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Abstract: Hydrological drought forecasting can mitigate the socio-economic and 16 

ecological impacts of drought. It is an important disaster reduction strategy to forecast 17 

the occurrence of hydrological drought according to the forecasting system. In this 18 

paper, the conditional distribution model with human activity factor as exogenous 19 

variable was constructed to forecast the hydrological drought based on 20 

meteorological drought, and then compared with the traditional normal distribution 21 

model and conditional distribution model. The results show that the runoff series of 22 

Luanhe River Basin from 1961 to 2010 was non-stationary. For the traditional 23 

conditional probability models, the transition probabilities of drought were affected 24 

by SPI time scales and forecasting periods. In order to analyze the impact of human 25 

activities on hydrological drought, we constructed the human activity factor based on 26 

the method of restoration. Subsequently, the conditional distribution models involving 27 

human index were constructed and the influence of human activities on drought 28 

transition probability was analyzed. With the increase of human index (HI) value, 29 

hydrological droughts tend to transition to more severe droughts. Finally, a scoring 30 

mechanism was applied to evaluate the performance of three drought forecasting 31 

models. According to the scores of the three drought forecasting models, the 32 

conditional distribution model involving of human activity factor can further improve 33 

the forecasting accuracy of drought in Luanhe River Basin. 34 

Keyword:  Changing environment; Drought forecasting; Human activity factor; 35 

Luanhe River basin 36 

 37 

1 Introduction 38 

Typically, meteorological drought is regarded as the beginning of a drought event; 39 

after the occurrence of meteorological drought, other drought phenomena occur, such 40 

as hydrological drought (Miriam et al., 2018; Fuentes et al., 2022; Wang et al., 2021). 41 

However, there is a delay period from meteorological drought to hydrological drought 42 

(Ding et al., 2021; Xu et al., 2019). Therefore, the occurrence of hydrological drought 43 

can be forecasted according to meteorological drought monitoring. Accurate 44 

hydrological forecast information is beneficial to reduce the losses caused by 45 

hydrological drought. (Behzad and Hamid, 2019; Melanie et al., 2018). 46 

Statistical technology is an effective prediction method that has been widely used 47 

in drought forecasting in recent years (Bonaccorso et al., 2015). Focusing on 48 

statistical techniques, several mathematical statistical models have been applied to 49 

forecast drought, such as neural network models (Mehdi et al., 2016; Maryam et al., 50 

2017; Ahnadi et al., 2011), time series modelling (Mohammad et al., 2020; Natsagdorj 51 
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et al., 2021; Stojković et al., 2020) and hybrid models (Alquraish et al., 2021; Abbasi 52 

et al., 2021; Bagher et al., 2013). Some scholars focus on the transition probability of 53 

the drought class, which is mainly based on a certain drought index, such as the 54 

standardized precipitation index (SPI), the Palmer drought severity index (PDSI) or 55 

the standardized runoff index (SRI) (McKee, 1993; Palmer, 1965; Shukla, 2008). 56 

Mallya et al. (2013) assessed a drought probability based on a hidden Markov model 57 

(HMM) and then analysed the drought characteristics of Indiana. Moreira et al. (2013) 58 

calculated the SPI time series in the Alentejo area from 1932 to 1999, and then 59 

loglinear models were fitted to assess drought class transition probabilities. Based on 60 

the Multivariate Standardized Precipitation Index (MSPI), Aghelpour and Varshavian 61 

(2021) proposed the hybrid model to forecast the hydrological drought in Iran, which 62 

significantly improved the forecasting accuracy. Majid et al. (2019) used 63 

Archimedean copulas to model the relationship between the SPI and standardized 64 

hydrological drought index (SHDI), and the results indicated that hydrological 65 

drought class forecasting in the coming month is promising with less than 10% error. 66 

Considering the impact of the changing environment, Bonaccorso et al. (2015) 67 

calculated SPI values under distinct time scales and analysed the conditional 68 

probabilities from the current SPI values to the future SPI classes. Ren et al. (2017) 69 

found that a model using large-scale climatic indices as covariates can improve the 70 

accuracy of meteorological drought forecasting in the Luanhe River Basin. Although 71 

some progress has been made in the study of drought forecasting, there are few 72 

studies considering the impact of changing environments. 73 

To date, some studies have found nonstationary characteristics in the 74 

hydrological series of the Luanhe River Basin under changes in the environment 75 

