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Abstract. Data-driven models have been recently suggested to surrogate computationally expensive hydrodynamic models to

map flood hazards. However, most studies focused on developing models for the same area or the same precipitation event. It

is hence not obvious how transferable the models are in space. This study evaluates the performance of a convolutional neural

network (CNN) based on the U-Net architecture and the random forest (RF) algorithm to predict flood water depth, the models’

transferability in space and performance improvement using transfer learning techniques. We used three study areas in Berlin5

to train, validate and test the models. The results showed that (1) the RF models outperformed the CNN models for predictions

within the training domain, presumable at the cost of overfitting; (2) the CNN models had significantly higher potential than

the RF models to generalize beyond the training domain; and (3) the CNN models could better benefit from transfer learning

technique to boost their performance outside training domains than RF models.

1 Introduction10

Urbanization increases the frequency and severity of extreme urban pluvial flood events (Skougaard Kaspersen et al., 2017).

Therefore, it is crucial to quantify the flood water depth and extent due to pluvial flooding in urban environments. While 2-

dimensional hydrodynamic models are effective and robust in estimating urban floodwater depth, they are difficult to scale due

to prohibitive computational costs (Costabile et al., 2017). Data-driven models are raising as a surrogate might overcome the

limitations of the computationally expensive numerical models (Hou et al., 2021; Guo et al., 2021; Löwe et al., 2021; Guo15

et al., 2022; Bentivoglio et al., 2022). They do not simulate the physical process of runoff generation and concentration, but

find patterns between the input and output data. The model’s accuracy depends on the amount, quality and diversity of the

available data. They could predict water depth with a sufficient level of accuracy within seconds. Consequently, they are a

helpful tool that can support decision-makers with a real-time forecast.

Data-driven models used to address urban pluvial flood hazards in the literature can be grouped into models that use only20

rainfall input to map flood hazards (Hou et al., 2021; Hofmann and Schüttrumpf, 2021), and models that account for the

topographic characteristics of the urban landscape (Löwe et al., 2021; Guo et al., 2022). The former group interpolates the

flood response between rainfall events that were used to train the model and hence can only predict flood hazards within the

training domain while the latter has the potential to generalize and make accurate predictions outside the training domain

(Bentivoglio et al., 2022).25
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Point-based data-driven models such as the random forest (RF) algorithm have been widely used in the literature to map

susceptibility for pluvial flooding (Lee et al., 2017; Chen et al., 2020; Zhao et al., 2020; Seleem et al., 2022). RF models outper-

formed convolutional neural networks (CNN) to map flood susceptibility in Berlin at various spatial resolutions, and showed

promising results outside the training domain (Seleem et al., 2022). Hou et al. (2021) trained RF and K-nearest neighbour

(KNN) algorithms to predicate urban pluvial flood water depth using only the rainfall characteristics as inputs, and Zahura30

et al. (2020) trained a RF model to predict flood water depth in an urban coastal area using three topographic predictive fea-

tures. However, both studies evaluated the model performance inside the training domain only. The algorithm performance to

map urban pluvial flood hazards using different topographic characteristics of the urban area and its ability to generalize to

other areas than the training domain have not been systematically investigated in the literature, yet.

CNNs have recently demonstrated the potential to map urban pluvial flood susceptibility (Zhao et al., 2020, 2021; Seleem35

et al., 2022) and flood hazard (Löwe et al., 2021; Guo et al., 2022).They are designed to extract spatial information from

the input data and to handle image (raster) data without an unwarranted growth in the model complexity. Löwe et al. (2021)

trained a CNN model based on the U-Net architecture (Ronneberger et al., 2015) to predict urban pluvial flood water depth.

They divided the city into a grid, used part of it for training and the rest for testing. The testing areas were close to or surrounded

by training areas which guaranteed that the testing dataset had minimal diversity from the training dataset. Guo et al. (2022)40

used four topographic predictive features and one precipitation event to train a CNN model. The model performed well outside

the training domain for the same precipitation event used to train the model.

Deep learning uses transfer learning techniques to mitigate the problem of insufficient training data (Tan et al., 2018).

