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Abstract

Heat waves (HWs) and cold waves (CWs) can have considerable impact on people.
Mapping risks of extreme temperature at local scale accounting for the interactions
between hazard, exposure and vulnerability remains a challenging task. In this study,
we quantify risks from HWs and CWs for the Trentino-Alto Adige region of Italy from
1980 to 2018 at high spatial resolution. We use the Heat Wave Magnitude Index daily
(HWMId) and the Cold Wave Magnitude Index daily (CWMId) as the hazard indicator.
To obtain HWs and CWs risk maps we combined: i) occurrence probability maps of the
hazard, ii) normalized population density maps, and iii) normalized vulnerability maps
based on eight socioeconomic indicators. The occurrence probability of the hazard is
obtained using the Tweedie zero-inflated distribution. The methodology allowed us to

disentangle the effects of each component of the risk to its total change.

We find a statistically significant increase in HWs hazard and exposure while CWs
hazard remained stagnant in the analyzed area over the study period. A decrease in

vulnerability to extreme temperature spells is observed trough the region except in the
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larger cities where vulnerability has increased. HWs risk increased in 40% of the region,
with it being stronger in highly populated areas. Stagnant CWs hazard and declining
vulnerability result in reduced CWs risk levels, with exception of the main cities where it

grew due to their increased vulnerabilities and exposures.

The findings of our study are relevant to steer investments in local risk mitigation, and

this method can potentially be applied to other regions that have similar detailed data.

1 Introduction

Heat waves (HWSs) and cold waves (CWSs) are hazards that affect public health and the
environment (Gasparrini et al., 2015; Habeeb et al., 2015). With global warming, HWs
intensities and durations are expected to increase while those of CWs are expected to
decrease (Perkins-Kirkpatrick and Gibson, 2017; Russo et al., 2015; Smid et al., 2019),
which would change their risks to society. A recent report showed that in the year 2018
worldwide, 157 million more people were exposed to HWs compared to the year 2000
(Watts et al., 2018). In Europe, recent high intensity HWs events (2003 and 2018,
where HWs are defined as 3 days over 90" temperature percentile of the 1980-2010)
have impacted as much as 55% of its area (Garcia-Ledn et al., 2021). In Italy, HWs
have had a strong impact on mortality such as in 2003 when a 27% mortality increase
was reported over August, while in 2015 there was a 23% increase in July, compared to
the 5 previous years (Michelozzi et al., 2005, 2016). In Trentino Alto-Adige (our study
region), Conti et al. (2005) showed that for the large HW of 2003, mortality increased by
32% in Trento and 28% in Bolzano (the region’s two main cities) compared to the
previous year. In the city of Bolzano, it was also found that higher hospital admissions

occurred during HWs events particularly among elderly women (Papathoma-Kdhle et
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al., 2014). With regards to CWs in Europe, recent winters have claimed 790 deaths in
2006 and 549 deaths in 2012 (Kron et al., 2019). The increase in mortality and among
elder people is also found in Italy for CWSs. For example, de’Donato et al., (2013)

reported a notable increase in mortality (47%) for the timeframe of the 2012 CW in the

city of Bolzano.

HWs and CWs events clearly come with a risk but how do we define this risk? The
United Nations Office for Disaster Risk Reduction (UNDRR, 2021) and the
Intergovernmental Panel on Climate change (IPCC, 2014) define risk as a function of
hazard, exposure, and vulnerability. Exposure is defined as people, infrastructure,
housing, production, and other tangible human assets present in hazard-prone areas.
Vulnerability is defined as the conditions that define the susceptibility of an individual,
infrastructure, or a community to be impacted by the hazard. To successfully quantify
risk, one must be able to measure all three components: hazard, exposure, and

vulnerability.