(Wang et al., 2018; Li et al., 2015; Wang et al., 2016). The nonstationarity of 76 

hydrological series may lead to the nonstationarity of the relationship between 77 

hydrological series (for example, precipitation and runoff series), and traditional 78 

drought prediction methods are no longer applicable (Wang et al.,2022; Dixit et 79 

al.,2022; Muhammad et al.,2020; Zhao et al.,2018; Charles, 2017; Carmelo and Jü80 
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rgen, 2018). 81 

The research contents of this paper are as follows: (1) The SPI series and SRI 82 

series are calculated according to the monthly rainfall and runoff data of the Luanhe 83 

River Basin from 1961 to 2010. (2) A multivariate normal distribution model (Model 84 

1), conditional distribution model (Model 2) and conditional distribution model with 85 

the human index (HI) as an exogenous variable (Model 3) were constructed to 86 

calculate the transition probabilities from current SPI classes or values to future SRI 87 

classes. (3) A scoring mechanism was applied to the evaluation of the three 88 

probability models. 89 

In addition to the introduction, this paper also contains the following sections. 90 

Section 2 introduces the study area and data. Section 3 briefly describes the methods 91 

used in the research. Section 4 introduces the model construction and calculation 92 

results and analyses the results. Section 5 presents the prospects. 93 

2 Study area and data 94 

The Luanhe River Basin, located in the subtropical monsoon region, covers an 95 

area of approximately 33700 square kilometres. Its geographical location is shown in 96 

Figure 1. Due to the influence of geographical location and topography, the annual 97 

average north-south temperature difference in the basin is 11.5 °C, and the annual 98 

rainfall distribution is uneven. Less rain in spring and winter makes the area prone to 99 

meteorological drought and hydrological drought, while there is relatively more 100 

rainfall in summer. The average rainfall in summer is approximately 200-560 mm, 101 

resulting in highly variable annual runoff of the basin. The concentrated rainfall in 102 

summer has also become one of the remarkable features of the climate in this area. In 103 

recent years, the precipitation and inflow of the Luanhe River Basin have gradually 104 

decreased, the water level of the Panjiakou Reservoir in the lower reaches of the basin 105 

has decreased, the runoff has also decreased, and the frequency of meteorological 106 

drought and hydrological drought has significantly increased. Especially after entering 107 

the 21st century, the river basin has exhibited the phenomenon of continuous drought 108 

and even extreme drought. With the change in the global climate and the impact of 109 
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human activities on the basin environment, drought disasters in the Luanhe River 110 

Basin occur frequently, causing significant social and economic losses. 111 

In this paper, the monthly rainfall data from 26 stations in the Luanhe River 112 

Basin from 1961 to 2010 are provided by the Hebei Provincial Hydrology and Water 113 

Resources Investigation Bureau. The average monthly rainfall data of the area are 114 

obtained by spatial interpolation. The runoff data from 1961 to 2010 come from the 115 

inflow runoff series of the Panjiakou Reservoir. The SPI and SRI can be calculated for 116 

1-month, 3-month, 6-month, and 12-month time scales to characterize meteorological 117 

drought and hydrological drought based on these data. 118 

 119 

Figure 1 The geographical location of the Luanhe River Basin 120 

3 Methods 121 

3.1 Nonstationarity test method 122 

In the case of environmental changes, nonstationarity may occur in hydrological 123 

series. The Pettitt test, as one of the important methods to test whether there is 124 

nonstationarity in time series, can identify whether there are change points in the 125 
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sample series (Malede et al., 2022). Assuming that the sample sequence is 126 

1 2( , , )nx x x x= , the formula is as follows: 127 

 , 1, 0

1
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n

t n t n t i

i

U U x x t n t−

=

= + − =  （1） 128 
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 （2） 129 

where ,t nU  is the test statistic, which indicates the cumulative number of the 130 

values at time t greater than or less than the values at time i. In addition, if 0,t nK  131 

satisfies: 132 

 0, ,max     (t=1,2, ,n)t n t nK U=  （3） 133 

Then, 0t  is considered to be the change point, and the cumulative probability of 134 

possible change is determined by 0,t nK : 135 

 
2
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 （4） 136 

Given the significance level 0.05 = , if 0,t nP >0.95, it means that the point is a 137 