Zhao et al. (2021) applied transfer learning techniques to map urban pluvial flood susceptibility using the LeNet-5 network

architecture. A model that was trained on a certain part of the city (pre-trained model) performed poorly outside the training45

domain. A transferred model trained by freezing the pre-trained model weights and allowing only a few weights to be re-trained

using a few new training data from the new area improved the model performance. The transferred model used the knowledge

learned from the pre-trained model and outperformed a model that was only trained for the new area. These techniques have

not yet been investigated for predicting flood water depth or for shallow machine learning algorithms such as RF.

In summary, deep learning was consistently superior to shallow machine learning in literature but recent studies showed50

the contrary (Seleem et al., 2022; Grinsztajn et al., 2022). However, shallow machine learning algorithms have not been

systematically challenged in terms of transferability for urban flood modelling. A data-driven model that generalizes outside

the training domain is still a major challenge in literature (Bentivoglio et al., 2022). While previous studies tried to examine the

transferability of CNN in space to predict flood water depth under certain limitations (Löwe et al., 2021; Guo et al., 2022) and

use transfer learning techniques to improve the CNN performance outside the training domain to map flood susceptibility (Zhao55

et al., 2021), such efforts have been examined neither for RF models nor for surrogates of physical numerical 2D hydrodynamic

models. It is not obvious how transfer learning techniques could improve the data-driven model performance and be a useful

tool to overcome the limitations of applying computationally expensive 2D hydrodynamic models to a big region. In this

study, we investigate the transferability of data-driven models to surrogate the physical numerical 2D hydrodynamic models

by addressing the following research questions:60
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(1) How does the performance of RF and CNN models in predicting urban pluvial flood water depth compare inside and

outside the training domain?

(2) Can transfer learning techniques improve the model performance outside the training domain and thus help to overcome

the issue of limited training data?

2 Methodology65

2.1 Study design

The overall design of this study was as follows: firstly, we selected three areas (Figure. 1) that have frequently been flooded

in the last decades based on a flood inventory (Seleem et al., 2022) gathered between 2005 and 2017. 2D hydrodynamic

simulations were carried out in these areas. Then, the precipitation depth, topographic predictive features and water depth from

the 2D hydrodynamic simulations were used to prepare the training, validation and testing datasets. We randomly selected70

10000 images (raster with spatial extent 256 × 256) and 10 % of the available data ( number of pixels within the training

domain × number of training precipitation events) to develop both the U-Net and RF models respectively. We split the data

into training (60 %), validation (20 %) and testing (20 %) datasets. The validation dataset were used to estimate the optimal

hyperparameter combinations. The testing dataset included data from three precipitation events (50, 100, and 140 mm) which

were not included in the training and validation datasets. Next, we defined six combinations of training and testing datasets as75

shown in Table 1,and evaluated the model performance inside each training domain and the models’ spatial transferability to

other testing domains, hence we evaluated the transferability between precipitation events (at the same training domains) and

the transferability in space between study areas. Afterwards, we selected the best hyperparameter combinations for the data-

driven model that best fit the validation dataset. Finally, we investigated whether the learned knowledge from the pre-trained

models can improve urban flood hazard mapping outside the training domain using transfer learning techniques and which80

predictive features are mostly influencing the model predictions.

Table 1. Examined training data combinations to train the data-driven models.

Training domain Testing domain Training domain Testing domain

SA0 SA0*, SA1, & SA2 SA0 & 1 SA0*, SA1*, & SA2

SA1 SA0, SA1*, & SA2 SA0 & 2 SA0*, SA1, & SA2*

SA2 SA0, SA1, & SA2* SA1 & 2 SA0, SA1*, & SA2*

⋆ refers to testing the model with precipitation events that were not included in the training dataset.
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2.2 Study area and hydrodynamic model

Berlin is the capital of Germany and has around 3.6 million inhabitants. The city has a relatively flat topography (Seleem

et al., 2022) and has an oceanic climate (Köppen: Cfb) (Peel et al., 2007). The average annual precipitation is around 570 mm

(Berghäuser et al., 2021). Heavy summer precipitation caused several urban pluvial floods in the last decades, for example, the85

170 mm precipitation depth event on the 29 th and 30 th of June 2017 (Berghäuser et al., 2021). The selected study areas are

between 6, 11, and 12 km2. Seleem et al. (2021) showed that SA0 has large deep topographic depressions where flood water

tends to accumulate, while flood water spill outside the topographic depressions after a certain precipitation depth threshold in

SA2.

