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Manuscript number: nhess- 2022-253 

My co-authors and I would like to express our gratitude to the reviewers for their constructive 
feedback and suggestions for strengthening our research. The changes we have made to the 
attached file in response to such feedback and suggestions have been highlighted in blue to 
facilitate their identification. I would also like to offer my apologies for the length of time it 
took us to prepare this response. We also record our deep appreciation for the efficient handling 
of the manuscript. 

Response to Reviewer#1 

General remarks 

I read the manuscript with great interest. Authors have investigated the impact of typhoon 
Soulik on the coastal ecology, landform, erosion/accretion, suspended sediment movement and 
associated coastal changes along the Mokpo coast. This research developed an integrated 
approach for identifying coastal dynamics impacted by typhoons and determining damage 
severity. Approach and analyses support to derive their conclusions. 

The content is interesting for NHESS readers. Overall, the paper is well structured, with 
results being presented in a clear and organized manner. I have only a few comments and 
suggestions for improvements. 
 
Thank you for reviewing our manuscript and suggesting that the subject of the manuscript is 

indeed of interest to NHESS. We considered your suggestions in the revised version of the 

manuscript, which has undoubtedly improved the contents and structure of the manuscript. 

Please find detailed responses to your comments. 

 

Comment 1: Sections 3.3 and 3.4 should be discussed under section 3.2, i.e., Typhoon-induced 
coastal dynamic modeling. Accordingly, subsections should be renumbered and 
rearranged.  

Response: Thank you for your insightful review. In the revised manuscript, sections 3.3 and 

3.4 are discussed under section 3.2, and subsections have been renumbered and rearranged 

accordingly. 

 
Comment 2: Figure 3 and Table 2 contain similar information. It is therefore recommended 

that Authors keep only one piece of information. 

Response: Thank you for your insightful comment. We agreed with the reviewer's suggestion, 

and Figure 3 has been kept in the revised manuscript. 

 
Comment 3: NDVI and FVC (Fractional vegetation coverage) are frequently used vegetation 

metrics for assessing land-surface vegetation conditions. Therefore, the use of 
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NDVI is reasonable for vegetation damage severity mapping. I would expect that 
Authors should analyze the FVC and compare it to NDVI-derived damaged 
severity. You are referred to go through the following paper: 
https://doi.org/10.1007/s11069-018-3351-7. 

Response: This is a really interesting point raised by the reviewer. We agreed with the 

reviewer's suggestion and analyzed FVC in conjunction with NDVI, providing additional 

insights into vegetation conditions and damage severity. Subsequently, we compared the 

severity of vegetation damage obtained from both models (i.e., NDVI and FVC). Accordingly, 

sections 3.2.1 and 4.1.1 have been updated in the revised manuscript as,  

3.2.1 Analyses of coastal vegetation loss and disturbance 

Vegetation damage severity mapping (VDSM) has been performed using pre-and post-

event satellite images. NDVI and FVC are widely used techniques for measuring vegetation 

density, health status, regional vegetation condition, and detecting vegetation disturbances (Xu 

et al., 2021; Mishra et al., 2021b; Wang et al., 2010; Yang et al., 2018, Wang and Xu, 2018; 

Carlson and Ripley, 1997). Subsequently, numerous studies (Xu et al., 2021; Mishra et al., 

2021a; Charrua et al., 2021; Shamsuzzoha et al., 2021; Kumar et al., 2021; Nandi et al., 2020; 

Wang and Xu, 2018; Konda et al., 2018; Zhang et al., 2013; Rodgers et al., 2009) have shown 

that the NDVI and FVC is a reliable indicator of post-typhoon damage detection. Therefore, in 

this study, the vegetation damage before and after typhoon Soulik has been determined using 

the NDVI and FVC approach. The NDVI has been calculated by using the following Eq. (1) 

(Rouse et al., 1974; Filgueiras et al., 2019): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = ρNIR−ρRED
ρNIR+ρRED

          (1) 

where ρNIR and ρRED are the spectral reflectances corresponding to the eighth (832.8– 

832.9nm) and fourth (664.6– 664.9nm) Sentinel-2 MSI bands, respectively (Xu et al., 2021). 

