and tank experiments (Dysthe

et al., 2008). Here, uniform wave trains are modulationally unstable to small ebligueside-band perturbations and disintegrate
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into groups, in which the highest wave becomes significantly larger than the wave height in the original train (Benjamin and
Feir, 1967). This nonlinear focusing mechanism does not only increase the maximum wave height, but also the probability of
rogue wave occurrence (Slunyaev and Shrira, 2013). Alber (1978) derived a stability criterion for such narrow-banded random

waves, which was introduced as a parameter for the characterisation of wave nonlinearity by Onorato et al. (2001) and later

became known as the Benjamin-Feir index (BFI) (Janssen, 2003). A large BFI corresponds to enhanced nenlinearitynonlinear
processes (de Ledn and Soares, 2014) and has been suggested as an indicator for enhanced rogue wave probability in deep
water (Gramstad and Trulsen, 2007). The NLS equation has some exact solutions (known as breathers) that explaindescribe
the dynamics of the modulational instability,which. Breathers have been suggested as an analytical model of rogue waves in
a unidirectional case (Dysthe and Trulsen, 1999). Here a uniform wave train develops into a number of breathers, and then
relaxes back to a uniform wavetrain (Clamond et al., 2006; Gramstad and Trulsen, 2007). Each breather solution represents the
modulational instability growth for a specific initial perturbation.

A nonlinear Fourier transform (NLFT) method has been developed that is able to identify the composition of surface elevation

time series in terms of linear waves, Stokes waves and breathers (Osborne, 2010). The author characterises a sea state with

a breather-dominated spectrum as a "rogue sea" condition. The method has been applied to describe the composition of real

ocean data (Osborne et al., 2019). In the framework of the NLS equation, a large part of the dynamics of nonlinear waves can be

described in terms of interacting breathers (Slunyaev and Shrira, 2013). Specifically the Peregrine breather (Peregrine, 1983),
which is characterised by only one oscillation in time and an amplitude of three times the initial wave train, has been subject
to analysis (Shrira and Geogjaev, 2010). Recently, the growth of crest heights due to nonlinearities that was observed in deep
water, has been extended to intermediate water depths (Karmpadakis et al., 2019). However, the relevance of the modulational
instability of the NLS equation to the formation of real rogue waves remains unclear because most of these works only consider

the specific scenario of perturbed plane wave envelopes (Slunyaev and Shrira, 2013). Recent studies have come to the conclu-

sions that the modulational instability is not the main generation mechanism of rogue waves in real ocean time series (Fedele

et al., 2016) and that the BFI is a weak predictor for real-world rogue wave risk (Haefner et al., 2021).

In addition to the investigations on the modulational instability, deep-water envelope solitons have been in focus with regard to

a possible connection with rogue wave occurrence. Slunyaev (2006) investigated rogue waves in deep water in measurement

records. By solving the scattering problem in the approximation of the NLS equation, the nonlinear dynamics of an envelope

soliton was investigated to predict possible rogue wave events. The NLS equation was used as an approximate model of the

wave dynamics. The procedure is a method to detect envelope solitons and estimate their parameters like amplitude, velocity

and position. Slunyaev (2018) estimated the accuracy of this procedure for strongly nonlinear waves. The NLFT was applied

to the interpretation of deep-water waves, the extraction of soliton-like groups and the prediction of their further dynamics.

Carrying this work further, Slunyaev (2021) identified a wave group in numerical simulations as a stable envelope soliton,

which could be related to rogue wave events. Onorato et al. (2021) reported on the observation of a wave packet in strongly

nonlinear waves in the Atlantic ocean. While assuming that the dynamics of the wave packet, at least for short time and space,

could be described by the NLS equation, they applied the NLFT to establish the nonlinear contents of the wave packet.

The role of nenlinearitynonlinear processes with respect to rogue wave generation in shallow water has received considerably
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less attention than for deep water. Shallow-water wind waves substantially differ from deep-water wind waves and it is not

appropriate to simply scale the deep-water nonlinear interaction to shallow-water waves (Janssen and Onorato, 2007). Shallow

water in the context of the KdV equation is defined in terms of the wave number £ and the water depth h as kh < 1.36 (Osborne

and Petti, 1994, p. 1731; Osborne, 1995, p. 2629). As the water depth becomes more and more shallow, a wave-induced current

develops and less wave energy is available for nonlinear focusing (Benjamin and Feir, 1967; Janssen and Onorato, 2007).
Although waves in shallow water can also destabilise due to oblique perturbations (Toffoli et al., 2013), the modulational

instability in shallow water does not enhance the formation of extreme waves (Fernandez ct al., 2014). Didenkulova ct al.

(2013) supported by observations that the influence of the modulational instability on rogue wave generation becomes less

probable in shallow water. Fedele et al. (2019) stated that waves in shallow water break before they can start to “breathe” and

become rogue waves. Already Glukhovskiy (1966) expected high individual waves in shallow water to occur less frequently

than predicted by the Rayleigh distribution, due to depth-induced wave breaking. Therefore, some authors expect the rogue

wave probability to decrease in shallow water (e.g., Slunyaev et al., 2016). Other authors referreferred to the large ratio between
nonlinearity and dispersion in shallow water (Kharif and Pelinovsky, 2003) and concluded that Gaussian statistics are not
sufficient for the description of shallow-water waves and that rogue waves are likely to occur more frequently as the water

depth decreases (Garett and Gemmrich, 2009; Sergeeva et al., 2011). While-in-deep-water-only-the free-surface-nenlinearity must-be-taken

into-aceount— The nonlinearitynonlinear processes in shallow water isare mainly a result of the interaction of waves with the sea

floor (Prevosto, 1998). Refraction, shoaling and higher-order nonlinear effects change the shapes of waves and their energy

spectrum (Bitner, 1980; Tayfun, 2008). the impact-of bathymetry on rogue wave generation. For

example; Soomere (2010) found that in shallow water, compared to deep water, due to wave-bathymetry interaction, additional

processes associated with the generation of extreme waves, like wave amplification along certain coastal profiles, redirection of
waves or the formation of crossing seas, are relevant, and therefore more rogue waves should be expected in nearshore regions.

53.In shallow water, the

wave evolution is described by the Korteweg—de Vries (KdV) equation (Korteweg and de Vries, 1895). It describes weakly

nonlinear and dispersive progressive unidirectional free-surface waves in shallow water with constant depth (Peregrine, 1983).

