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Abstract. The flooding brought about by compound coastal
flooding events can be devastating. Before, during, and im-
mediately following these events, flood inundation maps
(FIMs) can provide essential information to emergency man-
agement. However, there are a number of frameworks capa-
ble of estimating FIMs during flood events. In this article,
we evaluate FIMs derived from three such frameworks in
the context of Hurricane Harvey. Our analysis reveals that
each of the three FIM frameworks provides different FIMs
that differ in their level of accuracy. Each of the three FIMs
also produces different exposure and consequence estimates
because of their spatial differences. This investigation high-
lights the need for a centralized means of vetting and adjudi-
cating multiple FIMs during compound flood events empow-
ered by the ability to distribute FIMs as geographic informa-
tion system (GIS) services and coalesce FIMs into a common
operating picture. Furthermore, we provide evidence that the
ability to produce multi-model estimates of FIMs to create
probabilistic FIMs may provide a better product than the use
of a lone FIM.

1 Introduction

Each year, tropical storms devastate portions of the coastal
United States. From 1980–2020, tropical storms accounted
for USD 945.9 billion in damages with an average of
USD 21.5 billion in damages per event (Fast Facts, 2021).
Tropical storms bring strong winds and heavy rainfall that are
the primary drivers of compound flooding. Strong winds and
high tide create storm surge, pushing coastal waters inland
and inundating land that is typically dry. Inland, heavy rain-
fall leads to direct runoff and saturation excess runoff from
the land surface into inland waterbodies. The combination
of inland runoff and storm surge creates compound coastal
flooding. Recent studies highlight how the combination of
inland drainage and coastal surge is important in properly
estimating compound floods (Gori et al., 2020; Loveland et
al., 2021).

In order to inform emergency managers and the public
at large, agencies such as the National Oceanic and Atmo-
spheric Administration’s (NOAA’s) National Weather Ser-
vice (NWS), the U.S. Army Corps of Engineers (USACE),
the Federal Emergency Management Agency (FEMA), and
the U.S. Geological Survey (USGS) produce authoritative
flood inundation map (FIM) estimates for inland, coastal,
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and compound flood events. FIMs help emergency managers
communicate situational awareness, devise response plans,
and inform decision makers (NWS, 2012; IWRSS, 2013;
Maidment, 2017; Longenecker et al., 2020). However, FIMs
from each agency are typically different in terms of resolu-
tion and chosen hydraulic model. Further, non-authoritative
FIMs can also be originate from a number of sources out-
side of the Integrated Water Resources Science and Services
(IWRSS) consortium and the rest of the US federal enter-
prise. The disparate origins of FIMs can create unnecessary
confusion and conflicted decision-making for decision mak-
ers.

A number of frameworks and methodologies exist to cre-
ate accurate FIMs. For inland fluvial flooding, NOAA’s Na-
tional Water Center (NWC) co-developed and implemented
the height above nearest drainage (HAND) inundation model
that uses Manning’s equation to precompute inundation li-
braries to couple with hydrologic forecasts from the Na-
tional Water Model (NWM) (Liu et al., 2018; Zheng et
al., 2018; Viterbo et al., 2020). The HAND methodology
requires a minimal number of input data that are available
over large geographic scales. Alternatively, USACE devel-
oped the AutoRoute model that functions in a similar man-
ner to the NWC’s HAND implementation, requiring mini-
mal inputs, which makes it capable of producing flood inun-
dation maps over continental-scale geographic extents (Fol-
lum, 2013; Follum et al., 2016, 2020; Tavakoly et al., 2021).
HAND and/or AutoRoute perform well as first-order approx-
imations of fluvial flooding (Afshari et al., 2018; Johnson et
al., 2020). However, these low-complexity models do pos-
sess less skill when compared to higher-fidelity hydraulic
models (Hocini et al., 2021). One of the more notable lim-
itations of steady-state inland models such as HAND and
AutoRoute is in coastal watersheds. HAND and AutoRoute
are fluvial-only flood models, and their FIMs do not inher-
ently contain the pluvial or coastal components of flood-
ing. Further, coastal watersheds tend to have minimal topo-
graphic relief where one-dimensional (1D) models, such as
HAND and AutoRoute, traditionally struggle to produce ac-
curate flood inundation maps. Low topographic relief tends
to create backwater effects that AutoRoute cannot account
for (Follum et al., 2016, 2020). Further, where topographic
relief is low, HAND can be sensitive to errors in the un-
derlying terrain (Johnson et al., 2020). Thus, steady-state
hydraulic models, such as HAND and AutoRoute, tend to
have limited effectiveness in providing FIMs during com-
pound coastal floods in coastal watersheds. However, non-
operational alternative HAND approaches for coastal flood-
ing in low-lying areas exist (Jafarzadegan et al., 2022).

For coastal flooding, NOAA’s National Hurricane Center
(NHC) produces FIMs that estimate coastal flooding from
storm surge using the Sea, Lake, and Overland Surges from
Hurricanes (SLOSH) model (Jelesnianski et al., 1984; Ex-
perimental Potential Storm Surge Flooding Map, 2022). The
Coastal Emergency Risks Assessment (CERA) team creates

coastal-flooding-only FIMs using the ADvanced CIRCula-
tion (ADCIRC) model (Luettich et al., 1992; About, 2022).
However, these modeling frameworks do not currently in-
clude a coupling with inland runoff.

In response to the limitations of existing fluvial and
coastal FIM frameworks, Wing et al. (2019) use the Fathom-
US large-scale hydraulic modeling framework (Wing et
al., 2017) to perform FIM estimation for Hurricane Harvey.
The Wing et al. (2017) framework can account for coastal,
fluvial, and pluvial flooding. Wing et al. (2019) compare
the Fathom-US flood inundation results to the NWC HAND
methodology. Wing et al. (2019) find that the Fathom-US
framework is more accurate than the NWC HAND method-
ology for the Hurricane Harvey simulations due to better rep-
resentation of the complex physics that occur during com-
pound coastal floods. The Fathom-US FIM framework rep-
resents a continental approach to FIM development that inte-
grates the primary mechanisms that drive flooding and exists
outside of the US federal enterprise.

