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Reply to review #2 

We thank Referee #2 for the constructive comments that will help us to clarify and improve 
several points in our manuscript. In the following, we explain how we plan to address the 
individual issues raised by the reviewer in the revised manuscript. 
 

1. On the KdV approximation 

- We fully agree with the reviewer that the assumption that KdV is valid, “cannot be 
justified on the basis of single-point measurements” (nhess-2022-28-RC2-supplement, p. 
1). We would like to point out that we applied vKdV-NLFT as a signal transform, similar 
to e.g. wavelets or the FFT applied to nonlinear cases. Although we do not know how 
well the KdV describes the propagation of the measured time series around the 
measurement site, the KdV does not have to be valid for most of the conclusions of this 
article, which investigates the results of a signal transform to rogue waves. We do not 
want to claim that the soliton components in the nonlinear spectrum are physical. We 
tried to point this out e.g. in the abstract ("Under the hypothesis that the KdV describes 
the evolution of the sea state around the measurement site well, these results suggest 
that solitons ...") and the conclusion ("Each measured rogue wave could be associated 
with at least one soliton in the NLFT spectrum."), but see that this should be pointed out 
more prominently. We will clarify this in the abstract, the introduction and the conclusion. 
Our study does not intend to explain the mechanism of rogue wave generation in shallow 
water. The method should rather be interpreted as a spectral analysis method. We would 
like to gain insight into the spectral characteristics based on KdV-NLFT at the available 
measurement site. These spectral characteristics and their differences in samples with 
and without rogue waves are described in this paper. We would like to point out that in 
our work, the vKdV-NLFT is applied to a large number of real-world time series for the 
first time. It is also the first time that certain characteristics of nonlinear spectra could be 
linked to rogue waves. We thus present a first assessment of the NLFT applied to real 
measurement data from shallow depths. This is only a first step and future research is 
needed. 

- The reviewer states that “KdV solitons [may usually] be recognized [in time series] by 
eye” (nhess-2022-28-RC2-supplement, p. 1). We would like to object to this statement 
and refer to Zabusky and Kruskal (1965), who described the evolution of a sinusoidal-
shaped surface elevation, in which solitons eventually form from the background, while 
not being immediately visible. The observation is reinforced by Brühl & Oumeraci (2016) 
for the evolution of a long-period cosine wave in very shallow water and in Brühl et al. 
(2022) for an initially trapezoidal-shaped bore. Here, the solitons that are found by KdV-
NLFT, are not immediately visible in the time series, but the surface elevation eventually 
decomposes into a train of solitons in the far field. While the time series changes with 
time, the nonlinear spectrum remains invariant. This shows that time series exist, in 
which KdV solitons are not visible by eye, but may be identified by KdV-NLFT. Another 
reason for the “invisibility” of the solitons in the time series is that the water surface in the 
North Sea is not calm before and after the recording of the time series. This means that 
all existing solitons will continuously interact with the surrounding waves, which makes 
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them difficult to identify by visual inspection. Figure 1 in Osborne et al. (1991) e.g. 
demonstrates that solitons do not have to be clearly visible in a real-world measurement. 

- The reviewer points out that “the estimated soliton amplitudes are not very large, the 
solitons do not dominate” (nhess-2022-28-RC2-supplement, p. 1). We have 
reconstructed a soliton train underlying a time series, by nonlinear superposition of 
solitons, using the algorithm from Prins & Wahls (2021) (Figure 1 in this document). The 
time series corresponds to the example in Figure 5 of the preprint. (Note that inverting 
large soliton spectra is numerically very difficult (Prins & Wahls, 2021). We therefore had 
to use a shortened time series for the figure.) Figure 1 in this document supports findings 
by Osborne et al. (1991) that show that the solitons are much lower in amplitude than the 
maximum waves in the time series. Therefore, we agree with the reviewer, and we have 
stated so in the conclusion, that in our rogue-wave samples solitons alone cannot be 
responsible for the formation of the measured rogue waves. The continuous spectrum of 
the vKdV-NLFT, which actually contains most of the energy in our time series, must 
account for the remaining parts of the exceptional heights. However, the soliton 
contribution is not negligible and has the potential to turn a non-rogue wave into a rogue 
wave. This is concluded from differences in the discrete spectra of samples with and 
samples without rogue waves. 
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Figure 1: a) time series and soliton train, as calculated from the inverted soliton spectrum. b) linear Fourier spectrum.          
c) continuous spectrum. d) discrete soliton spectrum. 

- We agree with the reviewer to add in the discussion and conclusion that the assumption 
that waves around our measurement station may be approximated by the KdV equation, 
cannot be proven based on the available data. 

- The reviewer suggests the presence of envelope solitons at varying depths and draws 
our attention to a study in which “envelope solitons are shown responsible for the wave 
amplification when the depth increases” (nhess-2022-28-RC2-supplement, p. 1). We 
agree that varying bathymetry might be an explanation for the enhanced rogue wave 
occurrence, and will add the corresponding references.  