The maximum water depths were obtained from TELEMAC-2D (Galland et al., 1991) hydrodynamic simulations (for SA090

and SA2) performed by (Seleem et al., 2021). We performed additional simulations for SA1 using the same model setup. We

used the finite volume scheme to solve the shallow water equations over non-structured triangular grids (1 m maximum side

length). The simulations were carried out using one-hour duration precipitation events (block rainfall) with precipitation depths

ranging from 20 to 150 mm (10 mm increments), the one-hour intensive precipitation event in 2019 caused pluvial flooding

(Berghäuser et al., 2021). We used the SCS-CN method (Cronshey, 1986) to estimate excess runoff. The storm drainage95

system was not included in the TELEMAC-2D simulations due to the unavailability of detailed data of the storm drainage

system. Additionally, the city of Berlin has a relatively flat topography and van Dijk et al. (2014) showed that there was no

significant difference between the results of 2D and coupled 1D-2D hydrodynamic models in urban areas with flat terrain. For

more information about the model setup, please see (Seleem et al., 2021).

2.3 Predictive features100

While data-driven models do not "understand" the physical processes of runoff generation and concentration, they are designed

to detect relationships between input and target variables (Grant and Wischik, 2020), in this case simulated inundation depth.

Therefore, predictive features should represent the surface characteristics of the study area which could inform the model

of governing hydrological and hydrodynamic patterns. Table 2 shows the selected 12 predictive features that we considered

potentially relevant for mapping urban floods and their description. The topographic predictive features were generated from105

a digital elevation model (DEM) with a 1 x 1 m pixel size which is openly available to download for the entire city of Berlin

(ATKIS, 2020).

2.4 Models

2.4.1 U-Net

The application of CNNs for mapping urban flood hazards is still rare in the literature (Löwe et al., 2021). This study adopted110

the U-Net architecture (Ronneberger et al., 2015) as shown in Figure 2. The U-Net architecture showed a good performance

to predict water depth in the literature (Löwe et al., 2021; Guo et al., 2022). The model input is a terrain raster with 13

4



Table 2. Spatial predictive features used to train the data-driven models.

Predictive feature Data adjustment Description

Altitude Normalized to [0,1]
Surface elevation is important for flood hazard mapping because runoff tends to accumulate at

low elevation (Zhao et al., 2020; Seleem et al., 2021; Löwe et al., 2021; Seleem et al., 2022)

Slope Normalized to [0,1] Slope impacts the runoff velocity and the available time for infiltration (Rahmati et al., 2016)

Aspect Scaled to [-1,1]

Aspect indicates the flow direction. We used the cosine and sine of aspect as two separate

predictive features to deal with the cyclic behaviour of flow direction (Löwe et al., 2021). (Löwe

et al., 2021; Seleem et al., 2022) found that aspect was the most important predictive feature for

mapping urban floods using CNNs.

TWI Normalized to [0,1]

Topographic wetness index was proposed by (Kirkby, 1975). It indicates the geotechnical wet-

ness level and is being used to identify urban flood-prone areas (Jalayer et al., 2014; Seleem

et al., 2021).

Curvature Normalized to [-1,1]
Depending on the curvature value, the surface is flat, concave or convex. (Guo et al., 2021;

Löwe et al., 2021) used it to predict urban flooding using data-driven models.

SDepth Normalized to [0,1]
Depth of topographic depression impacts the volume of excess runoff that can be accumulated

in it (Zhang and Pan, 2014; Seleem et al., 2021, 2022; Löwe et al., 2021).

FLACC Normalized to [0,1]
Flow accumulation indicates the number of pixels draining into a certain pixel. We used the

upper cutoff at 250 ha because very large values represent natural streams (Löwe et al., 2021).

TPI Normalized to [-1,1]

Topographic position index is defined as the difference between the pixel elevation and the mean

elevation of the surrounding pixels (Lei et al., 2021). A positive value denotes that the pixel is

higher than the neighbouring pixels while a negative value indicates that the pixel is lower that

the neighbouring pixels and a zero value represents flat areas (Weiss, 2001).

