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Abstract. Ground-motion correlation models play a crucial role in regional seismic risk modelling of spatially distributed

built infrastructure. Such models predict the correlation between ground-motion amplitudes at pairs of sites, typically as a

function of their spatial proximity. Data from physics-based simulators and event-to-event variability in empirically derived

model parameters suggest that spatial correlation is additionally affected by path and site effects. Yet, identifying these effects

has been difficult due to scarce data, and a lack of modelling and assessment approaches to consider more complex correlation5

predictions. To address this gap, we propose a novel correlation model that accounts for path and site effects via a modified

functional form. To quantify the estimation uncertainty, we perform Bayesian inference for model parameter estimation. The

derived model outperforms traditional isotropic models in terms of the predictive accuracy for training and testing data sets.

We show that the previously found event-to-event variability in model parameters may be explained by the lack of accounting

for path and site effects. Finally, we examine implications of the newly proposed model for regional seismic risk simulations.10

1 Introduction

Earthquakes can cause widespread damage to the built environment exposing its users to severe and potentially long-lasting

societal stress. Analyzing earthquake-induced consequences is key to enhancing efficient and targeted seismic risk management

strategies. Empirical ground-motion models (GMMs) are widely used for the prediction of earthquake-induced ground-motion

intensity measures (IMs) at individual sites. The assessment of consequences to spatially distributed systems, such as the15

residential building stock of an urban area or its road network, additionally requires spatial correlation models to characterize

the dependency among IMs at different sites (Wesson and Perkins, 2001; Lee and Kiremidjian, 2007).

A predictive spatial correlation model consists of a functional form, one or several dependent variables and the model

parameters. Early studies, such as Boore et al. (2003), as well as more recent studies, such as Schiappapietra and Douglas

(2020), use an isotropic model where the correlation among sites decays exponentially (the functional form) with increasing20

Euclidean distance between sites (the dependent variable). Observations of pairs of IMs from past earthquakes are used to

calibrate these models. The isotropic assumption allows grouping of station pairs with similar distance for the estimation of

model parameters via geo-statistical curve-fitting techniques.
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To alleviate the scarcity of data, some researchers pooled data from multiple earthquakes, and assumed that the same cor-

relation model parameters apply to different events (e.g., Goda and Atkinson, 2010; Esposito and Iervolino, 2011). Other25

studies estimated separate models for individual earthquakes and reported that the corresponding parameters vary from one

earthquake to another (e.g., Jayaram and Baker, 2009; Goda, 2011). Sokolov et al. (2012) mention that this event-to-event

variability may be caused by site effects (i.e. stronger correlation amongst sites with similar geological conditions) and path

effects (i.e. stronger correlation amongst sites with similar wave propagation paths). While the importance of site and path ef-

fects became apparent in data from physics-based ground-motion simulators (Chen and Baker, 2019), the findings with respect30

to recorded ground-motion data differ amongst previous studies. Early work of Jayaram and Baker (2009) and Sokolov et al.

(2012) found that, for example, the heterogeneity of soil conditions may influence spatial correlations. Yet, more recent studies

could not find such evidence and suggested to account for event-to-event variability via random variables for model parameters

in regional seismic risk analyses (Heresi and Miranda, 2019) or to derive region-specific correlation models (Schiappapietra

and Douglas, 2020).35

Identifying explanatory factors by estimating correlation models from data of individual earthquakes is challenging. First,

the comparison of a single model parameter estimate per event with a single metric describing a certain aspect of the region the

event was recorded in (such as the heterogeneity of soil conditions) suffers from scarcity of data. Estimation of event-specific

correlation model parameters requires data from particularly well-recorded events, of which there are only a few. Second,

the use of an isotropic model and the condensation to a single parameter estimate per event may hide path and site effects40

that are present within the event data. Third, the estimated model parameters are subject to varying degrees of estimation

uncertainty, because the underlying data sets stem from earthquakes that were recorded by a different number and layout of

seismic network stations. Schiappapietra and Douglas (2021) and Baker and Chen (2020) aimed to quantify this uncertainty

via simulating data from an assumed “true” model and comparing the latter to the model estimated from the simulated data

using different estimation techniques. Both studies, however, used the same isotropic model with an exponential functional45

form that has only one model parameter, and Baker and Chen (2020) reported difficulties in extending the proposed method to

models with more than one parameter.

This study explores novel correlation models that, in addition to spatial proximity, also account for path and site effects.

In contrast to previous studies, we do so by modifying and extending the functional form and the dependent variables of the

correlation models. The increased complexity of these models calls for a consistent quantification of the inherent estimation50

uncertainty, thus complicating the use of conventional geo-statistical curve-fitting techniques. To address this, we use Bayesian

inference to estimate the model parameters. While Bayesian inference has been proposed for GMMs in the past (e.g., Moss

and Der Kiureghian, 2006; Stafford, 2019), it has not been applied to study spatial ground-motion correlation.

We present the proposed correlation model in Sect. 2. Section 3 introduces the Bayesian inference scheme used to estimate

the model parameters from the PEER NGA-West2 data set (Ancheta et al., 2014). Using the same data set, Sect. 4 first55

compares the proposed correlation models to event-specific, isotropic models by employing a novel metric to quantify the

predictive accuracy, and, then compares model performance on test data from the 2019 Ridgecrest, California, earthquake
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sequence (Rekoske et al., 2020). Finally, Sect. 5 examines implications of the novel correlation model for regional seismic risk

simulation studies.

2 Spatial correlation models for ground-motion amplitudes60

This study on spatial correlation models builds on empirically derived GMMs that predict a ground-motion IM at site i induced

by an earthquake rupture k as

lnIMki = µlnIM (rupk,sitei)+ δBk + δWki , (1)

where µlnIM (·) is the predicted mean lnIM value as a function of rupture (rup) and site (site) characteristics (Baker et al.,

2021). Amongst others, these typically include earthquake magnitude, rupture mechanism, source-to-site distance and site-65

specific geological information. The between-event and within-event residuals, δBk and δWki, are assumed to be independent,

normally distributed variables with standard deviations τ and ϕ, respectively. Empirical GMMs provide the mean function

µlnIM (·), as well as the standard deviations τ and ϕ. For a specific event, the between-event residual denotes a common

deviation from the predicted mean that is constant for all sites, whereas the within-event residuals vary in space. For this

correlation study, we scale the within-event residual by its standard deviation ϕ, and denote the scaled within-event residual as70

Zki = δWki/ϕ.