Beyond the large-scale modeling frameworks such as
NWC HAND or Fathom-US, there are local-scale compound
flood models in data-rich environments that can have higher
spatiotemporal resolution and are capable of producing FIMs
that combine coastal, fluvial, and pluvial flooding. For ex-
ample, the USACE Modeling, Mapping, and Consequences
(MMC) Production Center will work with local USACE
districts and divisions to create and distribute FIMs during
flood events using existing Corps Water Management Sys-
tem (CWMS) model frameworks or will develop new FIM
frameworks on the fly (Winders et al., 2018). The simulation
times of these frameworks can be a hindrance in their ability
to produce a timely FIM. However, these models can provide
a benchmark for what is achievable with increased model
fidelity and resolution. Further, we may be able to more
effectively utilize these high-fidelity simulations for FIMs
through surrogate modeling techniques (Bass and Bedient,
2018; Zahura et al., 2020; Contreras et al., 2020; Kyprioti
et al., 2021), similarly to how NWC HAND and Fathom-US
utilize a precomputed riverine hydraulics in those implemen-
tations (Zheng et al., 2018; Wing et al., 2019).

This paper investigates if different inland flood inunda-
tion mapping frameworks produce substantially different
FIMs during compound coastal flood events. We evaluate
and quantify the differences by using a Hurricane Harvey
case study where a recently developed local-scale frame-
work exists and compare this to the AutoRoute and Fathom-
US frameworks. Hurricane Harvey is a now infamous com-
pound flood event brought about by a combination of wet
antecedent conditions, heavy inland rainfall, and sustained
high water levels at the coast (Valle-Levinson et al., 2020).
Given differences in the accuracy and resolution of model
inputs, the assumption is that the local-scale framework pro-
duces a more accurate FIM than the continental-scale FIM
frameworks produce. Further, given that AutoRoute cannot
account for backwater effects, we expect it to be the least ac-
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Figure 1. The Clear Creek watershed test domain for this study
spans portions of four counties in Texas. Sources of the background
imagery include Esri, TomTom, the U.S. Department of Commerce,
and the Census Bureau.

curate FIM framework. Our comparison of the three frame-
works centers on the spatial differences in each FIM and if
those differences lead to differences in estimated exposure
and consequences. To our knowledge, this is the first evalu-
ation of FIMs produced with different FIM frameworks that
seeks to evaluate differences in the FIMs by examining both
the spatial differences in the FIMs and the estimated expo-
sure and consequences from those FIMs.

2 Methodology

We center our analysis on the Clear Creek watershed, south
of Houston, Texas. As part of a recent effort by League City,
Texas, Freese and Nichols, Inc. developed a local-scale FIM
framework for the Clear Creek area (Freese and Nichols,
Inc., 2021), making the region an ideal study domain to test
multiple FIM frameworks. Figure 1 demonstrates the loca-
tion of the Clear Creek watershed that covers an area of
roughly 698.91 km2. The region has a history of repeated
flooding, including flooding during Hurricane Harvey, and
is subject to rapid development and urbanization (Brody et
al., 2018).

2.1 Modeling-framework configurations

We performed our analysis by creating maximum-
inundation-extent FIMs produced by three frameworks
in the study domain: the previously mentioned local-scale
Hydrologic Engineering Center River Analysis System
(HEC-RAS) framework, the AutoRoute framework, and
the Fathom-US framework. Figure 2 illustrates the inputs
for each modeling framework. This section describes each
framework in detail and spells out the abbreviations present

in Fig. 2. We utilized only observed meteorological and
coastal data to ensure that limitations in forecast skill are not
present.

As part of the flood mitigation plan for Lower Clear Creek
and Dickinson Bayou, League City, Texas, contracted the
construction of a HEC-RAS FIM framework to identify ar-
eas of concern in Lower Clear Creek and Dickinson Bayou
(Freese and Nichols, Inc., 2021). In the HEC-RAS frame-
work, the USACE Hydrologic Engineering Center Hydro-
logic Modeling System (HEC-HMS) version 4.3 model (Hy-
drologic Modeling System, 2018) simulates rainfall–runoff
processes within the watershed. RainVieux radar- and gauge-
derived precipitation data force the HEC-HMS model (Rain-
Vieux, 2022). HEC-RAS version 5.0.7 (HEC-RAS River
Analysis System, 2019) simulates hydrodynamics conditions
by utilizing one-dimensional (1D) unsteady routing in the
main stem of Clear Creek and two-dimensional (2D) diffu-
sive wave routing in the overland and tributaries of Clear
Creek. The HEC-RAS 2D grid has an average horizontal
cell resolution of about 3589 m2. Internal boundary condi-
tions within the HEC-RAS model link HEC-HMS runoff
estimates with the HEC-RAS simulation. The HEC-RAS
model has a one-way coupling with the coast via down-
stream boundary conditions along the coast forced with a
head value derived from nearby tidal gauge readings from
NOAA’s Tides and Currents dataset (NOAA Tides & Cur-
rents, 2021). Lidar data obtained from the Texas Natu-
ral Resources Information System (TNRIS) and Houston-
Galveston Area Council (HGAC) of governments provide the
HEC-RAS model with an approximately 1 m horizontal res-
olution terrain (StratMap, 2023). The Harris County Policy,
Criteria, and Procedures Manual (PCPM) provides the 1D
roughness coefficients. These 1D roughness coefficient val-
ues are consistent with recognized and accepted engineering
standards. Land use estimates derived from Galveston Cen-
tral Appraisal District (GCAD) and Harris County Appraisal
District (HCAD) parcel data and early calibration/testing ef-
forts by the contracted model developer estimate roughness
coefficients for all 2D areas. Hurricane Harvey and the 2016
Tax Day floods (Nielsen and Schumacher, 2020) calibrate
the hydrologic and hydraulic components of the HEC-RAS
framework (Freese and Nichols, 2021).

