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Abstract 

Heat waves (HW) and cold waves (CW) can have considerable impact on people. 

Mapping risks of extreme temperature at local scale accounting for the interactions 10 

between hazard, exposure and vulnerability remains a challenging task. In this study, 

we quantify human risks from HW and CW at high resolution for theTrentino-Alto Adige 

region of Italy from 1980 to 2018. We use the Heat Wave Magnitude Index daily 

(HWMId) and a Cold Wave Magnitude Index daily (CWMId) as temperature-based 

indicators and apply a Tweedie zero-inflated distribution to derive hazard intensities and 15 

frequencies. The hazard maps are combined with high-resolution maps of population, 

for which the vulnerability is quantified at community and city level using a set of eight 

socioeconomic indicators. We find a statistically significant increase in HW hazard and 

exposure, with 6.0-times more people exposed to extreme heat after 2000 compared to 

the last two decades of the previous century. CW hazard and exposure remained 20 

stagnant over the studied period in the region. We observe a general trend towards 

increased resilience to extreme temperature spells over the region. In the larger cities of 
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the region, however, we find that vulnerability has increased due to an ageing 

population and more single households. HW risk has risen practically everywhere in the 

region, indicating that the reduction in vulnerability in the smaller communities is 25 

outpaced by the increase in HW hazard. In the large cities, HW risk levels in the 2010s 

are 50% larger compared to the 1980s due to the rise in both hazard and vulnerability. 

Whereas in smaller communities, stagnant CW hazard and declining vulnerability 

results in reduced CW risk levels, the risk level in cities grew by 20% due to the 

increased vulnerability over the study period. The findings of our study are highly 30 

relevant for steering investments in local risk mitigation measures, while the method can 

be applied to other regions that have detailed information on hazard, exposure and 

vulnerability indicators. 

 

1 Introduction 35 

Heat waves (HW) and cold waves (CW) are hazards that affect public health and the 

environment (Gasparrini et al., 2015; Habeeb et al., 2015). With global warming, heat 

and cold wave intensities and durations are expected to change (Perkins-Kirkpatrick 

and Gibson, 2017; Russo et al., 2015; Smid et al., 2019), which could increase the risks 

to society. A recent report showed that in 2018, worldwide 157 million more people were 40 

exposed to HW compared to 2000 (Watts et al., 2018). In Europe, on average 55% of 

the area of Europe was impacted by HW over the last two decades (i.e. with HW events 

in 2003, 2010, 2015, 2018), accounting for GDP losses of 0.3-0.5% when compared to 

0.2% for 1980-2010 (García-León et al., 2021). With regards to CW in Europe, recent 

winters have claimed lives in europe with 790 deaths in 2006 and 549 deaths in 2012 45 
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(Kron et al., 2019). In Italy, HW have had a strong impact on mortality in the past. In 

2003, a 27% mortality increase was reported over August and a 6% increase during the 

summer compared to the 5 previous years (Michelozzi et al., 2005), while in 2015 there 

was a 23% increase in July compared to the 5 previous years (Michelozzi et al., 2016). 

In the Trentino Alto-Adige region (the study region), Conti et al. (2005) showed that for 50 

the large heat wave of 2003, mortality increased by 32% in Trento and 28% in Bolzano 

(the two main cities of the region) compared with the previous year. For Bolzano, 

Papathoma-Köhle et al.(2014) found that higher hospital admissions in the city occurred 

during the 2003 HW when comparing it to other years (2006, 2009), particularly among 

elderly women. The increase in mortality and among the elderly is also found in Italy for 55 

the case of CW, this was the case during the CW of 2012 (de’Donato et al., 2013), with 

notably an increase in mortality of 47% for the timeframe of the cold spell in the city of 

Bolzano. 

The United Nations Office for Disaster Risk Reduction (UNDRR, 2021) and the 

Intergovernmental Panel on Climate change (IPCC, 2014) define risk as a function of 60 

hazard, exposure, and vulnerability. Exposure is defined as people, infrastructure, 

housing, production, and other tangible human assets present in hazard-prone areas. 

