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Abstract. Availability of abundant water resources data is a great concern hindering adoption of deep learning techniques 

(DL) for disaster mitigation in developing countries. However, over the last three decades, a sizeable amount of DL publication 

in disaster management emanated mostly from developed countries with efficient data management systems. To understand 

the current state of DL adoption for solving water-related disaster problems in developing countries, an extensive bibliometric 10 

review coupled with a theory-based analysis of related research documents is conducted from 1993 – 2022 using Web of 

Science, Scopus, VOSviewer software and PRISMA model schema. Results revealed a ‘slightly’ increasing trend of DL-based 

water disaster publication in developing countries (tau = 0.35, p = 0.00045, Sen-slope, s = 0.00 at confidence level of 95%), 

as opposed to the ‘significantly’ increasing trend globally (tau = 0.910, p = 1.72 e-12, Sen-slope, s = 2.52 at confidence level 

of 95%). Also, pluvio-fluvial flooding is found to constitute 78% most disaster prevalence and China is the only ‘high human 15 

development’ developing country with an impressive 51% DL adoption rate, due to China’s increasing need for AI-based 

solutions to persistent multiyear severe water stress, climate change, environmental degradation, recurrent flood, and saltwater 

intrusion into estuaries. COVID-19 among other factors is identified as a driver of DL adoption. Further analysis indicates that 

developing countries will experience implementation delay based on their low Human Development Indices (HDI) because 

model deployment in solving disaster problems in real life scenarios is currently lacking due to high cost. Therefore, data 20 

augmentation, transfer learning, intensive research, deployment using cheap web-based servers and APIs are recommended to 

enhance disaster preparedness. Developing countries can explore these solutions to foster inclusion in global DL-based disaster 

mitigation approaches. 

1 Introduction 

In the last three decades, there has been a remarkable paradigm shift in the way and manner at which computers are given 25 

instructions and how computers are expected to execute such instructions. With the evolution of high performing computers 

equipped with turbo-charged Random Access Memory (RAM) and powerful Graphics Processing Unit (GPU), computing has 

never been so fast, accurate and computationally efficient. Artificial Intelligence (AI) and Machine Learning (ML) have given 

birth to an outstanding technique which builds its functionalities like the functioning of biological neurons found in the 

brain(Shen, 2018; Xie et al., 2021). According to Reinagel (2000), the Claude Shannon’s classic 1948 findings on information 30 

theory across a noisy channel depicted the transmission of information using telegraph lines by Morse code. A similar 
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mechanism is observed in biological neurons. By mimicking the way dendrites transmit impulses through the axon to the brain 

cells, information can be conveyed using cell states of neurons in models’ internal architecture, such that information is stored, 

processed, and outputted in desired format (Sit et al., 2020). This seemingly new technique is called Deep Learning (DL). 

 Deep learning models are equipped with features which help to harness temporal dependencies available in reliable 35 

hydrological time series data. Generally, DL models are perceived as a black box which learns and interprets complex 

interactions in data to infer scalable and reasonable results, while reducing modeling stress that comes with conventional 

modelling approaches (LeCun et al., 2015). DL makes use of Artificial Neural Networks (ANN) to achieve this phenomenon. 

Several years ago, ANNs were developed to imitate the learning capabilities of human beings and animals. Afterwards, as 

computers became faster, smarter and more user-definable, machine learning libraries evolved to achieve the possibility of 40 

replicating several days of experimentation in minutes. At first, ANNs employed a trial-and-error approach to solve 

computational problems by memorizing information from data that has been availed. Over time, they became more flexible 

and adaptable so much that there are multiple kinds of ANN models currently. Little did the world know that that it would 

become the epicenter of all computing and predictive tasks. Figure 1 shows the similar architectural and functional composition 

of ANNs and biological neurons. 45 

 

 

Figure 1: (a) Multipolar biological neuron; (b) artificial neuron 

Sources: (a) Bruce Blaus Wikimedia Commons (b) authors 

Consequently, abundant availability of big data sources, large data storage volumes and excellent sharing features have spurred 50 

the adoption of artificial intelligence in many sectors globally. Reinsel et al. (2018) projected that the total volume of available 

global digital data will be 175 zettabytes by 2025. DL models can leverage on the big data repository to proffer lasting solutions 

to problems that may have appeared insurmountable with use of ordinary physical models. In light of this, applications of DL 
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have been reported in earth sciences (Reichstein et al., 2019), solar radiation forecast (Ghimire et al., 2019), detection of 

arrhythmias in electrocardiograms (ECG) (Oh et al., 2018), stock price prediction (Vidal and Kristjanpoller, 2020), mechanical 55 

tool wear prediction in foundries (Zhao et al., 2017), and several others (Hatami et al., 2018; Kim & Han, 2020; Liu et al., 

2020; Mosavi et al., 2018; Yang et al., 2020) . Hydrological applications of deep learning technique gained momentum in the 

last two decades and this has extended to the fields of rainfall-runoff modelling (Kratzert et al., 2018; Ouma et al., 2021); 

(Gauch et al., 2021), streamflow and water level prediction for early warning systems (Le et al., 2019; Razavi & Coulibaly, 

2013; Shuofeng et al., 2021; Park et al., 2022; Kratzert, et al., 2019, Park et al., 2020; Kareem et al., 2021), water quality 60 

management (Ighalo et al., 2021; Loc et al., 2020), flood susceptibility analysis (Fang et al., 2021; Wang et al., 2020) and 

several other interesting fields of hydrology.  

Several literature reviews are not conducted on the premise of evidence-based analysis in the selection of research papers for 

review (Mosavi et al., 2018; Yang et al., 2020), and this reflects a discrepancy in qualitative and quantitative assessment of 

such articles, such that the goal of the literature review might be defeated before writing the manuscript. This raises many 65 

questions about how meticulous or careful the researcher is in defining the selection criteria that culminate into selecting the 

resulting papers of study. To solve this problem, we identified DL-based water-related disaster publication that reported hydro-

meteorological datasets from developing countries only, while we ignored author’s affiliation because it might be misleading. 

A researcher might be affiliated to a research institute in a developed country while he or she uses hydro-meteorological 

datasets of a developing country. Therefore, data source was prioritized over affiliation.  70 

Then, we explored research trends in the water-induced disaster in developing countries through a systematic review, identified 

research gaps, similitudes, and recommendations for more holistic adoption of DL in these countries. The scope of the study 

is streamlined to this region because there is a link between national economic status of every country and interest in adoption 

of artificial intelligence, especially DL in water management, climate change studies and water-related disaster risk mitigation 

(Pham et al., 2021).  The aim of the study is to assess current adoption needs and trends of deep learning technique for water-75 

related disaster management in developing countries and proffer lasting solutions adapted from developed countries. 