significant change point (Li et al., 2022; Koudahe et al., 2018). Furthermore, 138 

combined with the Mann-Kendall test, the trend characteristics of the sample series 139 

can be obtained (Linchao et al., 2018). 140 

The sliding T test is a basic method commonly used in statistics. According to 141 

the mean and variance of the two sample sequences before and after the change points 142 

in the runoff time series, the two sample sequences are tested (Li et al., 2020): 143 
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Here, assume that the change point is tx , 1n  and 2n  represent the sample size 148 

before and after the change point, 
2

1S and 
2

2S  represent the variance of the samples 149 

before and after the change point, respectively If the statistic t  satisfies t t  as the 150 

significance level is 0.05 = , the point can be considered the change point. 151 

The Spearman correlation test can be applied to test the trend of time series, and 152 

the specific description refers to the article of Bishara and Hittner (2012). 153 

3.2 Human activity index (HI) 154 

The double cumulative curve method can test the nonstationarity of the bivariate 155 

correlation between rainfall series and runoff series, and the point where the 156 

underlying surface is significantly altered by human activities can be determined 157 

according to the position of the slope change of the curve. The linear regression 158 

relationship of the cumulative rainfall and runoff series can be calculated according to 159 

the following formula: 160 

 bykx +=   （9） 161 

Here, x is the runoff series; y is the rainfall series; k is the correlation coefficient of the 162 

regression equation; and b is the intercept of the regression equation. 163 

Human activities are the main reason for the nonstationarity of the runoff series 164 

in the watershed, so the human activity index (HI) can be constructed to quantify the 165 

impact of human activities on runoff. Based on the linear regression relationship 166 

established between the accumulated precipitation and the accumulated runoff before 167 

the change point, the theoretical runoff sequence during the human activity period can 168 

be calculated from the measured precipitation sequence. SRI  represents the 169 

standardized runoff index value without human activity interference, and SRI  170 

represents the normalized runoff index value calculated based on the measured runoff 171 

sequence under the disturbance of human activities. The HI is obtained by subtracting 172 

the theoretical SRI  and the actual SRI , and the calculation formula is as follows: 173 

 HI SRI SRI= −  （10） 174 
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When HI>0, it can be assumed that human activities exacerbate hydrological 175 

drought, HI<0 has the opposite effect, and HI=0, the watershed is considered 176 

undisturbed by human activities. 177 

3.3 Multivariate normal distribution model 178 

The SPI is one of the important indicators for evaluating meteorological drought 179 

in the basin, and the SRI is an important indicator for evaluating hydrological drought 180 

in the basin. According to the rainfall data and runoff data in the basin, the SPI and 181 

SRI at different time scales can be calculated. Table 1 provides the drought class 182 

classification and corresponding SPI values and SRI values (Kolachian and Saghafian, 183 

2021). 184 

Table 1 Drought class classification and corresponding SPI values and SRI values 185 

SPI/SRI values Class 

> -0.99 

-1.00 to -1.49 

-1.50 to -1.99 

≤ -2.00 

Normal 

Moderate 

Severe 

Extreme 

 186 

As a traditional drought class forecasting model, the multivariate normal 187 

distribution model (Model 1) can forecast the future SRI class according to the current 188 

SPI class. Assuming that both the current SPI and SRI sequence satisfy a 189 

multivariable normal distribution, the joint probability density can be expressed as 190 

follows (Chang et al.,2022): 191 

 ( ) ( )
, ,

11 1
( , ) exp

2 2
k k

v v M

T

Z W
t s X Xf

  +

− 
=  −  

  
 （11） 192 

Here,   is the covariance matrix, and  ,=
T

X t s . The form of the covariance 193 

matrix is as follows: 194 

 

( ) ( )
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( ) ( )

, ,

1 cov ,

cov , 1

 

 

+

+

   
  =
    

k k

v v M

k k

v v M

Z W

Z W
 （12） 195 

Furthermore, according to the joint probability density function of the SPI value 196 

( )

,

k

vZ  at v year and month  and the future M months SRI value 
( )

,+

k

v MW , the analytical 197 
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formula of the transition probability of the future SRI drought class can be obtained 198 

(Zhang et al., 2017): 199 

 

( )

( ) ( )
, ,

( )
,

( )