Across the same domain and for the same tropical storm,
we develop an AutoRoute estimate of the FIM using the
AutoRoute framework. We do not calibrate the AutoRoute
framework for Hurricane Harvey, but the methodology we
employ, the AutoRAPID approach (Follum et al., 2016),
has been repeated for several flood event studies. We ac-
quire streamflow forcing data from NWM version 1.2 via
Amazon Web Services (NOAA, 2018). The maximum dis-
charge simulated by the NWM then pairs with the associated
National Hydrography Dataset Plus (NHDPlus) version 2.0
medium-resolution stream reach shapefile (US EPA, 2019a).
For topography, we acquire 1/3 arcsec (∼ 9 m) horizontal
resolution National Elevation Dataset (NED) digital eleva-
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Figure 2. System flowchart for each of the FIM modeling frameworks that we compare in this study: (a) HEC-RAS modeling framework,
(b) AutoRoute modeling framework, and (c) Fathom-US modeling framework.

tion model (DEM) data (Gesch et al., 2002, 2010) for the
study area. The 2016 collection of the National Land Cover
Database (NLCD; Yang et al., 2018) and literature-derived
roughness coefficients as described in Follum et al. (2016,
2020) provide estimates of surface roughness. Because the
chosen DEM does not contain bathymetry, we implement
the simple bathymetric estimation methodology within Au-
toRoute (Follum et al., 2020) by using the gauge-adjusted
Enhanced Unit Runoff Method (EROM) mean annual flows
(US EPA, 2019b). The setup of the AutoRoute framework
is a representative workflow for implementing a large-scale,
steady-state hydraulic model for FIM development.

The Fathom-US framework accounts for fluvial, pluvial,
and storm surge flooding within one comprehensive frame-
work. Wing et al. (2017, 2019) provide the specifications of
the model setup. Observed precipitation data from NOAA’s
Advanced Hydrologic Prediction Service (AHPS) feed into
the Fathom-US model to account for pluvial flooding. NWM

version 1.2 analysis and assimilation streamflow estimates
and USGS National Water Information System (NWIS)
streamflow produce fluvial flooding. The Fathom-US model
simulates interactions between inland and coastal waters by
using streamflow data from the combination of the NWM
and NWIS and observed water levels from the NOAA Tides
and Currents service. The observed NOAA Tides and Cur-
rents data are input as a downstream boundary condition into
the Fathom-US framework at oceanic computation cells, just
offshore from coastal flood defenses (Wing et al., 2019).

Although the list of FIM frameworks we analyze in this
work is not exhaustive, the sample of FIM frameworks ef-
fectively highlights if differences in FIMs are substantial
enough to create differences in estimated exposure and con-
sequences. Differences in estimated exposure and conse-
quences provide evidence that a centralized vetting and adju-
dication process is necessary for FIMs during flood events.
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2.2 Evaluation methods

We perform two layers of analysis in our assessment to ascer-
tain key differences between each of the three FIMs. We sum-
marize the analysis of FIM in the Fig. 3 flowchart. The first
analysis makes use of U.S. Geological Survey (USGS) high-
water-mark (HWM) data collected following the devastation
of Hurricane Harvey (Watson et al., 2018) and distributed by
the USGS Flood Event Viewer (2021). The USGS did not
produce an estimated inundation map for Clear Creek during
Hurricane Harvey, so our comparison focuses on the loca-
tion and water surface elevation (WSE) observed at HWMs.
We assess locational accuracy for each FIM by determining
the fraction of HWMs that are within the flood extents of the
FIM.

Locational accuracy= 100×
Nw

N
(1)

In Eq. (1), Nw is the number of HWMs that are within the
flooded extent of each FIM and N designates the number of
HWMs.

Following the methodology outlined by Wing et al. (2021),
we assess the estimated WSE from each framework by esti-
mating error and bias.

Error=
∑N

1 |WSEmod−WSEobs|

N
(2)

Bias=
∑N

1 (WSEmod−WSEobs)

N
(3)

In Eqs. (2) and (3), WSEmod designates the WSE at the inun-
dated pixel nearest to each HWM location modeled by each
FIM framework, and WSEobs designates the WSE observed
at each HWM location.

The second analysis provides a comparison of exposure
and consequence estimates from each FIM. To perform
our exposure and consequence analysis, we utilize the go-
consequences model and the National Structure Inventory
(NSI) (USACE, 2021a, b, c). The NSI is a point-based struc-
tural inventory describing structures and structure occupancy
throughout the United States. The NSI supports the assess-
ment of consequences to structures resulting from natural and
non-natural disasters by providing point-based estimates of a
building’s characteristics such as occupancy type, depreci-
ated replacement cost, content value, and number of people
(population) within the structure (USACE, 2021c). The go-
consequences model uses the NSI to compute building dam-
age and population exposure from flooding. It uses a water
depth estimate at NSI point locations and uses the same de-
fault depth–damage functions as those used within the HEC
Flood Impact Analysis (HEC-FIA) software and assigned by
the USACE Economic Guidance Memorandum 04-01 (US-
ACE, 2003). In this instance, our flood damage assessment