Vulnerability is defined as the conditions that define the susceptibility of an individual, 

infrastructure or a community to be impacted by the hazard. To successfully quantify 

risk, one must be able to measure all three components: hazard, exposure and 65 

vulnerability. 

Several temperature hazard-exposure studies have been conducted at global (e.g. 

Chambers, 2020; Dosio et al., 2018), continental (eg. King et al., 2018), or city scale 
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(e.g. Smid et al., 2019). Most studies focus on human exposure (eg. Chambers, 2020; 

Tuholske et al., 2021), but also the exposure of land area (e.g., Ceccherini et al., 2017; 70 

Oldenborgh et al., 2019; Russo et al., 2016).Most of these studies have found 

increasing trends in exposure to HW and for the studies that also analyzed CW, found 

decreasing trends for them. 

Typically, these previous studies on the topic, have however relied on using qualitative 

numerical thresholds to define the severity of the events and define exposure according 75 

these thresholds. However, HW and CW hazards can also be defined by their return 

period but fitting extreme value distributions to define these is difficult due to the 

absence of events (zero values) for multiple years in their time series; Generalised 

extreme value distribution (GEV) and non-stationary-techniques (Dosio et al., 2018; 

Kishore et al., 2022; Russo et al., 2019) have enabled to estimate HW and CW’s return 80 

periods, but both approaches circumvent this absence rather than considering the zero 

values directly. We therefore use for the first time the zero-inflated distribution form of 

Tweedie (Jorgensen, 1987; Tweedie, 1984) to estimate HW and CW frequency of 

occurrence, which enables for the direct fitting of zero values. The Tweedie distribution 

has been used mostly for the purpose of insurance claims analysis, but has also seldom 85 

been applied in the field of natural hazards, such as a zero-inflated Poisson distribution 

to model heat wave mortality (Kim et al., 2017), to analyze droughts (Tijdeman et al., 

2020), or for rainfall analysis (Dunn, 2004; Hasan and Dunn, 2011).  

To perform a risk analysis, one must know the vulnerability to the hazard. To this end, 

the vulnerabilities to temperature extremes are complex to quantify. Recent studies 90 

have developed temperature-mortality relationships (e.g., Gasparrini et al., 2015) at the 
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scale of cities. However, this requires that the city has substantial population, and 

sufficiently long records of mortality and temperature. HW and CW vulnerability can also 

be approximated by combination of several socioeconomic indicators. At the community 

level in the United States, factors such as social isolation, presence of air conditioning, 95 

proportion of elderly and proportion of diabetics in the population were found to be key 

for human vulnerability to temperature extremes (Reid et al., 2009). In Korea at the 

county level, Kim et al. (2017) found that elderly living alone, agricultural workers and 

unemployed affect vulnerability to heat wave days and tropical nights. Temperature 

vulnerability has also been appraised at city scale for HW mortality (Ellena et al., 2020) 100 

and at regional scale (López-Bueno et al., 2021) for CW mortality. Karanja & Kiage 

(2021) and Cheng et al. (2021) provide an overview of the different types of indicators 

used in the literature to characterize vulnerability. The indicators can be diverse, ranging 

from population structure (e.g. age and health characteristics), social status, economic 

conditions, community (cultural) group characteristics, and household physical 105 

characteristics. Work on social vulnerability in Italy has used a diversity of indicators 

found in the census records (Frigerio and De Amicis, 2016). Other analyses conducted 

for Italian cities focused on neighborhood and building levels to produce HW 

vulnerabilities for Milano (Bhattacharjee et al., 2019), and HW vulnerability and risks for 

Padua (Maragno et al., 2020). 110 

The risks of HW and CW are often assessed using different methodologies depending 

on the objectives of the study. On a global scale, Russo et al (2019), establish a risk 

index using the probabilities of HW as hazard, where the exposure is the normalized 

population and vulnerability is based on a socio-economic indicator (human 
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development index). For Italy, Morabito et al (2015) conducted a risk analysis of heat on 115 

elderly in the major cities, using the elderly population as the only vulnerability factor 

and summer average temperatures for the period 2000-2013 to quantify the hazards. 