1.1 Developing countries based on Human Development Index 

The Human Development Index (HDI) is computed as the geometric mean of the normalized indices of life expectancy, 

education, and income. Contrastingly, the generally acceptable Gross Domestic Product GDP has failed to account for 

important good-living metrics such as knowledge base, life expectancy, decent standard of living as explained by the Gross 80 

National Income (GNI) per capita, while considering population density of each country (UNDP, 2020). Consequently, the 

HDI measures the growth of a country by considering the freedom and opportunity for people to live the lives they value, 

while emphasizing citizen’s happiness over raw economic prowess (UNDP, 2020). Although the HDI fails to account for 

quality of goods, but it is appropriate for our study because people develop interest in AI when their literacy level is high; 

financially capable to purchase computers; and sometimes young. All these factors form the crux of the HDI, making it a 85 

perfect yardstick for selection of study area. Ranks are apportioned to each country based on the HDI values, which range from 
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0 – 1, relative to other countries. Based on the HDI from the 2020 Human Development Report (HDR) of the United Nations 

Development Programme (UNDP), countries of the world are categorized into Developed (HDI > 0.8) and Developing (HDI 

< 0.8) countries, with Norway having an HDI of 0.957; Rank of 1, and Niger with HDI of 0.394; Rank of 189 respectively 

(UNDP, 2020). Hence, a developing country is a sovereign nation with a low HDI and a less developed industrial base (Sullivan 90 

and Sheffrin, 2003). Table 1 shows a range of global human development indices and components. 

 

Table 1: Human Development Index 

Category Country Count HDI   HDI Rank GNI per Capital 

(2017 PP$) 

Very high human 

development 

66 0.957 – 0.804  1st  - 66th  66,494 – 17,192 

High human 

development*  

53 0.796 – 0.703  67th – 119th  26,903 – 13,930 

Medium human 

development* 

37 0.697 – 0.554  120th – 156th  4,864 – 3,099 

Low human 

development* 

33 0.546 – 0.394  157th – 189th  5,135 – 1,201 

Other territories 

and countries* 

6 -  -  -  16,237 – 6,132 

GNI: gross national income. *  Selected developing countries for the study 

Source: (UNDP, 2020) 95 

Currently, there are 152 developing countries, which gulp a total population of 6.62 billion, accounting for 85.22% of the 

world’s population (WorldData, n.d.). With abundant water resources dominant in these countries, this is a reasonable 

population size to assess the early trends of deep learning applications in hydrology for countries with HDI < 0.8. Although, 

there are controversies about the choice of the word “developed or developing”, but other categorizations have similar 

meanings. A similar example is the World Bank classification, which considers “upper-middle”, “lower-middle”, and “low 100 

income” or “high human development”, “medium human development”, and “low human development and others” as 

developing countries  (UNDP, 2020). All African countries dominate the list of developing countries (Munje & Jita, 2020; 

UNDP, 2020). At first, through sampling, the authors discovered that DL approaches have not gained significant prominence 

in Africa, therefore, we extended our scope to developing countries to track the adoption trend, application, and research needs, 

knowing fully well that developed countries have set the pace (Razavi, 2021; Shen et al., 2018).  105 

https://doi.org/10.5194/nhess-2022-249
Preprint. Discussion started: 28 October 2022
c© Author(s) 2022. CC BY 4.0 License.



5 

 

2 Methodology 

This study considered a bibliometric assessment of publication count, distribution, and growth trend, and identified possible 

nascent locations that offer promising prospects for future deep learning-focused research. At first, literature search was 

queried on Web of Science (webofscience.com) and Scopus (scopus.com) databases by specifying abstracts, original research 

and conference proceedings, and combining germane keywords like ‘deep learning’, recurrent neural network’, ‘water-related 110 

disaster’, ‘hydrology’, ‘streamflow prediction’, ‘water level prediction’, ‘disaster’, ‘flood forecasting’, ‘flood’, ‘drought’, 

‘landslide’, ‘hurricane’, ‘storm surge’ and ‘tsunami’, with boolean operators of ‘OR’ and ‘AND’ and limiting study papers to 

original published articles in the last three decades (1993 – 2022). Based on the HDI of the country for the study area of each 

research paper, we identified publication from developing countries and employed the schema of the Preferred Reporting Items 

for Systematic Reviews and Meta Analyses (PRISMA 2020) model modified by (Page et al., 2021) to guide, streamline and 115 

arrive at final selection of forty-nine (49, that is 44 main; 5 in-paper) articles that applied DL models to water-related disaster 

through duplicate removal, screening, eligibility checks, quantitative and qualitative syntheses.  

The PRISMA 2020 model is an improved version of the original PRISMA model developed by Liberati et al. (2009) to 

facilitate synthesis of current state of knowledge, inform future research possibilities, provide in-depth analysis of selected 

literature materials, and enhance article selection precision by harnessing the benefits of a more meticulous approach of the 120 

standard PRISMA 2020 guidelines. The selected articles were obtained based on defined scope of study, relevance to subject 

matter and were comprehensively studied to arrive at main themes that formed the body of this study. Figure 2 shows the 

PRISMA 2020 model used for the study and Figure 3 shows the spatial distribution of final selected papers from twelve (12) 

representative developing countries. Although, the review addressed major thematic areas, but care has been taken to refrain 

from discussing various neural network architectures as these can be found in numerous publications (Gauch et al., 2021; 125 

Kareem et al., 2021; Kratzert et al., 2018b; Razavi, 2021; Shin et al., 2020). 

Bibliometric analysis of forty-nine (49) reviewed articles was conducted using Microsoft Excel and VOSviewer version 1.6.17 

tools. The latter is a bibliographic assessment tool developed at the University of Leiden, the Netherlands (van Eck & Waltman, 

2010). It provides interactive visuals that can be used to map correlations and associations between study features to generate 

a more accurate representation compared to conventional bibliographic tools like the Multi-Dimensional Scaling (Park et al., 130 

2020).  