CN Normalized to [0,1]

Curve number is an empirical parameter that is computed using land-cover and soil hydrologic

group (Cronshey, 1986). It is used to estimate the direct runoff. We used the CN map produced

by (Seleem et al., 2021).

Roughness Normalized to [0,1]

Roughness impacts the excess runoff flow over the surface. We used the Manning roughness

coefficient map produced by (Seleem et al., 2021). Buildings were defined by a high roughness

coefficient similar to the TELEMAC - 2D model setup (Seleem et al., 2021).

DEML Normalized to [0,1]

It is computed as the difference between the elevation of a pixel and the focal mean of elevation

within a 100 m radius. Urban pluvial floods occur on a small spatial scale (< 1 km) and are

connected to the local variation in elevation (Löwe et al., 2021).

Precipitation depth Normalized to [0,1]
We used one-hour duration precipitation events with precipitation depths ranging from 20 to

150 mm (10 mm increments) (Seleem et al., 2021).
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Figure 1. (a) The three study areas in Berlin and the altitude map in the background. (b), (c) and (d) show the water depth map from

TELEMAC-2D simulation for a one-hour block rainfall 100 mm precipitation event for SA0, SA1, and SA2 respectively and the altitude

map in the background.

image channels (13 channels represent the predictive features ) and the output is the resulting water depth at the surface. The

U-Net architecture belongs to encoder/decoder architectures. The encoder follows the typical architecture of a convolutional

neural network and uses pooling to downscale the spatial resolution, while the decoder uses upsampling to upscale the learned115

patterns. Skip connections concatenate the output of each encoder layer to its corresponding decoding layer to provide the

spatial information (Srivastava et al., 2015).

We applied LeakyReLU with an activation threshold of 0.2 to all layers except the output layer (Maas et al., 2013; Löwe

et al., 2021; Guo et al., 2022) and adaptive moment estimation (Adam; Kingma and Ba, 2014) to update and optimize the

network weights. We used average pooling because it showed better performance than maximum pooling (Löwe et al., 2021),120

and added a batch normalization layer after each convolutional layer to stabilize and speed up the training process (Ioffe and

Szegedy, 2015; Santurkar et al., 2018). A drop-out strategy was implemented with a rate of 0.5 to the convolutional layers
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Figure 2. Schematic diagram of the applied U-Net architecture for a network of depth = 4 (4 blocks of encoder and decoder). The transferred

model obtained the weights from the pre-trained model except for the weights in the last decoder block (black colour). Then, the new training

data was used to train the remaining untrained weights.

(Löwe et al., 2021; Seleem et al., 2022), and early stopping to prevent overfitting (Prechelt, 1998). We used a batch size of 10

and the mean squared loss as a loss function to train the models (Löwe et al., 2021).

The success of CNN relies on finding a suitable architecture that fits a given task (Miikkulainen et al., 2019). Therefore, we125

varied three parameters similar to (Löwe et al., 2021) to obtain the most suitable network architecture, namely the network

depth (i.e. number of encoding and decoding blocks) (varied between 3 and 4), number of filters in the first convolutional layer

(varied between 16, 32 and 64) and the size of the kernels in the convolutional layers (varied between 3, 5, and 7). Using a

deeper network and more filters increases the number of parameters and the computational expense. Moreover, using a larger

kernel size allows the network to perform spatial aggregation on a larger region, again, however, at increasing computational130

cost. All the implemented models were validated based on the holdout validation method. Löwe et al. (2021) showed that a

model trained using the holdout validations method was superior to models trained using the k-fold cross validation method to

predict urban floodwater depth.

We implemented an input image size of 256 × 256 pixels (1 × 1 m spatial resolution). Löwe et al. (2021) used the same image

size but with a 5 m spatial resolution. We understand that this image size may be not sufficient to fully capture urban watersheds135

or topographic depressions. Then again, the selected study areas are small (area ranges from 6 to 12 km2). We also used 12

predictive features to guarantee that the input data are well representing both the terrain and hydrological characteristics.

The predictive features were calculated for the whole city and hence the calculated rasters consider the characteristics of the

upstream urban catchment. Finally, training models with larger images is also limited by the memory of the graphic card.