The Trentino Alto-Adige region of Italy is composed of two provinces (Trento and 

Bolzano). It is a region of interest to study HW and CW risks due to an expected 

increase in the number and percentage of elderly people (Papathoma-Köhle et al., 120 

2014), which in combination with increasing temperature extremes in view of climate 

change could increase human risks. Few studies have attempted to quantify HW and 

CW impacts for the cities in the region (e.g. Trento and Bolzano),  such as Conti et al. 

(2005) as part of their studies on Italian cities and Papathoma-Köhle et al. (2014) who 

studied impacts in Bolzano. The findings of these study are limited for two reasons: they 125 

use few samples per day (Papathoma-Köhle et al., 2014) and short timeframes, e.g., 

comparing only 2002 to 2003 in Conti et al. (2005) and considering only 4 years of data 

in Papathoma-Köhle et al. (2014). However, conducting spatial-temporal risks analyses 

of HW and CW are typically not done over a large timeframe at such a detailed location 

scale (city-level); yet these are important to forge a better understanding of the 130 

spatiotemporal human risks and their underlying drivers which are critical to plan risk-

mitigation measures at the local level. 

The aim of this article is to solve some of these previous limitations while quantifying 

heat and cold waves hazards, the human exposure, vulnerability, and risk for the at the 

high-definition city scale for the Trentino-Alto-Adige region over the period 1980-2018. 135 

The quantification of the hazard and its return period will be performed using the 

Heatwave magnitude index HWMId and its cold wave counterpart CWMId (Russo et al., 
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2014, 2015)  and using the novel method of fitting the Tweedie distribution to help us 

estimate the exposure and risk. 

2 Study Area  140 

The Trentino Alto-Adige region ( 

Figure 1: The Trentino Alto-Adige region) is a mountainous region in northern Italy, 

which borders Austria. The elevation of the region varies from 65m for lake Garda to 

3,439m for Lagaunspitze. It is composed of two provinces (Province of Trento and 

Province of Bolzano). Its most populous cities are the two provincial capitals -- Trento 145 

and Bolzano -- as well as minor cities Merano and Rovereto (both have a population of 

over 30000). The main rivers in the region are the Adige, and its tributary, the Isarco. 

Due to its diverse geography, the climate is also diverse ranging from Subcontinental to 

Alpine on the Koppen classification (Fratianni and Acquaotta, 2017).  
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 150 

Figure 1: The Trentino Alto-Adige region 

3 Methodology 

3.1 Temperature data 

In order to quantify the HW and CW hazard, we used the freely available spatial 

temporal temperature dataset by Crespi et al. (2021). It consists of gridded daily 155 

temperatures for the entire Trentino Alto-Adige region covering the period of 1980-2018 

at a resolution of 250 meters. The dataset is obtained with the anomaly-based approach 

taking into account elevation of the local station observations; the dataset has 

undergone a quality analysis and control against the stations’ observations (Crespi et al. 

2021). 160 
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3.2 Hazard quantification, fitting and sizing 

To quantify the hazard, we used HWMId (Russo et al., 2015) and CWMId (Smid et al., 

2019).  

For HWMId, from the temperature time series in each grid cell, we select the days 

where the temperature is above the 90th percentile of the dataset Ad (Equation 1): 165 

Ad = ⋃ ⋃ Ty,i

d+15

i=d−15

2010

y=1981

 

(1) 

where y corresponds to the year, i to the day, and Ty,i correspond to the temperature of 

the corresponding year and day and the dataset Ad corresponds to the temperature 

data for 30 years, centered on a 31-day window for the day in question. Three 170 

consecutive days above this threshold correspond to a HW. 