Finally, we evaluated the study by considering thematic areas of trend analysis, model usage frequency, effect of country’s 

economic development on DL adoption, effect of input data size on model performance, relationship between optimal model 

and model type, disaster occurrence prevalence, model deployment for solving real life problems in developing countries and 

conclusion. 135 
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Figure 2: PRISMA model showing selection process of final reviewed articles (data source with country’s HDI < 0.8) 
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Figure 3: Spatial distribution of reviewed papers in developing countries 

3 Bibliometric Analysis 140 

3.1 Trend analysis of water-related disaster in published articles 

Publication count analysis of the 49 reviewed articles depicted in Figure 4 identified nine (9) Asian countries, two (2) African 

countries, and one (1) South American country that published DL-based articles for disaster management in developing 

countries. It is evident that China recorded highest publication count of 25 (51%); followed by India 10 (21%); Vietnam 4 

(8%); Iran 2 (4%); while other 8 countries produced a publication each (2%). In terms of development, DL-focused hydrology 145 

articles recorded a spike in countries with high HDI between the range of 0.645 – 0.783, an indication that there is a linear 

correlation between HDI and computer resources, big data management and willingness to adopt DL for water-related disaster 

prevention. Therefore, it can be inferred that poor countries will experience a delay in DL implementation for a long period of 

time.  

To understand the global status of DL-focused publication trend in water-related disaster studies between 1993 – 2022 (at the 150 

time of writing this manuscript), we compared literature obtained globally with articles from developing countries and analyzed 

the trend. From Figure 5, it is evident that publication count fluctuated between 2003 and 2017 with intermittent highs and 

lows. Beyond this period of instability, DL-focused hydrologic studies progressed incrementally to date. Also, statistical trend 
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analysis of published articles in the world and developing countries in the last 30 years was conducted in python using the 

Mann-Kendall method (Hussain et al., 2019). The Mann-Kendall method spans between -1 and 1, where values of -1, 0, and 155 

1 signify a perfect declining trend, no trend, and a perfect increasing trend respectively (Newson, 2002). Results showed that 

there is a significantly increasing trend in DL-based water disaster publication (tau = 0.910, p = 1.72 e-12, Sen-slope, s = 2.52) 

at a confidence level of 95%. The Sen slope, s value increases at a magnitude of 2.52. This trend can be supported by the huge 

global drift towards abundant computer resources, open-access learning platforms and enormous availability of big data 

management. Furthermore, it is interesting to attribute the emergence of COVID-19 pandemic to being a driver of AI adoption 160 

and implementation. During the long COVID-19 lockdown exhibited in different countries, people invested ample time to 

learn new computer skills while working remotely from their respective homes. By investing adequate time for self-

development programs, water resources engineers and researchers discovered and harnessed amazing benefits of AI, translated 

it to research and proffered possible solutions to natural disasters induced by water. This beneficial impact of the pandemic 

was supported by Tiamiyu et al. (2021); ); Adelodun et al. (2021), who affirmed that more sensor and satellite technology, 165 

Agriculture 4.0 tool and AI-powered water resources management approaches have been discovered during the first phase of 

COVID pandemic due to lockdown and remote operations. 

Although a slightly similar trend is observed in developing countries, but with a few variations as illustrated in Figure 6. Mann-

Kendall statistical analysis results depicted a slightly increasing trend in developing countries (tau = 0.35, p = 0.00045, Sen-

slope, s = 0.00) at a confidence level of 95%. The null Sen slope value is an indication that although there is a slight increase 170 

in trend but the magnitude of change of trend over time is extremely low. Truly. there was a dearth of information in the last 

two decades until year 2018, beyond which, DL-focused hydrologic research findings began to gain speed. The progress spiked 

in years 2020, 2021 and 2022, with the latter recording more than the previous year’s publication just in the first seven months. 

The three years witnessed the harrowing effect of lockdown brought about by COVID-19 (Adelodun et al., 2021; Kareem et 

al., 2021; Mohan et al., 2021), devastating flood occurrences (Loc et al., 2020; Loganathan & Mahindrakar, 2021), landslide 175 

and other natural disasters (Chen et al., 2021), which required the need for conducting extensive research to mitigate these 

disaster occurrences in developing countries.  
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Figure 4: Publication count by country 

 180 

Figure 5: Global publication trend from 1993 – 2022 

 

Figure 6: Publication trend in developing countries from 1993 – 2022 
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3.2 Co-occurrence analysis of keywords 185 

Co-occurrence analysis of keywords was conducted to identify recurrent keywords in DL studies in developing countries with 

the use of the VOSviewer tool for frequency and relatedness. Functional words like prepositions, pronouns, conjunctions, and 

articles like ‘the’, ‘an’ etc. were discarded to arrive at 29 items out of 325 that met the minimum 3 occurrences threshold. 

Figure 7 illustrates the network visualization of keywords. Based on the size of the nodes and total link strength, the top eight 

most recurrent keywords are “prediction”, ‘’deep learning”, “lstm”, “flood forecasting, “machine learning”, “model”, 190 

“precipitation” and “neural network”, which formed four clusters of distinct colours. The red cluster (9 items) reveals that deep 

learning models are essentially used for timeseries analysis, flood forecasting, rainfall prediction in rivers and hydrological 

systems. The green cluster (8 items) portrayed the misconception that several authors commit by assuming deep learning is 

similar to machine learning and that long short term memory is a machine learning algorithm, which is not so. The blue cluster 

(7 items) reveals that more about predictive applicability of deep learning technique, while the lemon cluster (5 items) shows 195 

that models are fitted using ANNs and RNNs. Generally, research articles from developing countries identified deep learning 

potential in predictive analysis. 

 

3.3 Citation analysis 

Citation analysis showed that within the last three years, DL findings gained relatively massive prominence and provided 200 

scientific knowledge in combating water-related disaster concerns with a total count of 827 citations and an average yearly 

citation of 221 counts as illustrated in Figure 8. The result identified China as the developing country with the highest citation 

count (344) and most cited author - (Hu et al., 2018) with 344 citations. Reasons for such a spontaneous drift are due to China’s 

increasing need for AI-based solutions to the persistent multiyear severe water stress and drought (Yu et al., 2014), incessant 

climate change and environmental degradation (Henderson, 2004), and recurrent flood and saltwater intrusion into estuaries 205 

especially in the southern branch of the Yangtze River (Xue et al., 2009). Co-citation analysis in VOSviewer shows that only 

8 articles had cited one another out of the selected 49 articles, with Lee et al. (2019) linking both Hien Than et al. (2021) and 

Abbas et al. (2020), thereby explaining a very weak research connectivity among authors. Inferentially, studies originating 

from developed countries have been a good reference material compared to the sparingly few publications emerging from 

developing countries. Authors would rather consult literature from developed countries, which had implemented deep learning 210 

techniques and currently expanding on ways to improve model accuracy and more efficient model deployment. As this research 

is the first of its kind, this study can reasonably attribute the cause to possible mistrust that might have arisen from data 

reliability, procurement, knowledge of subject matter and financial resources capacity predominant in developing countries.  

