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Abstract

Heat waves (HWs) and cold waves (CWSs) can have considerable impact on people.
Mapping risks of extreme temperature at local scale, accounting for the interactions
between hazard, exposure and vulnerability, remains a challenging task. In this study,
we quantify risks from HWs and CWs for the Trentino-Alto Adige region of Italy from
1980 to 2018 at high spatial resolution. We use the Heat Wave Magnitude Index daily
(HWMId) and the Cold Wave Magnitude Index daily (CWMId) as the hazard indicators.
To obtain HWs and CWs risk maps we combined: i) occurrence probability maps of the
hazard obtained using the zero-inflated Tweedie distribution (accounting directly for the
absence of events for certain years); ii) normalized population density maps; and iii)
normalized vulnerability maps based on eight socioeconomic indicators. The
methodology allowed us to disentangle the contributions of each component of the risk
relative to total change in risk. We find a statistically significant increase in HWs hazard

and exposure while CWs hazard remained stagnant in the analyzed area over the study
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period. A decrease in vulnerability to extreme temperature spells is observed trough the
region except in the larger cities where vulnerability increased. HWs risk increased in
40% of the region, with the increase being greatest in highly populated areas. Stagnant
CWs hazard and declining vulnerability result in reduced CWs risk levels overall, except
for the four main cities where increased vulnerability and exposure increased risk levels.
These findings can help to steer investments in local risk mitigation, and this method

can potentially be applied to other regions where there is sufficient detailed data.

1 Introduction

Heat waves (HWs) and cold waves (CWs) are hazards that affect public health and the
environment (Gasparrini et al., 2015; Habeeb et al., 2015). With global warming, HW
intensities and durations are expected to increase while those of CWs are expected to
decrease (Perkins-Kirkpatrick and Gibson, 2017; Russo et al., 2015; Smid et al., 2019),
changing the risks they pose to society. A recent report showed that in the year 2018
worldwide, 157 million more people were exposed to HWs compared to the year 2000
(Watts et al., 2018). In Europe, recent high intensity HW events (2003 and 2018) --
where HWs are defined as 3 days over 90" temperature percentile of the 1980-2010 --
have impacted as much as 55% of its area (Garcia-Leon et al., 2021). In Italy, HWSs had
a strong impact on mortality. For example, in 2003, a 27% mortality increase was
reported over August compared to August 2002; there was also a 23% increase in July
2015 compared to the same month for the 5 previous years (Michelozzi et al., 2005,
2016). In Trentino Alto-Adige (our study region), Conti et al. (2005) showed that the
large HW of 2003, compared to the previous year, increased mortality by 32% in Trento

and 28% in Bolzano (the region’s two main cities). In the city of Bolzano, it was found
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that higher hospital admissions occurred during HW events, particularly among elderly
women (Papathoma-Kdohle et al., 2014). With regards to CWs in Europe, recent winters
have claimed lives with 790 deaths in 2006, and 549 deaths in 2012 (Kron et al., 2019).
In Italy, de’Donato et al., (2013) report an increase in mortality (47%) for the timeframe

of the 2012 CW in the city of Bolzano compared to the 4 previous winters (2008-2011).

HWs and CWs events clearly drive risk but how do we define this risk? The United
Nations Office for Disaster Risk Reduction (UNDRR, 2021) and the Intergovernmental
Panel on Climate change (IPCC, 2014) define risk as a function of hazard, exposure,
and vulnerability. Hazard is defined as a process, phenomenon or human activity that
may cause loss of life, injury or other health impacts, property damage, social and
economic disruption or environmental degradation and hazards being characterized by
location, intensity or magnitude, frequency, and probability. Exposure is defined as
people, infrastructure, housing, production, and other tangible human assets present in
hazard-prone areas. Vulnerability is defined as the conditions that define the
susceptibility of an individual, infrastructure, or a community to be impacted by the
hazard. To successfully quantify risk, one must measure all three components: hazard,

exposure, and vulnerability.

With regard to temperature-related hazard and exposure, several studies have been
conducted at global-scale (e.g. Chambers, 2020; Dosio et al., 2018), continental (eg.
King et al., 2018), and at city-scale (e.g. Smid et al., 2019). Most studies focus on
human exposure (eg. Chambers, 2020; Tuholske et al., 2021) and on the exposure of
different land areas (e.g., Ceccherini et al., 2017; Oldenborgh et al., 2019; Russo et al.,

2016). These studies find increasing trends in HWs (Chambers, 2020; Dosio et al.,
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2018) and decreasing trends in CWs in their period of analysis (Oldenborgh et al., 2019,

Smid et al., 2019).

Studies on HWs and CWs typically have used subjective numerical thresholds, on the
indicator to define severity and exposure to the hazards (e.g. O<HWMId<3,
3<HWMId<6, 6<HWMId<9). However, extreme events are usually defined by their
return periods. In the case of HWs and CWs, fitting extreme value distributions to define
the return periods is difficult due to the possible absence of events in the analyzed time
frame (i.e. zero values, in the case where there are no HWs/CWs in a given year).
Generalized extreme value distribution (GEV) and non-stationary-techniques (Dosio et
al., 2018; Kishore et al., 2022; Russo et al., 2019) have enabled estimation of HWs and
CWs’ return periods, but neither approach explicitly accounts for a zero presence in an

analyzed time series.