Shallow-water waves in this work are defined as kh < 1.36, which represents the upper limit for the application of the KdV

cquation (Osborne and Petti, 1994; Osborne, 1995). The solutions of the KdV are stable, in that the wave amplitude does not

alter significantly when the initial wave train is perturbed. This is the mathematical explanation of why rogue waves in shallow
water cannot be a result of the modulational instability. The inverse scattering transform (IST) was introduced as a tool to solve
the KdV equation (Gardner et al., 1967), and later-on also a broader range of evolution equations (Ablowitz et al., 1974). The
name scattering transform has its roots in physics, where the tools applied in the derivation of the IST are used to analyse how
particles behave in the interaction with a scatterer (Wahls and Poor, 2015). When a time series is close to linear, its scattering
data essentially reduces to the linear Fourier Ftransform (FT). Therefore, the IST has been called a “natural extension of Fourier
analysis to nonlinear problems” (Ablowitz et al., 1974). Henceforth in this paper, the method is referred to as the nonlinear
Fourier transform for the KdV equation (KdV-NLFT). Zabusky and Kruskal (1965) discussed, by numerically solving the

KdV equation, the decomposition of an-nitial cosine signal into a train of eight solitons. They first documented that the size
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and shape of solitons remain unaffected by nonlinear interactions with each other. Hammack and Segur (1974) showed by

comparison with observations in a wave tank that the asymptotic behaviour of waves in shallow water is well described by the

KdV equation. Ablowitz and Kodama (1982) confirmed by analysing the long time asymptotic solution of the KdV equation,

that solitons interact elastically with other solitons and also with the dispersive wavetrain. Osborne and Bergamasco (1986)

applied the NLFT for the KdV equation and found the results of Zabusky and Kruskal (1965) on soliton interaction confirmed

for periodic boundary conditions. Osborne et al. (1991) showed for periodic boundary conditions that solitons are hidden in

measurement time series, which can be found by solving the KdV equation by the NLFT. Costa et al. (2014) found a method

to filter soliton trains from measurement data by a linear Fourier transform for the KdV equation with periodic boundary con-

ditions and associating them with wave packets. Giovanangeli (2018) determined the solitons hidden in a random wave field

in shallow water by the NLFT for the KdV equation. They established histograms of solitons as a function of their amplitudes

at different observation points. They investigated the relation between the soliton and the oscillatory wave components, as to

conclude on the energy distribution in the random wave field. Briihl and Oumeraci (2016) confirmed in laboratory experiments

and numerical simulations that long cosine waves in very shallow water are unstable in the following sense. They decompose

into trains of solitons that are solutions to the KdV equation and that show larger amplitudes than the initial wave height. While

the time series changes with time, the nonlinear amplitude spectrum remains invariant. The KdV-NLFT yields a discrete set of

eigenvalues and a continuous spectrum. Each of the eigenvalues corresponds to a soliton (Peregrine, 1983), and the continuous
spectrum to oscillatory waves. The asymptotic development of the solution with time leads to a decay of the oscillatory part

and the solitons asymptotically dominate the solution (Zabusky-and Kruskal; 1965)(Ablowitz and Segur, 1981, Chapter 1.7¢c).

The nonlinear interaction of solitons in shallow water has been discussed with regard to its role in rogue wave generation.
Based on the KdV-NLFT, Pelinovsky et al. (2000) showed that dispersive focusing is possible in the nonlinear case, givenbut
mentioned that "the "nonlinear" [wave] train includesatleastoneshould include a soliton" (Pelinovsky et al., 2000). Equivalently

to the linear case, in which rogue waves evolve from the superposition of wave components, nonlinear focusing is then the
interaction between one or, in principle, multiple solitons with eseillatorydispersive waves, due to their velocity difference.
For the unidirectional case, several authors (Kharif and Pelinovsky, 2003; Soomere and Engelbrecht, 2005) found that the
interaction of KdV solitons does not lead to a significant increase in surface elevation. Soomere (2010) considered that since
soliton interaction in the unidirectional case does not lead to an enhancement in surface elevation, a higher nonlinearity should
even lead to a decrease in rogue wave occurrence probability. Since this is not consistent with observations, he concluded that
directionality must play a role for the rogue wave generation in shallow water. Indeed, crossing solitons are known to be able
to produce large amplitudes (Peterson et al., 2003). Zakharov and Shabat (1975) found the analytical two-soliton solution of
the Kadomtsev-Petviashvili (KP) equation describing this case. Hammack et al. (1989) investigated two long-crested solitary
waves propagating in different directions and interacting. In contrast to linear superposition, the interaction of two crossing
solitons may produce a crest up to four times higher than the incoming waves (Peterson et al., 2003). Peterson et al. (2003)
discussed the interaction of shallow-water solitons against the background of heavy fast ferry traffic. They made this restriction
because shallow-water areas with heavy ship traffic are more likely to produce regular, long-crested 2D wave trains, necessary

for their model of rogue waves, than wind sea on the open ocean. They emphasised that the interaction area is restricted and it
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is unlikely to detect an-interaction-selitonsoliton interaction in one-point in-situ measurements. Osberne-et-al-1991)-analysed-nearly-uni-

Since rogue wave occurrence in shallow water that goes beyond second order has not been sufficiently explained, and almost

all investigations in previous work are based on theoretical considerations, numerical simulations or laboratory experiments,

we consider real measurement time series in the framework of the KdV equation. We expand the investigation of data measured

by a surface-following buoy off the coast of Norderney in the southern North Sea, for which see swave height

distributions based on linear superposition have been shown to underestimate rogue wave occurrence (Teutsch et al., 2020).

Our study is based on the insight that oscillatory waves in sufficiently shallow water decompose into separate solitons (Zabusky

and Kruskal, 1965; Briihl and Oumeraci, 2016). Osborne and Bergamasco (1986) showed that the solitons that are hidden in

a time series may be found by computing an NLFT spectrum. In our study, we We obtain a discrete soliton spectrum from the

nonlinear Fourier transform for the KdV equation with vanishing boundary conditions (VKdV-NLFT)-and. We apply vKdV-

NLEFT as a spectral analysis method to explore to what extent the presence of solitons might contribute to thisthe enhanced

statistieal rogue wave occurrence off Norderney. For this purpose, we compare the soliton spectra of samples with and samples

without rogue waves. Following Sugavanam et al. (2019), we use the NLFT as a signal processing tool. Our goal is to classify

time series by their nonlinear spectra. We do not assume that the nonlinear soliton spectra remain constant during propagation

beyond the measurement site, which would be the case only if the propagation conditions are well approximated by the KdV

equation. The paper is structured as follows. Section 2.1 describes the measurement site and the dataset and gives a definition
for rogue waves. In Sect. 2.2, the application of vKdV-NLFT to the measurement data is explained. Sect. 3 consists of two
parts. In Sect. 3.1, we explore the direct association of solitons calculated from NLFT with rogue waves, while Sect. 3.2
discusses statistical differences in the soliton spectra of time series with and without rogue waves. In Sect. 4, we discuss the
time windows and location for which our results are valid, and suggest further investigations. In Sect. 5 our conclusions are

presented.

2 Methods
2.1 Measurement site and dataset

We analysed wave elevation data measured by a surface-following buoy off the coast of the island Norderney in the German
Bight in the time period between 2011 and 2016. The measurement buoy was deployed at a nominal water depth of i1 = 10 m,
which was assumed to be constant for the following analyses. Actually, the water depth off the coast of Norderney is not
constant, as the bathymetry at the location is spatially highly variable with strong gradients (Fig. 2). The buey-islocated right-above

3).The bed slope perpendicular to the wave direction varies

between 1:500 (offshore direction) and 1:200 (onshore direction). Since the buoy is restricted only by its mooring, it has the

possibility to move horizontally. The actual water depth /& below the horizontally moving buoy may then be subject to rapid

changes. In addition, the tidal range at the site is about 2.5 m (NLWKN, 2021), which further causes the water depth to vary.
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Figure 3. Mean directional wave spectrum from the time period 2011-2016, obtained by use of DIWASP (Johnson, 2002).