does not adjust damage to account for brackish water dam-
age (USACE, 2021b). To visualize the resulting point dam-
age and exposure estimates, we used the point damage loca-
tions and their associated dollar damage and building pop-
ulation counts to construct kernel density maps in ArcGIS
version 10.8 (Esri, 2022). The kernel density plots can pro-
vide a “hotspot” analysis for comparison to collected Federal
Emergency Management Agency (FEMA) flood insurance
claim locations (Arctur, 2021). We generate the kernel den-
sity maps using a 1 km search radius and output the result-
ing raster at 1 km horizontal resolution. This study does not
pursue a direct comparison between NSI–go-consequences
and observed exposure and consequence estimates either spa-
tially or quantitatively. Direct comparison between NSI–go-
consequences estimates and observations is problematic for
a number of reasons. First, personally identifiable informa-
tion (PII) limitations prevent FEMA from sharing disaggre-
gated flood insurance claims with the authors. Second, there
are complexities associated with flood insurance claims that
make their use as a comparison metric difficult. Flood insur-
ance uptake is approximately 25 %–100 % within our study
area, varying significantly by county (Shao et al., 2017), and
thus, flood insurance claims are likely unrepresentative of
the total flood damage from Hurricane Harvey. However,
even with 100 % insurance uptake, matching point obser-
vations of flood damage reported in flood insurance claims
with NSI–go-consequences point estimates of flood dam-
age is still problematic because the NSI does not necessar-
ily have attributes, such as structure value, that match an in-
dividual building’s insurance policy coverage. Furthermore,
flood insurance coverage is truncated on the lower end by de-
ductibles where losses are not recorded because no claim is
made and on the upper end by policy caps where losses in
excess of the policy may be truncated to the payout rather
than the actual loss. Converting point estimates of exposure
and damage to a kernel density map does allow us to visu-
ally reference if our estimated spatial pattern of exposure and
damage matches our approximation of reality (e.g., insurance
claim locations), allowing for an indirect comparison.

3 Results and discussion

3.1 Simulation comparison

We first compare the results from the HEC-RAS, AutoRoute,
and Fathom-US frameworks to observed HWMs by estimat-
ing locational accuracy. HWMs designate locations where
floodwater reaches a given location and leaves behind ev-
idence of floodwater presence in the form of mud lines,
seed lines, etc. (Koenig et al., 2016). The USGS quanti-
fies the uncertainty in the HWM WSE measurements they
collect. In our study domain, the USGS considers 53 % of
HWMs in the study area poor quality, 34 % fair quality, and
13 % good quality. What these qualitative descriptors trans-
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Figure 3. Flow diagram describing the two-pronged evaluation process undertaken to examine the spatial differences in each FIM and the
differences in exposure and consequences estimated by each FIM. The dollar symbol denotes US dollars.

late into quantitatively is an average of ±9 cm of uncertainty
in the study domain HWM WSEs. All HWMs examined
were sourced from either riverine (86 % of HWMs) or coastal
(14 % of HWMs) flooding.

Each model’s FIM should contain each HWM within its
extent. Table 1 is an assessment of locational accuracy for
each model under the assumption that the maximum inunda-
tion extent should contain the HWM locations. Interestingly,
we can see that the Fathom-US model is more accurate at in-
tersecting HWM locations within the inundation extent than
both the AutoRoute and the HEC-RAS model. This result
contradicts our assumption that the HEC-RAS model will be
more accurate given the higher level of terrain resolution and
calibration/validation performed upon the model.

However, expressing model skill in terms of locational ac-
curacy has limited viability, given that the model could in-
undate the entire study area and achieve 100 % accuracy. In-

Table 1. Locational accuracy of each modeling-framework FIM
based on the number of HWMs within the FIM flood extent.

Total number High water Locational
of high marks within accuracy

water marks FIM

HEC-RAS 56 33 59 %
AutoRoute 56 13 23 %
Fathom-US 56 44 88 %

deed, comparing the results from HEC-RAS, AutoRoute, and
Fathom-US maximum water surface elevations (WSEs) to
observed HWM WSEs reveals a different outcome. Figure 4
illustrates scatterplots comparing each FIM’s WSE to HWM
WSE observations, and Table 2 summarizes the error and
bias of each framework. The orange line in all Fig. 4 plots is
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Table 2. Error and bias computed for each FIM framework using
observed HWM WSE.

FIM framework Error Bias
(m) (m)

HEC-RAS 0.67 −0.32
AutoRoute 3.63 1.44
Fathom-US 0.87 0.60

the desired 1 : 1 relationship between observation and model
results, and the dotted line is the line of the best fit from a
least-squares regression analysis. In Fig. 4 and Table 2, we
see that the HEC-RAS framework produces more precise
and accurate WSE estimates than both the AutoRoute and
the Fathom-US frameworks with points tightly packed along
the dotted regression line that aligns well with a 1 : 1 line
and lower error value. The HEC-RAS framework is biased
toward underestimation with a bias of −0.32 m, particularly
at lower WSEs. The Fathom-US framework tends to overes-
timate WSE, with the regression line falling to the right of the
1 : 1 line and a positive bias of 0.60 m. The AutoRoute frame-
work has a less consistent tendency than the HEC-RAS and
Fathom-US frameworks. With only 23 % of HWM locations
falling within the inundated area, AutoRoute appears to un-
derestimate inundated area. However, the AutoRoute FIM is
biased toward significant overestimation with large overpre-
dictions illustrated in Fig. 4. Injecting each USGS HWM’s
WSE measurement uncertainty into our error analysis, we
find that USGS measurement uncertainty in the HWM WSEs
translates into an average of about a ±1 cm difference in
errors reported in Table 2. Overall, the performance of the
HEC-RAS and Fathom-US frameworks is better than that of
the AutoRoute framework. We expected the AutoRoute FIM
to underperform in this scenario given the relatively simple
numerical scheme that includes a steady-state assumption, a
lack of pluvial flooding, and a lack of contribution of coastal
water levels into the FIM.

Figure 5 illustrates the FIMs created by HEC-RAS, Au-
toRoute, and Fathom-US along with HWM WSE compar-
isons with observations for each FIM. HWMs colored in
shades of grey are locations where the FIM overpredicts
WSE; those colored red represent underprediction by each
FIM; locations colored white are within ±0.5 m for the FIM
WSE. The HEC-RAS and Fathom-US FIMs are more sim-
ilar to one another than the AutoRoute FIM is to either.
However, we do see that the HEC-RAS framework under-
estimates WSE in the northeast section of the study area,
while the Fathom framework overestimates WSE and esti-
mates greater inundation extents in the northeast when com-
pared to the HEC-RAS framework. The AutoRoute frame-
work underestimates WSE inland and overestimates WSE
closer to the coast. Overall, we see that the FIMs created by

each framework are unique to the framework in terms of both
model error and overall flood inundation.