Then the magnitude of the HW is calculated by Equation 2: 

HMd(Td) =  {

Td − T30y25p

T30y75p − T30y25p
        if  Td > T30y25p

0                          if  Td ≤  T30y25p

 

(2) 

where HMd(Td) corresponds to the heat daily magnitude, Td the temperature of the day 175 

in question and T30y25p and T30y75p correspond to the 25th and 75th percentile temperature 

for the 30 years used as a reference. The highest cumulative magnitude is retained for 

each year and only consecutive days above 0 are considered when calculating it. 
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For CWMId, CW are defined as three consecutive days with daily temperatures below 

the 10th percentile of Ad. The magnitude is then redefined to adapt to low temperatures 180 

as in equation 3: 

CMd(Td) =  {

Td − T30y75p

T30y75p − T30y25p
        if  Td <  T30y75p

0                          if  Td >   T30y75p

 

(3) 

where CMd(Td) corresponds to the cold daily magnitude, Td the temperature of the day 

in question and T30y25p and T30y75p correspond to the 25th and 75th percentile temperature 185 

for the 30years used as a reference. Similarly, the lowest cumulative magnitude is 

retained for each year and only consecutive days below 0 are considered when 

calculating it. 

For both the values of HWMId and CWMId to be positive and on the same interval, the 

absolute values of CWMId are retained from this point on. 190 

The values can then be modelled with a specific probability distribution to estimate the 

return periods of HW and CW. Considering that HWMId and CWMId are both defined in 

[0,+Inf[ , we use the Tweedie distribution (Jorgensen, 1987; Tweedie, 1984), a 

distribution that can act as zero-inflated, thus accounting for the presence of zeros 

directly. The Tweedie distribution is an exponential dispersion model which has a 195 

probability density function of the form (equation 4): 

𝑓(𝑦, 𝜃, Φ) = 𝑎(𝑦, Φ) ∗ exp [
1

Φ
{𝑦𝜃 − 𝜅(𝜃)}]   

(4) 
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where Φ corresponds to its dispersion parameter that is positive, 𝜃 to its canonical 

parameter, and  𝜅(𝜃) the cumulant function. The function a(y, Φ) generally cannot be 200 

written in closed form. The cumulant function is related to the mean (μy = 𝜅′(𝜃)) and 

variance ( σy =  Φ ∗  𝜅′′(𝜃)) and in the case of a Tweedie distribution the variance has a 

power relationship with the mean (Equation 5): 

σy = Φ ∗ (μy)p 

(5) 205 

where p corresponds to the power parameter that is positive. 

Depending on the value of p, the distribution will behave differently. In the case where p 

is between 1 and 2, it belongs to the compound Poisson-gamma distribution with a 

mass at zero, while other p values can make the distribution correspond to a normal, 

Poisson, or gamma distribution, among others. The use of the Tweedie distribution is 210 

retained as it permits to consider the zero values, while also considering other 

distributions should there be an absence of zero values. 

We fit the distribution to the previously found HWMId and CWMId values with the help 

of the Tweedie R package (Dunn, 2021). An example of the fitted distribution for 

Bolzano and Trento can be found in the supplementary material (Figure S – 1). It is also 215 

possible to use the same package to estimate a quantile using the fitted distribution. 

This enables to estimate specific return levels for return periods T for both HWMId and 

CWMId. For this study two return levels are retained, 5 years (HW5Y for HW, and 

CW5Y for CW) and 10 years (HW10Y for HW and CW10Y for CW). 
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For statistical fit verification, the Kolmogorov–Smirnov (KS) test on two samples is used 220 

with one sample being the found HWMId or CWMId values, and the other sample being 

a randomly generated sample using the fitted distribution value. This goodness of fit of 

test is one of the most commonly used in the literature for the case of the corresponding 

zero inflated Tweedie distribution (Goffard et al., 2019; Johnson et al., 2015; Rahma 

and Kokonendji, 2021). The null hypothesis of this test is that the two sample belong to 225 

the same distribution. If the P-value for this test is below the significance level α of 5%, 

the null hypothesis is rejected, otherwise we cannot reject the null hypothesis at this 

significance level. 