The wave data were measured at a frequency of 1.28 Hz and are available as a set of time series (samples) of 30 minute
length. To exclude low-energy sea states in the following, only samples with a significant wave height H above the long-term
70th percentile of the significant wave height, H 7o = 1.29 m, were included in the analysis. The significant wave height H
is here defined as the mean of the highest 30 % of the wave heights in a 30 minute sample. Hy 7o was calculated from the
significant wave heights H of all 30 minute samples during the six years of available measurement data. On the one hand, this

excludes possible measurement uncertainties caused by smatishort waves that are only described by a few points, and on the

other hand, it includes only rogue waves of heights relevant for offshore activities. Since the KdV equation for shallow water

was to be applied to the data, only samples satisfying shallow-water conditions in terms of the validity of the KdV equation

were included in the study. The definition of shallow water depths for the applicability of the KdV equation is different from

the commonly used definition of shallow water in the engineering context, kh < 7/10 (Dingemans, 1997). The shallow-water

condition used in this study was (Osborne and Petti, 1994, p. 1731; Osborne, 1995, p. 2629)

h
7 <0.220r kh < 1.36 %)
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with water depth h and wavelength L. The wavelength was calculated as
L=T,xc 2)

from the peak period T, = f, 1 of each sample, with f,, the peak frequency in the linear fast Fourier transform (FFT) spectrum

of the sample, and the shallow-water-waveeeleritylinear phase speed ¢ = v/gh with gravity g. Following Eq. (1) and Eq. (2), the

condition for the peak period may be written as

h

Ty > 0.22-¢

3

For a water depth of h = 10 m, the peak period thus had to satisfy the condition 7}, > 4.6 s, in order for a sample to classify

for shallow-waterdepth conditions, in which the KdV equation is valid. We based the shallow-water condition on the peak period

T}, of the entire sample (o assume that shallow-water wave properties as described by the KdV equation strongly contribute
to the wave processes in the sample. Nevertheless, it was additionally ensured that each of the individual rogue waves (or
the highest wave in each sample that did not contain a rogue wave) satisfied shallow-waterthe depth conditions required for the

applicability of the KdV equation, based on its period Tiax. Of all the selected samples above Hy 7o, shallow-waterthe required

shallow depth conditions applied in more than 98 % of the cases and were thus the dominant condition in these samples. The
2 % of the samples not satisfying shatiew-waterthe conditionsof shallow depth were discarded and not considered in the analysis.

In the considered samples, kh ranged between 0.38 and 1.36.

Rogue waves are commonly defined as waves with an individual height H from crest to trough of (Haver and Andersen, 2000)

H>20H, 4)
and/or waves with a crest height C above still water level of (Haver and Andersen, 2000)
C>1.25H,. 5)

In a previous study based on measurement data from the southern North Sea (Teutsch et al., 2020), we found that the rogue
wave frequency significantly deviated from the Forristall distribution for wave heights larger than 2.3 H,. Therefore, in the

present study we further define "extreme rogue waves" by a more strict height criterion of
H>23 H,. (6)

For the definition of a wave, the zero-upcrossing method was used.

The measured time series were subdivided into five categories:
""nermalnon-rogue samples''- measurement samples that did not include any rogue wave.

""height rogue samples''- measurement samples that include a rogue wave only according to the height criterion defined
in Eq. (4), while excluding the extreme rogue waves according to Eq. (6) and excluding the double rogue samples (see

below).

10



250 ""crest rogue samples''- measurement samples that included a rogue wave only according to the crest criterion defined

in Eq. (5), while excluding the double rogue samples.

""double rogue samples''- measurement samples that included a rogue wave according-tothat fulfilled both the criteria

defined in Eq. (4) and Eq. (5) at the same time, while excluding the extreme rogue waves according to Eq. (6).

""extreme rogue samples''- measurement samples that included a rogue wave according to the height criterion defined

255 in Eq. (6), while excluding the double rogue samples.

Examples of each time series category are shown in Fig. 4. Table 1 shows the number of samples and its percentage in each

category.

11
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Figure 4. 200 s sections taken from example time series illustrating rogue waves for each of the four rogue wave categories, and a ner-

malnon-rogue sample with a similar value of H for comparison. Vertical red lines mark the two zero-upcrossings of the rogue wave. Rogue

wave/crest heights are indicated in red/green.
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Table 1.

ites:-Number of samples and total number of individual waves in the considered time

series categories.

Sample-cCategory ~ NemmalNon-rogue  Heightrogue Crestrogue  Double rogue  Extreme rogue Total

No. of samples 13,984 833 95 151 93 15,156
Total no. of waves 4,759,663 287,617 32,354 52,520 32,117 5,164,271
Sample percentage 923 % 5.5 % 0.6 % 1.0 % 0.6 % 100 %

2.2 Application of the Korteweg—de Vries equation with vanishing boundary conditions to the measurement data

A vKdV-NLFT was applied to the data, to obtain the discrete soliton spectrum of each time series. The KdV equation was
introduced by Korteweg and de Vries (1895). It describes the evolution of weakly nonlinear and dispersive progressive unidi-
rectional free-surface waves in shallow water (h L~ < 0.22) with constant depth. For the analysis of space series (fixed at one
point in time), the space-like KdV equation (sKdV) is given e.g. in Osborne (2010), with reference to Korteweg and de Vries
(1895) as

Ut +C Uy + U Uy + B Ugze =0, (7

in which u = u(x,t) is a free-surface space series, developing in space « and time ¢. The subscripts « and ¢ denote partial
derivatives, c is the phase speed in shallow water, o = (3¢)(2h)~! and 3 = (ch?)/6 are constants, depending on the phase
speed ¢ and the water depth h. Equation (7) can be adapted to the analysis of time series (fixed at one point in space, like ¢.g.
buoy measurements. For the case of a free-surface elevation time series u(xg,t) (see f.ex. Fig. 5) at base point x, it is then
described by the time-like KdV equation (tKdV) (Osborne, 1993)

Uz + ¢ up+ wug + B ugy =0, ®)

in which ¢ = ¢! = (y/gh)™, &/ = —a (¢?)7! and 8’ = — 8 (¢*)~!. For our application of the KdV-NLFT, we assumed

initial conditions with vanishing boundaries
i To,t) =0
tl}rinoo u(xo,t) )

sufficiently fast. Since we were mainly interested in the soliton part of the nonlinear spectrum and solitons are not periodic,

we preferred vanishing (VKdV-NLFT) to periodic (pKdV-NLFT) boundary conditions. For vanishing boundary conditions, the

soliton spectrum completely describes the behaviour of the wave train in the far field (Prins and Wahls, 2019). The surface

clevation in the far ficld is then described by

N
u(x,t) ~ Z Ty sech? (knx — wpt — ¢n), (10)
n=1

as the linear superposition of independent solitons after the oscillatory waves have dampened out, with i,, = 2k2 and w,, = 4k

(Prins and Wahls, 2019, Eq. (4), Schuur, 1984, Eq. (17), Schuur, 1986, p. 83, Eq. (3.3), Ablowitz and Kodama, 1982, Eq.
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(2.20a)). In the KdV-NLFT, solitons are easily identified as the discrete part of the nonlinear spectrum. We applied the vKd V-
NLFT by using the MATLAB (2019) interface to the software library FNFT (Wahls et al., 2018), development version (commit
681191c). Its solution consists of a discrete soliton spectrum and a continuous spectrum representing oscillatory waves. Figure 5

shows an example of a measurement time series and-its-corresponding soliten-speetrum, its linear FFT spectrum, the nonlinear contin-

uous spectrum and the discrete nonlinear soliton spectrum. In this paper, only the discrete soliton spectrum will be discussed

further. Each of the solitons in the discrete spectrum would be a physical soliton if the signal is propagated according to the

