
Reply to review #1 

We thank Referee #1 for the constructive comments that have helped us to clarify and 
improve many aspects of our manuscript. In the following, we explain how we plan to 
address the individual issues raised by the reviewer in the revised manuscript. 
In blue color, the lines, in which changes in connection with the respective reviewer 
comment have been made, are indicated. These refer to the tracked changes version. 
 

 

1A We thank the reviewer for this comment. We will add a proper definition of rogue waves 
and discuss their relevance, as suggested. (line 2, lines 25-29) 
 
1B We thank the reviewer for pointing out this ambiguity in the manuscript. We will draw a 
clear connection of Rayleigh and Weibull distributions to linear superposition and add an 
additional reference for second-order models to the text. 
(lines 2/3, 30-33, 181/182, 470, 599) 
 
1C We appreciate the critical review of the paragraph. We agree that some formulations are 
misleading and we will re-formulate the passage in agreement with the suggestions of the 
reviewer. (lines 37-45) 
 
1D  (line 43) 
 
1E We thank the reviewer for pointing out additional important conclusions in the literature. 
We will add these to our introduction. (lines 49-53) 
 
1F We agree with the reviewer. We will add the suggested references accordingly. 
(lines 46-49) 
 
1G We agree with the reviewer. We will add the suggested references accordingly. 
(lines 90-92) 
 
1H We understand the objection of the reviewer. In our text, we will replace the expression 

 (lines 73/74, 104, 120, 364) 
 
1I We thank the reviewer for the additional reference. We will add it accordingly. 
(lines 114/115) 
 
1J We agree with the reviewer on the contradiction in the text. We will rephrase the 
sentence in question accordingly. (lines 122/123) 
 
1K We thank the reviewer for several additional important references concerning rogue 
wave occurrence on varying bathymetry. We will extend the discussion and include the 
suggested references. (lines 491, 495-508) 
 



1L We thank the reviewer for this remark. We will replace the unpublished reference by 
publically available literature. (line 380) 

 

2A We thank the reviewer for this detailed assessment and the comparison with the previous 
study of Teutsch et al. (2020). The reviewer is completely right that Figures 7 and 9 in 
Teutsch et al. (2020) do not support the conclusion that rogue wave frequencies are 
overestimated by the Forristall distribution. However, in these Figures data from different 
types of instruments (radar and wave buoys) are considered jointly. Figure 2 in Teutsch et al. 
(2020) clearly shows that data from both instruments show different behaviour with rogue 
wave frequencies in the radar/buoy data set being higher/lower than that derived from the 
Forristall distribution. The only exception here were the results from the buoy SEE off 
Norderney, which showed results comparable to those derived from radar data. This 
rendered the station SEE outstanding and provided the motivation for this study. 
 
2B We thank the reviewer for his/her discussion of the Ursell number formulation. As 
suggested, we will rewrite the equation and state in the text that different definitions of the 
Ursell number exist, which will lead to different threshold values. (lines 366-385) 
 
2C For the agreement between the Forristall distribution and the measurements, please see 
our reply to comment 2A. In l. 369 of the discussion, we will add the information that the 

measurement results from the previous study. 
Regarding the second part of the comment, we acknowledge that there is a clear definition 
of what represents shallow/deep/intermediate water for a wave, while the terms were used 
here in a broader sense to distinguish sites. We will revise the manuscript to make this 
clearer and we will use a different terminology. We will also replace second-order theory by 
Forristall distribution. (lines 216/217, 468/469) 
 
2D The mentioned citation refers to non-Gaussianity in decreasing water depth, here in the 
context of wave run-up. The article is referred to by Sergeeva et al. (2011) to emphasise 
nonlinear behaviour of waves above a varying bathymetry. We do, however, agree with the 
reviewer that our formulation concerning the reference is misleading, as the referred article 
does not concern rogue waves. We will therefore re-
described e.g. by Huntley et al. (1977) in the context of wave run-up. It has gained increased 
attention in the context of rogue wave occurrence (e.g. Sergeeva et al. (2011)) .
(lines 478-489) 
 

