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Abstract. The flooding brought about by compound coastal flooding events can be devastating. Before, during, and 15 

immediately following these events, flood inundation maps (FIMs) can provide essential information to emergency 

management. However, there are a number of frameworks capable of estimating FIMs during flood events. In this article, we 

evaluate FIMs derived from three such frameworks in the context of Hurricane Harvey. Our analysis reveals that each of the 

three FIM frameworks provide different FIMs that differ in their level of accuracy. Each of the three FIMs also produce 

different exposure and consequence estimates because of their spatial differences. This investigation highlights the need for a 20 

centralized means of vetting and adjudicating multiple FIMs during compound flood events empowered by the ability to 

distribute FIMs as geographic information system (GIS) services and coalesce FIMs into a common operating picture. 

Furthermore, we provide evidence that the ability to produce multi-model estimates of FIMs to create probabilistic FIMs may 

provide a better product than the use of a lone FIM. 

Short summary 25 

Emergency managers use event-based FIMs to plan and coordinate flood emergency response. We perform a case study test 

of three different FIM frameworks to see if FIM differences lead to substantial differences in the location and magnitude of 

flood exposure and consequences. We find that the FIMs are much different spatially and that the spatial differences do produce 

differences in the location and magnitude of exposure and consequences. 

 30 
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1 Introduction 

Each year, tropical storms devastate portions of the coastal United States. From 1980-2020, tropical storms accounted for 

$945.9 billion in damages with an average of $21.5 billion in damages per event (Fast Facts: Hurricane Costs, 2021).  Tropical 

storms bring strong winds and heavy rainfall that are the primary drivers of compound flooding. Strong winds and high tide 

create storm surge, pushing coastal waters inland and inundating land that is typically dry. Inland, heavy rainfall leads to direct 35 

runoff and saturation excess runoff from the land surface into inland waterbodies.  The combination of inland runoff and storm 

surge creates compound coastal flooding.  Recent studies highlight how the combination of inland drainage and coastal surge 

are important in properly estimating compound floods (Gori et al., 2020; Loveland et al., 2021).  

In order to inform emergency managers and the public at-large, agencies such as the National Oceanic and Atmospheric 

Administration’s (NOAA’s) National Weather Service (NWS), the U. S. Army Corps of Engineers (USACE), the Federal 40 

Emergency Management Agency (FEMA), and the U. S. Geological Survey (USGS) produce authoritative FIM estimates of 

for inland, coastal, and compound flood events. FIMs help emergency managers communicate situational awareness, devise 

response plans, and inform decision makers (NWS, 2012; IWRSS, 2013; Maidment, 2017; Longenecker et al., 2020). 

However, FIMs from each agency are typically different in terms of resolution and chosen hydraulic model. Further, non-

authoritative FIMs can also be originate from a number of sources outside of IWRSS. The disparate origins of FIMs can create 45 

unnecessary confusion and conflicted decision making for decision makers.  

A number of frameworks and methodologies exist to create accurate FIMs. For inland fluvial flooding, NOAA’s National 

Water Center (NWC) co-developed and implemented the height above nearest drainage (HAND) inundation model that uses 

the Manning’s equation to precompute inundation libraries to couple with hydrologic forecasts from the National Water Model 

(NWM) (Liu et al., 2018; Zheng et al., 2018; Viterbo et al., 2020).  The HAND methodology requires a minimal amount of 50 

input data that are available over large geographic scales. Alternatively, USACE developed the AutoRoute model that functions 

in a similar manner to the NWC’s HAND implementation, requiring minimal inputs, making it capable of producing flood 

inundation maps over continental-scale geographic extents (Follum 2013; Follum et al., 2016; 2020; Tavakoly et al., 2021). 

HAND and/or AutoRoute perform well as first order approximations of fluvial flooding (Afshari et al., 2018; Johnson et al., 

2020). However, these low complexity models do possess less skill when compared to higher fidelity hydraulic models (Hocini 55 

et al., 2021). One of the more notable limitations of steady-state inland models such as HAND and AutoRoute is their 

limitations in coastal watersheds. HAND and AutoRoute are fluvial-only flood models and their FIMs do not inherently contain 

the pluvial or coastal components of flooding. Further, coastal watersheds tend to have minimal topographic relief where one-

dimensional (1D) models, such as HAND and AutoRoute, traditionally struggle to produce accurate flood inundation maps. 

Low topographic relief tends to create backwater effects that AutoRoute cannot account for (Follum et al., 2016; 2020).  60 

Further, where topographic relief is low HAND can be sensitive to errors in the underlying terrain (Johnson et al., 2020).  Thus, 

steady-state hydraulic models, such as HAND and AutoRoute, tend to have limited effectiveness in providing FIMs during 
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compound coastal floods in coastal watersheds. However, non-operational alternative HAND approaches for coastal flooding 

in low-lying areas exist (Jarfarzadegan et al., 2022). 

For coastal flooding, NOAA’s National Hurricane Center (NHC) produces FIMs that estimate coastal flooding from storm 65 

surge using the the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model (Jelesnianski et al., 1984; Experimental 

Potential Storm Surge Flooding Map, 2022). The Coastal Emergency Risk Assessment (CERA) team creates coastal flooding 

only FIMs using the Advanced Circulation (ADCIRC) model (Luettich et al., 1992; About: See the Storm Surge in Real-Time, 

2022). However, these modeling frameworks do not currently include a coupling with inland runoff.  

In response to the limitations of existing fluvial and coastal FIM frameworks, Wing et al. (2019) use the Fathom-US large-70 

scale hydraulic modeling framework (Wing et al., 2017) to perform FIM estimation for Hurricane Harvey. The Wing et al. 

(2017) framework can account for coastal, fluvial, and pluvial flooding. Wing et al. (2019) compare the Fathom-US flood 

inundation results to the NWC HAND methodology. Wing et al. (2019) find that the Fathom-US framework is more accurate 

than the NWC HAND methodology for the Hurricane Harvey simulations due to better representation of the complex physics 

that occur during compound coastal floods. The Fathom-US FIM frameworks represents a continental approach to FIM 75 

development that integrates the primary mechanisms that drive flooding and exists outside of the U.S. Federal enterprise. 