With regards to hazard and exposure, several temperature hazard-exposure studies
have been conducted at global (e.g. Chambers, 2020; Dosio et al., 2018), continental
(eg. King et al., 2018), or city-scale (e.g. Smid et al., 2019). Most studies focus on
human exposure (eg. Chambers, 2020; Tuholske et al., 2021) and on the exposure of
land areas (e.g., Ceccherini et al., 2017; Oldenborgh et al., 2019; Russo et al., 2016).
These studies found increasing trends in HWs (Chambers, 2020; Dosio et al., 2018)
and decreasing trends in CWs in their period of analysis (Oldenborgh et al., 2019, Smid

et al., 2019).
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Most studies on HWs and CWs have used qualitative numerical thresholds on the
indicator to define severity and exposure to the hazards. However, extreme events are
usually defined by their return periods. In the case of HWs and CWs fitting extreme
value distributions to define the return periods is difficult due to the possible absence of
events in the analyzed time frame (i.e. zero values, in the case where there are no
HWSs/CWs in a given year). Generalized extreme value distribution (GEV) and non-
stationary-techniques (Dosio et al., 2018; Kishore et al., 2022; Russo et al., 2019) have
enabled to estimate HWs and CWs’ return periods, but both approaches did not

explicitly account for the zero presence in the analyzed time series.

Instead, for the first time we use the zero-inflated distribution of Tweedie families
(Jorgensen, 1987; Tweedie, 1984) to estimate HWs and CWs frequency of occurrence,
which enabled us to directly account for the possible zero values. The Tweedie
distribution has been used mostly for the purpose of insurance claims analysis, but has
seldom been applied in the field of natural hazards, such as HWs mortality (Kim et al.,
2017), droughts (Tijdeman et al., 2020), and rainfall analysis (Dunn, 2004; Hasan and
Dunn, 2011). The main advantage of the Tweedie distribution is the possibility of
considering many distributions for the continuous and semi-continuous domain such as:
normal, Gamma, Poisson, Compound Gamma-Poisson, and Inverse Gaussian (Bonat
and Kokonendji, 2017; Rahma and Kokonendiji, 2021; Shono, 2008; Temple, 2018).
Moreover, for some of these distributions (i.e. Poisson mixtures of gamma distributions)
it explicitly enables the fitting of zero-inflated data. Tweedie distribution main limitation is
the complex distribution’s fitting methodology and the difficulties to compare it to other

models via information criteria such as the Akaike's information criterion (Shono, 2008).
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To perform a risk analysis, the vulnerability to the hazard must be quantified. HWs and
CWs vulnerabilities can be approximated by combinations of several socioeconomic
indicators. At the community level in the United States, factors such as social isolation,
presence of air conditioning, proportion of elderly and proportion of diabetics in the
population were found to be key for human vulnerability to temperature extremes (Reid
et al., 2009). In Korea at the county level, Kim et al. (2017) found that elderly living
alone, agricultural workers and unemployed are the main indicators for vulnerability to
heat wave days and tropical nights. Temperature vulnerability has also been appraised
at city scale for HWs mortality (Ellena et al., 2020) and at regional scale (L6pez-Bueno
et al., 2021) for CWs mortality. Karanja & Kiage (2021) and Cheng et al. (2021) provide
an overview of the different types of indicators used in the literature to quantify
vulnerability. The indicators can be diverse, ranging from population structure (e.g., age
and health characteristics), social status, economic conditions, community (cultural)
group characteristics, and household physical characteristics. Studies on social
vulnerability to natural hazards in Italy used a diversity of indicators derived from the

census records (Frigerio and De Amicis, 2016).

HWs and CWs risks are often assessed using different methodologies depending on the
objectives of the study. On a global scale, Russo et al., (2019) establish a risk index
using the probabilities of HWs as hazard, where the exposure is the population density
normalized in [0;1] based on its maximum, minimum values; while vulnerability is based
on a socio-economic indicator (human development index). For Italy, Morabito et al

(2015) conducted a risk analysis of heat on elderly in the major cities, using the elderly
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population as the only vulnerability factor and summer average temperatures for the

period 2000-2013 to quantify the hazards.

Assess the risk associated to extreme temperatures in the Italian Trentino Alto-Adige
region is a relevant social and scientific objective given: i) the increase in the
percentage of elderly people (i.e. vulnerability change) (Papathoma-Koéhle et al., 2014)
and ii) the changing temperature extremes in view of climate change (i.e. changing

hazard).

Few studies have attempted to quantify HWs and CWs impacts for the Trento and
Bolzano cities (main cities of the region), such as Conti et al. (2005) as part of their
studies on ltalian cities and Papathoma-Koéhle et al. (2014) who studied impacts in
Bolzano. The former compared the mortality data of the year 2003 (affected by the very
intense HW) to the year 2002, finding an increase of morality in both Trento and
Bolzano. The latter compared the hospital admissions due to HWs in summer months of

three years (2003, 2006, and 2009) possible heat health issues among elder women.