In this study, for the first time, we use a distribution allowing for the direct fitting of zero-
values for extremes (years with no event): the zero-inflated distribution of Tweedie
families (Jorgensen, 1987; Tweedie, 1984). This distribution is also used to estimate
HWs and CWs frequency of occurrence. The Tweedie distribution has been used
mostly for the purpose of insurance claims analysis. It has seldom been applied in the
field of natural hazards, such as HWs mortality (Kim et al., 2017), droughts (Tijdeman et
al., 2020), or rainfall analysis (Dunn, 2004; Hasan and Dunn, 2011). The main
advantage of the Tweedie distribution is the possibility of considering a range of
distributions to describe continuous and semi-continuous domains; these include:
normal; Gamma, Poisson; Compound Gamma-Poisson; and Inverse Gaussian (Bonat

and Kokonendji, 2017; Rahma and Kokonendiji, 2021; Shono, 2008; Temple, 2018).
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Moreover, for some of these distributions (i.e. Poisson mixtures of gamma distributions),
the Tweedie distribution approach explicitly enables the fitting of zero-inflated data. The
distribution’s main limitation is the complex distribution’s fitting methodology and the
difficulties in obtaining relevant information criteria, such as the Akaike’s information
criterion (Shono, 2008) The implication of these limitations are that the ’fitting’ of the
Tweedie distribution is computationally intensive and that it is difficult to compare its

goodness of fit to other distribution via the information criteria.

To perform any risk analysis, vulnerability to the hazard must be quantified. HW and
CW vulnerabilities can be approximated though the combinations of several
socioeconomic indicators. Cheng et al. (2021) provide an overview of the different types
of indicators used in the literature to quantify vulnerability. The indicators can be
diverse, ranging from population structure (e.g., age and health characteristics), social
status, economic conditions, community (cultural) group characteristics, and household
physical characteristics. At the community level in the United States, indicators such as
social isolation, presence of air conditioning, proportion of elderly and proportion of
diabetics in the population have been found to be key for human vulnerability to
temperature extremes (Reid et al., 2009). At the national level in Korea, Kim et al.
(2017) found that elderly living alone, agricultural workers and unemployed are the main
indicators for vulnerability to heat wave days and tropical nights. Vulnerability indicators,
in combination with temperature-mortality relationships, have also been appraised at
city scale for HWs (Ellena et al., 2020) and at regional scale (LOpez-Bueno et al., 2021)
for CWs (Karanja & Kiage 2021). A study on social vulnerability to natural hazards in

Italy (Frigerio and De Amicis, 2016) used 7 indicators (i.e. family structure, education,



115 socioeconomic status, employment, age, race and ethnicity and population growth)

derived from the freely-available census records.

HWs and CWs risks overall are often assessed using different methodologies
depending on the objectives of the study. On a global scale, Russo et al., (2019)
establish a risk index using the probabilities of HWs as hazard, where the exposure is
120 the population density normalized in [0;1] based on its maximum, minimum values;
while vulnerability is based on a socio-economic indicator (human development index).
For Italy, Morabito et al (2015) conducted a risk analysis of heat on elderly in the major
cities, using the elderly population as the only vulnerability factor and summer average

temperatures for the period 2000-2013 to quantify hazards.

125 In this study, we assess risk associated with extreme temperatures in the Italian
Trentino Alto-Adige region. This is a relevant social and scientific objective given: i) the
increase in the percentage of elderly people (i.e. vulnerability change) (Papathoma-
Kohle et al., 2014) and ii) changing temperature extremes in view of climate change (i.e.
changing hazard). Few studies have attempted to quantify HWs and CWs impacts for

130 the cities of Trento and Bolzano (main cities of the region), including Conti et al. (2005)
as part of their studies on lItalian cities and Papathoma-Kdhle et al. (2014) who studied
impacts in Bolzano. The former compared mortality data of the year 2003, when there
was a very intense HW, to the year 2002, finding an increase of mortality in both Trento
and Bolzano. The latter compared hospital admissions due to HWs in summer months

135 of three years (2003, 2006, and 2009) and found heat health-related issues driving

admissions among elderly women.
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To understand the evolution of HWs and CWs human risk and to plan adequate risk-
mitigation measures in the region of study, the risk and its change at high spatial and
temporal resolution need to be analyzed. The aim of this research is to improve
guantification of HW and CW hazards, human exposure, vulnerabilities, over the period
1980-2018, for the Trentino-Alto-Adige region to better assess related risks at high-

definition (i.e. city-scale). The goals for this paper are therefore as follows:

1) Quantify HWs and CWs hazards and their return level at a very high spatial
resolution (250m) by combining for the first time i) the indicators proposed (HWMId,
CWMId) by Russo et al., (2015) and Smid et al., (2019), together with ii) the Tweedie

distribution;

2) Quantify human exposures and vulnerabilities to HWs and CWs and their evolution

over time for the Trentino-Alto-Adige region;

3) Quantify HW and CW risks across the region and understand their main drivers,

disentangling how their individual components drive these risks over time.