Beyond the large-scale modeling frameworks such as the NWC HAND or Fathom-US, there are local-scale compound flood 

models in data rich environments that can have higher spatiotemporal resolution and are capable of producing FIMs that 

combine coastal, fluvial, and pluvial flooding. For example, the USACE Models, Mapping, and Consequences (MMC) 

Production Center will work with local USACE districts and divisions to create and distribute FIMs during flood events using 80 

existing Corps Water Management System (CWMS) model frameworks or develop new FIM frameworks on-the-fly (Winders 

et al., 2018). The simulation times of these frameworks can be a hindrance in their ability to produce a timely FIM. However, 

these models can provide a benchmark for what is achievable with increased model fidelity and resolution. Further, we may 

be able to more effectively utilize these high fidelity simulations for FIMs through surrogate modeling techniques (Bass and 

Bedient, 2018; Zahura et al., 2020; Contreras et al., 2020; Kyprioti et al., 2021), similar to how the NWC-HAND and Fathom-85 

US utilize a precomputed riverine hydraulics in those implementations (Zheng et al., 2018; Wing et al., 2019).  

This paper investigates if different inland flood inundation mapping frameworks produce substantially different FIMs during 

compound coastal flood events. We evaluate and quantify the differences by using a Hurricane Harvey case study where a 

recently developed local scale framework exists and compare this to the AutoRoute and Fathom-US frameworks. Hurricane 

Harvey is a now infamous compound flood event brought about by a combination of wet antecedent conditions, heavy inland 90 

rainfall, and sustained high water levels at the coast (Valle-Levinson et al., 2020). Given differences in the accuracy and 

resolution of model inputs, the assumption is that the local scale framework produces a more accurate FIM than the continental 

scale FIM frameworks produce. Further, given that AutoRoute cannot account for backwater effects, we expect AutoRoute to 

be the least accurate FIM framework. Our comparison of the three frameworks centers on the spatial differences in each FIM 

and if those differences lead to differences in estimated exposure and consequences. To our knowledge, this is the first 95 
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evaluation of FIMs produced with different FIM frameworks that seeks to evaluate differences in the FIMs by examining both 

the spatial differences in the FIMs and the estimated exposure and consequences from those FIMs.   

2 Methodology 

We center our analysis on the Clear Creek watershed, south of Houston, Texas. As part of a recent effort by the city of League 

City, Texas, Freese and Nichols, Inc. developed a local-scale FIM framework for the Clear Creek area (Freese and Nichols, 100 

Inc., 2021), making the region an ideal study domain to test multiple FIM frameworks. Figure 1 demonstrates the location of 

the Clear Creek watershed that covers an area is roughly 698.91 km2. The region has a history of repeated flooding, including 

flooding during Hurricane Harvey, and is subject to rapid development and urbanization (Brody et al., 2018).   

 

Figure 1: The Clear Creek watershed test domain for this study spans portions of four counties in Texas. Sources of the background 105 
imagery include Esri, TomTom, U. S. Department of Commerce, and Census Bureau. 
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2.1 Modeling Framework Configurations 

We performed our analysis by creating maximum inundation extent FIMs produced by three frameworks in the study domain: 

the previously mentioned local-scale, Hydrologic Engineering Center-River Analysis System (HEC-RAS) framework, the 

AutoRoute framework, and Fathom-US framework. Figure 2 illustrates the inputs for each modeling framework. The 110 

proceeding section describes each framework in detail and spells out the acronyms present in Figure 2. We utilized only 

observed meteorological and coastal data to ensure that limitations in forecast skill are not present. 
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Figure 2: System flow chart for each of the FIM modelling frameworks that we compare in this study: (a) HEC-RAS modeling 

framework, (b) AutoRoute modeling framework, and (c) Fathom-US modeling framework. 

As part of the Flood Mitigation Plan for Lower Clear Creek and Dickinson Bayou, the city of League City, Texas contracted 

the construction of a HEC-RAS FIM framework to identify areas of concern in Lower Clear Creek and Dickinson Bayou 120 

(Freese and Nichols, Inc., 2021). In the HEC-RAS framework, the USACE Hydrologic Engineering Center – Hydrologic 

Modeling System (HEC-HMS) version 4.3 model (Hydrologic Modeling System (HEC-HMS): Release Notes, 2018) simulates 

rainfall-runoff processes within the watershed. RainVieux radar and gauge derived precipitation data forces the HEC-HMS 
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model (RainVieux, 2022). The HEC-RAS version 5.0.7 (HEC-RAS River Analysis System: Release Notes, 2019) simulates 

hydrodynamics conditions by utilizing one-dimensional (1D) unsteady routing in the main stem of Clear Creek and two-125 

dimensional (2D) diffusive wave routing in the overland and tributaries of Clear Creek. The HEC-RAS 2D grid has an average 

cell horizontal resolution of about 3,589 m2. Internal boundary conditions within the HEC-RAS model link HEC-HMS runoff 

estimates with the HEC-RAS simulation. The HEC-RAS model has a one-way coupling with the coast via downstream 

boundary conditions along the coast forced with a head value derived from nearby tidal gage readings from NOAA’s Tides 

and Currents dataset (NOAA Tides & Currents, 2021b). LiDAR data obtained from the Texas Natural Resources Information 130 

System (TNRIS) and Houston-Galveston Area Council of Governments (HGAC) provides the HEC-RAS model an 

approximately 1-meter horizontal resolution terrain (StratMap: Elevation – Lidar, 2021). The Harris County Policy, Criteria, 

and Procedures Manual (PCPM) provides the 1D roughness coefficients (HFCD, 2018). These 1D roughness coefficient values 

are consistent with recognized and accepted engineering standards. Land use estimates, derived from Galveston County 

Appraisal District (GCAD) and Harris County Appraisal District (HCAD) parcel data and early calibration/testing efforts by 135 

the contracted model developer estimate roughness coefficients for all 2D areas. Hurricane Harvey and the 2016 Tax Day 

floods (Nielsen and Schumacher, 2020) calibrate the hydrologic and hydraulic components of the HEC-RAS framework.  