In general, NDVI values range from -1.0 to 1.0; the higher the NDVI value, the better the 

conditions for vegetation development, and extremely low values indicate the presence of 

water. Furthermore, the NDVI value above 0.4 indicates vegetated surfaces, and those between 

0.25 and 0.40 signify soils with the presence of vegetation (Charrua et al., 2021). The vigor of 

the vegetation increases as the NDVI values come closer to 1.00 (Rouse et al., 1974). Numerous 

studies have established the NDVI threshold for vegetated land (e.g., Xu et al., 2021; Wong et 

al., 2019; Liu et al., 2015; Eastman et al., 2013; Yang et al., 2012; Sobrino et al., 2004). Most 

researchers noted that the NDVI threshold value for vegetation cover typically ranges from 

https://doi.org/10.1007/s11069-018-3351-7
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0.15-2.0 (Xu et al., 2021; Eastman et al., 2013; Sobrino et al., 2004). Therefore, the vegetated 

pixels (e.g., NDVI threshold > 0.20) present in pre and post-typhoon NDVI images have been 

used for vegetation severity analysis. The NDVI threshold is considered to reduce the influence 

of land cover change from the pre-typhoon (2018-08-01) to post-typhoon (2018-10-15) 

periods. 

The degree of vegetation damage has been determined by comparing the NDVI values 

of the pre-and post-typhoon periods. Various researchers have frequently used the direct 

difference of NDVI to determine the damage severity caused by typhoons to naturally 

vegetated land (Wang and Xu, 2018; Konda et al., 2018). It has been calculated on a cell-by-

cell basis by subtracting the pre-typhoon NDVI image from that of the post-typhoon in ArcGIS 

software using map algebra (Zhang et al., 2013; Cakir et al., 2006). The following equation is 

used to calculate the ΔNDVI (Wang and Xu, 2018), 

∆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑡𝑡𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑜𝑜 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑡𝑡𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑜𝑜      (2) 

The difference in NDVI (i.e., ΔNDVI) illustrates the change in natural vegetation, while a 

negative ΔNDVI value indicates the damage inflicted by a typhoon to the vegetation cover (Xu 

et al., 2021). 

The relative change in NDVI value has been used to investigate the geo-ecological 

impact on the forest area (Mishra et al., 2021b). The relative vegetation changes (NDVIr) after 

Soulik have been determined by using the following Eq. (3) (Kumar et al., 2021): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 = ∆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜

× 100        (3) 

where the negative NDVIr value indicates vegetation loss caused by typhoons, and the positive 

NDVIr value shows vegetation gain. The NDVIr value has been classified into three categories 

corresponding to pixels with decreased, no change, or increased vegetation cover. 

On the other hand, we analyze FVC in conjunction with NDVI, which provide 

additional insights into vegetation conditions and damage severity. Numerous researchers 

(Wang and Xu, 2018; Song et al., 2017; Bao et al., 2017; Chu et al., 2016; Zhang et al., 2013; 

Amiri et al., 2009) used FVC to analyze vegetation damage, restoration, recovery, inter-annual 

variability. It is calculated as the ratio of the area covered by vegetation to the total area of the 

landscape. It is expressed as a percentage and can range from 0 to 100%. In the present study, 

FVC was calculated before and after the typhoon using the derived NDVI data (Wang and Xu, 

2018). The formula of FVC is as follows (Wang and Xu, 2018; Amiri et al., 2009; Carlson and 
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Ripley, 1997):  

𝐹𝐹𝑁𝑁𝐹𝐹 = [(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚)/(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚)]2                                                          (4) 

where NDVIm and NDVImax represent the NDVImin and NDVImax values calculated using 

equation (1) (Zhang et al., 2021; Ge et al., 2018). The calculated FVC values vary between 0 

and 1. After that, the FVC values were converted to percentages to fit the actual FVC 

classification scheme (Wang and Xu, 2018), which consists of five classes: low (0-20%), 

medium-low (20-40%), medium (40-60%), medium-high (60-80%), and high (80-100%). 