2 Study Area

The Trentino Alto-Adige region (Figure 1) is a mountainous region in northern lItaly,
which borders Austria. The elevation of the region varies from 65m for lake Garda to
3,905m for the Ortler. It is composed of two provinces (Province of Trento and Province
of Bolzano). Its most populous cities (population for 2022 in parenthesis) are the two
provincial capitals, Trento (118509) and Bolzano (107025), as well as minor cities such
as Merano (40994) and Rovereto (39819). The main rivers in the region are the Adige,

and its tributary, the Isarco. Due to its diverse geography, the climate is also diverse,
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ranging from Subcontinental to Alpine on the Koppen classification (Fratianni and

Acquaotta, 2017).

D Cities with
pop > 30000

B Lakes
Rivers
10 20 30km  Flevation (m)
T — 3,704
61

Figure 1: The Trentino Alto-Adige region and its most populated cities (Trento, Bolzano,

Rovereto and Merano); the colors indicating the elevations, river network, and lakes.

3 Methodology

3.1 Temperature data

In order to quantify the HWs and CW hazard, we used the freely available spatial
temporal temperature dataset by Crespi et al. (2021). It consists of gridded daily
temperatures for the entire Trentino Alto-Adige region covering the period of 1980-2018

at a resolution of 250 meters. The dataset is based on more than 200 station’s daily
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records that have been quality controlled and homogenized. The interpolation method is
based on a combination of 30-year temperature climatology (1981-2010), daily
anomalies and accounts explicitly for topographic features (i.e. elevation, slope) that are
crucial in orographically complex areas like the Trentino Alto-Adige region. The leave
one out cross validation presented in Crespi et al. (2021) finds a mean correlation
coefficient that is higher than 0.8 and mean absolute errors of around 1.5 degree

Celsius (on average across months and stations used for the interpolation).

3.2 Hazard quantification and distribution fitting

3.2.1 Hazard quantification

To quantify the hazard, we used the HWMId (Russo et al., 2015) and the CWMId (Smid
et al., 2019). These indices represent a way of measuring extreme temperature events
while considering their durations, intensities, and accounting for site-specific historical

climatology (30years).

According to Russo et al. (2015), HWMId is defined as the maximum magnitude of the
HWs in a year. A HW occurs when the air temperature is above a daily threshold for
more than three consecutive days. The threshold is set to the 90" percentile of the
temperature data of the day and the window of 15 days before and after throughout the
reference period 1981-2010. The magnitude of a HW is the sum of the daily heat
magnitude HM, of all the consecutive days composing the HW (Equation 1):

Td - T30y25p

HM4(Ty) = < Tzoy7sp — Tzoy25p
0 if Td < T30y25p

if Tq > T30y25p

(1)
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where HMd(Td) corresponds to the daily heat magnitude, Tqthe temperature of the day
in question and T3oy25p and T3oy7sp correspond to the 25" and 75™ percentile of the
yearly maximum temperature for the 30 years of the reference period (1981-2010). The
interquartile range (IQR, i.e. the difference between the Tzoy7sp and Tsoy2sp percentiles of
the daily temperature) is used as the heatwave magnitude unit and represents a non-
parametric measure of the variability of the temperature timeseries. Therefore, a value
of HMy equals to 3 means that the temperature anomaly on day d with respect to Tsoy2sp
is 3 times the IQR. Finally, for a given year HWMId corresponds to the highest sum of
magnitude (HMd) over the consecutive days composing a heatwave event (with only

days with HMd > 0 considered).

Analogously to the HWMId, CWMId is defined as the minimum magnitude of the CWs in
a year (Smid et al., 2019). A CW occurs when the air temperature is below a daily
threshold for more than three consecutive days. The threshold is set to the 10th
percentile of the temperature data of the day and the window of 15 days before and

after throughout the reference period 1981-2010.
The daily cold magnitude corresponds to (Equation 2):

Td - T30y75p

CMq(Tg) = { Tzoy7sp — Tzoy2sp
0 if Ty > Tyop7sp

(2)

where CMd(Td) corresponds to the cold daily magnitude, T4 the daily temperature and
Taoy2sp and Tsoy7sp correspond to the 25" and 75™ percentile yearly temperature for the

30 years used as a reference. Inversely to HWMId, the lowest cumulative magnitude

10
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sum is retained for each year and with only consecutive days with CMd < 0 considered
to calculate it. CWMId being always < 0, its absolute values are retained for its values to

be on a positive interval (similar to HWMId).