 

 215 
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Figure 7: Network visualization of keywords 

 

Figure 8: Citation count of reviewed papers 220 
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4 Discussion 

4.1 Deep learning model usage, economic and geographical significance to adoption 

Nine (9) distinct standalone DL models were reported in the reviewed articles with over seventeen (17) hybrid models. 

Reported hybridization of DL models to improve model performance included integrating swarm intelligence algorithms with 

deep neural network (DNN) to classify potential flood risk locations in Muongte district in Vietnam (Bui et al., 2020). (H. 225 

Chen et al., 2015) combined DL models with Elman network genetic algorithm to optimize and simulate Hubei Baishuihehe’s 

landslide displacement to yield lowest relative error of 0.44%. According to another research by (C. Chen et al., 2021), 

developed metaheuristic CNN-imperialist competitive algorithm (CNN-ICA) identified potential snow avalanche events in the 

west part of Darvan watershed in Kurdistan province. It is apparent that hybrid DL models offer more promising and precise 

predictive modelling results by outperforming standalone DL models. (Ha et al., 2021) for integration of El Nino Southern 230 

Oscillation with LSTM and (J. Liu et al., 2022) for LSTM-bias corrected hydrometeorological forecast hybrid for flood forecast 

are also some of the DL hybrid modelling outcomes. Other hybridization approaches explored include the integration of 

Optimal Variational Mode Decomposition and Improved Hawkins model (OVMD-IHHO-LSTM) to improve LSTM 

performance for runoff sequence noise reduction (Sun et al., 2022), while  (Cui et al., 2021) combined the China’s Xinanjiang 

physical model with LSTM (XAJ-LSTM) to improve flood forecast accuracy in longer lead times. 235 

 The standalone and hybrid LSTM models, being the most used models in this study, were implemented in thirty (30) 

documents, followed by the CNN and hybrid with thirteen (13) applications, followed by the basic ANN which claimed twelve 

(12) documents, the GRU and hybrid implemented in seven (7) articles, four (4) MLP articles, three (3) BiLSTM studies, and 

two (2) articles each for Stacked LSTM, DNN and TCN. Figure 9shows DL model usage in developing countries and the 

LSTM model is the most frequently used. Several researchers leverage on the temporal modelling capabilities of the LSTM 240 

model to achieve better model performance and propose effective policies to mitigate environmental and disaster risks. Also, 

the choice of model is highly dependent on modelling needs and approach. Regression tasks constitute about 86% (42 out of 

49 articles) of the reviewed articles and it has been reported by several researchers that the LSTM performs best in regression 

tasks (Razavi, 2021; Kareem et al., 2022; Kareem & Jung, 2021). 

China constitutes over 20% of global population and currently boasts of 7% of global water resources reserve. With an HDI 245 

of 0.761, China is ranked 87th in terms of global development but still reckoned with as a developing country (UNDP, 2020). 

Based on research contribution from Figure 4, DL adoption has kickstarted in China, thereby setting the pace for other 

developing countries due to her abundant freshwater in a climate change – induced deluge of precipitation, resulting in 

devastating flood occurrences and landslides in recent years. Alarming expansion rate of urban population especially in major 

cities in China has increased disaster vulnerability, while China’s mountainous geo-topographical relief also offered 250 

momentum to disaster occurrence. Consequently, the geo-topographical properties and economic level of a country affect DL 

adoption and implementation as a result of disaster frequency. It is reasonable to state that countries with hilly terrains which 

aid flash floods require more accurate forecast of impending danger to enhance disaster preparedness. 
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Figure 9: Model usage 255 

4.2 Effect of data size on model performance 

It is quite a herculean task to obtain and compare national water resources data size globally because every country practises 

diverse data management policies, while some employ decentralized data management systems which thwart unified data 

collation possibilities for researchers. Therefore, effect of data size on model performance was conducted by quantifying data 

points for each study, multiplying datasets with number of sampling points or stations to identify optimal performance index 260 

for each experiment. In this study, only twenty-one (21) studies which reported Nash Sutcliffe Efficiency (NSE) or Coefficient 

of Determination (r2) were considered because the two indices are dimensionless entities and will help to ignore numeric errors 

that might be introduced due to large or small quantities. An example is the error that might be introduced if the root mean 

squared error (RMSE) values were used because results having larger numeric values would exhibit a higher RMSE, which 

would translate to low accuracy (Ighalo et al., 2021). An NSE of one (1) depicts a perfect fit, while that of a zero (0) indicates 265 

that the model prediction is not any better than the mean of observations, with 0.7 deemed acceptable in hydrology (Razavi, 

2021). From Figure 10, it can be observed that there is no clear relationship between performance index and input data size 

due to the large spatial extent of the study. Although, this shows an anomaly as opposed to the established findings that data 

size greatly affects performance of DL models (Yetilmezsoy et al., 2011), but it is important to consider several factors that 

govern performance of neural models like hyperparameter optimization, data wrangling and modeler’s domain knowledge. 270 

These factors contribute immensely to achieving high predictive model performance, even with limited datasets. Data 

augmentation techniques and regional modelling which allow for transfer learning can also be applied to generate synthetic 

data to improve model performance. Also, best performance is not limited to a certain model because the CNN outperformed 

other models for snow avalanche classification task (Chen et al., 2021), but failed against the hybrid BLSTM-GRU model in 

rainfall prediction regression task (Chhetri et al., 2020). Therefore, optimal model result is not limited to a certain DL model, 275 

but each model performs based on defined modelling objectives.  
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Figure 10: Effect of data size on model performance 

4.3 Deep learning applications for water-related disaster management 

Based on this study, five major forms of disaster are recurrent in developing countries and are highlighted as fluvial / pluvial 280 

floods, snow avalanche, land subsidence, landslide and drought. Pluvial flooding initiated by extreme rainfall that causes 

flooding independent of normal river flow, and fluvial flooding events that occur by water level rise in rivers, lakes or streams, 

thereby overflowing its banks are the most prevalent natural disasters addressed in the articles. Pluvial flooding takes about 

78% occurrence compared to others, indicating a dire need for AI-assisted flood risk mitigation approaches in developing 

countries. These AI techniques offer modelling potential to inaccessible and dangerous locations with the use of remote sensing 285 

and internet of things (IOT). Figure 11 shows the frequency of occurrence of five disaster types identified in reviewed literature. 

Also, regression tasks have been optimally modelled with LSTM and hybrids while classification tasks achieved best results 

with CNN and its hybrids. So, choice of model depends mainly on modelling objectives and tasks.  