,

( , )
N M

N

k k
v v M

k
v

C Ck

v M M

C

Z W

Z

t s dt ds

P W C
t dt

f

f

 





+

+

 

  = 





 （13） 200 

where MC  represents the drought class and ( )( )
,
k

vZ
f t represents the marginal 201 

density function of 
( )

,

k

vZ  in the current month. 202 

3.4 The conditional distribution model 203 

The conditional distribution model (Model 2) proposed by Bonaccorso et al. 204 

(2015) is described as follows: when one group of sample data X obeys a normal 205 

distribution and satisfies 1 1~ ( , ) X N , while another group of sample data Y also 206 

obeys a normal distribution, namely, 2 2~ ( , ) Y N , then the total sequence can be 207 

written as follows: 208 

 
1 11 12

21 222

,p

X r
B N

Y p r





      
=        −     

 （14） 209 

When sequence Y obeys a normal distribution, the distribution of sequence X 210 

under the Y condition still satisfies a normal distribution, namely, the distribution of 211 

( | )X Y  is as follows (Gong et al. 2021): 212 

 3 3( | ) ~ ( , )X Y N    （15） 213 

where
3 represents the expected value under the conditional distribution, and 214 

3 is the conditional covariance matrix: 215 

 
1

3 1 12 22 2( )y  −= +  −  （16） 216 

 
1

3 11 12 22 21

− =  −    （17） 217 

Assuming that the current SPI and the SRI sequence that transitioned from 218 

meteorological drought satisfy a binary normal distribution, then the probability of the 219 

transition to the future SRI drought class under the current SPI value can be deduced 220 

as follows (Ren et al., (2017)): 221 
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
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 −
−   − 
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where 
,vZ represents the SPI value of the current month , 

,+v MW  represents the 223 

SRI value of the  + M  month, 
MsC  and 

MiC  are the upper and lower limits of the 224 

drought class MC , and the correlation coefficient between the current SPI value and 225 

the future SRI value is  . Furthermore, the current SPI and future SRI can be 226 

expressed as the standard normal cumulative distribution function Φ : 227 

 0 0
, , 0 2 2

|
1 1

Ms Mi
v M M v

C z C z
P W C Z z Φ Φ 

 

 
+
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 （19） 228 

The calculation of the correlation coefficient   is as follows: 229 

 

( ) ( )

, ,

( ) ( )

, ,
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var( ) var( )

k k

v v M

k k

v v M

Z W

Z W

 

 

 +

+

=  （20） 230 

K represents the time scale of the drought index. Assuming that the cumulative 231 

rainfall Y and runoff X satisfy a normal distribution, then after the standardization 232 

process, the SPI value ( )

,

k

vZ corresponding to cumulative rainfall Y and SRI value 233 

,+v MW corresponding to runoff X obey the standard normal distribution (Wu, 2019), 234 

namely: 235 

 ( ) ( )

, ,var( ) var( ) 1k k

v v MZ W += =  （21） 236 

( ) ( )

, ,cov[ , ] +

k k

v v MZ W  represents the covariance between the current SPI and the Sri 237 

value with a forecast period of M months. The calculation is as follows: 238 

 
1 1
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0 02 2

0 0

1
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 （22） 239 

3.5 The conditional distribution model involving HI as an exogenous variable 240 

According to the above conditional probability model, when considering HI as 241 

an exogenous variable, the model (Model 3) can be extended as follows: 242 
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Where: 246 

 12 , , , ,cov( , ) cov( , )M MW Z W H       + +
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21 12( )T  =   （28） 249 

4 Results and discussion 250 

4.1 Nonstationarity analysis 251 

In this paper, the area average monthly rainfall data of the Luanhe River Basin 252 

from 1961 to 2010 are obtained by spatial interpolation. The runoff data come from 253 

the inflow runoff series of the Panjiakou Reservoir. Given the significance level 254 

0.05 = , the nonstationarity test results are shown in Figure (2). 255 

Figure 2 (a) shows that the years of possible runoff change were 1979, 1996, 256 

1997, 1998, and 1999. The P values in 1979 and 1998 were infinitely close to 1, 257 

which were considered to be extremely significant runoff change points. Among all 258 

the possible points satisfying t t , there are two maximum points (Figure 2 (b)), 259 

namely, 1979 and 1998, which are considered to be possible runoff change points. 260 