Further, the difference in FVC values between the pre-and post-typhoon images was used to 

calculate the extent of vegetation damage using the following equation: 

∆𝐹𝐹𝑁𝑁𝐹𝐹 = 𝐹𝐹𝑁𝑁𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑡𝑡𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑜𝑜 − 𝐹𝐹𝑁𝑁𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑡𝑡𝑝𝑝ℎ𝑝𝑝𝑝𝑝𝑜𝑜                                                            (5) 

where ΔFVC is the difference value between the FVC before and after the typhoon. The ΔFVC 

value represents alterations in vegetation conditions and damage intensity, while a negative 

value of ΔFVC indicates the extent of damage caused by a typhoon to vegetation cover (Wang 

and Xu, 2018). 

 

4.1.1 VDSM based on the NDVI and FVC analysis 

The VDSM shows the degree of vegetation damage due to typhoons. The comparison 

of pre-and post-typhoon NDVI and FVC distribution shows a significant loss of vegetated land 

as the number of no-productivity and low-productivity pixels increases in the post-typhoon 

NDVI and FVC image.  

Figure 5 depicts the spatial distribution of pre and post-typhoon NDVI images. Further, 

to determine the severity of vegetation damage, the pre-and post-typhoon NDVI image has 

been classified into six categories, namely non-vegetation (-1.0-0.0), low-vegetation (0.0-0.2), 

medium-low vegetation (0.2-0.4), medium vegetation (0.4-0.6), medium-high vegetation (0.6-

0.8) and high vegetation (0.8-1.0). It was observed that the pre and post-typhoon mean NDVI 

value was 0.159 and 0.143, respectively, indicating a decline of 0.016 in mean NDVI after the 

typhoon. 
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Figure 5. Status of vegetation greenness based on the NDVI data for the (a) pre-Soulik (01st 

August 2018) and post-Soulik (15th October 2018) period. 
 

Table 3 depicts the area changes for each NDVI category over the typhoon period. It 

has been observed that the high NDVI values (>0.8) have changed drastically after typhoon-

Soulik. The area changes in the low and non-vegetation categories along the Mokpo coastal 

region revealed that the wetland (mudflat) had accreted after the typhoon. On the other hand, 

the post-typhoon image was acquired two months after typhoon Soulik, which suggests that 

the grasses and crops have recovered well. This recovery is reflected in Table 3 from medium-

low to medium-high NDVI levels. 

 

Table 3. NDVI distribution over the study area before and after the typhoon. 

NDVI levels Pre-typhoon 
(km2) 

Post-typhoon 
(km2) 

Change 
(km2) 

Non-vegetation (-1 to 0) 673.7 647.6 -26.2 
Low (0 to 0.2) 430.4 415.2 -15.2 
Medium-low (0.2 to 0.4) 141.6 243.3 101.6 
Medium (0.4 to 0.6) 132.5 225.3 92.8 
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Medium-high (0.6 to 0.8) 283.7 294.4 10.7 
High (0.8 to 1.0) 183.6 19.8 -163.8 

 

On the other hand, the physical presence of vegetation has been measured using FVC 

analysis. In general, NDVI provides information on the health and productivity of vegetation, 

while FVC provides information on the physical presence and distribution of vegetation. Figure 

6 depicts the pre- and post-typhoon FVC map of the Mopko coast. The area of each FVC 

category is illustrated in Table 4. The results reveal that the typhoon caused a substantial 

decrease in FVC in the area, with the average FVC reducing significantly from 33.43% to 

23.64% after the typhoon. It was observed that the medium-high to high FVC area decreased 

from 485.4 km2 to 211.9 km2, while the medium-to-low FVC area increased from 1359.8 km2 

to 1633.3 km2. The high FVC vegetation category was more severely affected and decreased 

considerably after the typhoon. These results indicate that the typhoon significantly impacted 

the wetland vegetation in the region. 