The joint distribution of the same ground-motion IM at n spatially distributed sites IMk = (IMk1, . . . , IMkn)
⊤ requires

characterizing the dependence of the corresponding within-event residuals Zk = (Zk1, . . . ,Zkn)
⊤. The joint distribution of the

latter is assumed to be multivariate normal (Jayaram and Baker, 2008), e.g. p(zk) =N (0,Σ). Note that because each marginal

Zki follows a standard normal distribution, the covariance matrix, Σ, is identical to the correlation matrix. To compute the75

entries of this matrix we employ a model ρ(·) that predicts the correlation between two sites i and j given some dependent

variables xi and xj as

[Σ]ij = ρM(xi,xj ;ψM) , (2)

where subscript M indicates the chosen functional form of the model and ψM denotes associated parameters. The models,

which we introduce in the following sections, are defined for a distance (or dissimilarity) metric d between two sites. We often80

denote the correlation model as ρM(d;ψM).

The GMMs and correlation models considered in the present study are ergodic. As such their predictions do not depend

on the absolute rupture and site locations but only on their relative positioning (e.g., via a certain source-to-site distance). It

is noted that the parameters of some GMMs vary between broadly defined regions (e.g., California and Japan). This is also

true for the GMM of Chiou and Youngs (2014) used in this study. In accordance with Lavrentiadis et al. (2022) we still refer85

to such models as being ergodic. This contrasts with recently developed, fully non-ergodic, models that use spatially varying

coefficients (see Lavrentiadis et al., 2022, for a recent review), and aim to identify systematic source, site and path effects

in data-rich regions. We provide a short qualitative discussion on how our model for path effects compares with recently

developed non-ergodic models in Sect. 2.2.
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2.1 Isotropic model based on Euclidean distance metric90

A natural first assumption is that the correlation between sites decreases as the Euclidean distance between them increases. If

the (projected) Cartesian coordinates of two sites i and j are denoted by si and sj , then the Euclidean distance between them

is defined as dE,ij = ∥si− sj∥2, as illustrated in Fig. 1a. Because the correlation solely depends on the distance between sites,

the resulting correlation model is isotropic. Following Goda and Hong (2008), and more recently Heresi and Miranda (2019),

we use a γ-Exponential function (Rasmussen and Williams, 2006, chapter 4) to describe the decay of correlation as a function95

of Euclidean distance

ρE(dE;ψE) = exp(−(dE/ℓE)
γE) , (3)

where γE ∈ (0,2) denotes the exponent and ℓE ∈ R+ is the lengthscale in km. Both parameters are summarized in the vector

ψE = (ℓE,γE), where the subscript E is used to simplify notation for the correlation model comparisons that follow below.

Figure 1b illustrates the correlation function for different parameter combinations. If the exponent is one, Eq. (3) simplifies to100

the exponential function used in many previous ground-motion correlation studies (e.g., Esposito and Iervolino, 2011). In that

case, 3ℓ corresponds to the distance at which correlation is lower than 5% (the so-called correlation range). As the exponent

drops below one, the correlation for distances shorter than the lengthscale are weaker compared to the exponential function,

whereas correlations for longer distances are stronger.

2.2 Accounting for path effects using an angular distance metric105

Besides the Euclidean distance between two sites, their correlation may also depend on their position relative to the earthquake

rupture (due to arriving waves potentially travelling similar propagation paths). In this study we use the epicentral azimuth

θ to characterize this relative position and assume that correlation between sites decreases as the difference in their azimuths

increases. This difference in epicentral azimuths is herein called the angular distance dA and illustrated in Fig. 1a. The angular

distance takes values from 0° to 180°, where 180° indicates two sites that are on opposite sides of the epicenter. To account110

for path effects, we use the following correlation function that was proposed by Padonou and Roustant (2016) for Gaussian

Processes on circular domains

ρA(dA;ℓA) = (1+ dA/ℓA)(1− dA/180)
180/ℓA , (4)

where ℓA ∈ (0,45) is the lengthscale in degrees. Figure 1c provides a visual illustration of Eq. (4) for different lengthscales.

Model A, as introduced above, assigns strong correlation for sites with similar epicentral azimuths regardless of how close the115

sites are to each other. To account for spatial proximity in addition to path effects, we introduce model EA:

ρEA(dE,dA;ψEA) = ρE(dE) · ρA(dA) , (5)

where ψEA = (γE, ℓE, ℓA) collects all parameters of the individual functions E and A. The multiplicative structure ensures

that strong correlations are only present if two sites have similar epicentral azimuths and are close to each other. Figure 1g
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illustrates the resulting correlation coefficient from a reference site to all other sites in a fictitious region. The comparison120

with the isotropic model E (Fig. 1f) reveals how model EA assigns weaker correlations to sites with differing paths from the

epicenter.

Path effects in the context of correlation models for ergodic GMMs imply stronger correlation between sites that share a

similar wave propagation path. This is different from non-ergodic models where one tries to identify systematic and repeatable

path effects in areas where multiple events have been recorded by the same seismic network. In the latter context, correlation125

functions are used to establish probabilistic links between stations in the seismic network in order to estimate the systematic

path effects. While these functions are typically defined for Euclidean distance and have a similar functional form as Eq. (3),

Kuehn and Abrahamson (2020) and Liu et al. (2022b) recently proposed to vary the Euclidean lengthscale, ℓE, as a function

of the epicentral distance. This also induces path effects that vary spatially in a more complex manner than only Euclidean

distance. Yet, a quantitative comparison with this approach is non-trivial because of the fundamental differences between130

ergodic and non-ergodic GMMs.