- The reviewer suggests “the oblique interaction of KdV solitons” as an “essentially 
directional effect” (nhess-2022-28-RC2-supplement, p. 1) as a reason for the enhanced 
rogue wave occurrence at Norderney. As in the previous comment, we agree with the 
reviewer that this reason is conceivable, and also, that we cannot assess it in the frames 
of the KdV equation. All we offer in this article is a signal transformation by NLFT, which 
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suggests an influence of the presence of shallow-water solitons on rogue wave 
generation. 

- We thank the reviewer for the references on NLS solitons and rogue waves measured in 
deep water, the accurracy of the NLS equation for strongly nonlinear, the observation of 
long-lived NLS solitons in the field of strongly nonlinear waves, and KdV soliton content 
in sinusoids. We will include these in our introduction of the revised article. 

2. Comments regarding the text 

- l. 44: The reviewer points out that the NLS equation is not limited by kh = 1.36. We agree 
that the formulation in the paper might be misleading and we will clarify this in the revised 
paper. We will reformulate line 44 in the text to show that the condition is not oriented 
towards the applicability of the NLS equation, but towards the applicability of the KdV 
equation. 
- l. 83: The reviewer points out that the KdV equation is not the equivalent to the NLS 
equation, since the former is a wave displacement equation, while the latter is a wave 
modulation equation. We agree with the reviewer that this formulation is misleading and we 
will change it accordingly.  
- l. 48: We thank the reviewer for the remark that the most unstable perturbations are 
longitudinal, not oblique. We will replace the word “oblique” by “side-band”, as to omit the 
direction of the perturbation and imply that disturbances arise in the form of side-band 
modes ω(1 ± δ) to the frequency ω of the initial wave train. 
- l. 53: The reviewer points out that “the BFI parameter was introduced for characterization of 
irregular wave statistics for the first time in [Onorato et al, (2001)].” (nhess-2022-28-RC2-
supplement, p. 2) We agree and we will include this information in the text. 
- l. 55: The reviewer points out that breather solutions do not explain the physics of the 
modulational instability, but describe its dynamics. We agree and we will change the text 
accordingly. 
- l. 61: Thank you, we will insert the correct date of the reference. 
- l. 67-73: We thank the reviewer for raising the issue of the shallow water definition. In the 
context of this study, we have termed the range of applicability of the KdV equation as given 
by Osborne and Petti (1994), p. 1731, and Osborne (1995), p. 2629, shallow water. We 
acknowledge that, therefore, our definitions of shallow water (kh < 1.36 or h/L < 0.22) and 
deep water (kh > 1.36 or h/L > 0.22) are different from the definitions of shallow (h/L < 0.05), 
intermediate (0.05 < h/L < 0.5) and deep water (h/L > 0.5) that are used in the engineering 
context, and that this may lead to confusion. We will clearly define the terminology for 
‘shallow’ that is used in the paper and repeat the kh value in line 67. Furthermore, we will 
change the title to include “shallow depths” rather than “shallow water”, as suggested by 
Referee #1, as to avoid confusion of different shallow water terms. 
 - l. 78: The reviewer points out that rogue waves in variable depths have been discussed in 
several studies. We will adjust this text accordingly. We thank the reviewer for the additional 
reference, which we will include. 
- l. 97-99: We will refer to the book of Ablowitz and Segur (1981), where in Chapter 1.7c the 
asymptotic behaviour is discussed for both the continuous and the discrete spectrum. Since 
the content in this book is somewhat scattered, we also plan to refer to the paper of Ablowitz 
and Kodama (1982), who correctly analysed the asymptotic behaviour for the first time. 
- l. 102: To solve this issue and avoid misunderstandings, we will include the original citation 
of Pelinovsky et al. (2000): “the “nonlinear” train should include a soliton”. 
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- l. 103, 257: We agree with the reviewer that the interaction of KdV solitons alone does not 
lead to the formation of the observed rogue waves. We have stated so in lines 104-105. To 
make this statement more clear, we will reformulate the words “the interaction between one 
or multiple solitons with oscillatory waves” as “between one or in principle, multiple solitons, 
with dispersive waves”. In line 257, we presume that the nonlinear interaction of solitons with 
dispersive waves is the probable cause. For clarification, Figure 1 in this document will be 
added to the revised version. The figure shows an exemplary time series (blue line in the 
first plot), its linear FFT spectrum (second plot), the nonlinear continuous spectrum (third 
plot, which will not be analysed further in this article), and the soliton spectrum (last plot).  
For visualisation of the role of the solitons in the time series, the first plot shows the soliton 
train (red line) that is obtained by nonlinear superposition of the solitons (considering their 
interactions) using the algorithm from Prins and Wahls (2021). This example clearly shows 
that solitons and their interactions are not solely responsible for the generation of the 
observed rogue wave. 
- l. 117: We thank the reviewer for the additional references, which we will include. 