To better understand the spatiotemporal evolution of HWs and CWs human risk and to
plan adequate risk-mitigation measures in the region, there is a need to assess the risk

and its change at high spatial and temporal resolution.

The aim of this article is to solve some of these previous limitations while quantifying
HW and CW hazards, the human exposures, vulnerabilities, and risks at the high-
definition (i.e. city-scale) over the period 1980-2018, for the Trentino-Alto-Adige region.

The goals for this paper are therefore as follow:
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1) Quantify HWs and CWSs hazards and their return level at a very high spatial
resolution (250m) by combining for the first time i) the indicators proposed by Russo et

al., (2015) and Smid et al., (2019), together with ii) the Tweedie distribution;

2) Quantify human exposures and vulnerabilities to HWs and CWs and their evolution in

time for the Trentino-Alto-Adige region;

3) Quantify the HWs and CWs risks across the region and understand their main drivers

by disentangling the contribution of the risks’ components to its change.

2 Study Area

The Trentino Alto-Adige region (Figure 1: The Trentino Alto-Adige region and its most
populated cities (Trento, Bolzano, Rovereto and Merano); the colors indicating the

elevations, river network, and lakes.

) is @ mountainous region in northern Italy, which borders Austria. The elevation of the
region varies from 65m for lake Garda to 3,439m for Lagaunspitze. It is composed of
two provinces (Province of Trento and Province of Bolzano). Its most populous cities
(population for 2022 in parenthesis) are the two provincial capitals, Trento (118509) and
Bolzano (107025), as well as minor cities such as Merano (40994) and Rovereto
(39819). The main rivers in the region are the Adige, and its tributary, the Isarco. Due to
its diverse geography, the climate is also diverse ranging from Subcontinental to Alpine

on the Koppen classification (Fratianni and Acquaotta, 2017).



D Cities with

pop > 30000
Lakes

Rivers
10 20 30km  Elevation (m)
T — 3,704
61

Figure 1: The Trentino Alto-Adige region and its most populated cities (Trento, Bolzano,

155 Rovereto and Merano); the colors indicating the elevations, river network, and lakes.

3 Methodology

3.1 Temperature data
In order to quantify the HWs and CW hazard, we used the freely available spatial
temporal temperature dataset by Crespi et al. (2021). It consists of gridded daily

160 temperatures for the entire Trentino Alto-Adige region covering the period of 1980-2018
at a resolution of 250 meters. This dataset is based on more than 200 station daily
records which have been quality controlled and homogenized. The interpolation method

is based on a combination of 30-year temperature climatology (1981-2010), daily
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anomalies and explicitly accounts for topographic features (i.e. elevation, slope) which
are crucial in orographic complex areas such as the Trentino Alto-Adige. The leave one
out cross validation presented in Crespi et al. (2021) finds mean correlation coefficient
higher than 0.8 and mean absolute errors of around 1.5 degree Celsius (on average

across months and stations used for the interpolation).

The hazard analysis presented in this paper rely on the Crespi et al. (2021) air
temperature database. Although it is based on a state-of-the-art interpolation approach
and it represents the best product for the area, more attention should be given to
measuring meteorological variables in orographically complex area and at high
elevation. This will in turn reduce the uncertainty in spatial interpolation and improve the

guantification of impacting hazards such as HWs and CWs.

3.2 Hazard quantification and distribution fitting

3.2.1 Hazard quantification

To quantify the hazard we used the HWMId (Russo et al., 2015) and the CWMId (Smid
et al., 2019). These indices represent a way of measuring extreme temperature events
while considering their durations, intensity, and taking in account the site-specific

historical climatology (30years).