2.3 Accounting for site effects using a soil dissimilarity metric

We account for site effects via measuring dissimilarities in local soil conditions following the premise that sites with similar

soil conditions have stronger correlations. We use vs30, the 30m time-averaged shear-wave velocity, as a proxy for the soil

conditions and the distance metric dS is the absolute difference in the two sites’ vs30 values. We choose an exponential form135

of the correlation function

ρS(dS;ℓS) = exp(−dS/ℓS) , (6)

where ℓS ∈ R+ is the lengthscale in m/s. The choice of using vs30 as a proxy for soil conditions reflects its use in the GMM and

its availability in the data sets and case-study regions employed in this study. Other information, such as the depth to bedrock

or simply topographic slope (Kotha et al., 2020), could be used in a similar fashion. To simultaneously account for spatial140

proximity, path, and site effects we introduce correlation model EAS:

ρEAS(dE,dA,dS;ψEAS) = ρE(dE) · (wρA(dA)+ (1−w)ρS(dS)) , (7)

where w ∈ (0,1) is a weight parameter andψEAS = (γE, ℓE, ℓA, ℓS,w) collects all parameters. To illustrate model EAS, Fig. 1h

plots the predicted correlation coefficient with respect to the indicated reference site using soil conditions as shown in Fig. 1e.

The model still predicts path effects, but also higher correlation for sites with similar soil conditions as the reference site.145

For model EAS, we explored several combinations of the individual models E, A and S. Compared to the model defined

in Eq. (7), a decrease in predictive performance was observed for the case where the individual components are combined as

a weighted sum, whereas the decrease was less pronounced for a purely multiplicative structure. We also tried a model with

two separate isotropic components E1 (multiplied with component A) and E2 (multiplied with component S), while Eq. (7)

multiplies the same isotropic component E with A and S, respectively. This model had a slightly better predictive performance150

but comes at the cost of two additional parameters. In favor of reduced model complexity, we decided to proceed with the

model specified by Eq. (7).
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Figure 1. Illustration of the proposed spatial correlation models: Distance and dissimilarity metrics (dependent variables) (a), and correlation

coefficients as a function of the corresponding dependent variable for different parameters of individual models E, A and S (b to d). Soil

conditions in a fictitious 15x15km region (e) that are used to illustrate correlation coefficients with respect to the indicated reference site for

the combined correlation models E, EA and EAS (f to h), where the model parameters are set to their corresponding prior mean values stated

in Table 1.

We note that the herein proposed models focus on correlation of within-event residuals for a single IM at multiple, spatially

distributed sites. In future studies, the models may be extended to the case of multiple IMs, for example, through the use of the

linear model of co-regionalization as shown in Loth and Baker (2013) for isotropic models.155

3 Bayesian parameter estimation

We follow a Bayesian approach to estimate the parameters of the correlation models M ∈ {E,EA,EAS}, presented in the

previous section. Given data D, we aim to derive the posterior distribution of the correlation model parameters ψM using

Bayes’ theorem

p(ψM|D)∝ p(D|ψM)p(ψM) , (8)160
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where p(D|ψM) denotes the likelihood of jointly observing the data D conditional on a correlation model M with a specific

parameter set ψM, and p(ψM) is the prior distribution of the parameters. The individual components of Eq. (8) are introduced

in detail in the following sections.

3.1 Data

We consider ground-motion IM data from the NGA-West2 database (Ancheta et al., 2014). The IMs of interest are elastic, 5%-165

damped spectral accelerations Sa(T ) over the range of periods T ∈ [0.01,6]s, where we consider the median spectral amplitude

over all horizontal orientations (SARotD50). To compute within-event residuals we use the GMM of Chiou and Youngs (2014)

and mixed-effects regression (Abrahamson and Youngs, 1992). We restrict the database to consider only ground motions with

closest distance to rupture below 300 km, measured or inferred vs30 values between 180 and 760 m/s, and a maximum usable

period within the period range of interest. We then consider all earthquake events with more than 40 stations that satisfy the170

above criteria. Besides the computed residuals, zk, we extract the geo-coordinates ski, the epicentral azimuth θki, and vs30,ki

from all records, which we collectively denote as input vector xki. The data from event k is denoted as Dk = (Xk,zk), where

the inputs and residuals of the stations that recorded event k are summarized in matrix Xk and vector zk, respectively.

The data set obtained by pooling data from all nk considered events is denoted as Dtot = {Dk | k = 1, . . . ,nk}. For Sa(1s),

the pooled data set consists of 13,342 records from 128 events. The size of the data sets becomes smaller for spectral accelera-175

tions at longer periods due to the maximum usable period limit. Table A1 lists the number of records and events used for each of

the considered periods. Fig. 2 shows the number of station pairs in bins of Euclidean distance combined with angular distance

(a), and with soil dissimilarity (b), respectively. As can be seen in Fig. 2a there are only few station pairs available at short

Euclidean distances (smaller than 5km) and angular distances greater than 60°, mainly for two reasons: first, this combination

requires data points that have been recorded at short epicentral distances, which are in general scarce; second, for a given Eu-180

clidean distance it is more likely that a station pair has small angular distances (i.e., small differences in epicentral azimuths).

The number of station pairs available at different combinations of Euclidean distance and soil dissimilarity, shown in Fig. 2b,

are more evenly distributed, with relatively few data points from close-by stations with strongly differing soil conditions (e.g.

dS > 350 m/s). Low soil dissimilarity occurs more frequently in this data set, where dS values larger than 400 m/s accounting

for 1.5% of all station pairs. Additionally, there is a higher likelihood for close-by stations to have similar vs30 values.185

3.2 Likelihood

For event k, the likelihood, p(Dk|ψM), denotes the joint probability that correlation model M with parameters ψM and inputs

Xk assigns to scaled within-event residuals zk computed from the recorded ground-motion IMs as discussed above. This

distribution is multivariate normal, so p(Dk|ψM) =N (0,Σ). For the pooled data set Dtot, we consider the residuals from

distinct events to be independent, so the likelihood factorizes: p(Dtot|ψM) =
∏

k p(Dk|ψM). The joint probability of interest190

is thus analytically tractable. The correlation model and its parameters ψM define the entries of the correlation matrix Σ.
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Figure 2. For the pooled training data set for Sa(1s): Number of station pairs in joint bins of Euclidean and angular distance in (a), and

number of station pairs in joint bins of Euclidean distance and soil dissimilarity in (b). Note the logarithmic color scale.