3.2 Causes of framework differences and uncertainty

In general, we see the HEC-RAS, AutoRoute, and Fathom-
US frameworks generate spatially different FIMs and that
each is an imperfect representation of reality. The HEC-RAS
FIM appears to underestimate WSE and only captures 59 %
of HWMs within its flood extent. The Fathom-US FIM not
only captures a higher proportion of HWMs in its extent
than the other two frameworks but also appears to overesti-
mate WSE and has greater error and bias than the HEC-RAS
framework FIM. The AutoRoute FIM WSE is a mix of un-
derestimation and overestimation of WSE. As expected, the
magnitudes of error, in terms of WSE, are generally higher
for the AutoRoute and Fathom-US models than the HEC-
RAS results as they are both large-scale frameworks. The
HEC-RAS and Fathom-US results appear to be a more accu-
rate representation of flooding than those of the AutoRoute
framework. Here we explore the major drivers of differences
and uncertainty among the estimated FIMs.

One of the major differences of the AutoRoute framework
from the HEC-RAS and Fathom-US frameworks is the miss-
ing coastal component of the FIM. AutoRoute has proven
capable in a variety of inland scenarios (Follum et al., 2016,
2020) and when compared to higher-resolution inland mod-
els (Afshari et al., 2018). However, it appears that the simpli-
fied physics in our AutoRoute simulation do not effectively
accommodate the complex physical interactions that occur
during this compound coastal flood. In our case study, the
AutoRoute FIM underpredicts WSE but is also prone to large
outliers of overestimation in WSE estimation. Table 3 de-
scribes the WSE HWM error and bias after we split the data
between riverine and coastal HWMs. As we expected, the
HEC-RAS and Fathom-US frameworks outperform the Au-
toRoute framework in terms of error, particularly at coastal
HWMs. HEC-RAS and AutoRoute WSEs are more accurate
at riverine HWMs than at coastal HWMs, while Fathom-
US is more accurate at coastal HWMs. At both riverine and
coastal HWMs, HEC-RAS WSEs are biased low, further ex-
plaining why the HEC-RAS FIM inundates fewer HWMs.
Interestingly, Fathom-US WSE outperforms HEC-RAS in
terms of error and bias at coastal HWMs. Fathom-US also
outperforms its own corresponding riverine HWM WSEs
with error and bias approximately half of what is found at
riverine HWMs. While our hypothesis holds that AutoRoute
is the least capable framework for producing a FIM in a com-
pound coastal flood, the results add further complexity to
declaring whether HEC-RAS or Fathom-US produces a more
accurate FIM.

Unlike AutoRoute, the HEC-RAS and Fathom-US frame-
works employ a similar physical fidelity in their respective
numerical schemes. The main difference in these simula-
tions is the geographic resolution and vertical accuracy of
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Figure 4. Scatterplot comparing simulated and observed WSEs for Hurricane Harvey. Here, each blue dot represents an observed HWM
location, the orange line represents a 1 : 1 perfect fit, and the dotted blue line is the line of best fit between the observed and simulated WSE
at the HWM locations.

Figure 5. Maps comparing FIMs from each modeling framework and differences between simulated and observed WSE: (a) HEC-RAS,
(b) AutoRoute, and (c) Fathom-US. Each point location is an observed USGS HWM location, and the colors represent the magnitude of
difference between observed and simulated WSE. The blue region represents the flood inundation depths for each FIM.
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Table 3. Error and bias computed for each FIM framework using observed HWM WSE divided into riverine and coastal HWMs.TS1

FIM framework Error (m) Bias (m)

Riverine HWM Coastal HWM Riverine HWM Coastal HWM

HEC-RAS 0.68 0.69 −0.31 −0.58
AutoRoute 3.65 4.29 1.28 2.63
Fathom-US 0.90 0.41 0.59 0.29

the DEMs. The HEC-RAS framework uses a ∼ 1 m DEM
resolution with an average National Standard for Spatial
Data Accuracy (NSSDA) absolute vertical accuracy of about
0.02 m (AECOM, 2018). The Fathom-US model simulating
at around a ∼ 30 m DEM resolution has an average NSSDA
absolute vertical accuracy of 3.04 m (Gesch et al., 2014). The
greater accuracy and higher resolution of the DEM within
the HEC-RAS framework likely comprise one of the main
drivers of, overall, less error and bias in HEC-RAS FIM WSE
as compared to the Fathom-US FIM WSE. The Fathom-US
DEM has a lower vertical accuracy, which is likely one of the
major drivers in the difference between the Fathom-US and
HEC-RAS FIMs. The horizontal resolution of the DEM will
also play a role in the accuracy of FIMs, particularly when
the domain is an urban catchment, unless small-scale influ-
ences on the hydraulic conditions are present in the DEM
(Wing et al., 2017, 2019; Domeneghetti et al., 2021). We con-
sider our study area a densely urbanized watershed (Bass and
Bedient, 2018).

One of the more apparent differences between the HEC-
RAS and Fathom-US frameworks is the omission of HEC-
HMS internal boundary conditions in the northeast corner of
the watershed. The name of this region is Armand Bayou.
The HEC-HMS runoff for Armand Bayou enters the HEC-
RAS model near the pour point of Armand Bayou and not
in a distributed manner throughout the Armand Bayou wa-
tershed. The Armand Bayou watershed is under analysis in
a separate study by the USACE Galveston District, and the
Clear Creek HEC-RAS model only considers the total runoff
coming into the Clear Creek domain from Armand Bayou.
When developing a FIM with different frameworks, the user
should understand the parameterizations made by the mod-
eler. In this instance, the application of runoff from Armand
Bayou enters the HEC-RAS framework. However, because
the runoff is not applied in a distributed manner throughout
the watershed, an underrepresentation of modeled inundation
occurs upstream of Armand Bayou’s pour point, effectively
removing pluvial and fluvial flooding from the region.