 
Figure 6. Status of vegetation based on the FVC analysis for the (a) pre-Soulik (01st August 

2018) and post-Soulik (15th October 2018) period. 
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Table 4. Summary of FVC classes before and after the typhoon. 

FVC levels (%) Pre-typhoon 
(km2) 

Post-typhoon 
(km2) 

Change 
(km2) 

Non-vegetation (<20) 890.3 1053.3 162.943 
Medium-low (20-40) 327.4 319.6 -7.811 
Medium (40-60) 142.4 260.6 118.205 
Medium-high (60-80) 206.1 211.5 5.365 
High (80-100) 279.4 0.7 -278.671 

 

In order to determine the damaged vegetation areas along the Mokpo coast, we 

compared pre-and post-typhoon NDVI images. A decrease in ΔNDVI is one of the most 

distinctive features of abrupt canopy modifications detectable by optical remote sensing (Xu et 

al., 2021). Thus, we can only determine vegetation deterioration from the two NDVI images. 

Subsequently, an NDVI threshold of 0.2 has been used to extract only vegetation features from 

the pre-and post-typhoon NDVI images. The threshold value has been manually adjusted to 

achieve the highest accuracy of vegetation pixels. The extracted vegetated pixels have been 

compared with reference samples randomly collected from the original high spatial resolution 

images to determine the accuracy (Schneider, 2012; Xu et al., 2021). The two extracted 

vegetation images obtained within six or seven weeks of typhoon Soulik's (i.e., before the 

damaged vegetation had recovered) exhibits an overall accuracy of 95.7 % for pre-typhoon and 

94.5% for the post-typhoon period. 

Figure 7(a) depicts the spatial distribution of ΔNDVI, where the highest ΔNDVI 

indicates a region with highly impacted vegetation areas. The negative ΔNDVI is attributed to 

about 26.7% of the total area (1845.60 km2), which suggests that Typhoon Soulik affected 

approximately 493.98 km2 of vegetated land. The lowest ΔNDVI value is -0.89, which 

indicates either tree wind throws or a change in land surface cover from vegetation to build-up 

land or other non-vegetation covers (Zhang et al., 2013). The results showed that wetland 

vegetation and agricultural land experienced the most significant NDVI changes, with ΔNDVI 

values below-0.3. This suggests that these two types of land cover were severely affected by 

typhoon Soulik.  

On the other hand, Figure 7(b) represents the change map derived from the ΔFVC, 

which also indicates changed vegetation areas after the typhoon. The negative ΔFVC is 

attributed to about 32.07% of the total area, which suggests that Typhoon Soulik affected 

approximately 591.89 km2 of vegetated land. It has also been observed that the pure vegetation 



8 

 

pixels (i.e., NDVI>0.6 and FVC>60%) were drastically changed over the typhoon period. The 

changed area determined for NDVI and FVC is -153.43 km2 and -273.40 km2, respectively 

(Tables 3 & 4). The results obtained from both techniques indicate a significant decrease in 

vegetation cover after the typhoon. The probable reason for the change is that Typhoon Soulik 

made landfall close to Mokpo coastal region.  

 
Figure 7. ΔNDVI and ΔFVC derived vegetation change map of the Mokpo coastal region, 

whereas zoom boxes show the vegetation damage of Sandu-ri areas. 
 

Figure 8 compares vegetation damage based on the number and percentage of the 

decreased pixel of ΔNDVI and Δ FVC. It exhibits decreased pixels in different categories of 

vegetation damage, ranging from low damage to extensive damage. The pixels showing the 

most significant vegetation damage (i.e., ΔNDVI -0.2 to -0.5 and ΔFVC -20 to -50%) account 

for about 30.9% and 61.5% of the total pixels, respectively. On the other hand, the pixels 

showing extensive vegetation damage (i.e., ΔNDVI<-0.5 and ΔFVC<-50%) account for only 

8.31% and 10.76% of the total pixels. It was observed that the dominant vegetation in the region 

is wetland vegetation, which is mainly due to the prevalence of wetlands or mudflats in the 

area. Therefore, the significant vegetation damage implies that wetland vegetation was most 

severely impacted during typhoons. 
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Figure 8. Comparison of vegetation damage represented based on the number and percentage 
of decreased pixels of (a) ΔNDVI and (b) Δ FVC. 