3.2.2 Distribution fitting

The HWMId and CWMId yearly values are fitted with a probability distribution to
estimate their return periods. Considering that HWMId and CWMId are both defined in
[0,+Inf[ , we use the Tweedie distribution (Jorgensen, 1987; Tweedie, 1984), a
distribution that can act as zero-inflated, thus accounting for the presence of zeros
directly. The Tweedie distribution is an exponential dispersion model which has a

probability density function of the form (Equation 3):

1
f(,0,®) =a(y, ) exp 5{y9 —k(0)}

3)

where ® corresponds to its dispersion parameter that is positive, 6 to its canonical
parameter, and x(6) the cumulant function. The function a(y, ®) generally cannot be

written in closed form. The cumulant function is related to the mean (u, = «'(6)) and
variance (o, = ® = k" (6)) and in the case of a Tweedie distribution the variance has a

power relationship with the mean (Equation 4):
Oy = D * (uy)p

(4)

where p corresponds to the power parameter that is positive.

11
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Depending on the value of p, the distribution will behave differently. In the case where p
is between 1 and 2, it belongs to the compound Poisson-gamma distribution with a
mass at zero, while other p values can make the distribution correspond to a normal,
Poisson, or gamma distribution, among others. The use of the Tweedie distribution is
retained, permitting us to consider the zero values, while also considering other

distributions should there be an absence of zero values.

We fit the distribution to the previously found HWMId and CWMId values with the help
of the Tweedie R package (Dunn, 2021). It provides distribution density, distribution
function, quantile function, random generation for the Tweedie distributions. The
Tweedie parameters (i.e. mean, power, and dispersion) have been estimated by the
“tweedie.profile” function (Dunn, 2021) using the maximum likelihood as described by
Dunn and Smyth (2005). An example of the fitted distribution for Bolzano and Trento
can be found in the supplementary material (Figure S1). It is also possible to use the
same package to estimate a quantile using the fitted distribution, permitting us to
estimate specific return levels for return periods T for both HWMId and CWMId. For this
study two return levels are retained, 5 years (HW5Y for HW, and CW5Y for CW) and 10
years (HW10Y for HWs and CW10Y for CW). This choice aims to account for both the
length of the analyzed period (39 years) and the type of hazards we are analyzing (HWs
and CWs usually do not occur every year). Higher return level estimations would be

affected by extrapolation effects and higher uncertainties.

For statistical fit verification, the Kolmogorov—Smirnov (KS) test on two samples is used
with one sample being the HWMId or CWMId values, and the other sample being a

randomly generated sample using the fitted distribution value. This goodness of fit test

12
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is one of the most commonly used in the literature for zero inflated Tweedie distribution
(Goffard et al., 2019; Johnson et al., 2015; Rahma and Kokonendji, 2021). The null
hypothesis of this test is that the two samples belong to the same distribution. If the P-
value for this test is below the significance level a of 5%, the null hypothesis is rejected,

otherwise we cannot reject the null hypothesis at this significance level.

3.3 Exposure quantification

To quantify the population exposed to HWs and CWSs, we use time-varying population
data from the Global Human Settlement Layer (GHSL) (Schiavina et al., 2019). The
population data is available at a resolution of 250m for the following years: 1975, 1990,
2000 and 2015. Both these data, and the population count done by the Italian national
statistical institute, indicate a growing population throughout the region in the period for

which data is available(overall 23%, 1975-2015).

To model more accurately exposure, we created yearly varying population maps for the
period 1980-2018, following the methodology presented in other studies (e.g. Formetta
and Feyen, 2019; Neumayer and Barthel, 2011). We linearly interpolated the data in

time for the period 1980 to 2015 (assuming a constant rate in between available years)

and we used the closest year for the period 2016-2018.

Following recent studies (King and Harrington, 2018; Russo et al., 2019), for each yeatr,
a pixel is considered exposed to HW/CWs hazard (or to a 5 or 10 year return-period
HWs/CWs) if, for that year, the HWMId/CWMId of the pixel is greater than zero (or
greater than the corresponding return level HW5Y/CW5Y or HW10Y/CW10Y,
respectively).This is the exposition factor, and it is a binary value (0 meaning un-

exposed or 1 meaning exposed).

13
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The percentage of population exposed is calculated on annual basis over the study
period (1980-2018) and with the help of population datalinearly interpolated from 1980

to 2018.

Using this population data, the percentage of population exposed is then calculated

using the following equations (Equations 5 and 6):
Population exposed(t) = Z EF; x population;(t)
i

(5)

. Population exposed(t)
Percentage of population exposed (t) =

Total population (t)

(6)

where i corresponds to the pixels, t to the year being analyzed, EF to the exposition

factor mentioned above (binary).

3.4 Vulnerability quantification

We express HWs and CWs vulnerability using eight indicators as in Ho et al. (2018);
they quantify community vulnerability to HWs and CWs events based on extreme age,
household physical characteristics, social status and economic conditions. The list of

variables considered is reported in Table 1.