2.4.2 Random forest140

The random forest (RF) is a decision tree algorithm that was proposed by (Breiman, 2001). It solves both classification and

regression problems by combining several randomized decision trees and averaging their predictions. RF divides the training
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data into several sub-datasets. Then, a tree model is developed for each dataset. Finally, a prediction is determined based on

the majority result of the decision trees as shown in Figure 3. This approach intends to prevent overfitting (Biau and Scornet,

2016).145

It is well known that RF performs relatively well with default hyper-parameter values. Still, hyper-parameter tuning may

improve model performance (Probst et al., 2019). This study used the default values for the hyper-parameters such as the

minimum number of samples in a node and the maximum depth of each tree in the sklearn.ensemble.RandomForestRegressor

(Pedregosa et al., 2011), and varied the number of trees in the forest (between 10, 100, 200 and 300) (Zahura et al., 2020).

Finally, an increasing number of training data points increases the training time and the model size dramatically. We used 10150

% of the available training data (number of pixels within the training domain × number of training precipitation events) to

train the RF model for all the simulations carried out in the study. We also tried to use larger portions of the training data, but

without a significant improvement in model performance. In addition, we performed hyperparameter tuning using the k-fold

cross-validation method using a smaller training dataset (number of samples = 100,000) to investigate the models’ performance

and their transferability.155

Figure 3. Schematic diagram of the random forest algorithm and the additional trees that are added to the model in case of a warm start. The

additional trees are trained using the new training data while the old trees ( from the pre-trained model) remain unchanged.

2.5 Transfer learning

The transfer learning technique is a vital tool in deep learning to overcome the problem of insufficient training data (Tan et al.,

2018). It is based on the idea that a model is firstly trained for a certain task (called the pre-trained model). Then, a new model

is implemented (the transferred model) where some of its layers are frozen (they use the same weights from the pre-trained

model) and the remaining layers (weights) are trained using new training data and/or a new task. This technique hence extends160

the application of data-driven models outside the training domain of the pre-trained model. It also reduces the training time

because of the reuse of the weights from the pre-trained model. In this study, we froze all the layers in the U-Net model except

the layers in the last decoding block which were then re-trained using new training data (see Figure 2) (Adiba et al., 2019).
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The majority of shallow machine learning algorithms do not support transfer learning techniques because training the model

is always fast and not complicated. However, RF offers the warm start option which allows adding more trees to the forest to165

be fitted using a new training dataset which means a model can be trained (pre-trained model) then new trees can be added to

the forest and trained using the new training data (transferred model) without changing the trees in the pre-trained model as

shown in Figure 3.

2.6 Performance evaluation

The models’ performance was assessed based on predicting water depth and inundation extent. For computing the performance170

indices, we compared the water depth and extent obtained from the TELEMAC-2D model to the results of the competing data-

driven models. Table 3 gives an overview of performance metrics. We computed other indices like balanced accuracy, mean

absolute error and the total flooded area ratio. However, we found that root mean square error (RMSE), Nash Sutcliffe efficiency

(NSE) and critical success index (CSI) are well representing the model performance. A 10 cm threshold was applied for the

CSI calculation.175

Table 3. Performance indices used to evaluate the models’ predictions.The yi and ŷi denote the water depth from the TELEMAC-2D model

and the data-driven model respectively. ŷi is the average of water depths from the data-driven model. Hits, misses and false alarms are

estimated by the contingency table.

Index Equation Range Description

RMSE
√

1
n

∑n
i=1 (yi − ŷi)

2 [0, ∞]
Root mean square error measures the difference between the predicted and observed

values. The optimal RMSE is zero.

NSE 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ŷi)
2 [-∞, 1]

Nash Sutcliffe efficiency shows how well the observed values are predicted by the model

(Nash and Sutcliffe, 1970). The optimal NSE value is one.

CSI hits
hits+misses+falsealarms

[0, 1]
Critical success index is a binary index calculated based on a pixel basis. The optimal

value is one.