3.3 Implications of model differences

As expected, each of the three modeling frameworks we con-
sider estimates different FIMs in terms of spatial composi-
tion. The differences in FIMs translate into different esti-
mates of consequences and exposure. Table 4 summarizes the

consequence and exposure differences estimated using each
FIM. We see that generally higher WSE and full inclusion of
Armand Bayou in the northeast section of the study domain
in the Fathom-US model translate into larger consequence
and exposure estimates. The Fathom-US FIM estimates that
floodwater from Harvey inundated approximately 39 % of
all buildings in the study domain, while HEC-RAS and Au-
toRoute FIMs estimate 10 % and 3 % of all buildings in the
study domain, respectively, were inundated with floodwaters.
Interestingly, there is not a general trend of increasing esti-
mates of exposure that lead to increases in our estimates of
dollar damage. AutoRoute inundates 6279 structures while
estimating USD 0.9 billion in damage, while HEC-RAS in-
undates 19 281 structures while estimating USD 0.7 billion
in damage. Exploring this result, when HEC-RAS and Au-
toRoute inundate the same buildings, AutoRoute estimates
USD 0.3 billion more in damage than HEC-RAS. The only
explanation in this difference in damage is a higher water
depth, as go-consequences uses the same location and depth–
damage function for these buildings. We then turn our atten-
tion to buildings where only the HEC-RAS FIM estimates
damage, where the sum total of damage is USD 0.5 billion
and the average water depth is 1.1 m. Likewise, for only
structures where AutoRoute FIM estimates inundation and
damage, the sum total is USD 0.3 billion and the average wa-
ter depth is 3.8 m. Thus, AutoRoute estimates more damage
than HEC-RAS because of a tendency to estimate a higher
water depth at building locations. These results indicate that
the differences in each FIM produce different estimates of
both exposure and consequences.

We use the locations of the buildings impacted, the dam-
age to those buildings, and the number of people within those
buildings from each FIM go-consequences analysis to con-
struct a kernel density map (Fig. 6) where we see a spatial
pattern that matches the tabular values in Table 4. The HEC-
RAS framework estimates that the highest density of expo-
sure and consequences will be in the western and southern
portions of the study domain. As stated before, the HEC-
RAS framework omits distributed internal boundary condi-
tions in the Armand Bayou watershed in the northeast por-
tion of the study area, due to the modeling assumptions. The
AutoRoute framework estimates that the highest density of
exposure and consequences will occur in pockets through-
out the study domain. The Fathom-US framework mimics
the spatial pattern of the HEC-RAS framework but broad-
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Table 4. Consequence and exposure estimates for Clear Creek during Hurricane Harvey estimated using each FIM and the go-consequences
software.

Estimated Estimated total Total exposed Total exposed Total exposed Total Exposed
number of depreciated damage population at population at population during population during
structures (structure and content night (under night (over daytime (under daytime (over
impacted values, 2018 US dollars) age 65) age 65) age 65) age 65)

HEC-RAS 19 281 USD 0.7 billion 50 228 6000 57 960 5585
AutoRoute 6279 USD 0.9 billion 14 948 1884 9593 1659
Fathom-US 72 601 USD 3.3 billion 193 761 22 513 147 605 20 051

ens estimates of exposure and consequences throughout the
entire study domain and in particular in the northeast sec-
tion that the HEC-RAS framework omits. Overall, the kernel
densities portrayed in Fig. 6 match well the magnitudes of
consequences and exposure portrayed in Table 4. Thus, ex-
posure estimates produced by each FIM differ both in their
magnitude and in their spatial pattern.

The FIMs produced by each framework are different in
terms of their spatial composition, and each estimates differ-
ent consequences and exposures to the floodwaters. We may
assume that the FIM produced by HEC-RAS is the most ac-
curate given the better fit between observed and simulated
WSE (Fig. 4 and Table 2). However, the HEC-RAS frame-
work is not without error, has a lower locational accuracy
than the Fathom-US framework (Table 1), and does not in-
tend to represent flood inundation in the northeast section of
the study region (Armand Bayou). Furthermore, as we com-
pare FEMA flood insurance claim locations from Hurricane
Harvey (Arctur, 2021) to each FIM, we find evidence that the
HEC-RAS framework FIM does indeed exclude flooding in
the northeast portion of the study area. Figure 7 compares
the location of FEMA insurance claims for structures in the
area of interest and the estimate of buildings per square kilo-
meter from Fig. 6. Figure 7 illustrates that both the HEC-
RAS and the Fathom-US frameworks do well in identifying
hotspots of buildings impacted by flooding in the western and
southern portions of the study area. However, the HEC-RAS
framework excludes impacted areas in the northeast portion
of the study area, while the Fathom-US framework correctly
identifies those locations. The AutoRoute FIM does not ap-
pear to perform well in identifying the spatial pattern of ex-
posed buildings.

When we calculate the proportion of FEMA insurance
claims falling within each FIM’s flood inundation extent (Ta-
ble 5), we see that none of the frameworks capture all FEMA
claims and the results mirror Table 1, with the proportion
of insurance claims within each FIM aligning with the pro-
portion of HWMs within each FIM. However, if we sum
all FEMA claims that fall within at least one of the three
FIMs, we capture a slightly greater portion of FEMA insur-
ance claims. This result, in combination with the finding that
even our local-scale HEC-RAS framework does not capture
as many HWM locations within its FIM as the continental-

Table 5. Proportion of FEMA insurance claims within the FIM for
a combination of all three FIM modeling frameworks.