 

3A We thank the reviewer for raising the issue of the shallow water definition. We will 
present the ranges of kh in our data, as well as the value of the slope, as suggested. The 
reviewer is right that our article does not solely concern waves in shallow water as defined 
by h < L/20. Since we investigate waves in the context of the KdV equation, we follow the 
definition of the applicability of the KdV equation as given by Osborne and Petti (1994), p. 
1731, and Osborne (1995), p. 2629. We acknowledge that, therefore, our definitions of 
shallow water (kh < 1.36 or h/L < 0.22) and deep water (kh > 1.36 or h/L > 0.22) are different 



from the definitions of shallow (h/L < 0.05), intermediate (0.05 < h/L < 0.5) and deep water 
(h/L > 0.5) that are used in the engineering context, and that this may lead to confusion. We 
will therefore state this difference more clearly in the text, and we will clearly define the 

he paper. Furthermore, we will change the title to 
instead of  (lines 

106-108, 129/130, 203-205, 215-219, 227, 230-233, 234, 472-474, Table 3, 521-525, 588) 
 
3B We apply the definition of the KdV equation as given in Osborne (2010) , p. 9, which 

defines the linear phase speed as -water wave 

 
h/L = 0.05. Nevertheless, the linear phase speed is used in the KdV equation within the 

 (line 223) 
 
3C 
the fact that waves slightly below the threshold H/Hs = 2.0 are influenced by nonlinear 
processes and can become highly dangerous, similarly to waves with H/Hs > 2.0. We will 

-
include waves according to the definitions H/Hs 2.0 or C/Hs 25. (entire document) 
 
3D We agree with the reviewer that the number of samples is a vague quantity for the reader 
and that the total number of waves should be more informative. We will include the precise 
number of measured waves in Table 1. (Table 1) 
 
3E We thank the reviewer for the valuable suggestion that the results from the crucial papers 
Osborne et al. (1991) and Bruehl and Oumeraci (2016) should be explained to the reader 
more thoroughly. For explanation, we will additionally refer to earlier crucial references, the 
original numerical studies by Zabusky and Kruskal (1965) and Osborne & Bergamasco (1986). 
Osborne et al. (1991) applied the approach to ocean measurement data and Bruehl and 
Oumeraci (2016) performed an experimental study. Note that there is a technical difference 
between our approach and the approach in the three last mentioned works. We use the NLFT for 
vanishing boundary conditions, while Osborne & Bergamosco (1986), Osborne et al. (1991) and 
Bruehl and Oumeraci (2016) apply the NLFT for periodic boundary conditions. The relation 
between the two transforms is somehow similar to the relation between the linear Fourier 
transform and the linear Fourier series (which is what the FFT computes). They are related, and 
both have their advantages and disadvantages, but not all results can be directly compared for 
this reason. We will add paragraphs accordingly, additionally referring to earlier crucial 
references that explain the behaviour of solitons for the NLFT employed in our paper, like 
Hammack and Segur (1974) and Ablowitz & Kodama (1982). In our context, the sea surface 
elevation is described by a discrete spectrum indicating solitons and a continuous spectrum 
indicating a dispersive wave train. Of these two parts, we only discuss the soliton spectrum 
further in this article. However, it is known that for vanishing boundary conditions the soliton 
spectrum completely describes the behaviour of the wave train in the far field. After the 
complete dissipation of the dispersive waves, only the solitons are left in the far field. When 
the distance between these solitons is sufficiently large, no interactions occur between them 
and all solitons are clearly visible with their characteristic shapes. Assuming frictionless 
propagation, their amplitudes can already be read from the nonlinear spectrum of the initial 
time series. Therefore, we prefer to add the equation for the surface elevation in the far field, 
resulting from the solitons, given e.g. by Equation (4) in Prins & Wahls (2019), with reference 