KdV equation with vanishing boundary conditions. After sufficiently long propagation, the solitons will separate and their

characteristic shapes become clearly visible. For visualisation of the role of solitons in the time series, the upper plot in Fig. 5

shows the soliton train that was obtained by nonlinear superposition of the solitons (considering their interactions, but neglect-

ing the continuous spectrum) using the algorithm from Prins and Wahls (2021). Technically. the frequency-axis-has-no-physical- meaning;
beeause-a-soliton; for- whichAlthough the surface elevation composing a soliton does not cross the still water level.hasnefrequeney-and

a mathematical definition of the angular frequency can be obtained from the soliton solution of the tKdV (Briihl et al., 2022,
Eq. (12)) as

3Ag
Q:QW-FZVW. (D

Since this equation relates the frequency F’ to the amplitude A of the soliton, the frequency sorts the solitons in the spectrum

by their amplitude. istinguis sei sHollowing the convention in Briihl and Oumeraci (2016), the solitons in

the discrete spectrum (lower panel of Fig. 5) are displayed on a negative frequency axis. The vKdV-NLFT was applied to all
15,156 samples listed in Table 1.
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Figure 5. Example of a time series including a rogue wave at approx. 820 s, and its corresponding seliten-spectrum;FFT and NLFT spectra.

The nonlinear spectra were calculated from vKdV-NLFT. The time series with Hiyax H3 L — 9258, Hmax = 7.00 m and I, = 2.71 m, was

measured on 17 October 2013, starting at 11:30. The upper panel additionally shows the soliton train, as obtained by nonlinear superposition

of the solitons in the discrete spectrum (Prins and Wahls, 2021). Note that inverting large soliton spectra is numerically difficult (Prins and

Wabhls, 2021). Therefore, a shortened time series was used in the upper panel.
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Regular and irregular wavetrains in very shallow water are known to often contain solitons, even without the presence of

rogue waves (e.g., Osborne et al., 1991; Briihl and Oumeraci, 2016). The present study supports this finding: solitonsSelitens

were found in all samples, with and without rogue waves. The aim of the study was to explore the role of the determinedindividual
solitons for the generation of rogue waves. In the first part of the study, it was investigated whether specificindividual solitons in
the NLFT spectrum could be associated with the recorded rogue waves. For this purpose, all free-surface elevations between
the two zero-upcrossings of a rogue wave (or largest wave, for nesmainon-rogue samples) were scaled down to 80 % (Fig. 6).
The KdV-NLFT was then repeated for the modified time series, which resulted in a new soliton spectrum. It was monitored
which of the solitons had changed in amplitude A (and, therefore, in frequency F), due to the change in wave height of the

modified rogue wave. These solitons were assumed to have the same position in the time series as the rogue/ maximum wave.

In the second part of the study, we explored whether the spectra calculated from rogue wave time series showed differences

when compared to those calculated from nermalnon-rogue time series.

3 Results
3.1 Attribution of solitons to rogue waves

Solitons were attributed to specific rogue waves, following the procedure described in Sect. 2.2. We found in each case that the
amplitude of one large soliton significantly decreased for a reduced rogue wave (or maximum wave) height. Also in the group
of smaller solitons, slight changes in amplitudes were observed. Since for solitons, amplitude A and frequency F are related
according to Eq. (11), the reduction in amplitude corresponded to a simultaneous shift in frequency, which can be seen in the
soliton spectrum (Fig. 6). The reduced solitons can be regarded to be associated with the rogue wave in the time series, while
the other solitons in the spectrum maintained their amplitudes. The solitons with constant amplitudes can be regarded not to
be associated with the rogue wave. We refer to the amplitudes of the [ = 1...n solitons associated with the rogue wave as A%,
with A}q denoting the largest attributed soliton. Although often the case, the largest soliton attributed to the rogue wave was

not necessarily the largest soliton in the spectrum (Fig. 7).
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Figure 6. From top to bottom: (a) extreme rogue wave time series frqmp 17 October 2013, starting at 11:30; (b) magnified view of the rogue
wave (blue curve) and reduction of its elevation to 80 % (red curve); (c) soliton spectra of the original (blue circles) and the modified time

series (red triangles), resulting from vKdV-NLFT.
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Figure 7. From top to bottom: (a) double rogue wave time series from 27 April 2016, starting at 20:30; (b) magnified view of the rogue wave
(blue curve) and reduction of its elevation to 80 % (red curve); (c) S(}ﬁton spectra of the original (blue circles) and the modified time series

(red triangles), resulting from vKdV-NLFT.
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We extracted the amplitude of the largest attributed soliton A}, for each time series and compared it to the rogue wave height
H (for rogue waves according to any of the two height criteria, including double rogue waves, Fig. 8(a)) or the crest height C' of
the rogue wave (for rogue waves according to the crest criterion, including double rogue waves, Fig. 8(b)). A comparison of the
soliton amplitude A} to the largest wave height Hyax and the largest crest height Ciyax in sermalnon-rogue samples has been

added for reference (Fig. 8(c) and (d)). The eradientsslopes of the linear regression curves express increasing A}q with increasing

H or Hy,,x and C or Cly . TFor the analysed samples, the scatter of the data suggests an upper limit of Ag between 2 m and

3 m. The goodness of fit of each curve to the data is given in terms of the coefficient of determination

g2 SSres

= , 12
SStotal ( )

in which S5 is the sum of squares of residuals with respect to the regression curve, and S.Siota; is the sum of squared
residuals with respect to the average value of the data and thus a measure of the variance. R? indicates that the linear curves fit
the results from height and extreme rogue wave samples better than the results from nrermainon-rogue, double and crest rogue
samples. R? is higher in Fig. 8(a) than in Fig. 8(b)-(d).

Moreover, it is seen that the amplitude of the largest soliton is always smaller than the rogue wave crest/ height itself. This is in
agreement with results by Osborne et al. (1991), who identified solitons in measurement data from the Adriatic sea by applying

the NLFT with quasi-periodic boundary conditions to the KdV equation.

the presence-of a-rogue-wave in-our-data-Our investigation revealed that in all cases some smaller solitons were additionally associated

with a rogue wave. Typical values of the amplitude of the second-largest soliton A% are 20-30 % of A}. The amplitude of the

third-largest attributed soliton A% is typically 10-20 % of A}.
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Figure 8. Amplitude of the largest soliton attributed to the highest wave, A%, in the time series for normalsamplesthe rogue wave (upper row)
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crest height C/ maximum crest height C.,., (right column). The goodness of fit of the linear regression curves is given in terms of R2.
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So far, the results show that high soliton amplitudes in the spectrum are associated with high absolute values of wave heights
or crests. However, this does not necessarily imply that high solitons play a role in forming individual waves that are exceptional

