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RC: Dear Authors, dear Editor,  

In the paper, the authors demonstrate a statistical data-driven model (generalised additive mixed 
model) for modelling landslide triggering conditions at a regional scale, i.e., in South Tyrol. The 
content of the paper is comprehensive, generally well written and interesting for the landslide 
community. However, before final acceptance, the manuscript needs to be improved by additional 
clarifications and revisions, which are listed below.  

AC: We thank Reviewer #2 for the valuable feedback and the constructive suggestions. We are 
pleased that our manuscript was described as “comprehensive, generally well written and 
interesting for the landslide community.” Please find our point-to-point replies below. 

RC: - Line 114: one of the goals of the paper is to identify critical seasonal precipitation conditions 
using GAMM, but throughout the paper these critical parameters are mentioned only very 
sporadically, so they are not apparent to the reader. I propose to create a table listing all critical 
parameters, both triggering and preparatory, along with thresholds and metrics from ROC. 

AC: The reviewer is correct that the identification of critical season-dependent precipitation 
conditions for shallow landslides was one of the main goals of this research. The parameters used 
in the model are already highlighted within several parts of the methods section (i.e. from a more 
general description within Section 4 and Figure 3 to a more detailed technical elaboration within 
Section 4.2, Section 4.3 and Table 1).  

As described in the results section (Line 491f), the highest landslide probability scores “were 
predicted for situations in which high P and high T occur simultaneously”. This continuous 
relationship is visualized within Figure 8a in the form of a prediction surface. Within our model 
setup, the amount of precipitation required to exceed a threshold is always dependent on a 
combination of three variables, namely short-term precipitation T, antecedent preparatory 
precipitation P and seasonality (DOY). This relationship is visualized within Figure 9 and the 
Animation GIF (supplementary material). From our viewpoint, the creation of a concise table 
showing the critical amount of precipitation required to induce a landslide is not feasible, 
particularly due to the non-trivial interplay of the three variables T, P and DOY (i.e. a large number 
of T-P-DOY combinations refer to a threshold). This is why we would prefer to use plots (i.e. 
probability spaces) and the Animation to visualize the elaborated critical conditions. 

We agree that adding a table for the thresholds and metrics from ROC will further enhance 
transparency. Thus, we will add the following Table 2 to Section 5.2: 



Table 1  Probability thresholds and associated ROC-based metrics. 

Threshold 
name 

Probability True positive rate (TPR) True negative rate (TNR) 

TPR95 0.04 95% (552 out of 581 presences) 40% (900 out of 2251 
absences) 

Optimal 0.13 79% (460 out of 581 presences) 81% (1823 out of 2251 
absences) 

TNR95 0.41 56% (325 out of 581 presences) 95% (2138 out of 2251 
absences) 

 

RC: -Line 165: it is not enough to provide only a web link as a reference for the IdroGeo platform. 
Please add some paper reference(s) (e.g Idanza et al., 2021)  

AC: Thank you for your suggestions. We will add the reference Iadanza et al., 2021 to the 
respective section in the manuscript: 

Iadanza, C., Trigila, A., Starace, P., Dragoni, A., Biondo, T., and Roccisano, M.: IdroGEO: A 
Collaborative Web Mapping Application Based on REST API Services and Open Data on 
Landslides and Floods in Italy, ISPRS International Journal of Geo-Information, 10, 89, 
https://doi.org/10.3390/ijgi10020089, 2021. 

RC: -Line 176: please explain which precipitation product is considered? It is clear that you have 
considered rainfall, but once you also mention snow and snowmelt, but it is not clear what exactly 
you have considered in the models under the term precipitation.  

AC: As pointed out in the manuscript (Line 176f), the “gridded fields of daily precipitation for South 
Tyrol were extracted from the 1980-2018 dataset produced by Crespi et al. (2021)”. This data was 
obtained by (Line 178f) “(…) interpolating the rain-gauge daily records from a quality-checked and 
homogenized archive including around 80 station sites from the weather station network of South 
Tyrol”. Most rain gauges in South Tyrol are heated so that measured precipitation stems from 
both liquid and solid precipitation. This is why we opted to use the more general term 
“precipitation” instead of “rainfall” when describing our analyses and results within the paper. To 
enhance transparency, we will add the following sentence to this section: 

“Precipitation measurements are primarily related to rainfall, but in Winter, the amount of 
precipitation recorded may also include snowfall.” 

As mentioned in the discussion (Line 631f), the topic of snow melting directly refers to our 
interpretation of the seasonal effect, since we assume that “the elaborated seasonal variation is 
primarily attributable to effects related to vegetation cover, and to a lower degree also to 
temperature and snow melting, rather than to delayed response of a hillslope to antecedent 
precipitation.” 