Table 1. Prior distributions for the parameters ψ and corresponding means and the 5% and 95% quantiles (q0.05 and q0.95).

Parameter Domain Distribution Mean q0.05 q0.95

γE [-] (0,2) p(γE/2) = Beta(α= 2,β = 2) 1.0 0.3 1.7

ℓE [km] R+ p(ℓE) = InvGamma(α= 2,β = 30) 30.0 6.3 84.0

ℓA [°] (0,45) p(180/ℓA − 4) = Gamma(α= 2,β = 0.25) 18.2 7.8 33.3

ℓS [m/s] R+ p(ℓS) = InvGamma(α= 2,β = 100) 100.0 21.0 284.6

w [-] (0,1) p(w) = Beta(α= 2,β = 2) 0.5 0.1 0.9

3.3 Prior distributions

We chose weakly informative prior distributions for the parameters based on guidance provided in Kuehn and Stafford (2021)

and Liu et al. (2022b), and assume that their joint distribution, p(ψM) in Eq. (8), is factorizing. The prior distributions and the

corresponding prior mean, as well as the 5% and 95% quantiles are stated in Table 1. Note that some priors are defined on a195

scaled version of the parameter to account for its corresponding domain. For instance the exponent, γE, is defined for a range

from zero to two, which means to get samples of this parameter we first sample from a Beta distribution, defined from zero to

one, and multiply the obtained samples by two.

3.4 Posterior distribution

The posterior distribution, p(ψM|D) in Eq. (8), is not analytically tractable, thus we use Markov Chain Monte Carlo (MCMC)200

sampling for Bayesian inference. MCMC is a sequential sampling algorithm that is often used in Bayesian statistics to draw

samples from a certain target posterior (Neal, 1993). Specifically, we employ the No-U-Turn Sampler (Hoffman and Gelman,

2014) as implemented in the software library NumPyro (Phan et al., 2019). We get nr = 4000 sampled parameter sets ψM,r
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from the posterior distribution through four independent chains and 1000 warm-up steps each. Additional implementation

details can be found in the supplementary online repository (Bodenmann, 2022).205

In the following we discuss the estimated parameters by first focusing on isotropic models E that are derived from data Dk

of a single event k, so-called event-specific models. Then we expand the discussion to the case where parameters are estimated

from the pooled training data Dtot, so-called pooled models, where we also include the combined models EA and EAS. Both

upcoming paragraphs focus on the spectral acceleration at a period of one second, Sa(1s).

3.4.1 Event-specific models210

Event-specific correlation models have parameters estimated from data of an individual event. Figure 3 illustrates the joint

posterior distributions of the parameters ψE estimated separately for three events with increasing number of records. The top

row shows the individual samples ψE,r obtained via MCMC and an estimated kernel density for illustrative purposes. The

bottom row shows the correlation model evaluated using all sampled parameter sets ψE,r.

The results shown in Fig. 3 illustrate differences in the three event-specific models but they also highlight the uncertainty215

involved in estimating correlation model parameters from data of individual earthquakes. As pointed out in the introduction, this

estimation uncertainty complicates the identification of factors that could explain the variability in event-specific correlation

models. In Sect. 4.1 we will compare the predictive accuracy of such event-specific models to the predictive accuracy of pooled

models as introduced in the following.

3.4.2 Pooled models220

Pooled models are derived by combining data from multiple individual earthquakes. In contrast to event-specific models, we

use the same parameters to describe correlations of data from all events.

Table 2 summarizes the posterior parameters of correlation models E, EA and EAS, all inferred from the pooled training data

Dtot. First, we note that the angular lengthscale, ℓA, of models EA and EAS is around 20°. As can be seen from Fig. 1c, this

means that two sites whose epicentral azimuths differ by more than 90° are essentially uncorrelated. Second, the lengthscale225

applied to the Euclidean distance, ℓE, is longer for models EAS and EA compared to the isotropic model E, while the exponent

γE is similar for all three models. Thus, sites with similar azimuthal difference and located on similar soil are correlated over

longer Euclidean distances.

For models EAS and E, Fig. 4 illustrates the predicted correlation as a function of Euclidean distance, dE, for the three

soil dissimilarities, dS, of 10, 100 and 400 m/s, and at three increasing angular distances, dA, of 5, 30 and 60°. The solid line230

indicates the function evaluated with the mean posterior parameters and the shaded area indicates the interval between the 95%

and 5% quantile of all sampled functions from the posterior. The isotropic model E depends solely on Euclidean distance, so the

predicted correlation is identical in all three panels (a-c). The comparison of this pooled model E to the event-specific isotropic

models shown in Fig. 3 reveals the reduction in estimation uncertainty obtained by pooling data from multiple events. For

model EAS, on the other hand, we observe increased uncertainty for larger angular distances and short Euclidean distances,235

which reflects the low amount of data available at such combinations (see Fig. 2). By comparing model EAS in panels (a)
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Figure 3. Isotropic model E estimated separately for Sa(1s) and for three events with increasing number of records: (a-c) Posterior distri-

butions of the parameters, and (d-f) Predicted correlation coefficient as a function of Euclidean distance for all posterior parameter samples.

and (b), we observe that increasing the angular distance from 5° to 30° has roughly the same effect as increasing the soil

dissimilarity from 10 m/s to 400 m/s. For the plotted range of Euclidean distance, the isotropic model E is similar to model

EAS at small angular distances. This is because most data at short distances have small azimuthal differences.

Table A1 in Appendix A presents the parameters of model EAS for Sa at eight additional periods, while Fig. A1 provides240

similar plots as Fig. 4 for Sa(0.3s) and Sa(3s). Compared to Sa(1s), the weight parameter, w, decreases for longer periods,

which means the model assigns more weight to the site-effect term (i.e., the term that accounts for soil dissimilarities), com-

pared to the path-effect term (i.e., the term that accounts for angular distances). We further discuss the relative importance of

site and path effects in Sect. 4.2.
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Table 2. Parameters for the different correlation models estimated from the pooled training data set for Sa(1s). Stated quantities are the

mean, and the 5% and 95% quantiles from the posterior samples.