- Figure 2: We agree with the reviewer to add a scale for the distance to the map. 
- Equation 1: According to the reviewer, the applied shallow-water threshold is related to the 
BFI and not to the applicability of KdV. We refer to Osborne and Petti (1994), p. 1731 and 
Osborne (1995), p. 2629 for the shallow-water threshold in KdV and will add the references 
to the text. 
- l. 155: “1” will be removed from the equation. 
- Table 1: The caption will be corrected. We agree with the reviewer that due to the recording 
of waves at discrete sampling points, there is a possibility that the exact crest of a wave is 
missed. Therefore, it is conceivable that some of the rogue waves termed “height rogue” are 
actually underestimated and should belong to the category of “extreme rogues”. On the other 
hand, a possible misinterpretation is conservative, thus, all spectral characteristics attributed 
to extreme rogue samples are assigned correctly. Furthermore, we think that the impact of 
such effects is small because the sampling frequency is sufficiently large. For the sufficiency 
of the sampling frequency of our wave buoy, we would like to cite the sampling theorem 
(Shannon, 1949): if a continuous time signal contains no frequency components higher than 
W Hz, it may be completely determined by uniform samples taken at the Nyquist rate of 
fs = 2W samples per second. A typical (raw) FFT spectrum of a rogue wave time series from 
our data is shown in the second plot of Figure 1 in this document. It is seen that its 
components approach zero at approximately 0.5 Hz and have fully decayed at W = 0.64 Hz. 
The Nyquist rate fs = 2W = 1.28 Hz is the measurement frequency of the wave buoy. The 
signal is therefore oversampled by a factor of more than two. We will add a short discussion 
of this point in the revised paper. 
- l. 211: The reviewer points out that the frequency axis of the discrete soliton spectrum 
indeed has a physical meaning, which is the inverse duration of a soliton. We agree that the 
formulation may be misleading: although, theoretically, a soliton has an infinitely long 
duration, since it does not cross the surface, a mathematical definition of the angular 
frequency can be established (Equation 10). We refer to the soliton solution of the tKdV (see 
e.g. Equation (12) in Bruehl et al. (2022)), from which the angular frequency may be 
obtained. We will therefore reformulate the misleading line 211. The reviewer correctly points 
out that the amplitude and the frequency of a soliton are related. Hence, the frequency gap 
in the soliton spectrum may be described either in terms of an amplitude ratio or in terms of 
a frequency ratio. As stated by the reviewer, the relation between the amplitude and the 
frequency is quadratic. Consequently, a soliton possessing 80% of the amplitude of the 
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maximum soliton, has a frequency of √0.8 = 0.89 = 89% of the frequency of the maximum 
soliton. In other words, a reduction in soliton amplitude by 20% corresponds to a reduction in 
frequency by only 11%. Since the relative differences in the amplitudes are easier to observe 
in the amplitude-frequency plots, and the soliton amplitude is a more descriptive parameter 
than its frequency, furthermore, rogue waves are defined in terms of amplitudes, we have 
selected to use the amplitude ratio instead of the frequency ratio for the definition of 
outstanding solitons. 
- l. 267, 269: The word “right” corresponds to the statistical term used for a distribution drawn 
over an x-axis. The reviewer is right that this may be misleading, as the distribution is 
presented as a box plot, with the vertical axis as a reference. We will therefore rephrase the 
term “to the right” as “towards higher normalised soliton amplitudes”. 
- l. 276/277 and l. 428/429: As already discussed in the beginning, the term "solitons" was 
mostly used in the manuscript to refer to components in the discrete spectrum of a time 
series, which might have been confusing. We will explicitly discuss this issue in the abstract, 
the introduction, and the conclusion. 
We would also like to point out that just like the usual Fourier transform is applied also to 
signals under nonlinear propagation, we apply the vKdV-NFT to signals that may not 
propagate according to the KdV. Our results show that the vKdV-NFT, when considered 
purely as a signal processing tool, leads to interesting new characterizations of certain rogue 
waves, but also demonstrates limits of this approach (at least in the form used here). How 
far the soliton components in the nonlinear spectrum are physical is an important question, 
but that question goes beyond what we can answer with our current data. We nevertheless 
believe that our work is an important step towards bringing the NFT to real-world data, and 
hope that it motivates future research in that direction. 
- Figure 10: We thank the reviewer for this hint and we will add the dimension to the axis. 
- Table 3: The relation mentioned by the reviewer is correct for a single soliton, but the 
soliton spectrum of more complicated time series changes in more complicated ways with 
the water depth (Figure 2). We prefer not to put this comment to avoid confusion.   
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Figure 2: Soliton spectrum of a rogue wave time series for different water depths assumed in the calculation. 
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