 

Figure 11: Major water-related disasters in developing countries 290 
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4.3.1 Deep learning application to flood forecasting and rainfall prediction 

Flood forecasting and rainfall prediction techniques have improved in the last few years due to the need to address immense 

economic and environmental losses caused by flood. Thirty-nine (39) out of forty-nine (49) articles explored application of 

deep learning techniques to flood forecasting, rainfall prediction and adopted various hydrologic modelling approaches like 

rainfall prediction (Yeditha et al., 2021; Chhetri et al., 2020; Endalie et al., 2021; Kumar et al., 2019), streamflow forecasting 295 

(Abbas et al., 2020; Kumar et al., 2004; Le et al., 2019; Loganathan & Mahindrakar, 2021), flood hazard and severity 

assessment (Kanth et al., 2022a; Kaur et al., 2021; Khosravi et al., 2020), rainfall-runoff modelling (Van et al., 2020) and flood 

susceptibility mapping (Bui et al., 2020). Interestingly, this is an indication that developing countries exhibit high flood 

vulnerability than developed countries, which have embraced better flood protection infrastructure, AI-informed water 

dynamics modelling, nature-based ecological solutions, efficient early warning systems, sustainable ecosystem services, 300 

sustainable urban design systems, and policies targeted at improving river health and monitoring. A peculiar reason for high 

flood vulnerability in developing countries is anthropogenic activities such as building housing facilities along floodplains, 

indiscriminate disposal of solid wastes and wastewater discharge into open waterbodies, industrial effluents disposal, poor 

land use, illegal farming on plains, poaching of aquaculture, vandalization of floodwater retaining structure and uncultured 

cultivation of riparian vegetation. Table 2 shows deep learning application for flood forecasting and rainfall prediction. 305 

 

Table 2: Deep learning application to flood forecasting and rainfall prediction 

Article Application Models used Main findings 

1. Abbas et al. (2020) Surface and sub-

surface flow 

estimation using 

environmental time 

series data and 2D 

high resolution 

spatial data 

LSTM, HSPF, HRU-based 

LSTM 

 Simple LSTM model with one layer 

performed optimally for surface runoff 

and flow prediction with lowest MSE = 

7.4 x 10-5 m3/s, while HRU-based 

LSTM model prediction of sub-surface 

flow recorded optimal results (MSE = 

3.2 x 10-4 m3/s) compared to simple 

LSTM and HSPF flow results. 

2. Afan et al. (2022) Streamflow 

prediction using 

linear and stratified 

sampling techniques 

Linear and stratified DL 

models 

Stratified deep learning models 

improved monthly streamflow 

prediction accuracy by 7.96 - 94.6 

better than linear deep learning models 

3. Bui et al. (2020) Flood susceptibility 

mapping  

Grasshopper, Grey Wolf and 

Social Spider Optimizations, 

DNN  

Swarm intelligence algorithms 

improved DNN optimization by 
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identifying potential flood risk 

locations in Muongte district, Vietnam. 

4. Cai and Yu (2022) Flood forecasting by 

hybridization 

Hybrid RNN (CNN, LSTM, 

Bi-LSTM + ARIMAX) 

Hybrid RNNs performed optimally 

among standalone RNNs and the 

Xinanjiang traditional hydrologic 

model with optimal NSE = 0.94 and 

fewest outliers 

5. Chen et al. (2021) Flood prediction  CNN with different batch 

normalizations 

Proposed CNN model showed optimal 

flood peak and arrival time prediction 

with 24-hour and 36-hr lead times 

respectively, for an Internet-of-things-

enabled hydrological dataset in the 

Xixian basin 

6. Chhetri et al. (2020) Rainfall prediction  LR, MLP, CNN, LSTM, 

GRU and BiLSTM 

BiLSTM and GRU layer combination 

predicted rainfall amount with lowest 

MSE = 0.93 and R2 = 0.87, which was 

41.1% better than the LSTM model. 

7. Cui et al. (2021) Flood forecasting by 

hybridization for 

longer lead times 

XAJ, LSTM, XAJ-LSTM Hybrid XAJ-LSTM model effectively 

improved forecast accuracy in longer 

lead times. 

8. Cui et al. (2022) Flood forecasting XAJ, LSTM, LSTM-RED, 

LSTM-EDE 

Proposed exogenous Encoder-Decoder 

LSTM (LSTM-EDE) overcomes bias 

problem and predicted flow discharge 

of Lushui and Jianxi basins optimally 

than the traditional Xianjiang models 

and other models 

9. Endalie et al. (2021) Daily rainfall 

prediction  

LSTM, MLP, KNN, SWM, 

DT 

LSTM-based rainfall model achieved 

best RMSE = 0.01 and is proposed for 

adoption in rainfall prediction for smart 

agriculture implementation. 

10. Ha et al. (2021) Streamflow 

prediction   

Stacked LSTM, Cov LSTM 

encoder-decoder LSTM, 

Integration of El Nino-Southern 

Oscillation (ENSO) data with Hanhou 

hydrological station data enhanced 
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Conv LSTM encoder- 

decoder GRU 

flood forecasting of the Yangtze River 

basin using deep learning models. 

11. Hu et al. (2018) Rainfall -Runoff 

modeling  

ANN, LSTM   The LSTM model simulated runoff 

better than the ANN in both validation 

and testing datasets. 

12. Jiang et al. (2022) Flood prediction  LSTM, CNN, RF, and MLP A machine learning (ML) Random 

Forest outperformed MLPR, CNN and 

LSTM for farmland flood prediction, 

reduced computational time, recorded 

optimal real-time forecasts of water 

level, and evaluated higher economic 

loss due to waterlogging for a 100 mm 

rainffall scenario by coupling AI 

methods and weather forecast in the 

Sihu basin. 

13. Kang et al. (2020) Precipitation 

prediction 

ARMA, MARS, BPNN, 

SVM, GA, LSTM 

Height of lowest clouds, pressure 

tendency, temperature, atmospheric 

pressure and relative humidity are the 

most important predictors of 

precipitation in the Jingdezhen City, 

China and different number of hidden 

neurons does not affect LSTM 

performance. 

14. Kanth et al. (2022) Flood severity 

assessment using 

social media streams 

ANN, BERT, Bi-LSTM, 

CNN  

Transfer learning using pre-trained 

models and BERT produced 98% 

accuracy for predicting flood severity 

15. Kardhana et al. 

(2022) 

Water level 

prediction 

ANN, Simple RNN, LSTM-

RNN 

The LSTM-RNN hybrid maintained 

R^2 prediction accuracy of 0.80 for 

Katulampa's water level up to 24 h lead 

time. 