Across the same domain and for the same tropical storm, we develop an AutoRoute estimate of the FIM using the AutoRoute 

framework. We do not calibrate the AutoRoute framework for Hurricane Harvey but the methodology, the AutoRAPID 

approach (Follum et al., 2017), we employ has repeated for several flood events studies. We acquire streamflow forcing data 140 

from the NWM version 1.2 via Amazon Web Services (NOAA, 2018). The maximum discharge simulated by the NWM then 

pairs with the associated National Hydrography Dataset Plus (NHDPlus) version 2.0 medium resolution stream reach shapefile 

(USEPA, 2019a). For topography, we acquire 1/3 arc second (~9 m) horizontal resolution National Elevation Dataset (NED) 

digital elevation model (DEM) data (Gesch et al., 2002, 2010) for the study area. The 2016 collection of the National Land 

Cover Dataset (NLCD, Yang et al., 2018) and literature-derived roughness coefficients as described in Follum et al. (2017, 145 

2020) provide estimates of surface roughness. Because the chosen DEM does not contain bathymetry, we implement the simple 

bathymetric estimation methodology within AutoRoute (Follum et al., 2020) by using the gage adjusted, Enhanced Runoff 

Method (EROM) mean annual flows (USEPA, 2020b). The setup of AutoRoute framework is a representative workflow for 

implementing a large-scale, steady state hydraulic model for FIM development.  

The Fathom-US framework accounts for fluvial, pluvial, and storm surge flooding within one comprehensive framework. 150 

Wing et al. (2017; 2019) provide the specifications of the model set up. Observed precipitation data from NOAA’s Advanced 

Hydrologic Prediction (AHPS) service feeds into the Fathom-US model to account for pluvial flooding. NWM version 1.2 

analysis and assimilation streamflow estimates and USGS National Water Information Service (NWIS) streamflow produce 

fluvial flooding. The Fathom-US model simulates interactions between inland and coastal waters by using streamflow data 

from the combination of the NWM and NWIS and observed water levels from the NOAA Tides and Currents service. The 155 

observed NOAA Tides and Currents are input as a downstream boundary condition into the Fathom-US framework at oceanic 

computation cells, just off-shore from coastal flood defenses (Wing et al., 2019).  
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Although the list of FIM frameworks we analyse in this work is not exhaustive, the sample of FIM frameworks effectively 

highlights if differences in FIMs are substantial enough to create differences in estimated exposure and consequences. 

Differences in estimated exposure and consequences provides evidence that a centralized vetting and adjudication process is 160 

necessary for FIMs during flood events.   

2.2 Evaluation Methods 

We perform two layers of analysis in our assessment to ascertain key differences between each of the three FIMs. We 

summarize the analysis of FIM in the Figure 3 flow chart. The first analysis makes use of U. S. Geological Survey (USGS) 

high water mark (HWM) data collected following the devastation of Hurricane Harvey (Watson et al., 2018) and distributed 165 

by the USGS Flood Event Viewer (Flood Event Viewer, 2021). The USGS did not produce an estimated inundation map for 

Clear Creek during Hurricane Harvey, so our comparison focuses on the location and water surface elevation (WSE) observed 

at HWMs. We assess locational accuracy for each FIM by determining the fraction of HWMs that are within the flood extents 

of the FIM.  

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  100 ∗
𝑁𝑤

𝑁
 ,         (1) 170 

In Equation 1, 𝑁𝑤 is the number of HWMs that are within the flooded extent of each FIM and N designates the number of 

HWMs. 

Following the methodology outlined by Wing et al. (2021) we assess the estimated WSE from each framework by estimating 

error and bias. 

𝐸𝑟𝑟𝑜𝑟 =  
∑ |𝑊𝑆𝐸𝑚𝑜𝑑−𝑊𝑆𝐸𝑜𝑏𝑠|𝑁

1

𝑁
 ,          (2) 175 

𝐵𝑖𝑎𝑠 =  
∑ (𝑊𝑆𝐸𝑚𝑜𝑑−𝑊𝑆𝐸𝑜𝑏𝑠)𝑁

1

𝑁
 ,          (3) 

 

In Equation 2 and Equation 3, WSEmod designates the WSE at the inundated pixel nearest to each HWM location modeled by 

each FIM framework, and WSEobs designates the WSE observed at each HWM location.  

The second analysis provides a comparison of exposure and consequence estimates from each FIM. To perform our exposure 180 

and consequence analysis, we utilize the Go-consequences model and the National Structural Inventory (NSI) (USACE, 2021a; 

2021b; 2021c). The NSI is a point based structural inventory describing structures and structure occupancy throughout the 

United States. The NSI supports the assessment of consequences to structures resulting from natural and man-made disasters 

by providing point-based estimates of a building characteristics such as occupancy type, depreciated replacement cost, content 

value, and number of people (population) within the structure (USACE, 2021c). Go-consequences uses the NSI to compute 185 

building damage and population exposure from flooding. Go-consequences uses a water depth estimate at NSI point locations, 

and uses the same default depth-damage functions used within the HEC-Flood Impact Analysis (HEC-FIA) software and 
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assigned by the USACE Economic Guidance Memorandum 04-01 (USACE, 2003). In this instance, our flood damage 

assessment does not adjust damages to account for brackish water damage (USACE, 2021b). To visualize the resulting point 

damage and exposure estimates, we used the point damage locations and their associated dollar damage and building 190 

population counts to construct kernel density maps in ArcGIS version 10.8 (Kernel Density, 2022). The kernel density plots 

can provide a ‘hot-spot’ analysis to compare to collected Federal Emergency Management Agency (FEMA) flood insurance 

claim locations (Arctur, 2021). We generate the kernel density maps using a 1 km search radius and output the resulting raster 

at 1 km horizontal resolution. This study does not pursue a direct comparison between NSI/go-consequences and observed 

exposure and consequence estimates either spatially or quantitatively. Direct comparison between NSI/go-consequence 195 

estimates and observations is problematic for a number of reasons. First, personally identifiable information (PII) limitations 

negate FEMA from sharing disaggregated flood insurance claims with the authors. Second, there are complexities associated 

with flood insurance claims that make their use as a comparison metric difficult. Flood insurance uptake is approximately 25-