RC: -Line 243: missing reference to the criteria for landslides on the basis of which you made the 
selection  

AC: The criteria used to select suitable “shallow landslide data” were not based on a specific 
publication, but defined specifically for the purpose of this analysis in collaboration with the entity 
that manages/collects the South Tyrolean landslide data (cf. acknowledgments: Provincial Office 
for Geology). The following description highlights the adopted criteria (Line 248f):  

“Prior to the analyses, suitable landslide records were selected based on the filter criteria 
“movement-type”, “material-type”, “movement-cause” and “date-availability”. Only translational 
and rotational movement-types associated with the assigned material-type “earth” and “debris” 
were included. In this context, we explicitly removed slide-types associated to deep-seated 
gravitational slope deformations. Furthermore, only landslides with the assigned causes “short-
intense precipitation” or “prolonged precipitation” were selected. The resulting 1822 entries were 
then filtered according to an additional temporal criterion: only entries with reliable information on 
the day of occurrence, and from January 2000 to the end of 2020 were selected, resulting in a 
sample of 676 landslide records.” 

Within the revised manuscript, we will add new text to the results section 5.1 to highlight the 
associated numbers (as requested by reviewer 1). This may further enhance traceability of the 
landslide data selection procedure. 

“The initial 11420 IFFI points were reduced to 2714 entries by first filtering translational and 
rotational slide-types and by excluding deep-seated movements. Most of these entries (n = 2319) 
were selected according to the subsequent material type filter, i.e. only “earth” or “debris” slides 
were considered. Further data subsampling according to the assigned movement cause 
“precipitation-induced” led to a subsample consisting of 1822 landslides. Out of these 1822 
entries, 676 landslides were associated with reliable day information while occurring between 
January 2000 and the end of 2020.” 

RC: -Line 255-260: the number of training landslides for presence and absence days are unclear. 
Please improve this part with additional information and also edit Fig. 1a, where you have to 
distinguish training and validation landslides, for example with different colours.  

AC: Within a previous NHESS publication, we elaborated advantages of k-fold cross-validation 
(CV) and k-fold spatial cross-validation (SCV) in comparison to conventional hold-out validation:  

Steger, S., Brenning, A., Bell, R., Glade, T., 2016a. The propagation of inventory-based positional 
errors into statistical landslide susceptibility models. Nat. Hazards Earth Syst. Sci. 16, 2729–2745. 
https://doi.org/10.5194/nhess-16-2729-2016. 

In this paper we highlighted that “In contrast to single hold-out validation, CV and SCV are not 
based on one single split of the training and test sample (e.g. 80 % for calibration and 20 % for 
validation), but on a repeated partitioning of the original sample into k subsamples. In each 
iteration, a performance measure (e.g. AUROC) is estimated for one of the k subsamples, while 

https://doi.org/10.5194/nhess-16-2729-2016


the remaining (k−1) subsamples are combined into a training set that is used to calibrate the 
model. Thus, validation results that are based on CV and SCV are not dependent on one specific 
sample split.” This is why “CV as well as SCV allow that all available data can be used to validate 
and to calibrate the final models.” 

We therefore did not distinguish between training and validation landslides in our text or in the 
Figure, since each landslide is in fact both, a training landslide (within certain data partitions) and 
a validation landslide (within other data partitions). The ratio of training to test samples also varies 
between the different applied CV procedures (e.g. Leave-one-of-10-clusters out: 9:1; Leave-one-
of-25-clusters out: 24:1; Leave-one-month-out: 11:1). However, we would prefer not to further 
expand on the description of the cross-validation procedure, as these techniques are established 
in the data-driven modeling community and we have already highlighted their benefits in the 
mentioned NHESS publication. 

However, as described in the manuscript, 47 independent “IRPI landslide records” (cf. Section 
3.1 and Section 4.1) were used for additional cross-checks. In this context, using the wording 
“cross-check” instead of “validation” was done on purpose, since we consider the comparison of 
our modelling results with landslide data from a very different data source of reduced explanatory 
power due to differences in e.g. the underlying definition of the process under investigation (i.e. 
shallow landslide) or differences in positional mapping uncertainty. Within the revised paper, we 
will add the following sentence to the description of the validation methods (Section 4.5):  

“Finally, the three independent IFFI entries from the year 2021 and the 47 IRPI landslide records 
were used to cross-check the model predictions.” 

RC: -Line 425: please explain why you removed 95 attributes  

AC: We did not remove 95 attributes from the analyses, but 95 landslides. Within the paper we 
described that (Line 425f) “Despite having the label “precipitation-induced” in their attributes, 95 
of the initial 676 landslide presence observations (14%) were removed from the precipitation 
filter.”  