3.3 Exposure quantification 

To quantify the population exposed to HW and CW we use time-varying population  230 

from the Global Human Settlement Layer (GHSL) (Schiavina et al., 2019). The data is 

available at a resolution of 250m for the following years: 1975, 1990, 2000 and 2015. 

Both this data, and the population count done by the Italian national statistical institute, 

indicate a growing population throughout the region (overall 23%). Following recent 

studies (King and Harrington, 2018; Russo et al., 2019), for each year of the time period 235 

a pixel is considered exposed if the HW/CW hazard (measured by HWMId or CWMId) is 

greater than zero or a specified return level value. For that year, the population exposed 

in the region is the sum of all exposed pixels in the region. The percentage of population 

exposed is obtained dividing the population exposed by the total population in the 

region at that time. The results for the percentage of population exposed are calculated 240 

on annual basis over the study period (1980-2018).  
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3.4 Vulnerability quantification 

We express HW and CW vulnerability using eight indicators as in Ho et al. (2018), who 

quantify community vulnerability to HW and CW events based on extreme age, 

household physical characteristics, social status and economic conditions. The list of 245 

variables considered are reported in Table 1. 
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Table 1: Vulnerability indicators used (after Ho et al., 2018) 

Category Indicator Definition 

Extreme Age 

Older Age Population over 55 years old 

Infants Population under 5 years old 

Household physical 

characteristics 

People in old houses 
Number of household living in housing built prior to 

1960 

People in poor living 

condition 
Population living in at risk housing 

Social Status 

Low education population Population with low education (no diploma or degree) 

People living alone Number of single-person households 

Economic Status 

Low-income population Population with low income 

Unemployed Unemployment rate 

 

The spatially varied indicators are freely available in the census records (i.e. sub-city 250 

level) from the Italian national statistical institute (Istat.it - 15° Censimento della 

popolazione e delle abitazioni 2011, 2021) for three different years (1991, 2001 2011). 

Given the data time constraints, vulnerability is thus derived for those years only.  

The methodology to quantify vulnerability uses the equal weight analysis (EWA) with the 

indicators being standardized between 0 and 1 prior to aggregation according to Liu et 255 

al, (2020). 

https://doi.org/10.5194/nhess-2022-241
Preprint. Discussion started: 27 September 2022
c© Author(s) 2022. CC BY 4.0 License.



15 

3.5 Risk Quantification 

Risk here is assumed to be a function of hazard, exposure and vulnerability, which are 

multiplied to quantify risk (UNDRR, 2021). This is one of the two most commonly used 

approaches in literature (Dong et al., 2020; Quader et al., 2017; Russo et al., 2019), 260 

with the other approach being the addition of the different risk components. 

Multiplication when compared to addition is found to better highlight the complex 

relationship between the different components, as the multiplication of the multivariate 

probabilities of independent variables follow a product law (El-Zein and Tonmoy, 2015; 

Estoque et al., 2020; Peng et al., 2017). 265 

The risk is calculated as per Dong et al. (2020) (equation 6): 

Risk =  √Hazard ∗  Exposure ∗  Vulnerability3
 

(6) 

with each of the risk components having a value in [0,1]. Hazard is the probability of 

HWMId/CWMId derived from the Tweedie distribution. Exposure is the standardized 270 

population density. The vulnerability derived from standardized variables is also 

between [0,1]. The resulting risk is therefore also bound by 0 and 1, with 0 

corresponding to the lowest level of risk and 1 to the highest level of risk. 

On a temporal scale, the yearly risk calculation is done using the closest records of 

vulnerability and exposure to the year in question. This means, that for the 2003 HW 275 

risk, the 2003 HW hazard probabilities are combined with 2001 vulnerabilities (the 

closest census available year) and 2000 population (the closest population map 
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available). The risk is calculated at city level because vulnerability is not available at a 

higher resolution.  