100% within our study area, varying significantly by county (Shao et al., 2017) and thus, flood insurance claims are likely 

unrepresentative of total flood damage from Hurricane Harvey. However, even with 100% insurance uptake, matching point 200 

observations of flood damage reported in flood insurance claims with point NSI/go-consequence point estimates of flood 

damage is still problematic because the NSI does not necessarily have attributes, such as structure value, that match an 

individual building’s insurance policy coverage. Furthermore, flood insurance coverage truncates on the lower end by 

deductibles where losses are not recorded because no claim is made, and on the upper end by policy caps where losses in 

excess of the policy may be truncated to the payout rather than the actual loss. Converting point estimates of exposure and 205 

damage to a kernel density map does allow us to visually reference if our estimated spatial pattern of exposure and damage 

match with our approximation of reality (e.g., insurance claim locations) allowing for an indirect comparison.  
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Figure 3: Flow diagram describing the two pronged evaluation process undertaken to examine the spatial differences in each FIM 

and the differences in exposure and consequences estimated by each FIM. 210 
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3 Results and Discussion 

3.1 Simulation Comparison 

We first compare the results from the HEC-RAS, AutoRoute, and Fathom-US frameworks to observed HWMs by estimating 

locational accuracy. HWMs designate locations where floodwater reaches a given location and leaves behind evidence of 215 

floodwater presence in the form of mud lines, seed lines, etc. (Koenig et al., 2016). USGS quantifies the uncertainty of the 

HWM WSE measurements they collect. In our study domain, USGS considers 53% of HWMs in the study area of poor quality, 

34% of fair quality, and 13% of good quality. What these qualitative descriptors translate into quantitatively is an average of 

± 9 centimeters of uncertainty in the study domain HWM WSEs. All HWMs examined where sourced from either riverine 

(86% of HWMs) or coastal (14% of HWMs) flooding. 220 

Each models FIM should contain each HWM within its extents. Table 1 is an assessment of locational accuracy for each model 

under the assumption that the maximum inundation extent should contain the HWM locations. Interestingly, we can see that 

the Fathom-US model is more accurate at intersecting HWM locations within the inundation extent than both the AutoRoute 

and the HEC-RAS model.  This result contradicts our assumption that the HEC-RAS model will be more accurate given the 

higher level of terrain resolution and calibration/validation performed upon the model.   225 

Table 1: Locational accuracy of each modeling framework FIM based on the number of HWMs within the FIM flood extent. 

 
Total Number of High Water Marks High Water Marks within FIM Locational Accuracy  

HEC-RAS 56 33 59% 

AutoRoute 56 13 23% 

Fathom-US 56 44 88% 

 

 

 

 230 
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However, expressing model skill in terms of locational accuracy has limited viability, given that the model could inundate the 

entire study area and achieve 100% accuracy. Indeed, comparing the results from HEC-RAS, AutoRoute, and Fathom-US 235 

maximum water surface elevations (WSEs) to observed HWM WSEs reveals a different outcome. Figure 4 illustrates 

scatterplots comparing each FIM’s WSE to HWM WSE observations and Table 2 summarizes the error and bias of each 

framework. The orange line in all Figure 4 plots is the desired 1:1 relationship between observation and model results and the 

hashed line is the line of best fit from a least squares regression analysis. In Figure 4 and Table 2, we see that the HEC-RAS 

framework produces more precise and accurate WSE estimates than both the AutoRoute and Fathom-US frameworks with 240 

points tightly packed along the dashed regression line that aligns well with a 1:1 line and lower error value. The HEC-RAS 

frameworks biases toward underestimation with bias of -0.32 m, particularly at lower WSEs. The Fathom-US framework tends 

to overestimate WSE, with the regression line falling to the right of the 1:1 line and a positive bias of 0.60 m. The AutoRoute 

framework has a less consistent tendency than the HEC-RAS and Fathom-US frameworks. With only 23% of HWM locations 

falling within the inundated area, AutoRoute appears to underestimate inundated area. However, the AutoRoute FIM biases 245 

towards significant overestimation with large over predictions illustrated in Figure 4. Injecting each USGS HWM’s WSE 

measurement uncertainty into our error analysis, we find that USGS measurement uncertainty in the HWM WSEs translates 

into an average of about ±1 cm difference in errors reported in Table 2. Overall, the performance of the HEC-RAS and Fathom-

US frameworks is better that the AutoRoute framework. We expected AutoRoute FIM to underperform in this scenario given 

the relatively simple numerical scheme that includes a steady state assumption, a lack of both pluvial flooding, and a lack of 250 

contribution of coastal water levels into the FIM. 
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Figure 4: Scatterplot comparing simulated and observed WSEs for Hurricane Harvey. Here, each blue dot represents an observed 

HWM location, the orange line represents a 1:1 perfect fit, and the blue dashed line is the line-of-best-fit between the observed and 

simulated WSE at the HWM locations.  255 

Table 2: Error and bias computed for each FIM framework using observed HWM WSE. 