16. Kaur et al. (2021) Early flood 

prediction using 

cloud framework 

PCA, ANN ANN predictive algorithm yielded 

97.3% sensitivity and future flood 
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stages were forecast using Holt 

Winter’s model 

17. Khosravi et al. 

(2020) 

Spatial flood hazard 

prediction 

CNN Flood susceptibility mapping using 

CNN produced an acceptable Area 

Under Curve (AUC) accuracy of 75% 

identifying 49% of cities in Iran as 

highly susceptible to flooding. 

18. Kumar et al. (2004) River flow 

forecasting  

FFN, RNN Early findings on application of ANNs 

to monthly streamflow showed that 

RNNs outperformed FFNs for flow 

forecasting and so, required further 

study. 

19. Kumar et al. (2019) Precipitation 

forecasting 

RNN and LSTM LSTM models validated on different 

homogeneous rainfall regions in India 

yielded NSE values between the range 

of 0.54 – 0.84 regardless of raw data 

variations. 

20. Le et al. (2019) Flood forecasting LSTM Input data type has more effect than 

data size for better LSTM flood 

forecasting results when there is a 

strong linear correlation between input 

data and target data.  

21. Liu et al. (2020) Streamflow 

forecasting in 

different climate 

zones 

RNN, XAJ, LSTM, LSTM-

KNN 

Analysis of prediction accuracy of 

models in different climatic zones 

showed that the KNN algorithm 

improves the LSTM in streamflow 

forecasting better than the Xianjiang 

conceptual model.  

22. Liu et al. (2022) Streamflow and 

runoff prediction 

using bias-corrected 

forecasts 

LSTM, Meteo-Hydro-

LSTM, ESP-Hydro, Meteo-

Hydro 

Addition of LSTM model to 

hydrometeorological forecast (Meteo-

Hydro-LSTM) improves forecast skill 

by a maximum of 25% and average of 
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6% in the cascade reservoir catchment 

of Yantan Basin, China 

23. Loganathan and 

Mahindrakar (2021) 

Streamflow 

simulation and 

forecasting for early 

warning systems 

NNET and ML models: 

EXGBDT, DT, KNN, PLS, 

GLM and PCR 

EXGBDT outperformed other six 

models including the NNET to yield 

NSE = 0.8, for simulating baseflow, 

low-flow and high-flow statistics in the 

Cauvery basin, India  

24. Lv et al. (2020) Discharge 

forecasting of flood 

events 

LSTMC, BPNNC, LRC Mutual Information aided LSTM input 

variable selection and improved its 

prediction of flow for linear and 

complex flood systems. 

25. Noor et al. (2022) Water level 

forecasting 

ANN, LSTM, TALSTM 

,SALSTM, STALSTM, 

Incorporation of attention modules with 

LSTM improved performance of 

spatio-temporal attention LSTM 

(STALSTM) for water level 

forecasting. 

26. Pereira Filho & Dos 

Santos (2006) 

Streamflow 

prediction   

ANN, ARIMA ANN can be applied to non-linear 

hydrologic systems because it 

outperformed ARIMA for streamflow 

forecasting 

27.Sankaranarayanan et 

al. (2020) 

Flood prediction  Deep neural network, KNN, 

SVM, and Naïve Bayes  

ANN performance improved by 40% 

when either telemetric stage or 

streamflow was combined with rainfall 

for flash flood forecasting 

28. Song et al. (2020) Flash flood 

forecasting  

LSTM, LSTM- flash flood 

(LSTM-FF) 

Discharge values enhanced flood 

prediction by LSTM model for 1 hr lead 

time while effect reduces with 

increasing lead time. 

29. Sun et al. (2022) Runoff prediction 

with optimal 

variational mode 

decomposition, 

improved Harris 

BP, LSTM, ELM, PSO-

LSTM, HHO-LSTM, IHHO-

LSTM, VMD-IHHO-LSTM, 

OVMD-IHHO-LSTM 

Integration of optimal variational mode 

decomposition (OVMD) and improved 

Hawkins model improved the LSTM by 

reducing noise of runoff sequence.  
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Hawks algorithm 

and LSTM hybrid 

30. Tikhamarine et al. 

(2020) 

Streamflow 

forecasting 

ANN-GWO, ANN, SVR-

GWO, SVR, MLR_GWO  

The GWO optimized the 

hyperparameters of SVR and improved 

prediction accuracy better than 

traditional SVR, ANN and MLR. 

31. Van et al. (2020) Rainfall-runofff 

modelling  

CNN, LSTM A 1D CNN model outperformed 

LSTM, ARIMA, SARIMA and others 

for regression -based rainfall-runoff 

modelling of Mekong Delta, thereby 

indicating the applicability of CNN 

models. 

32. Wang et al. (2022) Streamflow 

forecasting with 

regional 

characteristics 

GRU, RF, SVR The GRU streamflow forecasting 

model performed well in almost all 

seven basins, but poor peak prediction 

accuracy was recorded as lead time 

increased. 

33. Xu et al. (2021) Flood forecasting TCN, TCN (NDVI), LSTM, 

EIESM, ANN 

Temporal Convolutional Network 

(TCN) with NDVI generalizes and 

captures rainfall-runoff process more 

than ordinary LSTM, EIESM and ANN 

for flood forecast lead times of 1 hr, 6 

hrs and 12 hrs 

34. Xu et al. (2022) Rainfall-runoff 

simulation for short 

term forecasting 

LSTM, PSO-LSTM, ANN, 

PSO-ANN 

Flood forecasting accuracies at 

different lead times beyond 6 h were 

improved by using particle swarm 

optimization - LSTM hybrid. 

35. Xu et al. (2022) Flood prediction  CNN-LSTM, CNN-GRU, 

SWAT, 

Hybridization of CNN with LSTMN or 

GRU helps to extract local features 

(CNN) and learn time series 

dependencies (LSTM and GRU)for 

predicting monthly discharge in the 

Xixian basin better than SWAT model 
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36. Xu et al. (2022) Monthly streamflow 

prediction 

CNN-GRU,  Deep learning model performance 

increases with increasing watershed 

drainage areas. NSE of study areas 

improved from 0.39 to 0.62 while MRE 

decreases from 49.9% to 20.9% 

37. Yeditha et al. (2021) Satellite 

precipitation input 

for rainfall-runoff 

modelling  

ANN, ELM and LSTM Optimal LSTM model simulated 

rainfall-runoff relationships with NSE = 

0.87 using two satellite-based 

precipitation datasets and a ground-

based dataset but underestimated peak 

flood with maximum prediction error of 

19.23%. 