 

The pre-and post-typhoon Sentinel-2 false-color images and the corresponding relative 

change in NDVIr and ΔFVC values are presented in Figure 9. The standard FCC imagery (left 

panel of Fig. 9) for pre and post-typhoon shows that NDVIr is more effective in detecting areas 

of damaged vegetation compared to ΔFVC (right panel, Fig. 9). It was observed that the 

typhoon-induced damaged vegetation area (i.e., pixels with NDVIr and ΔFVC of <-50%) 

detected by NDVIr (106.5 km2) was greater than that detected by ΔFVC (51.3 km2). The 

difference in performance between NDVIr and ΔFVC in detecting typhoon-induced vegetation 

damage can be attributed to the fact that the color of the vegetation changed after the typhoon. 

This change can be detected more accurately by NDVI compared to FVC because the 

vegetation in the affected areas still existed, and vegetation coverage did not decrease 

significantly after the event (Wang and Xu, 2018). Thus, NDVI is highly sensitive to the health 

status of vegetation and a more appropriate approach for assessing the damage to vegetation 

induced by the typhoon, while FVC is more representative of vegetation coverage status (Wang 

and Xu, 2018; Jing et al., 2011). Consequently, the dramatic vegetation loss (<-80%) that 

occurred in mostly wetland vegetation is detected mostly in NDVIr. In addition, moderate 

greenness loss has been identified in natural forests. Furthermore, the decrease of NDVIr values 

from higher classes to lower classes indicates that the typhoon has severely damaged the low-

lying coastal regions and the wetland vegetation. 
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Figure 9. Sentinel-2 MSI standard false color composite images before and after Typhoon 
Soulik exhibit vegetation damage and the corresponding NDVIr and ΔFVC (Sentinel-
2 MSI level 1C satellite images were downloaded from https://scihub. 
copernicus.eu/dhus/ ). 

 

Comment 4: It would be better to explain the influence of topography on vegetation damage 
caused by Typhoon Soulik. 

Response: Thank you for your insightful review. The affected area's topography can influence 

typhoons' impact on vegetation. The interaction between topography and typhoon-generated 

wind and rain can result in complex and varied patterns of damage across different landscapes 

(Abbas et al., 2020; Lu et al., 2020; Zhang et al., 2013). This affect the severity and spatial 

patterns of vegetation damage. Therefore, the relationship between topography and damaged 

vegetation has also been established in the present study. For this purpose, high-resolution 

(5m×5m) DEM data provided by the NGII are used to calculate the region's topographic slope 

and explore the relationship between topography and typhoon-induced vegetation damage.  

 It was observed that the elevation varies from 0 to 403 m in the Mopko coastal 

region, as depicted in Figure 1(b), and the number of trees damaged by Typhoon Soulik showed 

a decreasing trend at higher elevations (Fig 10a). The highest number of damaged trees was 
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observed in areas with an elevation of 50m or lower. This is likely due to the fact that these 

areas are predominantly covered by wetlands, which can be more vulnerable to strong winds 

associated with typhoons Soulik. In general, low-lying areas may not have the same natural 

windbreaks and barriers as higher elevations, which can exacerbate the impact of the wind. In 

addition, low-elevated vegetation may have shallower root systems due to the less stable soil 

conditions, making them more vulnerable to uprooting during heavy rainfall or strong winds 

(Zhang et al., 2013; Lugo et al., 1983). A significant difference in the number of decreased 

ΔNDVI and ΔFVC pixels was observed among different elevation ranges, and a correlation 

analysis between the number of damaged pixels and elevations showed a negative correlation 

(i.e., damaged pixels decreased with increasing elevation). The majority of damaged pixels 

(76.37%) were observed at elevations between 0 and 50m, with a decrease to 13.5% between 

51 and 100m. Vegetation decreased rapidly at higher elevations, with the percentage of pixels 

with negative ΔNDVI and ΔFVC decreasing to 6.1% between 100 and 150m and decreasing 

to 0.02% between 350 and 403m, as depicted in Figure 10(a). 