According to Russo et al. (2015), HWMId is defined as the maximum magnitude of the
HWs in a year. A HW occurs when the air temperature is above a daily threshold for
more than three consecutive days. The threshold is set to the 90" percentile of the
temperature data of the day and the window of 15 days before and after throughout the
reference period 1981-2010. The magnitude of a HW is the sum of the daily heat

magnitude HM, of all the consecutive days composing the HW (Equation 1):
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Td - T30y25p

HMq4(Tg) = 1 Tzoy7sp — Tz0y2sp
0 1f Td S T30y25p

lf Td > T30y25p

1)

where HMd(Tq) corresponds to the daily heat magnitude, Tdthe temperature of the day
in question and Tsoy2sp and Taoy7sp correspond to the 25" and 75" percentile of the
yearly maximum temperature for the 30 years of the reference period (1981-2010). The
interquartile range (IQR, i.e. the difference between the Tzoy7sp and Tsoy2sp percentiles of
the daily temperature) is used as the heatwave magnitude unit and represents a non-
parametric measure of the variability of the temperature timeseries. Therefore, a value
of HM4 equals to 3 means that the temperature anomaly on day d with respect to T3soy2sp
is 3 times the IQR. Finally, for a given year HWMId corresponds to the highest sum of
magnitude (HMd) over the consecutive days composing a heatwave event (with only

days with HMd > 0 considered).

Analogously to the HWMId, CWMId is defined as the minimum magnitude of the CWs in
a year (Smid et al., 2019). A CW occurs when the air temperature is below a daily
threshold for more than three consecutive days. The threshold is set to the 10th
percentile of the temperature data of the day and the window of 15 days before and

after throughout the reference period 1981-2010.
The daily cold magnitude corresponds to (Equation 2):

Td - T30y75p

CMy(Tq) = 1 Tzoy7sp — T0y2sp
0 if Tq > T30y75p

if Tq < Tz0y7sp

10
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where CMd(Td) corresponds to the cold daily magnitude, T4 the daily temperature and
Taoy2sp and Tsoy7sp correspond to the 25" and 75™ percentile yearly temperature for the
30 years used as a reference. Inversely to HWMId, the lowest cumulative magnitude
sum is retained for each year and with only consecutive days with CMd < 0 considered
to calculate it. CWMId being always <T 0, its absolute values are retained for its values

to be on a positive interval (similar to HWMId).

3.2.2 Distribution fitting

The HWMId and CWMId yearly values are fitted with a probability distribution to
estimate their return periods. Considering that HWMId and CWMId are both defined in
[0,+Inf[ , we use the Tweedie distribution (Jorgensen, 1987; Tweedie, 1984), a
distribution that can act as zero-inflated, thus accounting for the presence of zeros
directly. The Tweedie distribution is an exponential dispersion model which has a

probability density function of the form (equation 3):
1
f3.6,®) = a(y, @) = exp | o {yt — x(0)}

3)

where ® corresponds to its dispersion parameter that is positive, 6 to its canonical
parameter, and k(8) the cumulant function. The function a(y, ®) generally cannot be

written in closed form. The cumulant function is related to the mean (u, = «'(6)) and
variance (o, = ® = k”'(6)) and in the case of a Tweedie distribution the variance has a

power relationship with the mean (Equation 4):

11
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Oy = D * (uy)p
(4)
where p corresponds to the power parameter that is positive.

Depending on the value of p, the distribution will behave differently. In the case where p
is between 1 and 2, it belongs to the compound Poisson-gamma distribution with a
mass at zero, while other p values can make the distribution correspond to a normal,
Poisson, or gamma distribution, among others. The use of the Tweedie distribution is
retained as it permits to consider the zero values, while also considering other

distributions should there be an absence of zero values.

We fit the distribution to the previously found HWMId and CWMId values with the help
of the Tweedie R package (Dunn, 2021). It provides distribution density, distribution
function, quantile function, random generation for the Tweedie distributions. The
Tweedie parameters (i.e. mean, power, and dispersion) have been estimated by the
“tweedie.profile” function (Dunn, 2015) using the maximum likelihood as described by
Dunn (2015) and Dunn and Smyth (2005). An example of the fitted distribution for
Bolzano and Trento can be found in the supplementary material (Figure S1). Itis also
possible to use the same package to estimate a quantile using the fitted distribution.
This enables to estimate specific return levels for return periods T for both HWMId and
CWMId. For this study two return levels are retained, 5 years (HW5Y for HW, and
CWS5Y for CW) and 10 years (HW10Y for HWs and CW10Y for CW). This choice aims
to account for of both the length of the analyzed period (39 years) and the type of

hazards we are analyzing (HWs and CWs usually doesn’t occur every year). Higher

12
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return level estimations would be affected by extrapolation effects and higher

uncertainty.