4 Results and discussions 280 

For HW hazard intensities, the most notable year on record (1980-2018) in the region is 

2003, where HWMId reached a pixel maximum of 30.4 and a median value of 16.9 over 

the area (Figure S – 2 in the supplementary material). The second most intense HW 

occurred in 2015 and the third most intense in 1983. This aligns well with Russo et al. 

(2015), who have found very high HW in 1983, 2003 and 2015 in their analysis of the 285 

ten greatest HW in Europe since 1950. From the six years with the highest median 

HWMId between 1980 and 2018, four occurred in the last decade (2010, 2013, 2015, 

2017), suggesting that climate change is already increasing the frequency of heat 

waves in the Trentino Alto-Adige region. For CW, only 1985 stands out, with a 

maximum and median CWMId of 27 and 14.5, respectively, or nearly three times more 290 

than that of any other year on record. The second strongest cold wave occurred in 

2012. This is in agreement with Jarzyna & Krzyżewska, (2021), who have found cold 

spells in those years (1985 and 2012) using different methodologies for other locations 

throughout Europe. 

A KS test (Figure S – 3 in the supplementary material) shows that the Tweedie 295 

distribution provides a good fit for both CWMId and HWMId, with power parameter 

values between [1,2] for the entire region. The KS goodness of fit test reveals no 

rejection at a significance level of 5% for any pixel in the region. This permits us to 

estimate return levels for both HW and CW and analyze trends based on them. The 
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return levels for return periods T=5 years (HW5Y, CW5Y) and T=10 years (HW10Y, 300 

CW10Y) for every pixel are shown in Figure S – 4 in the supplementary material.  

Using a Mann-Kendall trend test (Kendall, 1948), statistically significant positive trends 

are found for HW in most pixels of the region (Figure 2). HW with a magnitude larger 

than the 5-year event (HWMId > HW5Y) also show a significant increasing trend over a 

large part of the region. For rarer events; those larger than the 10-year event (HWMId > 305 

HW10Y), we find a statistically significant increase in HW intensity only in a portion of 

the region, mostly in upstream areas in the north but also around Bolzano. In the three 

previous cases, for the rest of the region, the absence of statistical significance does not 

permit us to draw conclusions with regards to the trends. For CWs, we do not find 

statistically significant trends in any part of the region. The locations of presence / 310 

absence of these significant trends are further evidenced using the robust linear model 

https://doi.org/10.5194/nhess-2022-241
Preprint. Discussion started: 27 September 2022
c© Author(s) 2022. CC BY 4.0 License.



18 

((Huber, 2011)) and previously used for HW by (Kishore et al., 2022)), see Figure S – 5 

in the supplementary material. 

 

Figure 2:  Trends in heat waves (HW) and cold waves (CW) using Mann-Kendall’s test 315 
based on yearly HWMId and CWMId magnitudes from 1980 to 2018 

 

The significant increasing trend for HW that we find are consistent with literature that 

reported increasing HW trends in Europe over the last decades (Perkins-Kirkpatrick and 

Lewis, 2020; Piticar et al., 2018; Serrano-Notivoli et al., 2022; Spinoni et al., 2015; 320 

Zhang et al., 2020). The lack of trend in CW is also in agreement with previous research 

that could not detect any trend in extreme cold spells (Jarzyna and Krzyżewska, 2021; 

Piticar et al., 2018). 
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In total, between 1980 and 2000, in the study region, about 900 000 people were 

exposed to a 5-year HW, 250 000 to 10 HW year heatwave, 3million to 5-year CW and 325 

1.9 million to 10-year CW. Between 2000 and 2018, the values increased to over 

5millions for 5-year HW and to about 2.5million for 10-year HW but decreased to 2.4 

million for 5-year CW and to 500 000 for 10-year CW. However, due to the importance 

of the demographic change in the region (increase of population by 23%), it is important 

to study the percent of population impacted by these different events to understand 330 

whether these changes are due to demographic changes or the frequency of events. 