The final change point needs to be judged based on the actual situation of the 261 

watershed. 262 
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 263 

Figure (2)      The change points of the runoff series 264 

The results of the Spearman correlation test (Table 2) indicate that the runoff 265 

series showed an upwards trend before 1979, but the trend was not significant. 266 

However, there was a significant downwards trend in the series after 1979. In general, 267 

the runoff series showed a significant downwards trend. 268 

Table 2. Spearman correlation test results of runoff series trend 269 

Runoff series statistic t  Critical value t  

The whole series -3.471 ±2.009 

Serie before 1979 0.691 ±2.009 

Serie after 1979 -2.292 ±2.009 

 270 

In addition, according to historical records, there were no extreme rainstorm 271 

events recorded during 1979. It can be inferred that the cause of the sudden change in 272 

annual runoff in 1979 was not the formation of heavy rainstorms in the previous 273 

period or the same period. Since the start of 1979, the underlying surface conditions 274 

of the basin have undergone large changes due to human activities, so it is determined 275 

that 1979 is the change point of the runoff sequence in the basin. Therefore, 1979 was 276 

finally determined as the change point of the runoff sequence of the Luanhe basin 277 

from 1961 to 2010. This conclusion is consistent with Li et al. (2015) and Wang et al. 278 

(2015). 279 

4.2 Transition probabilities from current SPI values to future SRI classes 280 

According to the normality test results of rainfall and runoff series, it is 281 

reasonable to apply the conditional distribution model. To analyse the influence of 282 

different time scales of SPI on the transition probabilities, using the forecast period as 283 
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one month and the time scales of SPI on 1-month, 3-month, 6-month and 12-month as 284 

examples, the probabilities of converting SPI values to SRI classes were calculated 285 

(Figure (3)). 286 

As shown in Figure (3), when meteorological drought is categorised as extreme 287 

drought, the probability of maintaining the SRI class in the extreme drought state is 288 

greater as the time scale of the SPI increases. As the SPI is a 12-month time scale, the 289 

drought transition probability is close to 1. However, while the time scale is small, the 290 

response of the future SRI value to rainfall is faster, so the probability of tending to 291 

the normal state is greater. In the future, the response of the SRI value to rainfall is 292 

relatively fast, so it is more likely to tend to a normal state. 293 

 294 

Figure (3). Influence of the SPI time scale on transition probabilities ( 0z : initial value of SPI) 295 
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In addition, the transition probabilities of drought are distinct for different 296 

forecast periods. As seen in Figure 4(a), while the current period 0z = -2.5, i.e., the 297 

meteorological drought is extreme drought and the forecast period is 1 and 2 months, 298 

the probability of its future SRI class being extreme drought is the highest. Moreover, 299 

the probability of its future SRI drought class returning to normal status becomes 300 

higher as the forecast period becomes longer. When the current period 0z =-1.75 301 

(Figure 4 (b)), namely, the meteorological drought is severe drought and the forecast 302 

period is 1 month, its future SRI class tends to be normal or moderate drought. While 303 

the forecast period becomes longer, its drought degree gradually decreases and tends 304 

to be normal. When the current period 0z =-1.25 (Figure 4 (c)), namely, the 305 

meteorological drought is a moderate drought, the future SRI class tends to be a 306 

normal or moderate drought state as the forecast period is 1 month. In addition, its 307 

drought degree gradually decreases and tends to be normal, while the forecast period 308 

becomes longer. It is worth noting that the current 0z =0 (Figure 4 (d)), and the 309 

probability that the future SRI class is normal as the forecast period is 1, 2 and 3 310 

months is greater than 0.8. 311 
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 312 

Figure (4) Influence of forecast period on transition probabilities ( 0z :initial value of SPI) 313 

From the above analysis, when the forecast period is short (M=1 or 2), the 314 

hydrological drought class obtained from the transition of meteorological drought 315 

tends to be the same as that of meteorological drought. With the extension of the 316 

forecast period (M=2 or 3), the overall SRI class obtained from the transition tends to 317 

be slightly lower than the SPI drought class or to the normal state, i.e., the 318 

hydrological drought class obtained from the transition tends to be slightly lighter 319 

than the meteorological drought on the whole or to be maintained in the normal state. 320 