 On the other hand, Figure 10(b) illustrates the extent of damaged vegetation across 

different slope ranges. It has been noted that there is a negative correlation between the slope 

and the percentage of damaged vegetation pixels, indicating that the amount of vegetation 

damage decreases with a higher slope. For instance, when the slope was between 0-5°, 

approximately 47.63% of vegetation pixels were damaged. As the slope increased, the 

percentage of damaged vegetation pixels decreased accordingly, with values of 18.15%, 

15.01%, 10.71%, 7.74%, 0.73%, and 0.009% observed for slope ranges of 5-10°, 10-15°, 15-

20°, 20-30°, 30-40°, and greater than 40°, respectively. 
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Figure 10. The relationship between topography and vegetation damaged due to typhoon 
Soulik: (a) numbers of damaged vegetation at different elevation ranges, and (b) 
numbers of damaged vegetation at different slope ranges. 

 

Comment 5: A statistical summary of the shoreline change based on the NSM model should 
be presented in a tabular format. 

Response: Thank you for your insightful comments. As suggested, the summary of shoreline 

change statistics based on the NSM model has been incorporated in the revised manuscript. 

Table 8: Pre-post typhoon shoreline change statistics based on the NSM model. 

NSM statistics Summary 
Total transects 38313 
NSMmean 24.24m 
NSMmean accretion 28.89 
NSMmean erosion -8.29 
NSMmaximum accretion 812.54 
NSMmaximum erosion -131.72 
Total transect that records accretion 34686 
Total transect that records erosion 4955 
% of total transect that records accretion 87.5 
% of total transect that records erosion 12.5 
Overall pre to post-typhoon trend Accretion 

 

Comment 6: Line 66: The year of the reference in line 66 (Charrua et al., 2020) should be 
checked. 

Response: Thank you for the comment. We have updated the text in the revised manuscript. 
 

Comment 7: Line 112: The year of the reference in line 112 (Kwon et al., 2019) should be 
checked. 

Response: Thank you for the comment. We have updated the text in the revised manuscript. 

Comment 8: Line 139: The year of the reference in line 139 (Ryang et al., 2018) should be 
checked. 

Response: Thank you for the comment. We have updated the text in the revised manuscript. 

Comment 9: Line 306: The year of the reference in line 306 (Eom et al., 2016) should be 
checked. 

Response: Thank you for the comment. We have updated the text in the revised manuscript. 

Comment 10: Lines 335 and 342. Check the abbreviation of remote sensing reflectance. 
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Response: Thank you for the comment. The remote sensing reflectance (Rr) abbreviation has 

been checked and updated in the revised manuscript. 

 
Comment 11: Line 461: The unit of measurement in Tables 6 and 7 should be standardized. 

Choose between sq km or km².  
 
Response: Thank you for the comment. The unit of measurement (km²) in Tables 6 and 7 has 

been updated in the revised manuscript. 
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Response to Reviewer#2 

General remarks 

I found the article interesting, I think it makes important contribution in terms of disaster 
management caused by coastal erosion. In this study, the results were mapped using various 
models and index to analyze shoreline and coastal morphodynamics according to typhoons. It 
has been observed that typhoon-induced suspended sediment concentration influences 
shoreline and coastal morphology. This paper contributes to understanding natural disasters 
and their consequences in terms of scientific significance. I have a few comments (general and 
specific comments) and suggestions for improvements. 

 
We greatly appreciate the critical review of the manuscript and the constructive suggestions 

put forth by the reviewer that will help improve the quality of the manuscript. We have 

responded point by point to all the comments and suggestions raised by Reviwer#2 as follows: 
 
Comment 1: Figure 1(a) Is there a reason for showing the population above the basemap? If 

so, please comment on the difference between the color of the basemap in Figure 
1(a) and the color of the basemap in Figure 1(b). 