Model γe [-] ℓe [km] ℓa [°] ℓs [m/s] w [-]

E Mean 0.40 16.0 - - -

5%, 95% quantiles 0.38, 0.42 14.7, 17.4 - - -

EA Mean 0.35 21.3 23.5 - -

5%, 95% quantiles 0.33, 0.36 19.2, 23.5 20.8, 26.7 - -

EAS Mean 0.41 29.8 20.5 169 0.70

5%, 95% quantiles 0.38, 0.43 27.0, 32.8 17.8, 23.6 106, 251 0.62, 0.77

Figure 4. Posterior correlation models EAS and E for Sa(1s) as a function of Euclidean distance and soil dissimilarity plotted at three

angular distances: (a) 5°, (b) 30° and (c) 60°. The shaded area indicates the interval between the 95% and 5% quantile of all sampled

functions from the posterior.

4 Comparison of model performance245

We next evaluate the three models in terms of their predictive accuracy on test data from either an individual event or multiple

events. Given the posterior parameters of model M inferred from training data, Dtrain, we compute the Logarithmic Posterior

Predictive Density (LPPD) of test data, Dtest, as

LPPDM(Dtest;Dtrain) = ln

∫
p(Dtest|ψM)p(ψM|Dtrain) dψM ≈ ln

1

nr

nr∑
r=1

p(Dtest|ψM,r) , (9)

where ψM,r is the r-th sample from the posterior p(ψM|Dtrain) obtained via MCMC (Gelman et al., 2014). A higher value250

of this metric indicates a model that is more compatible with the data, in the sense of predicting higher probabilities of
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observing the given test data. By marginalizing over the posterior distribution of the parameters, the LPPD takes into account

the uncertainty associated with parameter estimation. Because LPPD quantifies the joint predictive density (see Sect. 3.2), it is

particularly useful in the context of spatial correlation models. To compare the models we use the relative difference between

the LPPD of a model M and the LPPD of a certain baseline model BL:255

Rel. difference =
LPPDBL −LPPDM

LPPDBL
. (10)

Note that the LPPD is negative (log-scale), thus a positive relative difference indicates that model M has higher predictive

accuracy (higher LPPD) than the baseline model BL. The baseline model differs for the different conducted analyses and

is specified in the corresponding sections. We performed three analyses in which we consider different test data sets, while

the training data always stems from the NGA-West2 database as described in Sect. 3.1. The first two analyses examine the260

in-sample performance. Specifically, we first focus on Sa(1s) and compare the performance of pooled models E and EAS

(estimated in Sect. 3.4.2) to the performance of event-specific isotropic models E (estimated in Sect. 3.4.1) on data from

individual events. Then we analyze the performance of the pooled models on the entire training data set to examine the relative

importance of site and path effects in correlation of Sa(T ) at different periods T . In the third analysis, we compare out-of-

sample performance of the herein proposed correlation models for Sa(1s) on data not used for training.265

4.1 Comparing event-specific and pooled models

As stated in the introduction, previous studies found that the parameters of an isotropic correlation model estimated from data

of different events vary from earthquake to earthquake. To examine this event-to-event variability, we compute for each event

k: (i) the predictive accuracy LPPDM(Dk;Dtot) of pooled models M ∈ {E,EAS}, and (ii) the predictive accuracy of the

corresponding isotropic event-specific model LPPDE(Dk;Dk).270

To illustrate the aforementioned LPPD metrics, we first use 125 records from the Hector-Mine earthquake in Fig. 5. The

frequency histograms indicate the log-likelihoods computed for individual samples from the posterior distribution of the model

parameters, lnp(Dk|ψM,r). The X values indicate the final LPPD metric which is computed from the histogram values as

specified in Eq. (9).

We see that the event-specific model E has the largest variance in log-likelihood values, as the model parameters are more275

uncertain due to limited data and some sampled parameter values give low probability of observing the data (i.e., low log-

likelihoods). For most realizations, however, the event-specific model E outperforms the pooled model E for the given event,

as would be expected. By computing the LPPD metric using Eq. (9) we marginalize over the posterior parameters and the

resulting LPPDs of both models are similar, with the event-specific model performing slightly better. We also see that the

pooled model EAS has a higher predictive accuracy than both the pooled and event-specific isotropic models E.280

Figure 6 extends the above comparison to all events in the training data by comparing the LPPDs of pooled model E (panel a)

and pooled model EAS (panel b) for each event to the LPPD of the corresponding event-specific isotropic model E using the

relative difference metric specified in Eq. (10). The event-specific model E serves as a baseline in computing the relative
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Figure 5. Log Posterior Predictive Density (LPPD) for data from the Hector-Mine earthquake event of models E and EAS estimated from

the pooled data set, as well as model E with parameters estimated only from data of that event. The histograms show the log-likelihood of

the data conditional on samples from the posterior parameters, lnp(Dk|ψM,r).

difference. Thus a positive relative difference indicates that the pooled model predicts the data from that event with higher

accuracy than the corresponding event-specific isotropic model.285

Figure 6a reveals that the pooled model E has worse predictive accuracy than the event-specific model for most events,

with the exception of some events with fewer than 200 records. The exceptions are explained by the increased estimation

uncertainty when using sparse data from solely one event, as discussed above. The better predictive accuracy of event-specific

models points to event-to-event variability in model parameters when using isotropic correlation models that are only based on

Euclidean distance.290

On the other hand, Fig. 6b shows that the predictive accuracy of the pooled model EAS is, for most events, higher than

the event-specific isotropic model. This is despite the increased number of parameters (and associated estimation uncertainty)

and highlights the benefit of accounting for path and site effects in correlation models. It also indicates that the event-to-event

variability in correlation model parameters is at least partially explained by the lack of accounting for such effects. Finally,

we note that the earthquake magnitude does not seem to affect the relative comparison in LPPDs, neither for model E nor for295

model EAS.