:be able to compare different measurement

with respect to the surrounding wave field. To

samples, the soliton amplitudes Al were normalised by the significant wave height Hy of the corresponding sample. By relating
the normalised soliton amplitudes to the different time series categories, the importance of solitons for the relative height of
rogue or maximum waves was investigated (Fig. 9). If solitons are to play a major role for the presence of rogue waves, their
normalised amplitudes are expected to increase from nesmatnon-rogue samples with H (H,)~1 < 2.0 through height and double
rogue waves (2.0 < H (H,)~! <2.3) to extreme rogue waves (H (Hg)™' > 2.3). In fact, the median values of A (H)™!
are higher for rogue wave samples than for rermalnon-rogue samples, meaning the distributions calculated from the rogue

wave samples are shifted te-therighttowards higher normalised soliton amplitudes with respect to the distribution calculated

from nermainon-rogue samples (Fig. 9). Additionally, the rogue wave sample distributions, and especially those calculated from
crest and extreme rogue samples, show heavier sighttails. The differences in the distributions suggest that solitons play a role
in rogue wave generation. It is striking that not only extreme rogue waves, but also crest rogue waves had a tendency to be
associated with higher solitons. This makes sense when recalling that a soliton is not an oscillating wave and because of its
shape contributes more to wave crests than to wave heights. However, although differences in normalised soliton amplitudes
Al (Hy)™! are present for the different categories, the distributions overlap and the positive trend with increasing relative
wave height is not as pronounced as the positive trend of A} with increasing maximum wave height, as presented in Fig. 8.
This emphasises the relevance of the considered sea state for the soliton amplitude, in that large solitons are only found in high
sea states. Large solitons correspond to high wave heights H and high crest heights C, but not necessarily to high relative wave

heights H (H,) ! or high relative crest heights C' (H) .
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Figure 9. Amplitude of the highest soliton attributed to the rogue wave or maximum wave in the time series, normalised by the significant
wave height, for the different categories of time series. Distributions are shown as box-and-whisker plots (box: interquartile range; whiskers:

1.5 times the interquartile range; horizontal line inside the box: median; red crosses: data outside the whiskers).

Since we were interested in the importance of nenlinearitynonlinear processes in the rogue wave generation at the buoy

location, we intended to quantify the nonlinearity of the rogue waves. In shallow water, the nonlinearity of waves can be
described by the Ursell number (Ursell, 1953). Different definitions of the Ursell number exist. A common definition is (Dean
and Dalrymple, 1991, Eq. 11.109)

2
HL:EWﬁ (13)

U =2
R 3
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with K the complete elliptic integral of the first kind, and the modulus k. According to Osborne (2010, Eq. 10.151 and Eq.

10.154), the Ursell number in its time-like form is given by

3 HL?*  mK?(m)

U= 35505) = "on

with the modulus m. in-whieh

a976). (For consistency with Eq. (13), the wave amplitude a in the original equation of Osborne (2010) has been replaced by
the wave height a = H /2.) Comparison of Eq. (13) and Eq. (14) shows the Ursell numbers to differ by a factor of 3/(3272).
The moduli in Eq. (13) and Eq. (14) are related by m = k2. Thus, different Ursell number definitions will yield different thresh-

olds for the separation of wave theories. In this study, we use the definition given in Eq. (14) and adjust the cited threshold

values accordingly.

The Ursell number #-is known to be an equivalent to the BFI for deep water waves (Slunyaev et al., 2011; Onorato et al., 2001)

and has been used to classify wave types.

solitary-waves-(Miles-1980)- In Briihl (2014), solitary-like waves arc defined by a modulus of m > 0.99. According to this classifi-

cation and by applying Eq. (14), Ursell numbers U, > 0.559 are obtained for solitary-like waves. Waves with Uy < 0.559 are

classified as oscillatory waves.

According to Eq. (14), the Ursell number is defined either by the modulus m or by height H and wavelength L of a single

wave oscillation over depth h. Thus, we can calculate the Ursell number for the identified rogue waves using the H and L

obtained by zero-upcrossing. In our case, the amplitudes of the largest attributed solitons show an almost linear positive trend

with increasing Ursell number up until approximately U; = 0.5 (Fig. 10).

_For our data, in which the bulk of waves are located below

U; = 0.559, this means that most rogue wave-crests-are-not-soliton-likes are not classified as solitons. This is in agreement with

several previous studies, which have shown that rogue waves in shallow water, despite their large amplitudes, have very small
ratios of nonlinearity to dispersion (Ursell numbers), thus are almost linear (Pelinovsky et al., 2000; Kharif and Pelinovsky,
2003; Pelinovsky and Sergeeva, 2006).

have-not-verified- Another observation made from Fig. 10 is a-thresholdan upper limit in soliton amplitude between AL = 2.0 m

and AL = 2.8 m, depending on the time series category, for Ursell numbers larger than approximately Us = 0.5. Referring to
the classification by-Brithl2022)given above, this implies that for the most nonlinear waves, which are those satisfying solitary
wave theory, soliton amplitudes are limited. A limit in soliton height as a result of breaking is expected at amplitudes of
approximately A = 8 m for a water depth of i = 10 m, as the breaking criterion for solitary waves is A h~! = 0.78 (McCowan,
1891) or A h~! = 0.83 (Lenau, 1966). Therefore, shallow-water wave breaking at the location of the buoy can be excluded.
The reason for the limit in soliton amplitude alrcady at A} =2.5mto A} = 3 m could be limited energy input by wind (see
Middleton and Mellen (1985) for soliton generation by wind), or a shoal in front of the measurement buoy causing the larger

waves to break before they reach the buoy.
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Figure 10. Upper panel: amplitude of the highest soliton attributed to the maximum wave in the time series as a function of the Ursell number

of the maximum wave in the time series. Lower panel: amplitude of the highest soliton attributed to the rogue wave as a function of the Ursell

number of this rogue wave.

3.2 Soliton spectra for time series with and without rogue waves

When investigating the attribution of solitons to rogue waves in Sect. 3.1, we found in the majority of cases that the largest

soliton in the nonlinear spectrum could be attributed to the rogue wave. In addition, this soliton was often outstanding from the

other solitons in the spectrum, with a much larger amplitude than the remaining solitons in the spectrum (see the example in

Fig. 6). We were therefore interested in whether the existence of an outstanding soliton in the nonlinear spectrum was typical

for rogue wave samples off Norderney. We investigated this question statistically by comparing soliton spectra, calculated from

vKdV-NLFT, for nermalnon-rogue samples and the four different categories of rogue wave samples. In fact, while all 15.156

considered time series yielded discrete spectra with a large number of solitons, we identified two characteristic classes of

24



410 soliton spectra. The typical appearance of a soliton spectrum calculated from a time series without rogue waves, was a cluster
of solitons (Fig. 11). On the contrary, soliton spectra calculated from time series including a rogue wave in the majority of cases

showed one outstanding soliton with an amplitude much larger than that of the remaining cluster of solitons in the spectrum

(Fig. 5).
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Figure 11. Example of a nermalnon-rogue time series without rogue waves, and its corresponding soliton spectrum, calculated from vKdV-
NLFT. The soliton spectrum displays a cluster of solitons, found to be typical for the majority of spectra calculated from resmalnon-rogue
time series. The time series was measured on 26 December 2016, starting at 11:30, with the parameters Hmax = 4.44 m, Hy = 2.46 m and
Hmax (Hs) ™" = 1.80.