to Schuur (1984), Eq. 17, Schuur (1986), p. 83, Eq. 33 and Ablowitz & Kodama (1982), Eq. 
2.20a. 
We further agree to add plots that explain the meaning of the soliton spectrum (Figure 1 in 
this response). In addition to an exemplary time series (blue line in the first plot, zoomed in 
to the rogue wave), we will add its linear FFT spectrum (second plot) and, in addition to the 
soliton spectrum (last plot), the nonlinear continuous spectrum (third plot, which will not be 
analysed further in this article). Each of the solitons in the soliton spectrum would be a 
physical soliton if the signal is propagated according to the KdV equation. After sufficiently 
long propagation, each of these solitons will appear isolated with its characteristic shape. 
Within the time series, the solitons are close together; they overtake and interact with each 
other. For visualisation of the role of the solitons in the time series, the first plot shows the 
soliton train (red line) that is obtained by nonlinear superposition of the solitons (considering 
their interactions) using the algorithm from Prins & Wahls (2021). Note that inverting large 
soliton spectra is numerically very difficult (Prins & Wahls, 2021). We therefore had to use a 
shortened time series for the figure. (lines 139-146, 152, 175-177, 183-185, 275-281, 284-
290, Figure 5) 



 

3F The reviewer is right in that the NLFT is currently employed as a trace method. The reason is 
that we do not know how the nonlinear spectrum changes during propagation around the buoy. If 
the KdV equation describes the propagation around the buoy reasonably well, then the nonlinear 
spectrum would be approximately constant during propagation, and the method could single out 
certain time series that lead (or led) to extreme rogue waves. This aspect however requires more 
research that is beyond the scope of the current paper. Therefore, we use the approach as a 
trace method, which has the additional potential to provide further information in future 
applications. Our work is nevertheless a necessary step in the direction of recognising potentially 
dangerous time series. If the method does not work for visible rogue waves, there is little hope 
for it to work for hidden rogue waves. We demonstrate for the first time that certain distinctive 
patterns in the nonlinear spectrum of real-world time series indicate extreme rogue waves (at a 
specific measurement site). Finally, we note that even if the KdV does not describe propagation 
well, the NLFT could still be a better transform to analyse data in this area than the linear Fourier 



transform (where the spectrum also only develops in a simple way if the propagation is linear and 
the depth is constant, but it is nevertheless applied in different contexts). We will discuss these 
points in the revised manuscript. (lines 186/187, 544-552) 
 
3G 
 As suggested, we will support the explanation of the results by describing the insights 

from Bruehl and Oumeraci (2016) and the relationship between the soliton spectrum and 
the far field behaviour under KdV, in a meaningful connection with our reply to 3E. 

  

 
 The reviewer criticises that scaling down a rogue wave to 80% is not linked to any 

physical explanation. We would like to reply that an established method for the treatment 
of NLFT spectra does not exist. In contrast to the linear case, where the impact of a 
window on the spectrum can be expressed analytically in a way that is easy to interpret, 
no such result is known for the nonlinear case. Windowing of the time series and 
calculating separate nonlinear spectra is common, but does not have any theoretical 
grounding. In contrast to windowing, which is a general purpose technique that impacts 
large parts of the time series, our method is local and aims specifically at rogue waves. By 
scaling only the rogue wave, the changes in the time series are as small as possible. The 
hope is thus that the danger of evoking additional, unrelated changes in the nonlinear 
spectrum is minimised by this approach. 
We intend to localise the influence of a change in rogue wave height in the soliton 
spectrum to establish a connection between a measured rogue wave and individual 
solitons. The underlying idea of the method is that if local changes of the rogue wave lead 
to local changes in the spectrum, the changing soliton components are associated with 
the rogue wave. Since a rogue wave is a particular wave event, it is reasonable to explore 
changes in the spectrum when only this wave is changed. Furthermore, also the (hidden) 
solitons in the data are localised components and changes to the particular rogue-wave 
event are expected to have effects to the soliton spectrum only when a soliton is located 
sufficiently close to the modified region. The changes in the soliton spectrum only affect a 
few solitons, whereas all other solitons remain constant. Since only a few solitons are 
modified, we can conclude that these solitons are located in the modified rogue-wave 
region within the time series. Regarding the request to remove the rogue wave from the 
time series, we prefer reducing its height as opposed to cutting it out, which would 
introduce an artificial gap to the time series. The method shows that gradually reducing 
the height of the rogue waves leads to the gradual reduction of individual solitons. A 
change of the rogue wave will not have an impact on all soliton components in the 
spectrum. By this straightforward approach, solitons that are directly linked to the rogue 
wave are easily identified. 