4.3 Transition probabilities with involving HI as the covariate 321 

According to the above nonstationarity test results, 1979 was the change point, 322 

and the linear regression relationship of the cumulative rainfall and runoff series 323 
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before and after the change point were established. The calculation results are shown 324 

in Table 3: 325 

Table 3 Linear regression relationship between cumulative precipitation ( / mmx ) and cumulative 326 

runoff (
6 3/10 my ) 327 

Period Linear regression equation Correlation coefficient 

1961~1979 0.0276 2.7566x y= +
 

0.99 

1980~2010 0.0307 30.652x y= −
 

0.98 

The HI results for different time scales are shown in Figure 5. 328 

 329 

Figure 5 Different average periods of HI (HI-1: HI with 1-month time scale; HI-3: HI with 3-330 

month time scale; HI-6: HI with 6-month time scale; HI-12: HI with 12-month time scale) 331 

As shown in Figure 5, the HI at all monthly scales generally ranges upwards, 332 

which means that human activities have intensified the occurrence of hydrological 333 

drought. 334 

The HI of different monthly scales were standardized, taking the 12-month time 335 

scale as an example, and the results were calculated as shown in Table 3. 336 

Table 3. HI-12 Monthly Mean and Standard Deviation 337 
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 J F M A M J J A S O N D 

Mean -0.04 -0.03 -0.03 -0.03 -0.03 0.00 0.06 0.06 0.10 0.10 0.09 0.06 

Sd 1.36 1.37 1.38 1.41 1.41 1.51 1.40 1.40 1.45 1.44 1.44 1.43 

Furthermore, the drought transition probabilities involving HI can be calculated 338 

from Eq. (23). Using the forecast period of one month from December and the SPI 339 

time scale of 12 months as an example, the drought transition probabilities from 340 

current SPI values to future SRI classes can be calculated (Figure 6). To analyse the 341 

effect of human activities on the drought transition probability more clearly, the 342 

calculation results of the three models are compared here separately. The horizontal 343 

coordinate indicates the drought classes corresponding to the SRI for the coming 344 

month, and the vertical coordinate is the drought transition probability. 345 

 346 
Figure 6 Drought transition probability under the influence of human activities ( 0C  denotes the 347 

initial drought class of SPI in the multivariate normal model; 0z  represents the initial value of SPI 348 

in the conditional distribution model; Model 1: The normal distribution model; Model 2: The 349 

conditional distribution model; Model 3: The conditional distribution model involving HI) 350 
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In Figure 6 (a), when the initial 0z =0.75 and 0C =N, the results shown in Model 1 351 

and Model 2 are similar, and the probability transitions of SPI values to SRI classes in 352 

the future month in the normal class are close to 1. However, the results of Model 3 353 

indicate that the probabilities of maintaining SRI in the normal class in the future 354 

decrease as HI increases. When HI=2, the probability of transition to severe drought 355 

or extreme drought is higher. 356 

From the initial 0z =-1.25 and 0C =Mo (Figure 6 (b)), it can be seen from the 357 

results of Model 3 that the transition probabilities of SPI values to a normal SRI class 358 

in the coming month are higher when HI is less than 1. As the HI increases, the 359 

transition probabilities of the SPI values to a moderate drought or even a more severe 360 

drought in the future increase. In addition, the probabilities of maintaining drought at 361 

moderate drought are the highest when human activities are not considered, and 362 

Model 2 shows a higher probability. 363 

While the initial meteorological drought class is a severe drought (Figure 6 (c)), 364 

the probabilities of the future SRI drought class being in the normal class become 365 

larger as the HI decreases. When the effect of human activities is not considered, the 366 

probability that the current SPI value transitions to the SRI class under severe drought 367 

in the future month is the highest, and the probability of being in the normal class is 368 

the lowest. For Model 1, the probability of the SRI classes transitioning to a moderate 369 

drought is higher than the result of Model 2. 370 

It is noteworthy that when the initial 0z =-2.5 and 0C =Es (Figure 6 (d)), the 371 

probabilities of transition of the SPI values to future SRI classes at the normal class 372 

are close to 1 as HI<0. However, hydrological drought is more likely to be moderate 373 

drought or severe drought as HI are greater than 0, and the transition probabilities 374 

exceed 0.25. For Model 1 and Model 2, the probabilities of transition of current SPI 375 

values or classes to the future month SRI classes also in extreme drought are both 376 

higher than 0.75. Model 1 shows a higher probability than Model 2 when the SRI 377 

class transitions to severe drought. 378 
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4.4 Model evaluation and analysis 379 