FIM Framework Error (m) Bias (m) 

HEC-RAS 0.67 -0.32 

AutoRoute 3.63 1.44 

Fathom-US 0.87 0.60 

Figure 5 illustrates the FIMs created by HEC-RAS, AutoRoute, and Fathom-US along with HWM WSE comparisons with 

observations for each FIM. HWMs colored in shades of grey are locations where the FIM over-predicts WSE, those colored 

red represent under-prediction by each FIM, and locations colored white are within ± 0.5 m for the FIM WSE. The HEC-RAS 

and Fathom-US FIMs are more similar to one another than the AutoRoute FIM is to either. However, we do see the HEC-RAS 260 

framework underestimates WSE in the northeast section of the study area, while the Fathom framework overestimates WSE 

and estimates greater inundation extents in the northeast when compared to the HEC-RAS framework. The AutoRoute 

framework underestimates WSE inland and overestimate WSE closer to the coast.  Overall, we see that the FIMs created by 

each framework are unique to the framework in terms of both model error and overall flood inundation. 
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 265 

Figure 5: Maps comparing FIMs from each modeling framework and differences between simulated and observed WSE: (a) HEC-

RAS, (b) AutoRoute, and (c) Fathom-US. Each point location is an observed USGS HWM location and the colors represent the 

magnitude of difference between observed and simulated WSE. The blue region represents the flood inundation depths for each 

FIM.  

3.2 Causes of Framework Differences and Uncertainty 270 

In general, we see the HEC-RAS, AutoRoute, and Fathom-US frameworks generate spatially different FIMs and that each is 

an imperfect representation of reality. The HEC-RAS FIM appears to underestimate WSE and only captures 59% of HWM’s 

within its flood extent. The Fathom-US FIM does capture a higher proportion of HWMs in its extent than the other two 

frameworks but also appears to overestimate WSE and has greater error and bias than the HEC-RAS framework FIM. The 

AutoRoute FIM WSE is a mix of underestimation and overestimation of WSE. As expected, the magnitudes of error, in terms 275 

of WSE, is generally higher for the AutoRoute and Fathom-US models than the HEC-RAS results as they are both large scale 
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frameworks. The HEC-RAS and Fathom-US results appear to be a more accurate representation of flooding that the AutoRoute 

framework. Here we explore the major drivers of differences and uncertainty amongst the estimated FIMs. 

One of the major differentiations of the AutoRoute framework from the HEC-RAS and Fathom-US frameworks is the missing 

coastal component of the FIM. AutoRoute has proven capable in a variety of inland scenarios (Follum et al., 2017; 2020) and 280 

when compared to higher resolution, inland models (Afshari et al., 2018). However, it appears that the simplified physics in 

our AutoRoute simulation do not effectively accommodate the complex physical interactions that occur during this compound 

coastal flood. In our case study, the AutoRoute FIM under-predicts WSE but is also prone to large outliers of over-estimation 

in WSE estimation.  Table 3 describes the WSE HWM error and bias after we split the data between riverine and coastal 

HWMs. As we expected, the HEC-RAS and Fathom-US frameworks outperform the AutoRoute framework in terms of error, 285 

particularly at coastal HWMs. HEC-RAS and AutoRoute WSE are more accurate at riverine HWMs than at coastal HWMs, 

while Fathom-US is more accurate at coastal HWMs. At both riverine and coastal HWMs, HEC-RAS WSEs are biased low 

further explaining why the HEC-RAS FIM inundates less HWMs. Interestingly, Fathom-US WSE outperforms HEC-RAS in 

terms of error and bias at coastal HWMs. Fathom-US also outperforms its own corresponding riverine HWM WSEs with error 

and bias approximately half of what is found at riverine HWMs. While our hypothesis holds that AutoRoute is the least capable 290 

framework for producing a FIM in a compound coastal flood, the results add further complexity to declare whether HEC-RAS 

of Fathom-US produce a more accurate FIM.  

 

Table 3: Error and bias computed for each FIM framework using observed HWM WSE divided into riverine and coastal HWMs. 

FIM Framework Error (m) Bias (m) 

Riverine HWM Coastal HWM Riverine HWM Coastal HWM 

HEC-RAS 0.68 0.69 -0.31 -0.58 

AutoRoute 3.65 4.29 1.28 2.63 

Fathom-US 0.90 0.41 0.59 0.29 

 295 

 

Unlike AutoRoute, the HEC-RAS and Fathom-US frameworks employ a similar physical fidelity in their respective numerical 

schemes. The main difference in these simulations is the geographic resolution and vertical accuracy of the DEMs. The HEC-

RAS framework uses ~1-meter DEM resolution with an average National Standard for Spatial Data Accuracy (NSSDA) 

absolute vertical accuracy of about 0.02 meters (AECOM, 2018). The Fathom-US model simulating at around a ~30-meter 300 

DEM resolution has an average NSSDA absolute vertical accuracy of 3.04 meters (Gesch et al., 2014). The greater accuracy 

and higher resolution of the DEM within the HEC-RAS framework is likely one of the main drivers of, overall, less error and 

bias in HEC-RAS FIM WSE as compared to the Fathom-US FIM WSE. The Fathom-US DEM has a lower vertical accuracy, 

which is likely one of the major drives in the difference between the Fathom-US and HEC-RAS FIMs. The horizontal 
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resolution of the DEM will also play a role in the accuracy of FIMs, particularly when the domain is an urban catchment, 305 

unless small-scale influences on the hydraulic conditions are present in the DEM (Wing et al., 2017; 2019; Domeneghetti et 

al., 2021). We consider our study area a densely urbanized watershed (Bass and Bedient, 2018).  

One of the more apparent differences between the HEC-RAS and Fathom-US frameworks is the omission of HEC-HMS 

internal boundary conditions in the northeast corner of the watershed. The name of this region is Armand Bayou. The HEC-

HMS runoff for Armand Bayou enters the HEC-RAS model near the pour point of Armand Bayou and not in a distributed 310 

manner throughout the Armand Bayou watershed. The Armand Bayou watershed is under analysis in a separate study by the 

USACE Galveston District and the Clear Creek HEC-RAS model only considers the total runoff coming into the Clear Creek 

domain from Armand Bayou. When developing a FIM with different frameworks, the user should understand the 

parameterizations made by the modeler. In this instance, the application of runoff from Armand Bayou enters the HEC-RAS 

framework. However, because the runoff is not applied in a distributed manner throughout the watershed, an under 315 

representation of modeled inundation occurs upstream of Armand Bayou’s pour point, effectively removing pluvial and fluvial 

flooding from the region.  