Figure 3 presents the share of the population exposed to HW and CW intensities larger 

than those of 5-year and 10-year events over the period 1980 to 2018 on a yearly basis. 

It shows that a higher share of the population was exposed to HW more frequently after 

2000 compared to the first two decades (80s and 90s). For both return periods, the 335 

Mann-Kendall test shows a significant increase in population exposed to HW over the 

region (Table T - 1 in the supplementary material). We did not find a trend in human 

exposure to CW in the region. Other statistical tests (Sen’s slope and linear model) 

confirm these trends. 

 340 
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Figure 3: Percentage of population exposed to heat wave and cold wave events 

The vulnerability for the region (Figure 4) decreases in time, with an average value of 

0.42 in 1991, 0.32 in 2001 and 0.27 in 2011. The main reason for the decrease in 

vulnerability at regional scale is the improvement in overall education level and housing 345 

conditions (i.e., fewer people living in old and poor housing conditions). However, by 

contrast, for the larger cities (those with a population over 30,000: Merano, Bolzano, 

Trento, Rovereto), the vulnerability has increased from 0.28 in 1991 to 0.30 in 2001 and 

0.32 in 2011, averaged for those cities. The increase in these cities’ vulnerability relates 

to the extreme age indicator and social status, with a growing portion of the population 350 

above 55 and an increase in the number of isolated households (i.e., people living 

alone). These two factors (elderly population and isolation) have also been found as 

some of the main factors for vulnerabilities in other regions of Europe (López-Bueno et 

al., 2021; Poumadère et al., 2005).  

 355 
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Figure 4: Calculated vulnerability index for the three years of the census records (1991, 
2001, 2011) 

 

The results of our vulnerability analysis somehow contrast with the findings of Frigerio & 360 

De Amicis (2016), who report increasing vulnerabilities for municipalities of the Bolzano 

province and slightly decreasing to steady vulnerabilities in the Trento province. This 

likely relates to the use of different indicators (employment, social-economic status, 

family structures, race/ethnicity, and population growth) and a different methodology for 

calculating the vulnerability. Notably in Frigerio & De Amicis (2016) the normalization of 365 

indicators is applied across all of Italy as opposed to only over the Trentino Alto-Adige 

region in this study, which may better characterize local vulnerability. 
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Figure 5 shows the trend in risk for the whole region over the period 1980-2018. The 

Mann-Kendall test shows a significant increasing trend in HW risk in most of the area, 

with a decreasing significant risk in some isolated parts of the region of study. While the 370 

risk from CW has decreased over most of the region since the 1980s, in the major cities 

(Trento, Rovereto, Bolzano and Merano), we found an increase in CW risk. The 

locations of presence/absence of these significant trends are further evidenced using 

the robust linear model (see Figure S – 6 in the supplementary material). 

Decadal means of the annual regional risk values confirm these trends, with the HW risk 375 

increasing from 0.113 in the 1980s to 0.126 for the 2010s, while CW risk has decreased 

from 0.126 in the 1980s to 0.117 in the 2010s. Decadal means of HW risk for the large 

cities show a stronger trend, with the large-city average risk value increasing from 0.263 

to 0.386, or nearly a 50% increase in risk value compared to a 12% increase in HW risk 

for the whole region. Decadal means of CW risk for the big cities increased from 0.300 380 

in the 1980s to 0.359 in the 2010s, or a 20% increase in CW risk compared to a 

reduction of 7% for the whole region. Similar finding are found with regards to the 

increase in HW risks by (Smid et al., 2019)), indicating an increase in the future for 

European capitals; however the same study highlights a future decrease in CW risk for 

these same cities. This is in contrast with the main cities of our study, where yet in the 385 

last four decades, CW risks are still found to be increasing. This could perhaps also be 

the case for other cities in mountainous regions such as highlighted by the case of 

Madrid in (López-Bueno et al., 2021) where its urban area was found to be the most at 

risk of CW as opposed to its rural area. 
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It is further noted that the highest annual risk levels for both HW and CW coincide with 390 

the years with the highest hazard intensity (2003 for HW and 1985 for CW, see Figure S 

– 7 in the supplementary material), indicating that the hazard is the triggering factor for 

risk. However, risks are further modulated by exposure and vulnerability. The risks are 

found to be the highest in the largest cities (Bolzano, Merano, Rovereto and Trento). 