For statistical fit verification, the Kolmogorov—Smirnov (KS) test on two samples is used
with one sample being the found HWMId or CWMId values, and the other sample being
a randomly generated sample using the fitted distribution value. This goodness of fit of
test is one of the most commonly used in the literature for the case of the corresponding
zero inflated Tweedie distribution (Goffard et al., 2019; Johnson et al., 2015; Rahma
and Kokonend;ji, 2021). The null hypothesis of this test is that the two sample belong to
the same distribution. If the P-value for this test is below the significance level a of 5%,
the null hypothesis is rejected, otherwise we cannot reject the null hypothesis at this

significance level.

3.3 Exposure quantification

To quantify the population exposed to HWs and CWSs, we use time-varying population
data from the Global Human Settlement Layer (GHSL) (Schiavina et al., 2019). The
population data is available at a resolution of 250m for the following years: 1975, 1990,
2000 and 2015. Both this data, and the population count done by the Italian national

statistical institute, indicate a growing population throughout the region (overall 23%).

To more accurately model exposure, we created yearly varying population maps for the
period 1980-2018 following the methodology presented in other studies (e.g. Formetta
and Feyen, 2019; (Neumayer and Barthel, 2011). We linearly interpolated the data in
time for the period 1980 to 2015 (assuming a constant rate in between available years)

and we used the closest year for the period 2016-2018.

13
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Following recent studies (King & Harrington, 2018; Russo et al., 2019), for each year, a
pixel is considered exposed to HW/CWSs hazard (or to a 5 or 10 year return-period
HWs/CWs) if for that year the HWMId/CWMId of the pixel is greater than zero (or
greater than the corresponding return level HW5Y/CW5Y or HW10Y/CW10Y,
respectively).This is the exposition factor, and it is a binary value (0 meaning not

exposed or 1 meaning exposed).

The percentage of population exposed are calculated on annual basis over the study
period (1980-2018) with the help of population data linearly interpolated from 1980 to

2018.

Using this population data, percentage of population exposed are then calculated using

the following equation (Equations 5 and 6):

Population exposed(t) = z EF; x population;(t)
i

()

Population exposed(t)

Percentage of population exposed (t) = Total population (£)

(6)

where i corresponds to the pixels, t to the year being analyzed, EF to the exposition

factor mentioned above (binary).

3.4 Vulnerability quantification
We express HWs and CWs vulnerability using eight indicators as in Ho et al. (2018),

who quantify community vulnerability to HWs and CWs events based on extreme age,

14



household physical characteristics, social status and economic conditions. The list of

variables considered are reported in Table 1.

Table 1: Vulnerability indicators used (after Ho et al., 2018)

Category Indicator Definition

Older Age Population over 55 years old
Extreme Age

Infants Population under 5 years old

Household
physical

characteristics

People in old

houses

Percentage of household living in
housing built prior to 1960
(corresponding to when better

insulation started being implemented)

People in poor

living condition

Percentage of household living in other
type of housing not meant for

inhabitation (cellar, attics)

Social Status

Low education

Population with low education (no

population middle-school diploma)
People living

Number of single-person households
alone

15




Low-income Population in a household with children

Economic Status population and no money-earning members

Unemployed Unemployment rate

295 The spatially varied indicators are freely available in the census records (i.e. sub-city
level) from the Italian national statistical institute (ISTAT, 2021) for three different years
(1991, 2001 2011). Given the data time constraints, vulnerability is thus derived for

those years only.

The methodology to quantify vulnerability uses the equal weight analysis (EWA, e.g. Liu
300 etal, 2020). Firstly, the individual indicators are standardized between 0 and 1, prior to
aggregation (their sum); the standardization is done at the city level for all the years of

record (1991, 2001, 2011) based on Equation 7:

Indicator(t) — min(Indicator
Standardized Indicator (t) = © ( 1991’2001’2011)

maX(Indicat0r1991,2001,2011) — min (Indicat0r1991,2001,2011)
305 (7)

Secondly, the EWA is performed according to Equation 8:

Y. Standardized indicator(t)
number of indicators

Vulnerability (t) =

(8)

16
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This approach was chosen as it is the simplest method for weighing the vulnerability
indicators and it is commonly applied in the literature with regards to HWs and CWs

(e.g. Buscalil et al., 2012; Buzasi, 2022).