To further enhance transparency, we will rephrase this section to: “After preliminary landslide data 
filtering, an additional 95 landslides were removed from the precipitation filter, because the 
available precipitation data provided no evidence that these recorded slope instabilities were 
primarily induced by precipitation.” 

RC: -Line 602: the discussion is too extensive; some parts are only informative and have nothing 
to do with the main goal of the paper, which is to decipher the seasonal effect of triggering and 
preparatory precipitation. I suggest to focus on the interpretation of the results, you could also 
refer to the new table in line 114 and focus on the critical parameters and their thresholds.  

AC: We will shorten the discussion and remove discussion points that do not directly relate to the 
conducted research. We propose the following changes: 



6.1 Antecedent precipitation and seasonal effects  

This subchapter discusses season-dependent effects of dynamic precipitation conditions on slope 
stability, their potential causes while also highlighting challenges in causal model interpretation. 
We relate our work to the results of Luna and Korup 2022 that recently investigated seasonality 
in landslide occurrence using data-driven modelling. This discussion section directly relates to the 
main goal of the paper, which is why we would like to keep it as it is. 

6.2 Mixed effects modelling and data sampling design 

This subchapter discusses implications of input data quality issues (e.g. representativeness of 
landslide data) on the modelling results. It suggests methodical procedures that can be employed 
to achieve less biased results, which may be of particular interest to those in the scientific 
community seeking to replicate our approach.  

In the interest of conciseness, we will remove the final section and associated references, which 
delves into broader methodological concerns, such as the choice between statistical models and 
more flexible "black box" algorithms. Furthermore, we will rename this section "Research design 
and representativeness of input data" to better convey its main focus. 

6.3 Thresholds that relate to performance metrics 

This section emphasizes the importance of creating thresholds in addition to continuous prediction 
surfaces to improve the practical applicability and interpretability of the results. In the revised 
version, we will eliminate the parts of the text that extend the discussion to landslide susceptibility 
studies to increase conciseness. 

6.4 Multi-perspective model validation 

This section focuses on the benefits of validating results from multiple perspectives. In line with 
this topic, we will remove sections that stray from this core topic. Specifically, we will delete the 
part that discusses the possibility of expanding the model into the spatial domain and the text that 
suggests the potential model's application in a multi-hazard context. 

RC: You also need to better demonstrate the quality of the data, which you point out in the abstract 
but do not present and discuss enough in the paper. 

AC: In the abstract we mention that “the discussion illustrates why the quality of input data, study 
design and model transparency are crucial for landslide prediction using advanced data-driven 
techniques”. The revised discussion section 6.2 will now be fully dedicated to this topic, as 
described in the AC to the previous RC. 

RC: - Line 750-755: in line with the introduction of this paper where you state: "reliable decision 
support tools" in this context you concluded that this approach needs further improvement. Please 
be more specific and give us a concrete evaluation of the applied approach as a promising tool 
for landslide early warning. 



AC: In the revised manuscript, details on “further model improvements” will directly appear in the 
final discussion section and not in the conclusion (where we only mention that the validation 
process helped us to “shed light on entry points for further model improvements”).  

The final discussion section will read as follows: “(…) This in turn provided inspiration for further 
hypotheses to test and entry points for model improvement. For example, the systematically lower 
model performance on higher altitudes (Fig. 12c) and at steep terrain (Fig. 12b) indicates that in 
high alpine terrain and on steep slopes, landslide occurrence might be associated with different 
season-specific precipitation amounts, compared to lower lying and flatter areas. This in turn 
suggests that further model improvements may be achieved by including spatially explicit 
variables that directly describe landslide predisposition. The current model was specified only for 
landslide-prone terrain and thus disregards effects of spatially varying landslide predisposition by 
design (Crozier, 1989).” 

In the revised paper (Section 6.3), we will add an example on how our model may be exploited 
for the purpose of early warning. The new text will read as follows: 

“The developed approach may be used in the context of early warning by exploiting the day-
specific predictions, as shown in Figure 9. This involves evaluating whether observed or expected 
precipitation amounts are likely to exceed a particular threshold. To illustrate, consider a 
September day (Fig. 9d), where the optimal threshold will not be exceeded if 100 mm of 
precipitation were accumulated within the past 28 days (x-axis) and 25 mm of precipitation were 
expected to fall within the upcoming 2 days (y-axis). In contrast, the threshold will be exceeded if 
the same amount of short-term precipitation (i.e., 25 mm) falls after a particularly wet period (i.e., 
200 mm within the past 28 days). Knowing that 81% of past landslides surpassed this threshold, 
while 79% of "wet" days without slope instability occurred below it, may further ease 
interpretation.” 
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