4.2 Pooled model performance for Sa at other periods

Whereas the previous results considered within-event residuals of Sa(1s), this section expands the discussion to different pe-

riods T . We again use the NGA-West2 data set to estimate parameters of pooled models for residuals at nine periods between

0.01s and 6s, and evaluate the corresponding LPPD for the entire training data set, LPPDM(Dtot;Dtot). To enable a com-300

parison across periods we additionally compute the predictive accuracy of an independent model (i.e., no correlation between
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Figure 6. Relative difference in Log Posterior Predictive Density (LPPD) of pooled models E (a) and EAS (b) to the LPPD of event-specific

models E as a function of the available number of records and magnitude. Each point represents one event in the considered data set, and the

coloring indicates the event’s magnitude. The relative difference is computed using Eq. (10) and positive values indicate higher predictive

accuracy (higher LPPD) of the pooled model for this event compared to the corresponding event-specific model E.

within-event residuals). For the training data set with n records the latter is computed as LPPDI =
∑n

i lnp(zi) where each

individual scaled within-event residual zi follows a standard normal distribution.

Figure 7a compares the resulting LPPD values in terms of their relative difference to the baseline LPPD of the independent

model using Eq. (10). For the considered periods, all three models have increased predictive accuracy compared to the inde-305

pendent model. The major part of the benefit in LPPD stems from the isotropic model E, although accounting for path and site

effects (models EA and EAS) leads to further increases in LPPD. Figure 7b focuses on the relative difference of model EA and

EAS compared to the baseline of the isotropic model E. Interestingly, for T ≤ 0.3s the LPPD of model EAS is very similar to

the LPPD of model EA. This indicates that, for short periods, additionally accounting for site effects (as measured with model

EAS) adds only a minor benefit compared to model EA which only accounts for path effects. For longer periods, however,310

the site effects become more important. For model EA, Fig. 7b shows larger LPPD for T ≤ 0.1s compared to longer periods.

Further studies are needed to assess whether this indicates more pronounced path effects at shorter periods, or, whether the

chosen functional form in Eq. (4) captures path effects better for shorter periods.

4.3 Out-of-sample model performance

We use recorded ground-motion data from the 2019 Ridgecrest, California, earthquake sequence (Rekoske et al., 2020) to com-315

pare the performance of the herein proposed correlation models on data not used for training, i.e., Dtest ̸⊂ Dtrain. Specifically,

we compute the within-event residuals of Sa(1s) using the regionalized ergodic GMM developed by Liu et al. (2022a). This

GMM has been derived using the NGA-West2 database and a subset of 9,554 records from 81 earthquakes of the Ridgecrest
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Figure 7. For within-event residuals of Sa(T ) at different periods T from the NGA-West2 data set: Relative difference (Eq. 10) in Log

Posterior Predictive Density (LPPD) of pooled models E, EA and EAS to (a) the LPPD of the independent model, and (b) the LPPD of

pooled model E.

data set. The latter subset serves here as the first test data set denoted as D̃1. The second test data set, D̃2, consists of data from

three events with magnitudes 5.4, 6.4 and 7.1 that was not used to fit the GMM. For more details on the ground-motion data320

and model the reader is referred to Rekoske et al. (2020) and Liu et al. (2022a).

The out-of-sample performance is first assessed via the LPPD of the test set D̃1 obtained with the pooled correlation models

E, EA and EAS from Sect. 3.4.2. Table 3 shows the resulting relative difference in the LPPDs to the LPPD of an independent

model and compares the values to the in-sample performance on the training set. The in-sample values are identical to the

results shown in Fig. 7 at period T = 1s. For the test set D̃1 the increase in LPPD of the model EAS is similar to the in-sample325

LPPD, whereas the increase of models E and models EA is more than 1% point smaller. The comparison of models EA and

EAS reveals that the additional gain in predictive accuracy obtained from accounting for site effects is larger for the test data

(Ridgecrest) than for the training data (NGA-West2).

Table 3. In- and out-of-sample performance in terms of relative difference (Eq. 10) in LPPD of pooled models E, EA and EAS to the baseline

LPPD of an independent model for the training and test data sets.

Relative difference in LPPD [%]

Model In-sample (NGA-West2 Dtot) Out-of-sample (Ridgecrest D̃1)

E 9.42 8.32

EA 9.96 8.73

EAS 10.47 10.32
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For the three events in the second test data set, D̃2, Fig. 8 shows the computed within-event residuals in the top row and

the relative difference in LPPD compared to the corresponding independent model in the bottom row. Similar to Fig. 5, the330

histograms show the log-likelihood of the different models conditional on samples from the posterior distributions of parameter

values, whereas the X mark the marginalized LPPD. For all three events, model EAS has a higher predictive accuracy than the

isotropic model E.

Figure 8. For the three earthquakes in the second test set from the 2019 Ridgecrest sequence: The spatial distribution of scaled within-event

residuals zk of Sa(1s) (top row) and the relative difference (Eq. 10) in Log Posterior Predictive Density (LPPD) of pooled models E and

EAS to the baseline LPPD of the independent model (bottom row).

5 Implications for regional seismic hazard and risk

Figure 9a shows the configuration of a simplified case study to assess the implications of the different correlation models for335

regional seismic risk simulations. Four 5x5km subregions are located in the San Francisco Bay Area, California, subjected to a

M6.25 rupture on the Hayward fault. As a first visual comparison of the estimated models E and EAS, panels b and c of Fig. 9

show maps of computed correlation coefficients from the indicated reference site to all other sites. According to model EAS,

sites in subregion two are essentially uncorrelated to the reference site, while model E predicts a correlation between 50% and

60%.340
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Next, the four subregions are gridded into individual sites with a spacing of 3 arc-seconds (approximately 90m). The quantity

of interest is the proportion of sites, a, within one or several subregions, where the Sa(1s) jointly exceeds a certain threshold

value sa, which we denote as random variable ASa(1s)>sa. While regional seismic risk is typically quantified in terms of

fatalities, financial losses or downtime, the joint distribution of Sa values is a major component in the underlying workflow

and an important driver of such regional seismic risk metrics (Weatherill et al., 2015). As such, the presented results provide345

initial, but certainly not complete, information on potential implications of the proposed correlation model for regional seismic

risk simulation.