To distinguish between clustered soliton spectra and those featuring an outstanding soliton, we compared the amplitudes of

415 the largest soliton, A, and the second-largest soliton, As, in the discrete spectrum. From the visual inspection of the spectra,
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we identified a threshold of the ratio Az (A1)~ !, below which the largest soliton could be called outstanding:

Ao
—Z <0.8. 5
A1_08 (15)

Thus, a soliton spectrum had an outstanding soliton if the second-largest soliton was at least 20 % smaller than the largest
soliton in the spectrum. The choice of this threshold was further supported by the fact that the threshold A2 (A1)~! =0.8
coincides with the median value of A2 (A1)~! for maximum wave heights just below the rogue wave criterion H (Hg) ™! > 2.0
(Fig. 12). This reveals that our threshold chosen for the distinction between clustered spectra and those featuring an outstanding
soliton, at the same time indicates a difference between the spectra calculated from nermalnon-rogue and those calculated from

rogue wave time series.
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Figure 12. Distribution of the ratio between the second-largest and the largest soliton in the discrete spectrum calculated from nermalnon-
rogue time series. H (H,)™" bins of width 0.05 are shown up until H (H,)~" < 2.0, which corresponds to the definition of height rogue
waves (Eq. (4)). Distributions are shown as box-and-whisker plots (box: interquartile range; whiskers: 1.5 times the interquartile range;

horizontal line inside the box: median; red crosses: data outside the whiskers).

Equation (15) is valid for 30 minute samples at the measurement site, which is the standard window size of measurement

425 samples delivered by Datawell Waverider buoys. Since the ratio between soliton amplitudes might be dependent on the window
size, it is not clear if Eq. (15) would apply to other than 30 minute time windows. The effect of a larger time window size will
be discussed in Sect. 4. Table 2 shows the share of outstanding solitons and clustered soliton spectra in each of the categories
defined in Sect. 2.1. It is seen that the typical appearance of the soliton spectrum for 30 minute wave measurement samples off
Norderney without rogue waves is a cluster of solitons (64 % of the samples), while at the same time it is not unlikely to obtain

430 a soliton spectrum with one outstanding soliton from vKdV-NLFT (36 % of the samples). For 30 minute rogue wave samples
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in contrast, it is more likely to obtain a soliton spectrum with one outstanding soliton than a clustered soliton spectrum. This is
true for height rogue samples (57 %), and even more pronounced for crest rogue samples (64 %), double rogue samples (72 %)
and, finally, extreme rogue samples (87 %). The conclusion can be drawn that the absence of an outstanding soliton is a strong
predieterindicator for the absence of an extreme rogue wave. The differences between the four rogue wave categories, indicating
that the presence of an outstanding soliton is not equally expressive for all types of rogue waves, may lead to the presumption

that not all rogue waves found off Norderney can necessarily be explained by the same theory.

Table 2. Share of samples in each category showing an outstanding soliton or a clustered soliton spectrum, respectively.

NermalNon-rogue  Height rogue  Crest rogue  Double rogue  Extreme rogue
Outstanding soliton 36 % 57 % 64 % 72 % 87 %
Clustered solitons 64 % 43 % 36 % 28 % 13 %

The question whether inferences can be made from the time to the spectral domain and vice versa, is answered by a con-
tingency table (Fig. 13). Here, all previously defined rogue wave categories are combined into one joint group of rogue wave
samples. Two statements can be made based on the table. On the one hand, the probability that an NLFT spectrum calculated
from a normal sample shows an outstanding soliton, is 4986/13.984 = 36 %, while the probability that a spectrum calculated
from a rogue wave sample shows an outstanding soliton, is 726/1172 = 62 %. This indicates that, although not all rogue waves
can necessarily be explained by the same theory, outstanding solitons occurred in connection with the majority of observed
rogue waves ol Norderney. While in the combined group of rogue waves, outstanding solitons play a role in 62 % of the cases,
the share differs between the rogue wave categories (Table 2). On the other hand, although rogue waves are more likely to be
observed when an outstanding soliton is present in the NLFT spectrum, the presence of an outstanding soliton alone is not
sufficient as an indicator for the detection of rogue waves. The main difficulty is the imbalance in sample size between normal

samplesnon-rogue and rogue wave samples.
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Figure 13. Contingency table of forecast/event pairs. a- hits. b- false alarms. c- misses. d- correct negatives.

In Fig. 14, the ratio between the amplitudes of the second-largest and the largest soliton in the nonlinear spectrum, Ao (A1),

is visualised in a boxplot for each of the time series categories. A ratio above Ay (A7)~ = 0.8, meaning that the second-largest
soliton has a rather similar amplitude to the largest soliton, implies that the soliton spectrum is clustered (Eq. (15)). For ner-
manon-rogue samples, this is the case for the bulk of time series. The median of the ratio Ay (A;)~! decreases from the
most-left to the most-right category on the right axes in Fig. 14. For height rogue waves, the median of Ao (A7)~ ! is below the
80 %-line, with the distribution extending above and below. For double and extreme rogue waves, the gap between the soliton
amplitudes may become much larger than for height rogue waves. In some cases, the amplitude A, amounts to less than 30 %
of the amplitude A;. In all categories except extreme rogue samples, there are samples for which the first and second solitons
are almost similar in amplitude (43 (A7)~ ! & 1). On the contrary, for all extreme rogue wave samples, A is below 93 % of

Aj. The large part of soliton spectra from extreme rogue samples shows an outstanding soliton.
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Figure 14. Boxplots of the ratio between the second-largest soliton (Az) and the largest soliton (A7) in the spectrum for the different
categories of time series. Distributions are shown as box-and-whisker plots (box: interquartile range; whiskers: 1.5 times the interquartile
range; horizontal line inside the box: median; red crosses: data outside the whiskers). Below the horizontal line of 80 %, the highest soliton

in the spectrum is classified as outstanding.

Figure 15 presents the ratio Ay (A1)~ in a scatter plot with one data point for each individual time series. According to
this representation, although the presence of an outstanding soliton with Ay (A7)~* < 0.8 is not a useful indicator of whether
a rogue wave is present in the time series or not, the presence of a rogue wave becomes much more likely when one soliton
in the nonlinear spectrum is strongly outstanding with A (A1)~ < 0.3: of all 23 samples satisfying A, (A1)~ < 0.3, only
4/23 =17 % are nermalnon-rogue samples, while 19/23 = 83 % of the samples are rogue wave samples (1 height, 1 crest, 8

double, 9 extreme rogue wave samples).
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Figure 15. Ratio between the second-largest soliton (A2) and the largest soliton (A;) in the spectrum as a function of relative wave height
H (H)™" or Huax (H,) ™! for the different categories of time series. Below the horizontal line of 80 %, the highest soliton in the spectrum

is classified as outstanding. Below the horizontal line of 30 %, the highest soliton in the spectrum is referred to as strongly outstanding.