2.7 Predictive feature importance

We adopted the forward selection process from Löwe et al. (2021) to estimate the most important topographical predictive

features for the U-Net model. Firstly, we trained 11 models, each of which considered one of the 11 topographical predictive

features (precipitation depth was included in all models) from Table 2. Then, we evaluated the model performance based on

the performance indices in Table 3 and selected the best model. After that, we trained 10 new models based on the best model180
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from the previous step by adding one of the remaining 10 predictive features to the inputs. We repeated this procedure three

times to get the three most important predictive features for the U-Net model.

One of the advantages of the RF algorithm is the ability to compute the importance of predictive features, hence no forward

selection process was required to estimate the importance of specific features for the RF models. We used the built-in feature

importance in the RF model, which is implemented in scikit-learn Python package (Pedregosa et al., 2011). The importance of185

the predictive features is calculated as the mean and standard deviation of accumulation of the impurity decrease within each

tree (Pedregosa et al., 2011).

2.8 Computational details

The U-Net models were implemented using the Keras Python package (Chollet et al., 2015) while the RF models were im-

plemented using the method ensemble.RandomForestRegressor from the Python package scikit-learn (Pedregosa et al., 2011).190

The U-Net models were trained using a high-performance machine with NVIDIA Quadro P4000 GPU while RF models were

trained using a machine with Intel(R) Xeon(R) CPU E5-2667 v3@ 3.20 GHz. The training time ranged from 20 minutes to 48

hours and from 10 minutes to 2 hours for the U-Net and RF models respectively. The U-net models needed around 20 seconds

to predict and map the water depth while the RF models took around 3 minutes.

3 Results and discussion195

3.1 Evaluating different combinations of training data

In order to evaluate model transferability between spatial domains, we used a U-Net model with the following combination

of hyperparameters: depth = 4, kernel size = 3, number of filters in the first encoding block = 32. This combination showed

reasonable performance with the training datasets and had performed well in previous studies (Guo et al., 2021; Löwe et al.,

2021). For the RF model, we used the holdout validation method with a number of trees in the forest = 10 as it shows also200

reasonable results and training time (around 10 minutes).

Figure 4 compares the performance indices for each study area (SA) and for all combinations of training/testing datasets,

for both the U-Net and RF models. The NSE values show that the RF models outperformed the U-Net models for predicting

water depth within the training domains; however, they failed to predict water depth outside the training domains. It is obvious

from Figure 4 that the RF models were overfitted to the training data while the U-Net models tended to generalise better. The205

CSI and RMSE values are in line with that finding: they show that the RF models could predict the inundation extent better

than the U-Net models in some training combinations despite failing to predict the water depth outside the training domain

accurately. Allowing the decision tree to have unlimited maximum depth may cause overfitting, so we performed multiple

simulations varying it (as shown in the supporting information). The simulations showed that reducing the maximum depth

of the decision tree improved the model performance outside the training domain at the cost of lower performance inside the210

training domain. We also trained RF models using the K-fold validation method. The results indicated that the models were not
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able to generalise outside the training domain as demonstrated in the supporting information. Finally, it is clear from Figure

4 that the models U-Net - SA1 and RF - SA1 performed best outside the training domain, compared to models trained using

training data from the SA0 and SA2 separately. The U-Net-SA1 & 2 model had the best performance within and outside the

training domain.215

Figure 4. Computed performance indices (based on the testing dataset) for different combinations of training datasets for both the U-Net and

RF models. The X-axis shows the used model and the training domain while the Y-axis shows the perfromacne indices. The U-Net-SA1 &

2 model had the best performance within and outside the training domain.

3.2 Transfer learning

We evaluated how transfer learning could improve model performance outside the original training domain. Specifically, we

investigated how the improvement from transfer learning depends on the percentage of data that was used from the target
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domain of the transfer. Figure 5 compares the performance of the transferred U-Net and RF models to the models trained

exclusively on the target domain of the transfer. The figure shows that the transfer learning technique boosted the U-Net and220

RF model performance outside the training domain of the pre-trained models. Another advantage for transfer learning for

U-Net models is that training of the transferred models (20 minutes to two hours) was faster than training the whole network

from scratch.