Response:  Figure 1(a) is intended to illustrate the population density of the affected area, which 

is an important factor in understanding the impact of the typhoon on the affected region. On 

the other hand, the color of the basemap in Figure 1(a) represents the true color image (retrieved 

from ESRI World Imagery basemap), whereas the color of the basemap in Figure 1(b) 

represents the post-typhoon standard false-color composite image of the Mokpo coastal region 

(Sentinel-2 MSI data downloaded from https://scihub.copernicus.eu/dhus/). Both images (Figs. 

1(a) and 1(b)) represent the extensive tidal flat region of the Mokpo coast. However, in the 

revised manuscript, we updated Figure 1 with more scientific exposition, such as province-

wise recorded damage and loss distribution (Member Report, 2018), topography variation of 

the region (NGII, 2018), and variation of significant wave height and wind speed from August 

20 to 25, 2018 recorded by Chilbaldo Buoy Station (located near the landfall area) during the 

typhoon Soulik passage. 

https://scihub.copernicus.eu/dhus/
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Figure 1. (a) Typhoon Soulik passage passed through the Mokpo coastal region on 23rd August 

2018 (Typhon track data were downloaded from https://www.ncdc. 
noaa.gov/ibtracs/), while the background shades represent province-wise recorded 
damaged/loss distribution reported by Member Report (2018), (b) Topography 
variation of the Mokpo coastal region (elevation data acquired from NGII (2018), 
https://www.ngii.go.kr/, and bathymetry data downloaded from GMRT, 
https://www.gmrt.org), and  (c) Variation of significant wave height and wind speed 
from August 20 to  25, 2018 recorded by Chilbaldo Buoy Station (located near the 
landfall area) during the typhoon Soulik (Data source: 
http://wink.kiost.ac.kr/map/map.do# ). 

 

Comment 2: It would be better to add images to better understand the data in 3.1 Data Sources. 

Response:  As suggested, the pre-and post-typhoon standard false color composite images were 

incorporated in section 3.1 in the revised manuscript as, 
 

https://www.ngii.go.kr/
https://www.gmrt.org/
http://wink.kiost.ac.kr/map/map.do
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Figure 2. Pre (a) and post-typhoon (b) standard false color composite of reflectance image of 

the Mokpo coastal region (Sentinel-2 MSI level 1C satellite images are downloaded 
from https://scihub.copernicus.eu/dhus/). The arrows indicate extensive vegetation 
damage due to Typhoon Soulik. 

 
Comment 3: Short-term erosion caused by typhoons should be considered for recovery. It is 

necessary to confirm that the models (net shoreline movement (NSM) and 
coastal landform change) can predict the recovery of the shoreline and 
topography after a typhoon. and confidence in the model utilized (comparison 
with monitoring results, etc.) should also be mentioned. 

Response: Thank you for your insightful comment. The recovery status of the Mopko coastal 

region after typhoon Soulik has been analyzed using the NSM and coastal landform change 

model. For this purpose, another Sentinel-2 MSI level 1C satellite image was downloaded for 

October 2019 (one year after the typhoon), as listed in Table 1. After that, the coastal landform 

change model and NSM were performed based on the Sentinel-2 MSI images of October 2018 

and 2019 (both images taken during the post-typhoon period) to understand the recovery status 

of the coastal morphometry. 

https://scihub.copernicus.eu/dhus/
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The coastal landform change model exhibits that the wetland vegetation increased 

drastically after one year of typhoon Soulik, as depicted in Figure 16. Table 9 indicates that 

approximately 16.52% of the land area has accreted over the wetland and water, whereas 

39.71% of the wetland vegetation area has accreted over the wetland and water after the 

typhoon. Further, the outcome of the coastal recovery status was visually compared with the 

high-resolution aerial imagery downloaded from the National Land Information Platform web 

portal (https://map.ngii.go.kr/), indicating good consistency. Thus, the coastal landform change 

model successfully determined the longer-term recovery status in the topography and 

landforms of the Mopko coastal area after the typhoon.  

 

 
 
Figure 16. Recovery status of different coastal landforms after typhoon Soulik of Mokpo 

coastal region, whereas zoom boxes (a-e) show the increase of wetland vegetation at 
various sites. 