Model Proportion of FEMA
flood claims within
FIM flooded extents

HEC-RAS 56 %
AutoRoute 6 %
Fathom-US 79 %
All frameworks combined 86 %

scale Fathom-US framework, may further illustrate the im-
portance of using multiple sources for FIMs of flood events.
The combination of these FIM sources can produce a prob-
abilistic or composite FIM that better highlights overall risk
for emergency responders and the public. Thus, we find util-
ity in having multiple FIM sources, as it appears the combi-
nation of FIM sources better estimates overall exposure than
one FIM alone.

3.4 How to improve FIM creation techniques

Efforts are ongoing to coordinate FIM creation at the fed-
eral level. The three frameworks discussed in our study are
not the only techniques available to create FIMs during
flood events. As previously mentioned, the NWC produces
HAND-derived FIMs using the NWM (Viterbo et al., 2020).
The US Department of Homeland Security (DHS) contracts
the Pacific Northwest National Laboratory (PNNL) to con-
struct FIMs with the Rapid Infrastructure Flood Tool (RIFT)
model (Judi et al., 2010; PNNL, 2017; Li et al., 2019).
NOAA’s NWS and the USGS host multiple FIM libraries
(NWS, 2022; USGS Flood Event Viewer, 2021). There are
likely other entities capable of producing FIMs throughout
the world. Our case study highlights how the three FIM
frameworks we consider are different, are imperfect, and
can lead to different estimates of flood exposure and con-
sequences. Thus, there is a need to reconcile and adjudi-
cate multiple FIMs to ensure consistency in decision-making
efforts during flood events. In response to this need, the
IWRSS consortium has set out operational plans for coordi-
nating FIM production through the Integrated Flood Inunda-
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Figure 6. Kernel density maps of NSI buildings, damage, and people per square kilometer impacted by each FIM: (a) HEC-RAS, (b) Au-
toRoute, and (c) Fathom-US. The kernel density maps are derived from go-consequences point output for each FIM modeling framework.
The dollar symbol denotes US dollars.

tion Mapping (iFIM) effort (Mason et al., 2020). The iFIM
group confers before, during, and after major flood events
in order to promote awareness of the various FIM creation
efforts. The iFIM effort is in its infancy, gathering together
personnel and resources to understand the where and when
of FIM production. However, this is a necessary first step
in building cohesion in developing appropriate FIMs. In our
current context, the iFIM group would have been aware that

the HEC-RAS framework should not be representative of the
northeast section of the study domain and that the AutoRoute
framework generally performs poorly in low-gradient coastal
watersheds. This adjudication process would have likely led
to the iFIM group promoting the Fathom-US framework for
use in the northeast section of the study region and the HEC-
RAS framework in the rest of the study area as the most ap-
propriate FIMs.
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Figure 7. Comparison of the location of FEMA flood insurance claims and kernel density maps developed using go-consequences results for
each FIM: (a) HEC-RAS, (b) AutoRoute, and (c) Fathom-US.

To empower the iFIM group, additional steps to enable
interoperability and sharing of maps across multiple levels
and divisions of government will also be necessary. From a
practical perspective, this means developing data services to
share among the different agencies. NOAA’s NWS, USACE,
and the USGS all provide access to FIMs through geographic
information system (GIS) services during flood events. The
next step will be the engagement of other federal entities and
those that fall outside of the federal agencies. Metadata, suf-
ficient to empower the vetting process, should accompany
new and existing GIS FIM services. The metadata should
include details on the composition of the framework (e.g.,
Fig. 2) such as the meteorological forcing used, DEM reso-
lution and age, model spatial and temporal resolution, inclu-
sion of coastal boundary conditions, and a descriptive narra-
tive from the modeler that can convey to the user appropriate
specifics regarding the FIM. Simply exposing these FIMs as
GIS services and allowing the iFIM group to import them
within a common operating picture will empower the FIM
adjudication and promotion process.

The iFIM intends to promote the most appropriate FIM
for a given flood event and location. However, as we have
seen with this case study of Clear Creek during Hurricane
Harvey, a single FIM estimate can be problematic for com-
pound coastal flooding given that all chosen modeling frame-
works produce an imperfect assessment of reality. As Table 5
displays, our combination of all three FIMs encompasses a
greater proportion of FEMA flood claims than one location
alone. Thus, we have some initial evidence to suggest that
the delivery of a multi-model FIM should be the preferred
methodology for FIM delivery.

However, a chosen FIM framework highlights only one
aspect of the uncertainty within FIM creation. This assess-
ment has not considered the uncertainty associated with the
use of numerical weather prediction (NWP) models. Even
with gains in NWP forecast skill, the use of ensemble pre-
diction remains key to understanding the uncertainty when
predicting chaotic weather systems. Ensemble prediction en-
tails the perturbation of initial conditions and model nume-
rical schemes to create a range of possible meteorological
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conditions (Palmer, 2017). Thus, the delivery of an ensem-
ble, multi-model probabilistic FIM should be the preferred
methodology to deliver a FIM in order to convey uncer-
tainty to decision makers. The result of such a system would
be a multi-model ensemble-based probabilistic FIM, simi-
lar to that proposed by Zarzar et al. (2018). This move from
deterministic FIM estimates into probabilistic FIMs is the
path that the NHC has taken with its storm surge processes
and products. Though the NHC relies upon only one model,
SLOSH, it recognizes the significance of meteorological un-
certainty within storm surge FIMs and creates only proba-
bilistic products for public consumption. The NHC’s Prob-
abilistic Tropical Storm Surge (P-Surge)-derived Potential
Storm Surge Flood Map represents reasonable worst-case-
scenario FIMs at any location given the range of meteoro-
logical uncertainty (Potential Storm Surge Flooding Map,
2016). In general, expansion of the full expression of knowl-
edge uncertainties, extending beyond model selection and
NWP forcing into areas such as coefficient determination for
hydraulic structures, should generally benefit the portrayal of
event-based flood risk in FIMs.