38. Zhang et al. (2021) Flood forecasting MSBP and Random Forest The Multi-step Back Propagation 

model predicted flow of the river basin 

20 hours ahead with NSE = 0.89 

39. Zhou et al. (2020) Flood forecasting NARX, BPNN Developed NARX model coupled with 

the unscented kalman filter 

(UKF)increased reliability of 

probabilistic flood forecasts and 

predicted flood better than the BPNN as 

the forecast horizon increases 

LSTM: long short term memory, HSPF: hydrological simulated program-FORTRAN, DNN: deep neural network, CNN: 

convolutional neural network, GWO: grey wolf optimizer, ICA – imperialist competitive algorithm, LR: linear regression, 

MLP: multi-layer perceptron, PSO: particle swarm optimization, GRU: gated recurrent unit, BiLSTM: bidirectional LSTM, 310 

KNN: k-nearest neighbors, SVM: support vector machine, DT: decision tree, BERT: bidirectional encoder representations 

from transformers, PCA/PCR: principal component analysis/regression, FFN: feed forward network,  NNET: neural network, 

EXGBDT: extreme gradient boosting decision tree, PLS: partial least-squared regression, GLM: generalized linear model, 

ARIMA: autoregressive integrated moving average, NAR-MA: non-linear autoregressive-moving average neural network, 

LSTM-MA: moving average long short term memory, ELM: extreme learning machine. TS: Threat Scores, DBN: Deep Belief 315 

Network, CDBN: Convolutional DB Network, CRPS: Continuous Ranked Probability Score, XAJ: Xinanjiang model, LSTMC: 

LSTM cyclic, LSTMC: LSTM cyclic, LRC: Linear regression cyclic, BPNNC: Back propagation neural network cyclic, 

STALSTM: spatio-temporal attention LSTM, ANN: Artificial Neural Network, TCN: Temporal Convolutional Network, 

EIESM: Excess Infiltration and Excess Storage Model, MSBP: Multi-Step Back Propagation, RF: random forest, MARS: 

Multivariate adaptive regression splines, MLP: Multilayer perceptron, LSTM-RED: Recursive Encoder-Decoder LSTM, 320 
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LSTM-EDE: Exogenous Encoder-Decoder LSTM, FFN: Feed Forward Network, BHLSTM: Bilstm with highway network, 

CNN-ICA: CNN and imperialist competitive algorithm, SSO: Social Spider Optimizations, NARX: Non-linear auto-regressive 

with exogenous input neural network, BPNN: Back propagation neural network, MLPR : Multi perceptron regression, 

Cascade-parallel LSTM-CRF: Cascade-parallel LSTM Conditional Random Field  

4.3.2 Deep learning application for landslide management 325 

Landslide occurrence brought about by precipitation, glacial melt and storms is a prevalent disaster in developing countries, 

especially in China due to high population density and mountainous terrain (Huggel et al., 2012). Five articles reported DL 

application to landslide management in  

Table 3 with use ranging from using attention-based temporal CNN to improve landslide instability margins from a landslide 

simulation experiment(D. Zhang et al., 2022), to  applying GRU for trend and periodic displacement prediction for the 330 

Jiuxianping landslide (Zhang et al., 2022).  

 

Table 3: DL application for landslide management 

Article  Application Models used Main findings 

1. Chen et al. (2015)  Landslide 

deformation 

prediction 

RNN with Elman 

network 

Genetic algorithm 

optimized-RNN 

models were 

effective for 

simulating Hubei 

Baishuihehe's 

landslide 

displacement with 

lowest relative error 

of 0.44% 

2. Habumugisha et 

al. (2022) 

 Landslide 

susceptibility 

mapping 

CNN, DNN, LSTM and 

RNN 

DL models showed 

that slope, rainfall, 

and distance to faults 

are the most 

significant factors 

affecting landslide 

events in Maoxian 

County. 
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3. Zhang et al. 

(2022) 

 Landslide 

displacement 

prediction 

ANN, GRU, RF, MARS Trend and periodic 

displacement results 

of the Jiuxianping 

landslide by GRU 

produced optimal 

results with fewest 

outliers. 

4. Zhang et al. 

(2022) 

 Landslide risk 

prediction 

LSTM, GRU, TCN, 

ConvLSTM,TCN-Attn-

RNN, RNN-Attn-TCN 

Landslide instability 

margins (LIMs) 

generated from 

TOPSIS-Entropy 

method for a 

landslide simulation 

platform was 

improved by 

attention-based 

temporal 

convolutional 

network and 

recurrent neural 

network (Attn-TCN-

RNN) with NSE = 

0.62 

5. Zhu et al. (2020)  Landslide 

susceptibility 

prediction 

Cascade-parallel 

LSTM-CRF, MLP, 

Logistic regression, 

decision tree 

Landslide 

susceptibility 

prediction 

considering 14 

environmental 

factors improved 

using the developed 

cascade-parallel 

LSTM- conditional 

random field model 
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more than other 

models 

 

4.3.3 Deep learning application for snow avalanche mitigation 335 

Snow avalanche, which results from fast movement of snow, ice, soil, rocks, debris and vegetation along a gradient was 

addressed by only one article from the reviewed papers and presented in Table 4. As the occurrence of massive snow avalanche 

is prevalent in mountainous regions, therefore, developing countries with low undulating topography seem to experience 

insignificant effect of snow avalanche, especially in tropical regions. This explains the small amount of publication recorded 

in snow avalanche management studies using DL. Furthermore, as snow and mountain hydrology fields keep evolving, 340 

researchers and policy makers are making concerted efforts in understanding the hydrology and translating it to research. 

 

Table 4: DL application for snow avalanche mitigation 

Article Application Models used Main findings 

1. Chen et al. (2021) Snow avalanche 

identification and 

mitigation 

CNN, CNN-GWO, 

CNN-ICA 

Hybrid deep learning and 

metaheuristic CNN-ICA 

model yielded optimal 

predictive performance 

and identified potential 

snow avalanche events in 

the west part of Darvan 

watershed, Kurdistan 

province using generated 

snow avalanche 

susceptibility maps. 

 

4.3.4 Deep learning application for land subsidence, drought, and water quality management 345 

Drought, which is a result of over-abstraction of groundwater, soil shrinkage, famine, irregular precipitation, and climate 

change manifests as land subsidence over time. Sadly, only four (4) of land subsidence DL articles have been reported in 

developing countries. One of such is the findings of Kumar et al. (2022) which proposed stacked LSTMs and Vanilla LSTMs 

as a better substitute to conventional land subsidence methods for predicting land deformations at 14 locations at Jharia coal 

fields, India. Drought assessment method through ground water level monitoring of the Varuna River in India was studied by 350 

(Dey et al., 2021) using annual average of temperature, precipitation, relative humidity, ground water level and actual 

evapotranspiration to analyze the interrelationship that exists between climate variables and ground water level fluctuations. 