All U-Net models transferred to the SA0 domain outperformed the U-Net-SA0 model for all performance indices. This

applies even if we used only 10 % of the available training data (from SA0) for transfer learning (in contrast to using 100225

% of the SA0 training data for training the U-Net-SA0 model). We could conclude from Figure 5 that the transferred model

could use the previously learned knowledge from the U-Net-SA1&2 model to predict water depth in SA0. Contrary to U-Net,

the trained RF models for each SA separately outperformed all the transferred RF models. All RF models transferred to the

SA0 domain performed better than the RF-SA1&2 model, but worse than the RF-SA0 model. Figure 5 confirms the previous

findings that RF models are prone to overfitting.230

3.3 Flood maps

In order to convey a visual idea of the resulting flood maps, Figure 6 compares the water depth as predicted by the different

models to the water depths as simulated by the TELEMAC-2D model for region SA0 and for a precipitation depth of 100 mm

(Figures S2 and S3 in the supporting information show the flood maps for 50 and 140 mm precipitation depths). Apparently,

all models could identify topographic depressions and predict flood water within them. The U-Net - SA0 model underestimates235

the water depth as shown in Figure 6b. Figure 6c and d show the predicted water depth from the best performance U-Net -

SA1&2 model and the transferred model (U-Net - SA1&2 → SA0) using 10 % of the training data of SA0 (including only

40 and 120 mm precipitation depths) to train the weights in the transferred model. The transferred model outperformed both

U-Net-SA0 and U-Net-SA1&2. It predicted the most identical inundation extent as the TELEMAC-2D model. Finally, Figure

6e, f and g show the predicted water depth from the RF - SA0, RF - SA1&2 and RF - SA1&2 → SA0 models respectively. The240

RF - SA0 model memorised the training data as shown in Figure 4 and thus predicted the water depth accurately while the RF

- SA1&2 model could not predict the flood water inside the topographical depressions correctly and the RF - SA1&2 → SA0

model overestimated the water depth.

3.4 Feature importance

Figure 7 shows the NSE for SA1 and SA2 for the first three rounds in the predictive feature forward selection process for the245

best performance model U-Net-SA1&2 (other indices were computed but not shown here since the results regarding feature

importance did not change). We stopped after three rounds because the process was computationally expensive and we aimed

to obtain just the most important topographical predictive features. These were TWI, SDepth, roughness and altitude. TWI

showed the best performance in the first round for both SA1 and SA2, while a model trained with TWI and SDepth was

superior to other models in round two. Finally, training a model with TWI, SDepth and altitude outperformed the other models250

in round three. While the gained knowledge in round three by adding altitude and roughness was the same for SA1, adding
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Figure 5. Evaluation of transfer learning: The colored markers represent the performance indices for transferred models with different

percentages of data from the domain where the model has been transferred to. For example, SA0→SA1&2 refers to a model pre-trained on

SA0, and then transferred (re-trained) on SA1 and SA2. The bars show the performance indices for the models trained exclusively on the

transfer target domains. 10%⋆ denotes that the training data from the transferred domain was generated using only two precipitation events

(40 and 120 mm). The transferred U-Net-SA1&2→SA0 (pre-trained model SA1&2 and transfer target SA0) models outperformed the U-

Net-SA0 model but the RF-SA0 model was superior to the transferred RF-SA1&2→SA0 models for all used percentages of new training

data from SA0.

roughness reduced the model performance in SA2. It is explainable that roughness influenced the models prediction because

buildings were defined in the input dataset by having a high roughness values. The precipitation depth was added as a predictive

feature to all the trained models but not included in Figure 7 because the main objective was to estimate the most important

13



Figure 6. Comparison of water depths from different models and TELEMAC-2D model for a 100 mm precipitation event for SA0. The figure

highlights the boundary of two topographic depressions within SA0 where runoff accumulates. The altitude is shown in the background.

14



topographical predictive features. In contrast to (Löwe et al., 2021; Seleem et al., 2022), aspect was not among the most255

important features.

Figure 8 shows the feature importance for the RF-SA1&2 model. SDepth, altitude and CN were the most important predictive

features. In contrast to U-Net models, TWI was not among the most important predictive features for the RF models. The

estimated best predictive features from the U-Net and RF models were not the same but the results agree with the findings

in the literature that TWI (Jalayer et al., 2014; Seleem et al., 2021; Bentivoglio et al., 2022),SDepth (Zhang and Pan, 2014;260

Seleem et al., 2021) and altitude (Zhang and Pan, 2014; Seleem et al., 2021, 2022) are indicators for urban flood-prone areas.