 
Table 9. The details of coastal land transformation classes identify during the post-typhoon the 

period. 

Coastal land transformation Area (km2) % 
Land replaced by wetland vegetation 4.06 6.67 

https://map.ngii.go.kr/


18 

 

Land replaced by wetland 4.59 7.54 
Land eroded by water 7.23 11.88 
Land accreted 10.05 16.52 
Wetland accreted 2.82 4.64 
Wetland vegetation replaced by water 2.12 3.48 
Wetland replaced by wetland vegetation 24.17 39.71 
Wetland replaced by water 4.41 7.25 
Water replaced by wetland vegetation 1.41 2.32 

 
 On the other hand, the short-term effects of a typhoon on the shoreline have also been 

determined based on the NSM model. The results exhibit the extensive shoreline alteration in 

the entire Mokpo coastal region after one year of typhoon Soulik, with an accretion of 48.03% 

transects and erosion of 51.97%. The NSM statistics showed an average shoreline movement 

of -1.08m, with a recorded mean erosion of -9.25 and deposition of 7.75m (Table 10). The 

overall erosion was recorded in response to typhoon Soulik even after one year along the 

Mopko coastal region. This is due to the extensive damage to wetland vegetation during the 

typhoon period (Table 7). In addition, it was observed that the wetland experience accretion 

during the typhoon period, but it made the coastline vulnerable to erosion in the near future. 

The natural native vegetation and wetland vegetation play a critical role in the shoreline 

stability of the coastal region due to its anti-erosive nature. This phenomenon was evident in 

the NSM statistics obtained during the post-typhoon period. Therefore, the use of these models 

can help predict how the shoreline and adjacent coastal landforms will respond to typhoons, 

identify vulnerable areas, and inform recovery efforts. This can enhance the area's resilience to 

natural disasters and reduce the risk of future erosion and other environmental problems. 

 
Table 10. Post-typhoon shoreline change statistics based on the NSM model. 

NSM statistics Summary 
Total transects 38313 
NSMmean -1.08m 
NSMmean accretion 7.75 
NSMmean erosion -9.25 
NSMmaximum accretion 44.76 
NSMmaximum erosion -121.14 
Total transect that records accretion 18400 
Total transect that records erosion 19913 
% of total transect that records accretion 51.97 
% of total transect that records erosion 48.03 
Overall pre to post-typhoon trend Erosion 
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Comment 4: The unit of area in Table 7 should be checked.  

Response: Thank you for the comment. We have reviewed and updated the unit of area in 

Table 7 in the revised manuscript. 

Comment 5: The table format is not correct. Check it out in its entirety. Text alignment in 
table should be checked. 

Response: Thank you for the comment. We have carefully reviewed the format of all tables in 

the revised manuscript and made updates wherever necessary. 

Comment 6: The position of the legend is not correct for each Figure(Figure 4, 8, 9). 

Response: As suggested, the position of the legend of Figures 4, 8, and 9  (now Figs. 5, 12, and  

13) has been updated in the revised manuscript as, 

 
 

Figure 5. Status of vegetation greenness based on the NDVI data for the (a) pre-Soulik (01st 

August 2018) and post-Soulik (15th October 2018) period. 
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Figure 12. Relative SSC for (a) pre-typhoon and (b) post-typhoon period, while (c) represents 
the changes in the NDSSI. 

 

 
 

Figure 13. The simulated SSC distribution for the surface water of (a) pre-typhoon, (b) post-
typhoon period, and (c) represents the spatial changes of SSC from pre- to post-
typhoon. 
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Comment 7: The detailed title in Figure 11 should be modified for improvement. 

Response: Thank you for your comment. The figure caption (Figure 15, revised figure number) 

has been updated in the revised manuscript as 

Figure 15. Net surface area changes (i.e., erosion and accretion) due to typhoon Soulik along 
the Mokpo coast. Subplots (a-d) show extensive accretion, while erosion is shown 
in plot (e). The bar graph (f) represents the area changes from the pre to post-
typhoon period. 
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