3.3 Implications of Model Differences 

As expected, each of the three modeling frameworks we consider estimate different FIMs in terms of spatial composition. The 

differences in FIMs translate into different estimates of consequences and exposure. Table 4 summarizes the consequence and 320 

exposure differences estimated using each FIM. We see that generally higher WSE and full inclusion of Armand Bayou in the 

northeast section of the study domain in the Fathom-US model translates into larger consequence and exposure estimates. The 

Fathom-US FIM estimates that floodwater from Harvey inundated approximately 39% of all buildings in the study domain 

while HEC-RAS and AutoRoute FIMs estimate 10% and 3% of all buildings in the study domain were inundated with flood 

waters, respectively. Interestingly, there is not a general trend of increasing estimates of exposure that lead to increases in our 325 

estimates of dollar damage. AutoRoute inundates 6,279 structures while estimating $0.9 billion in damages while HEC-RAS 

inundates 19,281 structures while estimating $0.7 billion in damages. Exploring this result, when HEC-RAS and AutoRoute 

inundate the same buildings, AutoRoute estimates $0.3 Billion more in damages than HEC-RAS. The only explanation in this 

difference in damage is a higher water depth, as go-consequences uses the same location and depth-damage function for these 

buildings. We then turn our attention to buildings where only HEC-RAS FIM estimates damage, where the sum total of damage 330 

is $0.5 billion and the average water depth is 1.1 meters.  Likewise, for only structures where AutoRoute FIM estimates 

inundation and damage, the sum total is $0.3 billion and the average water depth is 3.8 meters. Thus, AutoRoute estimates 

more damage than HEC-RAS because of a tendency to estimate a higher water depth at building locations. These results 

indicate that the differences in each FIM produce different estimates of both exposure and consequences. 

 335 
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Table 4: Consequence and exposure estimates for Clear Creek during Hurricane Harvey estimated using each FIM and the go-

consequences software. 

 Estimated 

Number of 

Structures 

Impacted 

Estimated Total 

Depreciated Damage 

(Structure and 

Content Values 2018 

Dollars)  

Total 

Exposed 

Population at 

Night (under 

age 65) 

Total 

Exposed 

Population 

at Night 

(over age 

65) 

Total 

Exposed 

Population 

During 

Daytime 

(under age 

65) 

Total 

Exposed 

Population 

During 

Daytime 

(over age 

65) 

HEC-RAS 19,281 $0.7 Billion 50,228 6,000 57,960 5,585 

AutoRoute 6,279 $0.9 Billion 14,948 1,884 9,593 1,659 

Fathom-

US 

72,601 $3.3 Billion 193,761 22,513 147,605 20,051 

 

We use the locations of the buildings impacted, the damage to those buildings, and the number of people within those buildings 

from each FIM go-consequences analysis to construct a kernel density map (Figure 6) where we see a spatial pattern that 340 

matches the tabular values in Table 4.  The HEC-RAS framework estimates that the highest density of exposure and 

consequences will be in the western and southern portions of the study domain. As stated before, the HEC-RAS framework 

omits distributed internal boundary conditions in Armand Bayou watershed in the northeast portion of the study area, due to 

the modeling assumptions.  The AutoRoute framework estimates that the highest density of exposure and consequences will 

occur in pockets throughout the study domain. The Fathom-US framework mimics the spatial pattern of the HEC-RAS 345 

framework but broadens estimates of exposure and consequences throughout the entire study domain and in particular in the 

northeast section that the HEC-RAS framework omits. Overall, the kernel densities portrayed in Figure 6 match well will the 

magnitudes of consequences and exposure portrayed in Table 4. Thus, exposure estimates produced by each FIM differ both 

in their magnitude and in spatial pattern. 
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 350 

 

Figure 6: Kernel density maps of using NSI buildings, damages, and people per square kilometer impacted by each FIM: (a) HEC-

RAS (b) AutoRoute (c) Fathom-US. The kernel density maps derive from go-consequences point output for each FIM modeling 

framework.  
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 355 

The FIMs produced by each framework are different in terms of their spatial composition and each estimates different 

consequences and exposures to the floodwaters. We may assume that the FIM produced by HEC-RAS is the most accurate 

given the better fit between observed and simulated WSE (Figure 4 and Table 2). However, the HEC-RAS framework is not 

without error, has a lower locational accuracy than the Fathom-US framework (Table 1), and does not intend to represent flood 

inundation in the northeast section of the study region (Armand Bayou). Furthermore, as we compare FEMA flood insurance 360 

claim locations from Hurricane Harvey (Arctur, 2021) to each FIM, we find evidence that the HEC-RAS framework FIM is 

indeed excluding flooding in the northeast portion of the study area. Figure 7 compares the location of FEMA insurance claims 

for structures in the AOI and the estimate of buildings per square kilometer from Figure 6. Figure 7 illustrates that both the 

HEC-RAS and Fathom-US frameworks do well in identifying hotspots of buildings impacted by flooding in the western and 

southern portions of the study area. However, the HEC-RAS framework does exclude impacted areas in the northeast portion 365 

of the study area, while the Fathom-US framework correctly identifies those locations. The AutoRoute FIM does not appear 

to perform well at identifying the spatial pattern of exposed buildings. 
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Figure 7: Comparison of the location of FEMA flood insurance claims and kernel density maps developed using go-consequences 370 
results for each FIM:  (a) HEC-RAS (b) AutoRoute (c) Fathom-US. 