To quantitatively evaluate the prediction accuracy of Model 1, Model 2 and 380 

Model 3, the study period is divided into a correction period (1961-2003) and a 381 

verification period (2004-2010), and then the drought transition probability from the 382 

SPI value or class to the SRI class in the future M-month is calculated. The monthly 383 

drought transition probability is summed to evaluate the model (Chen et al., 2013): 384 

 
12

,1 1

1

12

n

s tt s
Score p

n − =
=    （29） 385 

where ,s tp  characterizes the transition probability in month t  of year s , and n  386 

is the length of the validation period. The calculation results are shown in Table 5. 387 

With the same time scale of SPI, the model scores of Model 1 and Model 2 388 

lowers as the forecast period M lengthens, while the model scores of Model 3 are not 389 

significantly affected by the forecast period M. Model 1 had the highest rating of 0.36 390 

at an SPI of 1-month time scale and a forecast period of one month; Model 2 reached 391 

the highest model rating of 0.74 at a 12-month time scale and a forecast period of one 392 

month; and model-3 performed well at an SPI of 1-month time scale and a 12-month 393 

time scale. Overall, model-3 has the highest rating, and Model 1 has the lowest rating 394 

for the same SPI time scale and the same forecast period, which also indicates that the 395 

forecast accuracy of the conditional distribution model considering the HI is higher 396 

for short-term forecasts with a forecast period of 3 months or less, and involving the 397 

HI can further improve the forecast accuracy of the model. 398 

Table 5. Model Evaluation (Model 1: Multivariate normal distribution model; Model 2: 399 

Conditional distribution model; Model 3: Conditional distribution model with HI) 400 

Model type Lead time M 
SPI time scale 

1 3 6 12 

Model 1 

1 0.36 0.36 0.28 0.22 

2 0.11 0.35 0.27 0.22 

3 0.02 0.34 0.26 0.22 

Model 2 

1 0.69 0.52 / 0.74 

2 0.69 0.47 / 0.67 

3 0.69 0.44 0.39 0.60 
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Model 3 

1 0.72 0.64 0.59 0.71 

2 0.71 0.64 0.59 0.71 

3 0.72 0.64 0.60 0.71 

5  Conclusions 401 

Many studies have pointed out that human activities have a significant impact on 402 

watershed runoff in the Luanhe River Basin. In this paper, three probability models 403 

were constructed to calculate the transition probabilities from current SPI classes or 404 

values to future SRI classes; then, a scoring mechanism was applied to evaluate the 405 

performance of the models. 406 

Under the condition of considering the HI, the calculation results of the drought 407 

transition probability show that when the value of HI is less than 0, human activity 408 

slows the occurrence of hydrological drought and the probability of maintaining 409 

hydrological drought at the normal class peaks. With the increase in the HI value, it is 410 

easier for hydrological droughts to transition to more severe droughts. The calculation 411 

results of Model 1 and Model 2 show that the future hydrological drought classes are 412 

likely to be the same as the meteorological drought classes in the current period. 413 

Finally, a scoring mechanism was applied to the evaluation of the models, and 414 

the forecast results of the three models were evaluated. The results demonstrate that 415 

when the SPI time scale is the same, the scores of Model 1 and Model 2 lower as the 416 

forecast period lengthens. In most cases, Model 2 performs better than Model 1, and 417 

the performance of Model 3 is the most stable of the three models and has the highest 418 

score. In addition, the performance of Model 3 is not affected by the forecasting 419 

period. The conditional probability model considering HI is more suitable for the 420 

Luanhe River basin, where human activities have a high influence. 421 

Although this study has made some progress in the forecasting of hydrological 422 

drought in the changing environment, only one exogenous variable was calculated to 423 

quantify the impact of human activities, and the climate factors can be further 424 

considered in future studies. In addition, HI can be analysed specifically, such as land 425 

use and social economy. 426 
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Limitation: Under changing environmental conditions, the driving factors of drought 427 

can be analysed from the physical mechanism, such as considering the influence of 428 

large-scale climate indices or hydro-meteorological variables, to further improve the 429 

forecasting accuracy of hydrological drought. 430 
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