A summary of DL models’ application to land subsidence in developing countries is presented in Table 5.  
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Table 5: DL application for land subsidence, drought and water quality management 355 

Article Application  Models used Main findings 

1. Kumar et al 

(2022) 

Prediction of land 

subsistence  

 Vanilla and stacked 

LSTMs 

Stacked LSTM 

prediction of land 

subsidence values 

shows an accuracy of 

95% indicating DL 

model’s applicability. 

2. Maddu et al. 

(2021) 

Land surface 

temperature 

prediction of coastal 

cities 

 ANN, LSTM, 

LSTM-BiLSTM 

RNN and hybrid 

LSTM-BiLSTM 

forecast surface 

temperature with final 

mean NSE = 0.88 

across five cities in 

India, to mitigate risks 

associated with global 

warming, heat waves 

and biodiversity loss. 

3. Hien Than et al. 

(2021) 

Water quality 

classification and 

performance 

evaluation 

 LSTM, ARIMA, 

NAR-MA, LSTM-

MA 

Chemometric and DL 

techniques enhanced 

forecast of water 

quality indices of the 

Dong Nai River using 

hybrid LSTM-MA, 

which outperformed 

ARIMA, NAR and 

LSTM. 

4. Dey et al. 

(2021) 

Groundwater level 

monitoring 

 BiLSTM - LSTM 

ensemble, BiLSTM, 

BHLSTM 

Future groundwater 

water level depletion 

in the Varuna River 

basin, Uttar Pradesh, 

India projects best 
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possible drought 

conditions using 

stacked layers of 

BiLSTM improved 

with highway network 

and calls for more 

water sustainable 

policies. 

 

4.4 Model deployment and Explainability for solving real-life problems 

Model deployment is the final stage of every AI task, and it requires that models are deployed to solve real-life problems. It 

may be performed in diverse environments and integration is always done with the use of an Application Programming 

Interface (API). In this study, there is no reported case of final model deployment to solve real life scenario in developing 360 

countries. We may attribute this to the current evolutionary stage of deep learning in developing countries. A model can only 

be operational if it runs on APIs and web-based platforms to generate policies with resounding precision. Model building can 

be resource-intensive, but deployment helps to generate return of investment. After a successful deployment, routine 

maintenance must be implemented to eradicate outliers, noises and the model may be retrained on new data for better 

generalization. Also, more research must be conducted to explain the internal architecture of models as opposed to the general 365 

belief of being a ‘black box’.  

Finally, DL approaches require a lot of computational resources in terms of high computing systems, excellent GPU 

capabilities and speed, which are reportedly deficient in developing countries, especially in Africa (Munje & Jita, 2020). It is 

appalling to know that some countries in Africa still do not have access to affordable computer systems, thereby making 

technology and knowledge transfer a mirage. As opposed to common practices in the USA and Republic of Korea, where 370 

students are introduced to computing and programming at a tender age to widen their horizon and explore potentials of the 

next Albert Einstein, such is not the case in developing countries. One then wonders what becomes of children learning 

ordinary data processing with placards and diagrams painfully drawn on chalkboards in dilapidated walls of schools, with no 

possibility of ever owning a device in their lifetime. The most significant reason causing the setback is the huge financial 

commitment coupled with efficient data management that comes with the new technology. Amongst other reasons are lack of 375 

knowledge and technical knowhow, insecurity, poor internet, and data acquisition. Interestingly, this might change in the next 

few decades because national policies attempting to integrate robotics and artificial intelligence into several sectors of economy 

of developing countries are currently being considered and implemented in phases. 

 

5.0 Conclusion 380 
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Thematic areas from literature which used hydrological datasets of developing countries were selected to assess the current 

state of deep learning adoption for disaster management in developing countries. An extensive theory-based bibliometric 

analysis addressing publication and citation count, keyword co-occurrence, model usage and eco-geographical significance, 

input data relationship with model performance, major bottlenecks and model deployment problems affecting the adoption of 

DL in developing countries was studied. Statistical trend analysis by the Mann-Kendall method revealed a ‘slightly’ increasing 385 

trend of DL-based water disaster publication in developing countries (tau = 0.35, p = 0.00045, Sen-slope, s = 0.00 at a 

confidence level of 95%), as opposed to the ‘significantly increasing trend’ globally (tau = 0.910, p = 1.72 e-12, Sen-slope, s 

= 2.52 at a confidence level of 95%), indicating slow adoption rate in developing countries. For both cases, DL-based disaster 

research increased steadily in the last two decades due to the global paradigm shift to data-driven analysis, abundant computer 

resources, open access learning platforms and big data management. Developing countries experienced a similar trend as DL 390 

adoption spiked in 2020 and 2021 because of COVID-19 lockdown effects, devastating flood occurrences, landslide, and other 

natural disasters, which required the need for conducting extensive research to mitigate risks and losses. Also, it was discovered 

that five major natural disasters – pluvio-fluvial flooding, snow avalanche, land subsidence, drought and landslide are prevalent 

in developing countries, while pluvio-fluvial being about 78% most prevalent. Recurrent flash floods and landslides caused by 

irregular rainfall pattern, abundant freshwater and mountainous terrains attributed China (out of 12 developing countries as the 395 

only high human development developing country with an impressive DL adoption rate of 51% publication count.  

Further analysis indicates that economically disadvantaged countries will experience a delay in DL implementation based on 

their HDI because DL implementation is capital-intensive. COVID-19 among other factors is identified as a driver of DL 

adoption. Although, the Long Short Term Model (LSTM) model is the most frequently used, but optimal model performance 

is not limited to a certain model. Each DL model performs based on defined modelling objectives. It was discovered that final 400 

model deployment in solving disaster problems in real life scenarios is currently lacking in developing countries. We hereby 

recommend data augmentation and transfer learning to solve data management problems in ungauged watershed prevalent in 

developing countries as implemented by Rasheed et al. (2022), Kratzert et al. (2019), and Kratzert et al. (2018) using the 

CAMELS dataset in the contiguous USA. Intensive research, training, innovation, deployment using cheap web-based servers, 

APIs and nature-based solutions are encouraged to facilitate speedy adoption of DL and enhance disaster preparedness in 405 

developing countries. We are optimistic that the findings of this study will provide adequate information, initiate speedy DL 

adoption, become a veritable reference material, and provoke stellar research thoughts towards DL implementation in 

developing countries.  
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