When we calculate the proportion of FEMA insurance claims falling within each FIM’s flood inundation extent (Table 5), we 

see that none of the frameworks capture all FEMA claims and the results mirror Table 1, with the proportion of insurance 

claims within each FIM aligning with the proportion of HWM’s within each FIM. However, if we sum all FEMA claims that 

fall within at least one of the three FIMs, we capture a slightly greater portion of FEMA insurance claims. This result, in 375 

combination with the finding that even our local scale HEC-RAS framework doesn’t capture the as HMW locations within its 

FIM as the continental-scale Fathom-US framework, may further illustrate the importance of using multiple sources of FIM 

for flood events. The combination of these FIM sources can produce a probabilistic or composite FIM that better highlights 
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overall risk for emergency responders and the public. Thus, we find utility in having multiple FIM sources, as it appears the 

combination of FIM sources better estimates overall exposure than one FIM alone.  380 

 

Table 5: Proportion of FEMA insurance claims within the FIM for a combination of all three FIM modeling frameworks.  

Model Proportion of FEMA flood claims within FIM 

Flooded Extents 

HEC-RAS 56% 

AutoRoute 6% 

Fathom-US 79% 

All Frameworks Combined 86% 

 

3.3 How to Improve FIM Creation Techniques 

Efforts are ongoing to coordinate FIM creation at the Federal level. The three frameworks discussed in our study are not the 385 

only techniques available to create FIMs during flood events. As previously mentioned, the NWC produces HAND-derived 

FIMs using the NWM (Viterbo et al., 2020). The U. S. Department of Homeland Security (DHS) contracts with the Pacific 

Northwest National Lab (PNNL) to construct FIMs with the Rapid Infrastructure Flood Tool (RIFT) model (Judi et al., 2010; 

PNNL flood modeling helps DHS during busy hurricane season, 2017; Li et al., 2019). NOAA’s NWS and the USGS host 

multiple FIM libraries (Inundation Mapping Locations, 2022; Flood Event Viewer, 2021). There are likely other entities 390 

capable of producing FIMs throughout the world. Our case study highlights how the three FIM frameworks we consider are 

different, imperfect, and can lead to different estimates of flood exposure and consequences. Thus, there is a need to reconcile 

and adjudicate multiple FIMs to ensure consistency in decision-making efforts during flood events. In response to this need, 

the IWRSS consortium has set about operational plans for coordinating FIM production through the integrated Flood 

Inundation Mapping (iFIM) effort (Mason et al., 2020). The iFIM group confers before, during, and after major flood events 395 

in order to promote awareness of the various FIM creation efforts. The iFIM effort is in its infancy, gathering together to 

understand the where and when of FIM production. However, this is a necessary first step in building cohesion in developing 

appropriate FIMs. In our current context, the iFIM group would have been aware that the HEC-RAS framework should not be 

representative of the northeast section of the study domain and that the AutoRoute framework generally performs poorly in 

low gradient coastal watersheds. This adjudication process would have likely led to the iFIM group promoting the Fathom-US 400 

framework for use in the northeast section of the study region and the HEC-RAS framework in the rest of the study area as the 

most appropriate FIM.  

To empower the iFIM group, additional steps to enable interoperability and sharing of maps across multiple levels and divisions 

of government will also be necessary. From a practical perspective, this means developing data services to share amongst the 
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different agencies. NOAA’s NWS, USACE, and USGS all provide access to FIMs through geographic information systems 405 

(GIS) services during flood events. The next step will be the engagement of other Federal entities and those that fall outside 

of the Federal agencies. Metadata, sufficient to empower the vetting process, should accompany new and existing GIS FIM 

services. The metadata should include details on the composition of the framework (e.g., Figure 2) such as meteorological 

forcing used, DEM resolution and age, model spatial and temporal resolution, inclusion of coastal boundary conditions, and a 

descriptive narrative from the modeller that can convey to the user appropriate specifics on the FIM. Simply exposing these 410 

FIMs as GIS services and allowing the iFIM group to import them within a common operating picture will empower the FIM 

adjudication and promotion process.  

The iFIM intends to promote the most appropriate FIM for a given flood event and location. However, as we have seen with 

this case study of Clear Creek during Hurricane Harvey, a single FIM estimate can be problematic for compound coastal 

flooding given that all chosen modeling frameworks produce an imperfect assessment of reality. As Table 5 displays, our 415 

combination of all three FIMs encompasses a greater proportion of FEMA flood claims than one location alone. Thus, we have 

some initial evidence to suggest that the delivery of a multi-model FIM should be the preferred methodology to FIM delivery.  

However, a chosen FIM framework highlights only one aspect of the uncertainty within FIM creation. This assessment has 

not considered the uncertainty associated with the use of numerical weather prediction (NWP) models. Even with gains in 

NWP forecast skill, the use of ensemble prediction remains key to understanding the uncertainty when predicting chaotic 420 

weather systems. Ensemble prediction entails the perturbation of initial conditions and model numerical schemes to create a 

range of possible meteorological conditions (Palmer, 2017). Thus, the delivery of an ensemble, multi-model probabilistic FIM 

should be the preferred methodology to deliver a FIM in order to convey uncertainty to decision makers. The result of such a 

system would be a multi-model ensemble based probabilistic FIM, similar to that proposed by Zarzar et al. (2018). This move 

from deterministic FIM estimates into probabilistic FIMs is the path that the NHC has taken with its storm surge processes 425 

and products. Though the NHC relies upon only one model, SLOSH, the NHC recognizes the significance of meteorological 

uncertainty within storm surge FIM and creates only probabilistic products for public consumption. The NHC’s Probabilistic 

Storm Surge (P-Surge) derived Potential Storm Surge Flood Maps represent a reasonable worst-case scenario FIMs at any 

location given the range of meteorlogical uncertainty (Potential Storm Surge Flooding Map, 2016). In general, expansion of 

the full expression of knowledge uncertainties, extending beyond model selection and NWP forcing into areas such as 430 

coefficient determination for hydraulic structures, should generally benefit the portrayal of event-based flood risk in FIMs.   