14



Table 1: Vulnerability indicators used (after Ho et al., 2018)

Category Indicator Definition
Older Age Population over 55 years old
Extreme Age
Infants Population under 5 years old
Percentage of household living in
People in old housing built prior to 1960
Household houses (corresponding to when better
physical insulation started being implemented)

characteristics

People in poor

living condition

Percentage of household living in other
type of housing not meant for

inhabitation (cellar, attics)

Low education

Population with low education (no

population middle-school diploma)
Social Status
People living
Number of single-person households
alone
Low-income Population in a household with children
Economic Status population and no money-earning members
Unemployed Unemployment rate

295

15




The spatially varied indicators are freely available in the census records (i.e. sub-city
level) from the Italian national statistical institute (ISTAT, 2021) for three different years
(1991, 2001 2011). Given the data time constraints, vulnerability is thus derived for

these three years only.

300 The methodology to quantify vulnerability uses the equal weight analysis (EWA, e.g. Liu
et al, 2020). Firstly, the individual indicators are standardized between 0 and 1, prior to
aggregation (their sum); the standardization is done at the city level for the three years

of record (1991, 2001, 2011) based on Equation 7:

Indicator(t) — min(Indicator
305 Standardized Indicator (t) = © ( 1991’2001'2011)

max(Ind1cat0r1991,2001,2011) — min (Indicator;g9; 2001,2011)

(7)
Secondly, the EWA is performed according to Equation 8:
. 2. Standardized indicator(t)
Vulnerability (£) = number of indicators
310 8)

This approach was chosen as it is the simplest method for weighing the vulnerability
indicators and it is commonly applied in the literature with regards to HWs and CWs

(e.g. Buscalil et al., 2012; Buzasi, 2022).

16
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Finally, we created yearly varying vulnerability maps for the period 1980-2018 following

the same linear interpolation approach used for the population.

3.5 Risk Quantification

Risk is a function of hazard, exposure and vulnerability, multiplied to quantify risk
(UNDRR, 2021). This is one of the two most commonly used approaches in literature
(Dong et al., 2020; Quader et al., 2017; Russo et al., 2019), with the other approach
being the addition of the different risk components. Multiplication when compared to
addition is found to better highlight the complex relationship between the different
components, due the multiplication of the multivariate probabilities of independent
variables following a product law (El-Zein and Tonmoy, 2015; Estoque et al., 2020;

Peng et al., 2017).

The risk is calculated as per Dong et al. (2020) (Equation 9):

Risk = {/Hazard * Exposure * Vulnerability

(9)

with each of the risk components having a value in [0,1]. The hazard is computed as the
probability of occurrence of HWs/CWs using the fitted Tweedie distributions probability
function for each pixel. Exposure is the standardized population density. The
vulnerability derived from standardized variables is also between [0,1]. The resulting risk
is therefore bound by 0 and 1, with O corresponding to the lowest level of risk and 1 to

the highest level of risk.

The risk is calculated at the municipality level because it is the lowest level of resolution

of the three elements that compose it.

17
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In order to further investigate which are the driving factors of the risk, we disentangle
the marginal effect of each component (i.e. hazard, exposure, and vulnerability) for both
HWs and CWs. In turn, one of them is allowed to vary across 1980-2018 and two of
them are kept constant (to their value at the year 2003, the middle of the analyzed

period).

3.6 Trend analysis & statistical significance

The trends are analyzed using the robust regression technique (Huber, 2011) which is
often used to assess trends in natural hazards (Formetta and Feyen, 2019 for multiple
hazards and Kishore et al., 2022 specifically for HWSs). Robust regression seeks to

overcome part of the limitations of traditional regression analysis.

For example, the linear regression least squares method is optimal when the
regression’s assumptions (normal distribution, independence, equal variance) are valid
(Filzmoser and Nordhausen, 2021; Khan et al., 2021). This method can be sensitive to
outliers or if normality is dissatisfied (Khan et al., 2021; Brossart et al., 2011). The
robust regression method is designed to limit the effect that invalid assumptions have

on the regression estimates (Filzmoser and Nordhausen, 2021; Alma, 2011).

To confirm the statistical significance of the trends, the false discovery rate (FDR)
methodology is used according to Wilks (2016) and Leung et al. (2019), with a
significance level a=0.05. The FDR is defined as the statistically expected fraction of
null hypothesis test rejections at the grid cell for which the respective null hypotheses

are true (Wilks 2016).

18



4 Results

4.1 Hazard quantification and trends
For HWs hazard intensities, the most notable year on record (1980-2018) in the region
360 is 2003, where HWMId reached a pixel maximum of 30.4 and a median value of 16.9
over the area (Figure 2). The second most intense HW occurred in 2015 and the third
most intense in 1983. Out of the six years with the highest median HWMId between
1980 and 2018, four occurred in the last decade (2010, 2013, 2015, 2017), suggesting
that climate change is already increasing the frequency of heat waves in the Trentino
365  Alto-Adige region. For CW, only 1985 stands out, with a maximum and median CWMId
of 27 and 14.5, respectively, or nearly three times more than that of any other year on

record. The second strongest cold wave occurred in 2012.