This can be explained in part by the high population density in those cities, which is 395 

significantly larger than elsewhere in the region. Another factor is the increasing 

vulnerabilities in these cities relating to an increase in elderly and single households as 

previously mentioned. 

 

Figure 5: Trends of heat waves and cold waves risks via the Mann-Kendall test. 400 
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5 Summary and conclusions 

Our study is one of the first to calculate risks of HW and CW and their trends at the 

community and city level for a region over 39 years. This is done by first mapping the 

historical hazard of extreme temperature events using the HWMId and CWMId 405 

indicators, we mapped at high resolution (250 m) in the Trentino Alto-Adige region for 

the period 1980-2018. The hazards are then sized using the novel method of fitting a 

Tweedie distribution to the HWMId and CWMId values while accounting directly for zero 

values in their values time series. Exposure is be found using the different fitted hazard 

levels. Vulnerability is calculated using 8 different socioeconomic indicators. Using all 410 

these findings, the spatio-temporal HW / CW risk over the time period and at the city 

level is calculated. 

Over the past 4 decades, HW have occurred more frequently and have become more 

intense, resulting in an increasing exposure of people to extreme heat spells. For CW, 

we did not find a trend in hazard frequency and intensity and a fairly constant exposure 415 

to extreme cold. In general, vulnerability is decreasing over time in the Trentino Alto-

Adige region. However, in the larger cities of the region, vulnerability is increasing due 

to an ageing population and more single households. It should be noted that the 

socioeconomic indicators of vulnerability are only available for three points in time, 

which does not allow to do a proper trend analysis of vulnerability. With regards to risk, 420 

for smaller communities in the region in general, a steady but limited increase (+ 10%) 

in HW risk and a decrease (- 9%) in CW risk are found. However, in the larger cities of 

the region, a much stronger rise in HW risk (+50%) and an increase of around 20% in 

CW risk occur. This is linked with demographic changes and the social status of city 
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dwellers, with more people and an ageing population living in cities and an increase in 425 

the number of people living alone.  

The findings of this work shows that municipalities and cities in the Trentino Alto-Adige 

region, but likely also in many other regions, will be exposed especially to more frequent 

and intense heat, while potentially still experiencing the same levels of cold wave 

hazard. Our detailed analysis shows where to prioritize risk mitigation measures to 430 

reduce the hazard and vulnerability. Measures to mitigate heat in cities include, for 

example, greening of cities (Alsaad et al., 2022; Taleghani et al., 2019) , while 

vulnerability could be decreased by improving the social and living conditions of 

citizens, especially of the elderly who are more vulnerable (Orlando et al., 2021; 

Poumadère et al., 2005; Vu et al., 2019), particularly in the cities of this region where 435 

they are becoming more numerous. If detailed data are available for temperature, 

exposure and vulnerability indicators, the methodology presented here could be applied 

to other regions in- and outside Italy to help steer local climate adaptation investments 

at the city level. 

 440 

Code availability 

The code used for calculating HWMId and CWMId is free and open source, it is the 

extRemes package of R which is findable here: https://cran.r-

project.org/package=extRemes.  
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Data availability 445 

All data used in this study is available freely and openly online. The temperature 

data(Crespi et al., 2021) is available at the following location: 

https://doi.pangaea.de/10.1594/PANGAEA.924502. The population data from the GHSL 

is available at this location: https://data.jrc.ec.europa.eu/collection/ghsl. The indicator 

data used to calculate the vulnerable is available from ISTAT: https://www.istat.it/en/. 450 
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