Two of the large-scale frameworks (Fathom-US and AutoRoute) we employ here have the potential to generate timely 

probabilistic FIMs using hydrometeorological ensemble forecasts (Wing et al., 2019). However, to take advantage of 

hydrometeorological ensemble forecasts within local-scale frameworks, such as our HEC-RAS example, we must effectively 

reduce model runtime. The setup and runtime of these local frameworks may affect the timeliness of FIM creation, which is 435 

crucial during emergency operations (Follum et al., 2017; Longenecker et al., 2020; Gutenson et al., 2021). However, local 

scale frameworks offer high fidelity, high-resolution products that can improve a probabilistic FIM. One means to reduce 

model runtime for local scale models is to develop and train surrogate models that can dramatically reduce the computational 
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runtime of high fidelity, high-resolution modeling while delivering similar results (Zahura et al., 2020; Contreras et al., 2020; 

Kyprioti et al., 2021). In fact, Bass and Bedient (2018) have already developed such a surrogate modeling approach to create 440 

a FIM within our study area that loosely couples inland and coastal models, forcing both with a full range of potential tropical 

cyclone characteristics. Recently, Jafarzadegan et al. (2022) demonstrated a new methodology for replicating high-fidelity 

hydrodynamic model output by using a revised version of the HAND methodology that accounts for height above and distance 

to a nearest drainage feature and is computationally efficient enough for FIM construction during flood events. This revised 

HAND methodology could function as a form of surrogate modeling for timely FIM creation. However, accurately training 445 

surrogate models for compound hazards is not trivial, given the need to expose the surrogate technique to numerous pre-

existing simulations that account for the multitude of physical interactions, initial conditions, etc. that expand beyond tropical 

cyclone forcing.  

Improvements in numerical schemes and input data might also provide improvements in FIM creation. In their review of the 

literature, Santiago-Collazo et al. (2019) determine that 96% of the literature they analyse presents compound coastal flood 450 

inundation modeling strategies employ one way coupling. By one-way coupling, we mean were outputs from one model (e.g., 

inland) are fed into another model (e.g., coastal) by way of internal or external boundary conditions and no feedback occurs 

between the coupled models. The HEC-RAS and Fathom-US frameworks discussed here are examples of one-way coupling 

strategies as the models insert coastal surge into both frameworks via downstream head boundary conditions. Santiago-Collazo 

et al. (2019) advocate for the use of more robust coupling strategies to account for the complex interaction between inland 455 

runoff and storm surge; such as loosely-coupled, tightly-coupled, or fully-coupled modeling strategies. In addition, utilizing 

hydraulic modeling techniques that solve the full mass and momentum equations may improve resulting FIM estimates. An 

ongoing, Texas General Land Office led, regional flood study effort is evaluating whether accuracy of HEC-RAS models can 

change due to the usage of diffusion or dynamic wave hydraulic formulations within HEC-RAS simulations. This study will 

provide insight into the effect that not solving the full mass balance and momentum equations has on estimated FIMs in Texas. 460 

Further, FIM improvement will undoubtedly occur as improvements to the widespread availability of critical input datasets 

occur. For instance, the USGS collection of improved DEM data is steadily decreasing vertical and relative DEM errors (Gesch 

et al., 2014). 

4 Conclusions 

In this manuscript, we compare three different FIM creation frameworks for a small coastal watershed, Clear Creek, near 465 

Houston, Texas during Hurricane Harvey. These frameworks are the HEC-RAS framework, the AutoRoute framework, and 

the Fathom-US framework.    

We estimate the maximum flood inundation raster from each FIM framework and consider this our FIM. We then compare 

each framework’s FIM to USGS HWMs in two ways. First, we assess whether the FIM contains each HWM within the 

estimated flood extent. Second, we compare observed WSE from the USGS HWM to estimated WSE in the FIM. Our analysis 470 
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indicates that FIM accuracy can vary based upon either of these assessments. The Fathom-US framework contains the most 

HWMs but also tends to overestimate WSE and have a higher WSE error and bias. The HEC-RAS framework contains less 

HWMs but also tends to have relatively more accurate WSE. The AutoRoute framework is the least accurate of the three, 

appears to underestimate flood extent, and highlights how simplified flood inundation mapping methods are not ideal for 

representing compound coastal flooding. Our analysis illustrates that no one FIM is infallible and is subject to the uncertainties 475 

present in the model’s numerical scheme, the model inputs (e.g., terrain), and the model’s configuration.  

We the estimate the exposure and consequences of each FIM using the NSI and go-consequences. We find quantitative and 

spatial differences in the exposure and consequences produced by each FIM. The differences we find between each FIM, such 

as a lower location accuracy in the local HEC-RAS framework further illustrate why a single FIM is not preferable for FIM 

during emergency events. We compare our exposure and consequence estimates to the locations of FEMA flood claims and 480 

use FEMA damage claims totals to estimate a total damage. Visually (Figure 7). The comparison of simulated exposure 

estimates compare favorably to our approximate observations. The results lend credence to our ability to utilize accurate FIMs, 

the NSI, and go-consequences and produce a relatively accurate exposure assessment for a flood event. Thus, the combination 

may be a useful tool set for evaluating the impacts of flood events before, during, and after they happen.  

Our study highlights the need to rectify and adjudicate the various FIMs created during flood events. In response to this need, 485 

IWRSS formed the iFIM to perform interagency comparison and consolidation of FIMs. GIS web services will empower the 

iFIM and adding additional FIMs to the iFIM common operating picture will improve the FIM selection and discovery process.     

Large-scale FIM creation techniques, such as AutoRoute and Fathom-US may be capable of operating in real-time during 

flood events. To develop FIMs properly for compound floods and beyond, future research should focus on means to reduce 

runtime in local-scale models that offer high-fidelity numerical schemes and high-resolution input data. Surrogate modeling 490 

may offer such an approach but the difficulties in training a multivariate surrogate model are not trivial. Decreased runtimes 

may offer the ability to instantiate multiple model simulations while not compromising model fidelity. This would make 

possible probabilistic FIMs for compound coastal floods that capitalize on the fidelity and resolution of local-scale models.     
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