HWMId.1983 HWMId.2003 HWMId.2015 o

25

20

| i 15
& 10

d ]

“

CWMId.1985 CWMId.2009 CWMId.2012

Figure 2: Regional Heat wave Magnitude Index daily (HWMId) and Cold Wave
370 Magnitude index daily (CWMId) maps for single years with the highest regional average

on record (1980-2018)

19



375

380

385

The KS tests p-values (Figure S2 in the supplementary material), indicate that the fitting
of the Tweedie distribution with power parameter values between [1,2] cannot be
rejected for both HWMId and CWMId. This enables us to estimate return levels for both
HWs and CWs and analyze trends based on them. The return levels for return periods
of 5 years (HW5Y, CW5Y) and years (HW10Y, CW10Y) for every pixel are shown in

Figure S3 in the supplementary material.

Fitting the robust linear model to the HWs values, statistically significant positive trends
are found for HWs (i.e. HWMId > 0) and HWs with a magnitude larger than the 5-year
event (HWMId > HW5Y) in most pixels of the region (Figure 3). For rarer events, those
larger than the 10-year event (HWMId > HW10Y), no statistically significant increase in
HWs intensity are found in the region. Regarding location of these trends, some of the
highest elevation parts of the region have the greatest coefficient of increase (i.e. north
of Bolzano and in the mountains located in the north-west of the region). For all CWs,

we do not find statistically significant trends in any part of the region.

20
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Figure 3: Trends in heat waves (HWs) and cold waves (CWSs) using the robust linear

model based on yearly HWMId and CWMId magnitudes from 1980 to 2018 for HWs a)
with HWMId > 0, b) with HWMId > HW5Y, ¢) HWMId > HW10Y and for CWs and d) with

390 CWMId > 0, e) with CWMId > CW5Y, f) CWMId > HW10Y

4.2 Population exposure

Summing the overall number of people exposed over intervals (i.e. one person can be

exposed each year and therefore counted multiple times over the interval), between

1980 and 2000 in the study region, about 900 000 people were exposed to a 5-year HW
395 event, 250 000 to 10-year HW event, 3 million to 5-year CW event and 1.9 million to 10-

year CW event. More recently, between 2000 and 2018, the population exposure values

increased significantly to over 5 million for 5-year HW event and to about 2.5 million for
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10-year HW event but the numbers decreased for CW events, to 2.4 million for 5-year
CW event and to 500 000 for 10-year CW event. Due to the importance of the
demographic change in the region over the full study period (increase of population by
23%), itis important to analyze the percentage of population impacted by these different
events. This will help us to disentangle what is driving these changes, e.g. whether
these changes are due to demographic changes or to the change in the frequency of

events, or both.

Figure 4Error! Reference source not found. presents the share of the population
exposed to HWs and CWs intensities larger than those of 5-year and 10-year events
over the period 1980 to 2018 on a yearly basis. It shows that a higher share of the
population was exposed to HWs more frequently after 2000 compared to the first two
decades (80s and 90s). For both return periods, the robust linear model indicates a
significant increase in the share of population exposed to HWs across the region, with a
coefficient for the increase of nearly 1% per year for HWs>HW5Y and 0.02% for
HWs>HW10Y. We did not find a significant trend in human exposure to CWs in the

region.
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415  Figure 4: Percentage of population exposed to heat wave and cold wave events greater

than the return levels of Syears and 10years over the span of 1980-2018

4.3 Vulnerability quantification

The vulnerability for the region (Figure 5) decreases with time, with an average value of

0.42 in 1991, 0.32 in 2001 and 0.27 in 2011. The main reason for the decrease in

420 vulnerability at regional scale is the improvement in overall education level and housing

conditions (i.e., fewer people living in old and poor housing conditions). By contrast, for

the larger cities (those with a population over 30,000: Merano, Bolzano, Trento,

Rovereto), the vulnerability increased from 0.28 in 1991, to 0.30 in 2001, and 0.32 in

2011 (with vulnerability values averaged for those cities; see Figure S4 In the

425 supplemental material). The increase in these cities’ vulnerability relates to the rise in

age (i.e. the older age indicator) and change in social status; with time, there is a

growing portion of the population above 55 and an increase in the number of people

living alone in isolated households.
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Figure 5: Calculated extreme temperatures vulnerability index for the three years of the

census records (1991, 2001, 2011) with the borders of the municipalities in black

4.4 Risk quantification

Figure 6 shows the trend in risk for the whole region over the period 1980-2018. The
robust linear model shows a significant increasing trend for HW risk in 40% of the
region’s area, with a significant decreasing risk in some isolated parts of the region of
study. While the risk from CWs has decreased over most of the region since the 1980s,

an increase is found in the major cities (Trento, Rovereto, Bolzano and Merano).
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Decadal means of the annual regional risk values confirm these trends, with the HW risk
440 increasing from 0.119 in the 1980s to 0.133 for the 2010s, while CW risk has decreased
from 0.134 in the 1980s to 0.124 in the 2010s. Decadal means of HW risk for the large
cities show a stronger trend compared to the whole region. We found that the average
HW risk in the main cities increased by nearly 45% compared to the 12% increase in

the whole region. Decadal means of CWs risk for the main cities increased by nearly

445  17% whereas in the whole region, it decreased by 7%.