 Solitons linked to the rogue wave are not always the largest solitons in the spectrum. As 
also pointed out in the manuscript, the soliton alone is not sufficient to explain the rogue wave. 
Only by interaction with components from the continuous spectrum, the rogue wave is formed. 
In order for this to happen, the soliton and the other components must interact constructively. 
When the interactions are not constructive, it is very well possible that a larger soliton leads to 
a smaller hump in the time series. Hence, the dispersive waves and nonlinear interactions 
have a strong impact, and the largest soliton is not necessarily associated with the largest 
wave in the time series. For a visual illustration, we would like to refer to Figure 1 (a) in 



Osborne et al. (1991), in which the largest soliton is also not associated with the highest 
wave in the time series. In contrast, in our example given above, the largest soliton is 
located close to the position of the rogue wave. 

 Against this background, changing Figure 8, in which rogue wave heights are compared 
with the associated solitons, would not make sense. Comparing with the highest soliton in 
the spectrum would include some solitons that are linked to wave groups without rogue 
waves. While we do not plan to change this in the paper, we nevertheless followed the 
suggestion of the reviewer and calculated Amax with respect to Hmax. We present the 

updated Figure 8 in comparison with the original Figure 8 below ( - ). Here, 

grey dots show cases, in which the highest attributed soliton is identical with the 
maximum soliton in the discrete spectrum (As

1 = Amax). For rogue samples, this is true in 
most cases (extreme: 87%, double: 85%, crest 78%, height 71%). For non-rogue 
samples, this is true in 42% of the cases. The figures show that the results are in a 
comparable range when rogue wave (or maximum wave) heights are related to the 
maximum instead of the highest attributed soliton. 

 





 In our study, soliton amplitudes were always smaller than rogue wave crests, which is in 
agreement with Figure 1a in Osborne et al. (1991). 

 

line 261 is misleading. We agree with the reviewer that the influence of the sea state is not 
only characterised by the significant wave height. Our intention with normalising by Hs is to 
create dimensionless values, to be able to compare different samples. Since rogue waves 
are defined on the basis of the significant wave height, we find this parameter suitable for the 
normalization. The influence of the sea state in terms of the parameters suggested by the 
reviewer (steepness, Ursell number, kh, bandwidth) affect the wave components in the 
continuous part of the nonlinear spectrum, which we do not discuss further in this article. The 
soliton spectrum is not affected. Through the continuous spectrum, the sea state parameters 
possibly influence the wave distribution. We have tested the method that was suggested by 

the reviewer. As an example,  shows the exceedance probability of H/Hs in all 

samples of a defined Ursell number range. It is seen that the distribution behaves differently 
in the different ranges. However, this cannot be stated for certain, as the results rely on few 
data, due to the binning into ranges. The few rogue waves in the samples are distributed 
randomly, which leads to uncertain results. Together with the consideration that the sea 
state may indeed affect the continuous part of the spectrum, and thus the probability 
distribution may change with the sea state parameters, we have come to the conclusion that 
it is not possible to deduce the influence of solitons from these exceedance probability plots. 
Therefore, we have decided not to include the plots in the revised article. 
 