The rupture scenario is taken from the UCERF2 earthquake rupture forecast (Field et al., 2008). We use OpenSHA (Field

et al., 2003) to compute the mean lnSa value at all sites, as well as the between- and within-event standard deviations, τ and

ϕ, from the GMM of Chiou and Youngs (2014). The vs30 values, illustrated in Fig. 9a, are obtained from Thompson (2022).350

Then we sample scaled within-event residuals z from the posterior predictive distribution p(z|Dtot) and multiply them with

the within-event standard deviation ϕ to get samples of δW . For δB we sample from a zero-mean normal distribution with

standard deviation τ . Finally, we obtain sampled ground-motion fields by summing the mean lnSa value and the sampled

residuals using Eq. (1), and compute a sample of ASa(1s)>sa by counting the number of sites where the simulated ground-

motion field exceeds a certain threshold value sa. We compute site-specific thresholds such that they have an identical 10%355

probability of being exceeded in the considered scenario.

Note that the above process requires realizations of z from each sampled parameter set from the posterior ψM,r obtained

via MCMC. This sampling from the posterior predictive distribution is computationally expensive because, for each ψM,r, it

requires the evaluation of a novel covariance matrix, and a subsequent sampling from the corresponding multivariate normal.

Thus, we first explore whether it is sufficient to use the mean values from the posterior distribution of each parameter to360

build one covariance matrix and generate all samples from that corresponding multivariate normal. Figure 10 compares the

resulting exceedance probability curves for the proportion of sites in subregion two where Sa(1s), induced by the considered

scenario rupture, jointly exceeds the specified thresholds. To calculate the exceedance probability curves, we used the posterior

parameters from model EAS, because this model has more parameters and increased estimation uncertainty compared to model

E (as shown in Fig. 4). We observe that the exceedance probability curves obtained via both approaches are visually identical.365

The same comparison for the other subregions produced the same findings. This indicates that the less expensive approach of

using the mean posterior parameters is sufficient for these regional risk estimates.

We used the posterior mean parameters of model E and model EAS to compute exceedance probability curves for the

proportion of sites within the different subregions where Sa(1s) jointly exceeds the 10% exceedance probability thresholds.

Figure 11 shows results for subregions one and two (top row) and subregions three and four (bottom row). Experiments with370

different fixed threshold values did not change the conclusions.

In subregions with differing epicentral azimuth values and heterogeneous soil conditions (top row), the isotropic model E

predicts stronger correlations, and thus heavier tailed distributions (i.e., higher probabilities of jointly exceeding the threshold

value at a high proportion of sites). This is especially apparent if subregions one and two are combined (Fig. 11c), where the

probability of jointly exceeding the threshold value at least at 40% of all sites is 9.5% for model E and only 5.5% for model375
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Figure 9. Map of the case study area used for regional risk assessment and the considered M6.25 rupture on the Hayward fault: (a) soil

conditions, quantified via vs30, and correlation coefficient from the indicated reference site to all other sites obtained with posterior mean

parameters of model E (b) and model EAS (c). Numbered boxes indicate the subregions of interest (blue areas are water).

EAS. If subregions three and four are combined (Fig. 11f) the exceedance probability curves from both models are similar,

because these subregions are located at similar azimuths from the epicenter and the assigned correlation coefficients are similar

for both models (see Fig. 4a). For subregion four (Fig. 11e), the curve obtained via model EAS has slightly heavier tails

compared to the one of model E, which may be explained by the homogeneous soil conditions in this subregion (see Fig. 9).

Figure B1 in Appendix B compares the results for Sa(1s) (shown in Fig. 11) to results obtained for Sa(0.3s) and Sa(0.6s).380

This comparison aligns well with our discussion on the relative importance of site and path effects in Sect. 4.2 and we refer to

Appendix B for a brief discussion.

6 Conclusions

This study explored the role of spatial proximity, local site effects and path effects on spatial correlations of recorded ground-

motion intensity measures. The motivation for this work came from the substantial event-to-event variability found in the385

correlation model parameters estimated in previous studies, and questions as to whether such variability was due to event-

specific characteristics or due to model and estimation uncertainty. Site and path effects are qualitative contributors to spatial
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Figure 10. Exceedance probability curves for the proportion of sites a in subregion two where Sa(1s) jointly exceeds the site-specific

thresholds, obtained via: sampling from the posterior predictive distribution of model EAS (dashed line) and sampling conditional on the

mean values of the posterior parameter distributions (solid line).

correlations but were not captured by the isotropic correlation models used in previous studies: thus, our focus on the path and

site effects to explain the observed model parameter variability.

We proposed a novel correlation model, EAS, that accounts for path and site effects in addition to spatial proximity. The390

EAS model assigns decreasing correlation coefficients for sites with increasing Euclidean distance, increasing angular distance,

and increasing soil dissimilarity. These three model components reflect the role of spatial proximity, path effects, and site

effects, respectively, on spatial ground-motion correlations. Compared to an isotropic model, the proposed model has increased

complexity and more parameters (five instead of one or two for the isotropic model). To account for this increase in model

complexity, we employ Bayesian inference to estimate the parameters, and we assume that the same parameters describe the395

correlation for all events in the considered ground-motion database (i.e., a pooled model).

For each event in the NGA-West2 training data set, we then computed the predictive accuracy of the proposed EAS model,

as well as of two isotropic models E, where the parameters of one model were estimated from the pooled data set, and the oth-

ers exclusively consider data from that specific event. For most events, we found that the event-specific models E have higher

predictive accuracy then the pooled model E, thus confirming the presence of some event-to-event variability in correlation400

model parameters. However, the pooled model EAS outperforms the event-specific models E for the majority of events and, es-

pecially, for the well-recorded events. This indicates that the event-to-event variability in estimated isotropic model parameters

found in previous studies is an apparent variability due to estimation uncertainty and the lack of accounting for site and path

effects, rather than a true variability. Data from the 2019 Ridgecrest earthquake sequence was then used to compare the models

in terms of their out-of-sample performance. The results showed a higher predictive accuracy for model EAS, compared to the405

isotropic model E, further highlighting the benefit of accounting for site and path effects in correlation models.
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Figure 11. Exceedance probability curves for the proportion of sites a in the considered subregions where Sa(1s) jointly exceeds a threshold

value sa: For subregions one and two separately, (a) and (b), and for one and two combined (c) using a threshold value of 0.75g, and in the

bottom row for subregions three and four using a threshold value of 0.25g.