>2.0
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Figure 6: Trends between 1980 and 2018 of a) heat waves and b) cold waves risks
using the robust linear method, colors indicating an increase in the risk and grey a
decrease, significance is indicated with the hashing, the yearly change being the robust

linear model coefficient.

450 The highest annual risk levels for both HWs and CWs coincide with the years with the

highest hazard intensity (2003 for HW and 1985 for CW, see Figure S5 in the
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supplementary material), indicating that the hazard is potentially the main factor for risk.
However, risks are of course further modulated by exposure and vulnerability. The risks

are found to be the highest in the largest cities (Bolzano, Merano, Rovereto and Trento).

Figure 7 shows the marginal effect of the driving factor behind the trends in HWs and
CWs risks. Figure 7a, Figure 7c, and Figure 7e (Figure 7b, Figure 7d, and Figure 7f)
show the trend in HWs (CWSs) risks with only vulnerability, only exposure, and only

hazard changing, respectively.

Figure 7a and Figure 7b show trends in risk due to changes in vulnerability only,
effectively indicating the locations of the increases/decreases in risk due the changes of
vulnerability indicators, that are equally weighted (seen in Figure 5). These trends are
found to be increasing in the main cities and nearby areas and are found to be

decreasing for the rest of the region.

Figure 7c and Figure 7d show trends in risk due to change in exposure only, indicating
the locations of changing risk due to the changes in population (exposed) only. The HW
and CW risks are found to be increasing in/near urban areas and decreasing in zones at

high elevations and far from the urban centers.

Figure 7e shows the trends in HWSs risk due to hazard only, with statistically significant
increasing trends being more evident in and around highly populated areas. The figure
shows that hazard is the main driver of risk for HWs, with the significant increasing
hazard trends cancelling (as can be seen in Figure 6a) most of the significant
decreasing trends of the other two elements (exposure and vulnerability) seen in the

Figure 7a and 7c.
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Finally, Figure 7f shows no significant trends in CWs risk due to change in hazards only.
The figure indicates that the combination of three elements of the risk equation

(Equation 9) is the main driver of its risk (Figure 6b) rather than the CWs hazard only.

27



Q)

‘I
<X
IR
KR

pVA

[_JImportant cities
< Significant

Figure 7: Trends between 1980 and 2018 of heat waves (and cold waves) risks due to

changes in: a (b) vulnerability only, c (d) exposure only, and e (f) hazard only. Trends
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found with the robust linear method, colors indicating an increase in the risk and grey a
decrease, significance is indicated with the hashing, the yearly change (x10-3) being the

robust linear model coefficient.

5 Discussion

The hazard analysis presented in this paper relies on the Crespi et al. (2021) air
temperature database. Although Crespi et al. (2021) is based on a state-of-the-art
interpolation approach and represents the best product for the area, more attention
should be given to measuring meteorological variables in orographically complex areas
and at high elevation. A more in-depth analysis of this sort will in turn reduce uncertainty
in spatial interpolation and improve the quantification of hazards such as HWs and CWs

and related risks.

The findings of this study agree with Russo et al. (2015), which found the greatest HWs
in the region in 1983, 2003 and 2015 in their analysis of Europe since 1950. The fact
that four of the six largest HWs occurred in the last decade suggests that climate
change is already influencing the intensity and frequency of HWs in the Trentino Alto-
Adige region. Regarding CWs, Jarzyna & Krzyzewska, (2021), also found cold spells in
the years 1985 and 2012 using different methodologies for other locations throughout
Europe. Similarly, other studies found 1985 to be a year of an exceptional CW in

Europe (Spinoni et al., 2015; Twardosz and Kossowska-Cezak, 2016).

Figure 3a indicates that a strong increase in heatwave trends is observed in the
northwest and the north of our study area. Both areas are at a high elevation (between

~1000m and ~3900m) and one includes the highest mountain in the analyzed area.
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These results are consistent to those presented by Acquaotta et al., (2015), which found

higher increases in temperatures at higher elevations in north-west Italy.

Our results for HWs are also in line with the finding of Bacco et al., (2021) that analyzed
trends in temperature extremes over northeastern regions of Italy (including Trentino
Alto-Adige) based on homogenized data from dense station networks. Bacco et al.,
(2021) also found widespread warming, with significant positive trends in maximum-
related mean and daytime temperature extremes. The lack of trend in CWs events is
also in agreement with previous research that could not detect any trend in extreme

cold spells (Jarzyna and Krzyzewska, 2021; Piticar et al., 2018).

The trends in vulnerability and their absence of statical significance strongly depend on
the available data. In our case the data used are from the specific national census
carried out every ten years and aggregated at the city spatial scale. These data are
freely available and allow us to quantify the vulnerability to natural hazards, which is a
crucial component for the risk quantification (e.g. Formetta and Feyen, 2019, Frigerio &

De Amicis, 2016).