 

  



(lines 90-92, 183-185, 275-281, 300/301, 345/346) 

3H We would like to point out that we do not intend to explain a rogue wave by one soliton 
alone (as can be seen by comparison of the free-surface elevation ad and the soliton train in 
Figure 1 in this document). Our hypothesis is that solitons contribute to the formation of 
rogue waves, and we have shown that there is/are always one or several solitons involved 
when a rogue wave is present in the sample. However, the surface elevation is described 
not only by solitons, but also by dispersive waves and by the interaction of wave 
components. This statement is supported by Figure 10 in the preprint, which we therefore 
would like to keep in the article. Bruehl et al. (2016) have shown that soliton-like waves can 
form waves that seem to have linear shapes. (lines 152, 475-485) 
 
3I The soliton spectrum alone cannot reveal the formation of rogue waves in general, 
but  solitons may be directly attributed to rogue waves and as such are involved in their 
presence. We would like to emphasise that it is actually the first time that this has been 
verified by the nonlinear Fourier analysis of real-world data. Furthermore, as discussed later 
in the manuscript in relation to Figure 15, certain configurations of the soliton spectrum 
(A2/A1) actually do indicate the presence of rogue waves with high probability. The attribution 
is shown by the method discussed in comment 3G, which we would like to retain in the 
paper. Furthermore, the size of a soliton is not sufficient to explain the height and the shape 
of a rogue wave all by itself (see for example Figure 1). As suggested by the reviewer, we 
will transfer these issues to the discussion of the article to present the line of argument in a 
straight order. (lines 336/337, 338-342, 362-363, 391-393, 475-485) 
 
3J The soliton gap was chosen after studying the soliton spectra of many rogue samples. It 
is not arbitrary, and as far as we know there are no existing alternatives from the literature 
that would have fit our context. Please also note that many existing signal processing tools  
heavily rely on the linearity of the transform, and applying them with a nonlinear transform in 
general is meaningful only in the quasi-linear regime. We do not expect the variance of the 
soliton spectrum to be a better tool because it would involve solitons that are not associated 
with the rogue wave. We agree that the conclusion should be that outstanding solitons are 
not good indicators of rogue waves or large waves near the rogue wave threshold of 
H/Hs = 2.0, but only for extreme rogue waves. We will avoid 
as the soliton spectrum becomes available only after the recording of the time series and the 
occurrence of the rogue wave (see also reply to comment 3F). (lines 434, 599) 
 
3K The remark is correct, we will adjust the text accordingly, referring to the Forristall 
distribution (see replies on comments 1B and 2C). (lines 592/593) 
 
3L We confirm that we have not investigated the interaction with oscillatory waves in the 
context of rogue wave formation and that we are therefore not entitled to make a statement 
on the exact nature of the interactions. We agree that we should mention this in the 
conclusions, so as not to raise wrong expectations with the reader. From Figure 1, it is seen 
that the soliton train alone does not account for the full height of the rogue wave. This only 
leaves the continuous spectrum for the explanation of the missing height. (lines 606/607, 
Figure 5) 
 
 



 





Reply to review #2 

We thank Referee #2 for the constructive comments that will help us to clarify and improve 
several points in our manuscript. In the following, we explain how we plan to address the 
individual issues raised by the reviewer in the revised manuscript. 
In blue color, the lines, in which changes in connection with the respective reviewer 
comment have been made, are indicated. These refer to the tracked changes version. 
 

 

- 
justified on the basis of single- -2022-28-RC2-supplement, p. 
1). We would like to point out that we applied vKdV-NLFT as a signal transform, similar 
to e.g. wavelets or the FFT applied to nonlinear cases. Although we do not know how 
well the KdV describes the propagation of the measured time series around the 
measurement site, the KdV does not have to be valid for most of the conclusions of this 
article, which investigates the results of a signal transform to rogue waves. We do not 
want to claim that the soliton components in the nonlinear spectrum are physical. We 
tried to point this out e.g. in the abstract ("Under the hypothesis that the KdV describes 
the evolution of the sea state around the measurement site well, these results suggest 
that solitons ...") and the conclusion ("Each measured rogue wave could be associated 
with at least one soliton in the NLFT spectrum."), but see that this should be pointed out 
more prominently. We will clarify this in the abstract, the introduction and the conclusion. 
Our study does not intend to explain the mechanism of rogue wave generation in shallow 
water. The method should rather be interpreted as a spectral analysis method. We would 
like to gain insight into the spectral characteristics based on KdV-NLFT at the available 
measurement site. These spectral characteristics and their differences in samples with 
and without rogue waves are described in this paper. We would like to point out that in 
our work, the vKdV-NLFT is applied to a large number of real-world time series for the 
first time. It is also the first time that certain characteristics of nonlinear spectra could be 
linked to rogue waves. We thus present a first assessment of the NLFT applied to real 
measurement data from shallow depths. This is only a first step and future research is 
needed. 