We then used a case study to explore the implications of using the different correlation models for regional seismic risk

simulations. First, we found that generating correlated ground-motion samples using the mean values from the posterior dis-

tribution of each parameter instead of sampling from the posterior predictive distribution produces ground-motion fields with

practically equivalent distributions. This is helpful, because it is much less computationally expensive to use mean parameter410

values. Second, we saw that the isotropic model E predicts substantially stronger correlations than model EAS in regions with

heterogeneous soil conditions and varying epicentral azimuths. This may lead to an overestimation of regional seismic risk

tails (low probability, high consequence events), particularly in regions located close to the earthquake source.

The proposed model and analysis could benefit from some further study. This could include a refined model parameterization

to consider an azimuth metric that accounts for finite-fault effects, or to consider other metrics of dissimilarity in site conditions.415

The refined EAS model could also be tested on more complex risk analysis problems, to further understand the practical impact

of these refinements. Despite those opportunities for further study, the proposed EAS model form and the proposed techniques

for evaluating model performance should be of general use for analysts interested in studying and improving the prediction of

spatial correlations in ground motions.
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Code and data availability. The code for Bayesian inference, the post-processing and the case study application is available at www.doi.org/420

10.5281/zenodo.7124213 (Bodenmann, 2022). The PEER NGA-West2 data set (Ancheta et al., 2014) is available at www.apps.peer.berkeley.

edu/ngawest2/databases/ (last accessed on April 20, 2022). To compute residuals we used the code from Baker and Chen (2020) available at

www.github.com/bakerjw/spatialCorrelationEstimation/. The data set from the 2019 Ridgecrest earthquake sequence (Rekoske et al., 2020)

is available at www.strongmotioncenter.org/specialstudies/rekoske_2019ridgecrest/ (last accessed on May 11, 2022). The ergodic GMM

employed for this data set has been provided to us by the authors of Liu et al. (2022a).425

Appendix A: Posterior correlation models for Sa at other periods

This appendix provides additional results for the pooled model EAS. Table A1 shows the parameters of the proposed correlation

model EAS for Sa at nine periods, which are also available in the supplementary online repository (Bodenmann, 2022).

Figure A1 compares models EAS and E for Sa(0.3s) and Sa(3s).

Table A1. Parameters for correlation model EAS estimated for Sa at nine periods from the pooled training data set with indicated number

of records, nr , and events, ne. Stated quantities are the mean (m.), and the 5% and 95% quantiles from the posterior samples.

T nr ne ℓE [km] γE [-] ℓA [°] ℓS [m/s] w [-]

m. quantiles m. quantiles m. quantiles m. quantiles m. quantiles

0.01 13898 134 16.4 (14.9, 17.9) 0.36 (0.34, 0.38) 24.9 (21.6, 28.6) 171 (107, 256) 0.84 (0.80, 0.88)

0.03 13898 134 16.9 (15.4, 18.5) 0.36 (0.35, 0.38) 25.6 (22.1, 29.3) 186 (115, 279) 0.84 (0.80, 0.88)

0.06 13898 134 16.6 (15.2, 18.2) 0.35 (0.34, 0.37) 24.4 (21.4, 27.8) 190 (124, 277) 0.84 (0.80, 0.88)

0.10 13897 134 16.3 (14.8, 17.9) 0.34 (0.32, 0.36) 23.3 (20.5, 26.5) 190 (116, 290) 0.88 (0.84, 0.92)

0.30 13891 134 15.1 (13.6, 16.6) 0.34 (0.32, 0.36) 26.1 (22.4, 30.5) 200 (117, 316) 0.85 (0.80, 0.89)

0.60 13846 134 25.6 (23.2, 28.3) 0.37 (0.35, 0.39) 24.2 (20.8, 28.0) 223 (129, 341) 0.73 (0.65, 0.80)

1.00 13342 128 29.8 (27.0, 32.8) 0.41 (0.38, 0.43) 20.5 (17.8, 23.6) 170 (106, 251) 0.70 (0.62, 0.77)

3.00 7997 66 42.1 (37.4, 47.2) 0.46 (0.43, 0.49) 18.5 (14.6, 22.8) 358 (252, 483) 0.50 (0.40, 0.60)

6.00 5558 41 70.2 (60.1, 81.7) 0.49 (0.45, 0.54) 17.3 (12.9, 22.5) 372 (228, 537) 0.54 (0.42, 0.65)

Appendix B: Case study results for Sa at other periods430

Figure B1 compares the results for Sa(1s) (shown in Fig. 11) to results obtained for Sa(0.3s) and Sa(0.6s). For subregions

one and two (panel c), the difference in the exceedance probability curves from Models E and EAS are smaller for the longer

period of three seconds, due to site effects becoming more important than path effects, i.e., the decrease in correlation because

of differing epicentral azimuths is less pronounced. For subregion four (panel e), the curves from models E and EAS are

practically identical for Sa(0.3s), while model EAS has slightly heavier tails for longer periods due to the homogeneous soil435

conditions.
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Figure A1. Posterior correlation models EAS and E for Sa(0.3s) (top row) and Sa(3s) (bottom row) as a function of Euclidean distance

and soil dissimilarity plotted at three angular distances: (a, d) 5°, (b, e) 30° and (c, f) 60°. The shaded area indicates the interval between the

95% and 5% quantile of all sampled functions from the posterior.
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Figure B1. Exceedance probability curves for the proportion of sites a in the considered subregions where Sa(T ) jointly exceeds a threshold

value sa. Solid and dashed lines plot results for models E and EAS, respectively, while the colors indicate different periods T ∈ {0.3,1,3}s.

Thresholds are computed such that at each site there is a 10% probability that sa is exceeded for the rupture scenario shown in Figure 9a.
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