4 Discussion

We investigated discrete nonlinear soliton spectra obtained by the application of the vKdV-NLFT to time series measured by
a surface-following buoy off the coast of the island Norderney in the southern North Sea. The impulse for investigating the
data at this specific site by using nonlinear methods was given by a previous study (Teutsch et al., 2020). There, it was found

that while second-order-distributions-werethe Forristall distribution was sufficient to describe rogue wave occurrences at nearby buoy

stations in somewhat deeper water (see kh ranges of buoy stations in Table 1 of Teutsch et al. (2020)), the Norderney buoy

recorded a larger number of rogue waves than expected according to secend-erder-theerythe Forristall distribution. The results
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described in this paper suggest that nonlinear processes may explain the enhanced rogue wave occurrence at this specific site.
The results were derived by the application of vKdV-NLFT and are therefore strictly valid for shallow-water conditions in the

context of the applicability of the KdV equation. In a future study, it may be interesting to extend the investigation to additional

shallow-water sites in shallow water depths.

Throughout the study, indications were found that although solitons play a role for the presence of rogue waves at Norderney,

the soliton spectrum alone does not yield a satisfactory explanation of the formation of extreme waves/ crests. A first hint is

given in the upper panel of Fig. 5, which shows the reconstructed soliton train along with the measured time serics. Here,

solitons (and their interactions) neither account for the full height of the observed rogue wave nor provide the observed wave

trough. Fig. 8 supports the finding that the solitons were not large enough to explain the full heights of the associated rogue

waves. From Fig. 9, it is seen that the presence of a large soliton is not necessarily connected to the presence of a rogue wave.

Another indication that the soliton spectrum alone is not sufficient to explain the presence of rogue waves is given in Fig. 10,

which shows that the shapes of most rogue wave crests are not soliton-like. In addition, Kharif and Pelinovsky (2003) found

that the interaction of unidirectional KdV solitons does not result in exceptional increases in wave elevation. As a consequence,

one may speculate that the formation of the rogue waves in our data set was a result of nonlinear interactions of one or more

solitons with the underlying oscillating wave field. This hypothesis will need further analyses to be validated.

The bathymetry below the measurement buoy at Norderney is characterized by a strong decrease in water depth. Non-
Gaussian wave characteristics as a result of decreasing water depth have already been described e.g. by Huntley et al. (1977)3in

the context of wave run-up. It has and-gained increased attention in the context of rogue wave occurrence (e.g., Sergeeva et

al., 2011). Increased rogue wave frequencies behind slopes or steps were confirmed by numerous numerical (e.g., Sergeeva
et al., 2011; Majda et al., 2019) and experimental studies (e.g., Trulsen et al., 2012; Kashima et al., 2014; Ma et al., 2014;
Zhang et al., 2019; Trulsen et al., 2020)(Raustgl, 2014; Jorde, 2018; Bolles et al., 2019; Zhou et al., 2019). Li-etal-2021) have

generated-at-the transition. The main subject that the mentioned studies are concerned with; is that waves propagating over a slope,

step or bar, are forced into new equilibrium conditions (Zeng and Trulsen, 2012). This mechanism is associated with strong

non-Gaussian statistics and an increased rogue wave probability (Zhang and Benoit, 2021). The reason for the enhanced rogue

wave probability was identified as the higher degree of nonlinearity in the shallow water behind the slope or step, which Icads

to an enhancement of second-order harmonic bound waves (Gramstad et al., 2013). Zheng et al. (2020) and Li et al. (2021)

confirmed numerically and theoretically that second-order terms (made up from bound waves and free waves released by the

interaction of bound waves with the slope) are responsible for peaks in skewness and kurtosis. Zhang and Benoit (2021) stated

that both second- and third-order effects evolving from the non-equilibrium dynamics at the depth transition significantly en-

hance the local kurtosis and the occurrence of rogue waves. For these effects to occur, the shallow domain must be sufficiently

shallow and the slope of the bathymetry change plays a major role (Fu et al., 2021). The largest peaks in kurtosis and skewness

and the highest rogue wave probabilities were found for the steepest slopes (Gramstad et al., 2013; Zheng et al., 2020; Fu

et al., 2021; Lawrence et al., 2021). Doeleman (2021) recently showed in tank experiments that the findings are not valid in

shallow water. Mendes et al. (2022) confirmed theoretically that a strong amplification may be found in intermediate water
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(0.5 < kh < 1.5). They stated that "Whether rogue waves are enhanced in strong bathymetry changes throughout most oceans

or regionally under suitable conditions is yet to be assessed” (Mendes et al., 2022). Zeng and Trulsen (2012) anticipate that

itthe described mechanisms may explain the spatially varying occurrence frequency of rogue waves on the continental shelf,

where waves enter from the deep sea. Therefore, the described processes associated with a strong decrease in depth might be an
explanation for the observed increased rogue wave occurrence off the coast of Norderney (Teutsch et al., 2020). A connection
between rogue waves and solitons in this context was established by Sergeeva et al. (2011). The authors showed by applying
a KdV equation, that the number of solitons increases in the shallow water behind a slope. They linked this increased soliton
occurrence to an increased rogue wave probability.

The solutions of the KdV equation for a given free-surface elevation time series strongly depend on the water depth (see
Eq. (7)). While for our calculations, we assumed a constant water depth of A = 10 m, there are in fact major uncertainties
regarding the water depth at the actual location of the buoy, due to tidal changes and bathymetry gradients, together with the
movement of the buoy, as mentioned in Sect. 2.1 (Fig. 2). The mean tidal range at Norderney is approximately =+25-m2.5 m,
while due to an additional movement of the buoy of 2 m to each side of the slope a total deviation from the nominal water depth
of +£2 mis reasonable. We performed a sensitivity analysis to test the robustness of the results with respect to these uncertainties.
To do so, we repeated the computation of the soliton spectrum for water depths of A = 8 m and 12 m, respectively, while using
the same free-surface data as in the previous analysis. A changed water depth leads to a different shallow-water-cenditionsdepth

range in which the KdV equation is valid (Eq. (3)). For the calculation with a depth of h = 12 m, we repeated the identification

of the samples that fulfill shallow-water conditions in the KdV context, as samples and maximum waves due to the larger

water depth now had to satisfy the condition T}, or T" > 5 s, in order to classify as shallow-waterdepth samples/ waves for the

applicability of the KdV equation. Therefore, only 14.206 samples, that is, approximately 94 % of the original sample size,

were available for the calculation at A = 12 m. For the calculation with a depth of 1 = 8 m, we used the same samples as for the

calculation with A = 10 m, because these automatically fulfilled shallow-water depth conditions at & = 8 m. Irrespective of the

water depth adopted in the calculation, the result remained that samples with rogue waves, and especially extreme rogue waves,
were more likely to contain an outstanding soliton in the nonlinear spectrum than samples without rogue waves (Table 3). Thus,

the results are robust with respect to potential uncertainties in water depth.

Table 3. Share of samples in each category showing an outstanding soliton in the soliton spectrum, for the respective water depth adopted in

the NLFT calculation. Note that for a water depth of h = 12 m, the shallow-water-depth criterion in Eq. (3) changes to 7, > 5 s, which left

approximately 94 % of the samples for the calculation at a water depth of 12 m.