- 
-2022-28-RC2-supplement, p. 1). We would like to object to this statement 

and refer to Zabusky and Kruskal (1965), who described the evolution of a sinusoidal-
shaped surface elevation, in which solitons eventually form from the background, while 
not being immediately visible. The observation is reinforced by Brühl & Oumeraci (2016) 
for the evolution of a long-period cosine wave in very shallow water and in Brühl et al. 
(2022) for an initially trapezoidal-shaped bore. Here, the solitons that are found by KdV-
NLFT, are not immediately visible in the time series, but the surface elevation eventually 
decomposes into a train of solitons in the far field. While the time series changes with 
time, the nonlinear spectrum remains invariant. This shows that time series exist, in 
which KdV solitons are not visible by eye, but may be identified by KdV-NLFT. Another 

North Sea is not calm before and after the recording of the time series. This means that 



all existing solitons will continuously interact with the surrounding waves, which makes 
them difficult to identify by visual inspection. Figure 1 in Osborne et al. (1991) e.g. 
demonstrates that solitons do not have to be clearly visible in a real-world measurement. 

- 
-2022-28-RC2-supplement, p. 1). We have 

reconstructed a soliton train underlying a time series, by nonlinear superposition of 
solitons, using the algorithm from Prins & Wahls (2021) (Figure 1 in this document). The 
time series corresponds to the example in Figure 5 of the preprint. (Note that inverting 
large soliton spectra is numerically very difficult (Prins & Wahls, 2021). We therefore had 
to use a shortened time series for the figure.) Figure 1 in this document supports findings 
by Osborne et al. (1991) that show that the solitons are much lower in amplitude than the 
maximum waves in the time series. Therefore, we agree with the reviewer, and we have 
stated so in the conclusion, that in our rogue-wave samples solitons alone cannot be 
responsible for the formation of the measured rogue waves. The continuous spectrum of 
the vKdV-NLFT, which actually contains most of the energy in our time series, must 
account for the remaining parts of the exceptional heights. However, the soliton 
contribution is not negligible and has the potential to turn a non-rogue wave into a rogue 
wave. This is concluded from differences in the discrete spectra of samples with and 
samples without rogue waves. 



 

 

- We agree with the reviewer to add in the discussion and conclusion that the assumption 
that waves around our measurement station may be approximated by the KdV equation, 
cannot be proven based on the available data. 

- The reviewer suggests the presence of envelope solitons at varying depths and draws 

-2022-28-RC2-supplement, p. 1). We 
agree that varying bathymetry might be an explanation for the enhanced rogue wave 
occurrence, and will add the corresponding references. 

- 
-2022-28-RC2-supplement, p. 1) as a reason for the enhanced 

rogue wave occurrence at Norderney. As in the previous comment, we agree with the 
reviewer that this reason is conceivable, and also, that we cannot assess it in the frames 
of the KdV equation. All we offer in this article is a signal transformation by NLFT, which 



suggests an influence of the presence of shallow-water solitons on rogue wave 
generation. 

- We thank the reviewer for the references on NLS solitons and rogue waves measured in 
deep water, the accurracy of the NLS equation for strongly nonlinear, the observation of 
long-lived NLS solitons in the field of strongly nonlinear waves, and KdV soliton content 
in sinusoids. We will include these in our introduction of the revised article.