Consistently with previous studies in other European regions (e.g. (LOpez-Bueno et al.,
2021; Poumadeére et al., 2005), we found that the elderly population and isolation were

the indicators most affecting the increase in extreme temperature vulnerability.

The results of our vulnerability analysis contrast with the findings of Frigerio & De
Amicis (2016), who report increasing vulnerability for municipalities of the Bolzano
province and slightly decreasing to steady vulnerability in the Trento province. The

contrast between their findings and ours, is related to the use of different indicators (i.e.
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they use employment, social-economic status, family structures, race/ethnicity, and
population growth) and also a different methodology for calculating the vulnerability. The
methodology used by Frigerio & De Amicis (2016) normalize indicators across all of
Italy; by contrast in this study we normalize indicators over the Trentino Alto-Adige

region only, allowing us to better characterize local vulnerability.

Our findings on the increase in HW risks are consistent with Smid et al., (2019), which
showed an increase of risk in both current and the future period for European capitals;
the same study highlights a future decrease in CWs risk for these same cities. We found
that CWs risk is still increasing for the main cities of our study. This is also the case for
other cities in mountainous regions, such as is highlighted by Lépez-Bueno et al. (2021)
for the metropolitan area of Madrid, where the urban area was found to be the more at

risk from CWs compared to the rural areas in the same region.

Our analysis of the risk trends shows that hazard and vulnerability are the main driving
factors of HW risk in the region of study. The changes in HW risk due to hazard also
highlight the presence of an urban heat island effect in the most populated cities of the
region (in Figure 7e these are the zones of the highest increasing trends in risk). This
has also been found in other studies of urban areas (e.g. Morabito et al., 2021). The
changes in CW risk are explained by the demographic changes (ie. an increasing and
aging population) and by other vulnerability changes, which are increasing in/around

urban areas and decreasing elsewhere.

The changes found in HW and CW risk due to changes in exposure or vulnerability only
is partially explained by rural-urban migration and by an aging population. Findings of

rural-urban migration and aging populations are presented in other studies such as
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(Reynaud and Miccoli, 2018) who demonstrated these in Italy and more specifically our

study area.

6 Summary and conclusions

Our study is one of the first to calculate risks of HWs and CWs and their trends at the
community and city level for a region over a 39-year period. This is done by first
guantifying the historical hazard of extreme temperature events using HWMId and
CWMId indicators, at high spatial resolution (250 m) in the Trentino Alto-Adige region
for the period 1980-2018. The hazard probability of occurrences is then quantified by
fitting the Tweedie distribution to HWMId and CWMId values, explicitly accounting for
zero values in their time series. Two types of population exposure are found using
different hazard return levels (5 years and 10 years return level). Vulnerability is
calculated using 8 different socioeconomic indicators. Combining these findings, the

spatio-temporal HWs / CWs risk over the time-period and at the city level is calculated.

Over the past 4 decades, HWs, i.e. HWMId>0, (and extreme HWSs, i.e. HWMId>HWS5Y)
showed increasing trends in most of the region, with 98% (70%) being statistically
significant. This results in an increasing exposure of people to extreme heat spells. For
CW, we did not find a trend in hazard frequency and intensity and exposure to extreme
cold remain constant. With regards to risk, a steady increase (~12%) in HWs risk and a
decrease (~7%) in CWs risk are found for the entire region. However, in larger cities of
the region, a much stronger rise in HWs risk (~45%) and CWs risk (~17%) occur. This is
linked with demographic changes and the social status of city inhabitants, with an
increasing and ageing population living in cities and an increase in the number of one

person households.
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The findings of this work show that municipalities and cities in the Trentino Alto-Adige
region have experienced increasing HW risk over the timeframe 1980-2018, while
potentially experiencing a steady level of CW risk. Our detailed analysis shows where in
the region to prioritize risk mitigation measures to reduce hazard and vulnerability.
Measures to mitigate heat in cities include, for example, greening of cities (Alsaad et al.,
2022; Taleghani et al., 2019), while vulnerability could be decreased by improving the
social and living conditions of citizens, especially of the elderly who are more vulnerable
to HWs (Orlando et al., 2021; Poumadere et al., 2005; Vu et al., 2019), particularly in
the cities of this region where their share of the population is growing. If detailed data
are available for temperature, exposure and vulnerability indicators, the methodology
presented here could be applied to other regions inside and outside of Italy to help steer

local investments in climate change adaptation at the city level.

Code availability
The code used for calculating HWMId and CWMId is free and open source, it is the
extRemes package of R which is available here: https://cran.r-

project.org/package=extRemes.

Data availability
All data used in this study is available freely and openly online. The temperature
data(Crespi et al., 2021) is available at the following location:

https://doi.pangaea.de/10.1594/PANGAEA.924502. The population data from the GHSL

is available at this location: https://data.jrc.ec.europa.eu/collection/ghsl. The indicator

data used to calculate the vulnerable is available from ISTAT: https://www.istat.it/en/.
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