Figure 7. NSE values for SA1 (a) and SA2 (b) for the models trained in the forward selection process for the best performance training data

combination (U-Net - SA1&2). The best performance model in every round is marked in red.

4 Conclusions

This study developed and tested CNN models (based on the U-Net architecture) and RF models to emulate the output of a 2-D

hydrodynamic model (TELEMAC-2D) for three selected areas within the city of Berlin. We trained the data-driven surrogate

models to map topographic, land cover and precipitation variables to flood water depths as obtained from 2D hydrodynamic265

model simulations. The evaluation of model performance was designed to assess the transferability of trained models to areas
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Figure 8. Predictive feature importance for RF-SA1&2 model.

outside the training domain. It is worth mentioning that the accuracy of the predicted flood maps by a data-driven model highly

depends on the accuracy of the used hydrodynamic model simulations to train the model. While urban area lacks monitoring

devices, crowd-sourced data and fine-resolution satellite images could be helpful tools to validate the hydrodynamic models.

Both U-Net and RF models were skilful in predicting water depth within the training domain (minimum NSE=0.6). Contrary270

to the hypothesis that deep learning algorithms were superior to shallow machine learning algorithms (Bentivoglio et al.,

2022), the results suggested that the RF models outperformed the U-Net models for predictions within the training domain.

However, we found that the high performance of RF models was largely owed to overfitting: outside of the training domains,

RF models exhibited a substantial performance loss for all considered metrics (NSE, RMSE, and CSI). Although some RF

models showed better performance outside the training domain (as shown in the supporting information), this study aimed275

to evaluate the model transferability, not to optimize the model to generalize. For the CNN models, the loss of performance

was also considerable, but clearly less pronounced than for the RF models. We hence conclude that the potential of CNN

models to generalize beyond the training domain is significantly higher than for RF models. Further research requires testing

the data-driven model’s transferability further in environments with different characteristics (particularly with cities in more

mountainous environments).280

Furthermore, we found that the CNN models’ ability to generalize and hence to be transferred beyond the training domain

could be boosted by transfer learning: by providing only a small fraction of training data from a target domain, transfer learning

improved the performance of some pre-trained CNN models in a way it outperformed a CNN that was trained from scratch

with the full amount of training data from that domain. This outcome clearly distinguishes deep learning models such as CNN

from shallow models such as RF which could not benefit from transfer learning in a similar fashion. Transfer learning hence285
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provides a promising perspective to efficiently use additional training data to adjust deep learning models to specific target

areas or to provide an additional level of generalization, at a minimum computational expense.

Analyzing the results showed that the depth of a depression (SDepth) is a strong predictive feature for both the U-Net and

RF models. SDepth, altitude and CN were the most influencing topographical predictors for the RF model while TWI, SDepth,

roughness and altitude were the most influencing topographical predictive features for the U-Net model. This is in contrast to290

Löwe et al. (2021) and Seleem et al. (2022) who found the aspect to be the most important predictive feature for flood hazard

and susceptibility mapping using CNN. We hence suggest a detailed future study to systematically explore the suitability of

different topographical predictive features for data-driven models of urban flood hazard.

Altogether, this study confirms that deep learning could be a skilful tool for upscaling flood hazard maps in urban envi-

ronments. Given the excessive costs of providing complete high-resolution 2-D hydrodynamic model coverage, deep learning,295

namely CNN, has shown the ability to learn transferable knowledge of simulated inundation patterns. This puts into perspec-

tive previous study results by Seleem et al. (2022) that highlighted the performance of random forest models – which we now

found less able to generalize. Given the apparent potential of CNN for generalization, however, it is all the more important to

collect training and testing data from many and diverse regions in order to capitalize on this learning capability. This could be

a community effort, and the basis for future benchmarking experiments that move beyond the boundaries of isolated cities. In300

order to start this process, we provided the output of the 2-D hydrodynamic simulations along with this paper.

Code and data availability. The predictive features, water depth from the TELEMAC 2D model simulations are available at https://doi.
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