 

- l. 44: The reviewer points out that the NLS equation is not limited by kh = 1.36. We agree 
that the formulation in the paper might be misleading and we will clarify this in the revised 
paper. We will reformulate line 44 in the text to show that the condition is not oriented 
towards the applicability of the NLS equation, but towards the applicability of the KdV 
equation. (lines 64/65, 129/130) 
- l. 83: The reviewer points out that the KdV equation is not the equivalent to the NLS 
equation, since the former is a wave displacement equation, while the latter is a wave 
modulation equation. We agree with the reviewer that this formulation is misleading and we 
will change it accordingly. (lines 126/127) 
- l. 48: We thank the reviewer for the remark that the most unstable perturbations are 

-
direction of the perturbation and imply that disturbances arise in the form of side-band 
modes 1  to the frequency  of the initial wave train. (line 69) 
- 
irregular wave statistics for the first time in [Onorato et al, (2001) -2022-28-RC2-
supplement, p. 2) We agree and we will include this information in the text. (line 73) 
- l. 55: The reviewer points out that breather solutions do not explain the physics of the 
modulational instability, but describe its dynamics. We agree and we will change the text 
accordingly. (lines 76/77) 
- l. 61: Thank you, we will insert the correct date of the reference. (line 87) 
- l. 67-73: We thank the reviewer for raising the issue of the shallow water definition. In the 
context of this study, we have termed the range of applicability of the KdV equation as given 
by Osborne and Petti (1994), p. 1731, and Osborne (1995), p. 2629, shallow water. We 
acknowledge that, therefore, our definitions of shallow water (kh < 1.36 or h/L < 0.22) and 
deep water (kh > 1.36 or h/L > 0.22) are different from the definitions of shallow (h/L < 0.05), 
intermediate (0.05 < h/L < 0.5) and deep water (h/L > 0.5) that are used in the engineering 
context, and that this may lead to confusion. We will clearly define the terminology for 

kh value in line 67. Furthermore, we will 

Referee #1, as to avoid confusion of different shallow water terms. (lines 106-108, 129/130, 
215-218, 227, 230-233, 472-474, 521/522527, Table 3, line 588) 
 - l. 78: The reviewer points out that rogue waves in variable depths have been discussed in 
several studies. We will adjust this text accordingly. We thank the reviewer for the additional 
reference, which we will include. (lines 111-113, 122/123) 
- l. 97-99: We will refer to the book of Ablowitz and Segur (1981), where in Chapter 1.7c the 
asymptotic behaviour is discussed for both the continuous and the discrete spectrum. Since 



the content in this book is somewhat scattered, we also plan to refer to the paper of Ablowitz 
and Kodama (1982), who correctly analysed the asymptotic behaviour for the first time. 
(lines 142/143, 157) 
- l. 102: To solve this issue and avoid misunderstandings, we will include the original citation 
of Pelinovsky et al. (2000):  (lines 159/160) 
- l. 103, 257: We agree with the reviewer that the interaction of KdV solitons alone does not 
lead to the formation of the observed rogue waves. We have stated so in lines 104-105. To 

action between one 
or multiple solitons with osc  or in principle, multiple solitons, 
with dispersive waves . In line 257, we presume that the nonlinear interaction of solitons with 
dispersive waves is the probable cause. For clarification, Figure 1 in this document will be 
added to the revised version. The figure shows an exemplary time series (blue line in the 
first plot), its linear FFT spectrum (second plot), the nonlinear continuous spectrum (third 
plot, which will not be analysed further in this article), and the soliton spectrum (last plot).  
For visualisation of the role of the solitons in the time series, the first plot shows the soliton 
train (red line) that is obtained by nonlinear superposition of the solitons (considering their 
interactions) using the algorithm from Prins and Wahls (2021). This example clearly shows 
that solitons and their interactions are not solely responsible for the generation of the 
observed rogue wave. (lines 162, 482-485) 
- l. 117: We thank the reviewer for the additional references, which we will include. 
(lines 81-84, 146-148) 
- Figure 2: We agree with the reviewer to add a scale for the distance to the map. (Figure 2) 
- Equation 1: According to the reviewer, the applied shallow-water threshold is related to the 
BFI and not to the applicability of KdV. We refer to Osborne and Petti (1994), p. 1731 and 
Osborne (1995), p. 2629 for the shallow-water threshold in KdV and will add the references 
to the text. (line 218) 
-  (line 223) 
- Table 1: The caption will be corrected. We agree with the reviewer that due to the recording 
of waves at discrete sampling points, there is a possibility that the exact crest of a wave is 
missed