Water depth  NermalNon-rogue  Height rogue  Crestrogue Double rogue  Extreme rogue

8 m 32% 57 % 61 % 73 % 75 %
10 m 36 % 57 % 64 % 2% 87 %
12 m 36 % 53 % 62 % 70 % 76 %
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The KdV equation is only valid for unidirectional waves. Although Osborne (1993) recommends the application of the NLFT
for KdV to measurement data only for samples in which the largest part of the energy is in the dominant propagation direction,
we applied the KdV-NLFT outside the limits that are given in the literature. At our measurement site, the sca state was always
multidirectional, with a directional spreading of the wave energy approximately between 28° and 55°, while in the dataset of
Osborne (1993), only 5 % of the energy were perpendicular to the dominant direction of propagation. We repeated the first part
of the analysis, for which the results are described in Sect. 3.1, for the approximately 10 % of samples in each category with the
lowest directional spread. This corresponded to a threshold in directional spread of 35° for most categories, except crest rogue
waves, which tended to occur in broader sea states (threshold at 36.5°) and extreme rogue waves, which statistically occur
in more narrow sea states (Christou and Ewans, 2014) (threshold at 34°). We found our result- that an outstanding soliton is
more typical for a rogue wave time series than for a nesmalnon-rogue time series- confirmed and partly emphasised (Table 4).
Therefore, we rate vKdV-NLFT, although assuming unidirectionality in multidirectional measurement samples, an appropriate

tool to evaluate the connection between solitons and rogue waves off Norderney.

Table 4. Share of samples in each category showing an outstanding soliton, for the approximately 10 % most narrow samples.

NermalNon-rogue  Height rogue  Crest rogue Double rogue  Extreme rogue
No. of samples 1614 91 12 17 10
Outstanding soliton 31 % 57 % 67 % 88 % 90 %

In our study, we have applied the VKAV-NLEFT as a trace method for (extreme) rogue waves and demonstrated for the first

time that certain distinctive patterns in the NLFT spectrum of real-world time series indicate extreme rogue waves. The method

may provide further information on possibly dangerous time series in future applications. Further research is required on the

applicability of the KdV equation to our data, which cannot be validated on the basis of single-point measurements. If wave

propagation at Norderney is well described by KdV theory, the NLFT spectrum is approximately constant during propagation.

The method may then identify time series with the potential of forming extreme rogue waves. Moreover, even if the KdV

equation does not describe the propagation well, we still consider the NLFT a more appropriate transform than the linear FFT,

which is often applied even if waves are nonlinear. Similar to the FFT in the linear case, our method should be treated as a

signal transform (Sugavanam et al., 2019). Our study provides insights into the spectral characteristics at the considered site.

We would like to put an emphasis on the limitation of our suggested definition of an outstanding soliton (Eq. (15)) to the
size of the measurement window. Our criterion was chosen based on the inspection of soliton spectra from 30 minute time
series. However, the gap size might change depending on the chosen window size. An increase in window size, meaning more
waves in the time series, will introduce additional solitons to the spectrum. If these are larger than A; or emerge in between
Ay and As, the gap size between the two largest solitons will be influenced. If these are smaller than As, their emergence will
not alter the gap between Ay and A,. Similarly, a reduction in window size would exclude waves in the time series and remove

solitons corresponding to these waves. If this modification leads to the removal of the largest or second-largest soliton, the gap
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between the new A; and As will become larger or smaller than for a 30 minute time window. If this modification only affects
solitons smaller than A,, the size of the gap between A and A5 will not be influenced. We applied the ratio between Ay and
A merely as a measure to statistically evaluate differences in the soliton spectra calculated from 30 minute normalnon-rogue
and rogue wave time series. For different window sizes, it might be necessary to define new criteria.

Due to the limited recording frequency of the wave buoy, onc might question the correct assignment of time series to the

different categories (Table 1). Wave crests might be missed by the discrete measurement points, leading to a possible under-

estimation of rogue or extreme rogue waves (Stansell et al., 2002). However, even if extreme rogue time series were assigned

incorrectly to the category of height rogue waves, this misinterpretation is conservative: none of the time series in the category

"extreme rogue samples" has been assigned incorrectly. Furthermore, according to the sampling theorem (Shannon, 1949), the

buoy sampling rate of 1.28 Hz is sufficient to sample time series whose FFT spectra decay at approximately 0.6 Hz (Fig. 5,

second panel). Therefore, we consider the buoy sampling frequency sufficient for our purpose.

Our result that rogue wave samples have a higher probability of showing an outstanding soliton in the nonlinear spectrum
compared to mermalnon-rogue samples becomes most obvious in the categories of double and extreme rogue samples. In these
categories, differences from rermalnon-rogue samples are visible not only in the percentage of outstanding solitons, but also in
the magnitude of the amplitude gap between the first and second solitons in the spectrum. Height rogue waves, on the contrary,
do not seem to differ very much from high waves in rermalnon-rogue samples, both in terms of the gap between first and second
soliton in the spectrum, and the height of the solitons associated with the maximum wave. The fact that differences between
time series with and without rogue waves become apparent only in some of the chosen categories, raises the question whether
the choice of rogue wave definitions has been reasonable for the considered location. The rogue wave definitions serving as
a basis to this study have been introduced by Haver and Andersen (2000) for deep water waves. The relative height and crest
values in their definitions represent outliers, being exceeded in 1 of 100 cases when applying a second-order model to the
deep-water sea-surface elevation (Haver, 2000). The definitions have been taken up numerous times in the literature. Authors
have been investigating whether rogue waves according to Haver and Andersen’s definition (2000) are outliers with respect to
typical wave distributions in the real ocean as well (e.g., Forristall, 2005; Gemmrich and Garrett, 2008). The question has been
raised whether the rogue wave definition by a certain height or crest threshold is useful in practice (Héfner et al., 2021). Several
authors have, based on large measurement datasets, come to the conclusion that these rogue waves are rare, but nevertheless
realisations of commonly used wave distributions (e.g., Waseda et al., 2011; Christou and Ewans, 2014). In a previous study
(Teutsch et al., 2020), we were able to confirm this conclusion at buoy measurement stations in intermediate water. However,

at the shallow-water-buoy station off Norderney in comparably shallow water depth, which showed a larger number of rogue

waves than expected according to the common wave distributions, the interaction of solitons with oscillating waves might be a

mechanism explaining the increased occurrence of rogue waves.
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5 Conclusions

Rogue wave occurrence recorded off the coast of the island Norderney is not sufficiently explained by seeend-erdertheerythe For-

ristall distribution of wave heights. We investigated the role of solitons as components of the discrete vKdV-NLFT spectrum

in the enhanced rogue wave occurrence . Our main results for this

specific measurement site are the following.

Each measured rogue wave could be associated with at least one soliton in the NLFT spectrum.

The soliton heights were always smaller than those of the rogue waves. Samples with rogue waves were more likely to

contain an outstanding soliton in the NLFT spectrum than samples without rogue waves.

The soliton spectrum analysis is a good indicator of extreme rogue waves in the corresponding time series.

The presence of a strongly outstanding soliton, with a ratio between the second-largest and the largest soliton in the

nonlinear spectrum of A, (Al)_1 < 0.3, was found to be a strong indicator for the presence of a rogue wave.

Conversely, the absence of an outstanding soliton in the spectrum is a strong indicator for the absence of an extreme
rogue wave of H (H,)~! >2.3.

We conclude that nonlinear processes are important in the generation of rogue waves at this specific site and may explain the

enhanced occurrence of such waves beyond seeend-ordertheorycommon wave height distributions. Rogue waves at Norderney are

likely to be a result of the interaction of solitons with the underlying field of oscillatory waves. The nature of this interaction

should be subject to further research.
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