Two of the large-scale frameworks (Fathom-US and Au-
toRoute) we employ here have the potential to generate
timely probabilistic FIMs using hydrometeorological ensem-
ble forecasts (Wing et al., 2019). However, to take advan-
tage of hydrometeorological ensemble forecasts within local-
scale frameworks, such as our HEC-RAS example, we must
effectively reduce model runtime. The setup and runtime of
these local frameworks may affect the timeliness of FIM cre-
ation, which is crucial during emergency operations (Follum
et al., 2016; Longenecker et al., 2020; Gutenson et al., 2021).
However, local-scale frameworks offer high-fidelity, high-
resolution products that can improve a probabilistic FIM.
One means to reduce model runtime for local-scale models
is to develop and train surrogate models that can dramati-
cally reduce the computational runtime of high-fidelity, high-
resolution modeling while delivering similar results (Zahura
et al., 2020; Contreras et al., 2020; Kyprioti et al., 2021). In
fact, Bass and Bedient (2018) have already developed such
a surrogate modeling approach to create a FIM within our
study area that loosely couples inland and coastal models,
forcing both with a full range of potential tropical-cyclone
characteristics. Recently, Jafarzadegan et al. (2022) demon-
strated a new methodology for replicating high-fidelity hy-
drodynamic model output by using a revised version of the
HAND methodology that accounts for the height above and
distance to the nearest drainage feature and is computa-
tionally efficient enough for FIM construction during flood
events. This revised HAND methodology could function as
a form of surrogate modeling for timely FIM creation. How-
ever, accurately training surrogate models for compound haz-
ards is not trivial, given the need to expose the surrogate tech-
nique to numerous pre-existing simulations that account for
the multitude of physical interactions, initial conditions, etc.
that expand beyond tropical-cyclone forcing.

Improvements in numerical schemes and input data might
also provide improvements in FIM creation. In their review
of the literature, Santiago-Collazo et al. (2019) determine
that 96 % of the literature they analyze presents compound
coastal flood inundation modeling strategies that employ
one-way coupling. By one-way coupling, we mean where
outputs from one model (e.g., inland) are fed into another
model (e.g., coastal) by way of internal or external boundary
conditions and no feedback occurs between the coupled mod-
els. The HEC-RAS and Fathom-US frameworks discussed
here are examples of one-way coupling strategies as the mod-
els insert coastal surge into both frameworks via downstream
head boundary conditions. Santiago-Collazo et al. (2019) ad-
vocate for the use of more robust coupling strategies to ac-
count for the complex interaction between inland runoff and
storm surge, such as loosely coupled, tightly coupled, or fully
coupled modeling strategies. In addition, utilizing hydraulic
modeling techniques that solve the full mass and momentum
equations may improve resulting FIM estimates. An ongo-
ing, Texas General Land Office-led, regional flood study ef-
fort is evaluating whether the accuracy of HEC-RAS models
can change due to the usage of diffusion or dynamic wave
hydraulic formulations within HEC-RAS simulations. This
study will provide insight into the effect that not solving the
full mass balance and momentum equations has on estimated
FIMs in Texas. Further, FIM improvement will undoubtedly
occur as improvements to the widespread availability of criti-
cal input datasets occur. For instance, the USGS collection of
improved DEM data is steadily decreasing vertical and rela-
tive DEM errors (Gesch et al., 2014).

4 Conclusions

In this paper, we compare three different FIM creation frame-
works for a small coastal watershed, Clear Creek, near Hous-
ton, Texas, during Hurricane Harvey. These frameworks are
the HEC-RAS framework, the AutoRoute framework, and
the Fathom-US framework.

We estimate the maximum flood inundation raster from
each FIM framework and consider this our FIM. We then
compare each framework’s FIM to USGS HWMs in two
ways. First, we assess whether the FIM contains each HWM
within the estimated flood extent. Second, we compare ob-
served WSE from the USGS HWM to estimated WSE in
the FIM. Our analysis indicates that FIM accuracy can vary
based upon either of these assessments. The Fathom-US
framework not only contains the most HWMs but also tends
to overestimate WSE and have a higher WSE error and bias.
The HEC-RAS framework not only contains fewer HWMs
but also tends to have more accurate WSE. The AutoRoute
framework is the least accurate of the three, appears to un-
derestimate flood extent, and highlights how simplified flood
inundation mapping methods are not ideal for representing
compound coastal flooding. Our analysis illustrates that no
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one FIM is infallible and each is subject to the uncertainties
present in the model’s numerical scheme, the model inputs
(e.g., terrain), and the model’s configuration.

We then estimate the exposure and consequences of each
FIM using the NSI and go-consequences. We find quantita-
tive and spatial differences in the exposure and consequences
produced by each FIM. The differences we find between each
FIM, such as a lower location accuracy in the local HEC-
RAS framework, further illustrate why a single FIM is not
preferable during emergency events. We compare the loca-
tions of exposure estimates to the locations of FEMA flood
claims. Visually (Fig. 7), simulated exposure estimates com-
pare favorably to our approximate observations. The results
lend credence to our ability to utilize accurate FIMs, the NSI,
and go-consequences and produce a relatively accurate expo-
sure assessment for a flood event. Thus, the combination may
be a useful tool set for evaluating the impacts of flood events
before, during, and after they happen.

Our study highlights the need to rectify and adjudicate the
various FIMs created during flood events. In response to this
need, IWRSS formed the iFIM to perform interagency com-
parison and consolidation of FIMs. GIS web services will
empower the iFIM, and adding additional FIMs to the iFIM
common operating picture will improve the FIM selection
and discovery process.

Large-scale FIM creation techniques, such as AutoRoute
and Fathom-US, may be capable of operating in real time
during flood events. To develop FIMs properly for compound
floods and beyond, future research should focus on means to
reduce runtime in local-scale models that offer high-fidelity
numerical schemes and high-resolution input data. Surrogate
modeling may offer such an approach, but the difficulties in
training a multivariate surrogate model are not trivial. De-
creased runtimes may offer the ability to instantiate multiple
model simulations while not compromising model fidelity.
This would make possible probabilistic FIMs for compound
coastal floods that capitalize on the fidelity and resolution of
local-scale models.
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