hand, a possible misinterpretation is conservative, thus, all spectral characteristics attributed 
to extreme rogue samples are assigned correctly. Furthermore, we think that the impact of 
such effects is small because the sampling frequency is sufficiently large. For the sufficiency 
of the sampling frequency of our wave buoy, we would like to cite the sampling theorem 
(Shannon, 1949): if a continuous time signal contains no frequency components higher than 
W Hz, it may be completely determined by uniform samples taken at the Nyquist rate of 
fs = 2W samples per second. A typical (raw) FFT spectrum of a rogue wave time series from 
our data is shown in the second plot of Figure 1 in this document. It is seen that its 
components approach zero at approximately 0.5 Hz and have fully decayed at W = 0.64 Hz. 
The Nyquist rate fs = 2W = 1.28 Hz is the measurement frequency of the wave buoy. The 
signal is therefore oversampled by a factor of more than two. We will add a short discussion 
of this point in the revised paper. (Table 1, lines 564-570) 
- l. 211: The reviewer points out that the frequency axis of the discrete soliton spectrum 
indeed has a physical meaning, which is the inverse duration of a soliton. We agree that the 
formulation may be misleading: although, theoretically, a soliton has an infinitely long 
duration, since it does not cross the surface, a mathematical definition of the angular 
frequency can be established (Equation 10). We refer to the soliton solution of the tKdV (see 



e.g. Equation (12) in Bruehl et al. (2022)), from which the angular frequency may be 
obtained. We will therefore reformulate the misleading line 211. The reviewer correctly points 
out that the amplitude and the frequency of a soliton are related. Hence, the frequency gap 
in the soliton spectrum may be described either in terms of an amplitude ratio or in terms of 
a frequency ratio. As stated by the reviewer, the relation between the amplitude and the 
frequency is quadratic. Consequently, a soliton possessing 80% of the amplitude of the 

maximum soliton, has a frequency of  of the frequency of the maximum 
soliton. In other words, a reduction in soliton amplitude by 20% corresponds to a reduction in 
frequency by only 11%. Since the relative differences in the amplitudes are easier to observe 
in the amplitude-frequency plots, and the soliton amplitude is a more descriptive parameter 
than its frequency, furthermore, rogue waves are defined in terms of amplitudes, we have 
selected to use the amplitude ratio instead of the frequency ratio for the definition of 
outstanding solitons. (lines 290-294) 
- 
over an x-axis. The reviewer is right that this may be misleading, as the distribution is 
presented as a box plot, with the vertical axis as a reference. We will therefore rephrase the 

 (lines 352, 354) 
- l. 276/277 and l. 428/429: As already discussed in the beginning, the term "solitons" was 
mostly used in the manuscript to refer to components in the discrete spectrum of a time 
series, which might have been confusing. We will explicitly discuss this issue in the abstract, 
the introduction, and the conclusion. 
We would also like to point out that just like the usual Fourier transform is applied also to 
signals under nonlinear propagation, we apply the vKdV-NFT to signals that may not 
propagate according to the KdV. Our results show that the vKdV-NFT, when considered 
purely as a signal processing tool, leads to interesting new characterizations of certain rogue 
waves, but also demonstrates limits of this approach (at least in the form used here). How 
far the soliton components in the nonlinear spectrum are physical is an important question, 
but that question goes beyond what we can answer with our current data. We nevertheless 
believe that our work is an important step towards bringing the NFT to real-world data, and 
hope that it motivates future research in that direction. 
(lines 6-12, 186/187, 286-288, 544-552, 593/594) 
- Figure 10: We thank the reviewer for this hint and we will add the dimension to the axis. 
(Figure 10) 
- Table 3: The relation mentioned by the reviewer is correct for a single soliton, but the 
soliton spectrum of more complicated time series changes in more complicated ways with 
the water depth (Figure 2). We prefer not to put this comment to avoid confusion.   
 
 



 

 