Finally, we created yearly varying vulnerability maps for the period 1980-2018 following

the same approach we used for the population.

3.5 Risk Quantification

Risk here is assumed to be a function of hazard, exposure and vulnerability, which are
multiplied to quantify risk (UNDRR, 2021). This is one of the two most commonly used
approaches in literature (Dong et al., 2020; Quader et al., 2017; Russo et al., 2019),
with the other approach being the addition of the different risk components.
Multiplication when compared to addition is found to better highlight the complex
relationship between the different components, as the multiplication of the multivariate
probabilities of independent variables follow a product law (El-Zein and Tonmoy, 2015;

Estoque et al., 2020; Peng et al., 2017).

The risk is calculated as per Dong et al. (2020) (equation 9):

Risk = {/Hazard * Exposure * Vulnerability

(9)

with each of the risk components having a value in [0,1]. The hazard is computed as the
probability of occurrence of HWs/CWs by using the fitted Tweedie distributions
probability function for each pixel. Exposure is the standardized population density. The

vulnerability derived from standardized variables is also between [0,1]. The resulting risk

17
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is therefore also bound by 0 and 1, with O corresponding to the lowest level of risk and 1

to the highest level of risk.

The risk is calculated at the municipality level because it is the lowest level of resolution

of the three elements that compose it.

In order to further investigate which are the driving factors of the risk, we disentangle
the marginal effect of each component (i.e. hazard, exposure, and vulnerability) for both
HWs and CWs. In turn, one of them is allowed to vary across 1980-2018 and two of
them are kept constant (to their value at the year 2003, the middle of the analyzed

period).

3.6 Trends analysis & statistical significance
The trends are analyzed using the robust regression technique (Huber, 2011). This
method is often used throughout the literature for natural hazards (Formetta and Feyen,

2019; Kishore et al., 2022).

The trends are analyzed using the robust regression technique (Huber, 2011). This
method is often used throughout the literature for assessing trends in natural hazards
(Formetta and Feyen, 2019 for multiple hazards and Kishore et al., 2022 specifically for
HWSs). To confirm the statistical significance of the trends the false discovery rate (FDR)
methodology is used according to Wilks (2016) and Leung et al. (2019), with a
significance level a=0.05. The FDR is defined as the statistically expected fraction of
null hypothesis test rejections at the grid cell for which the respective null hypotheses

are actually true (Wilks 2016).

18
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4 Results

4.1 Hazard quantification and trends

For HWs hazard intensities, the most notable year on record (1980-2018) in the region
is 2003, where HWMId reached a pixel maximum of 30.4 and a median value of 16.9
over the area (Figure S2 in the supplementary material). The second most intense HW
occurred in 2015 and the third most intense in 1983. From the six years with the highest
median HWMId between 1980 and 2018, four occurred in the last decade (2010, 2013,
2015, 2017), suggesting that climate change is already increasing the frequency of heat
waves in the Trentino Alto-Adige region. For CW, only 1985 stands out, with a
maximum and median CWMId of 27 and 14.5, respectively, or nearly three times more
than that of any other year on record. The second strongest cold wave occurred in

2012.

A KS test (Figure S3 in the supplementary material) shows that the Tweedie distribution
provides a good fit for both CWMId and HWMId, with power parameter values between
[1,2] for the entire region. The KS goodness of fit test reveals a significance level of
asig=5% as well as the false discovery rate for the significance level 2asig for any pixel in
the region. This permits us to estimate return levels for both HWs and CWs and analyze
trends based on them. The return levels for return periods of 5 years (HW5Y, CW5Y)
and years (HW10Y, CW10Y) for every pixel are shown in Figure S4 in the

supplementary material.

Fitting the robust linear model to the HWs values, statistically significant positive trends
are found for HWs (i.e. HWMId > 0) and HWs with a magnitude larger than the 5-year

event (HWMId > HW5Y) in most pixels of the region (Figure 2Error! Reference source

19
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not found.). For rarer events, those larger than the 10-year event (HWMId > HW10Y),

no statistically significant increase in HWSs intensity are found in the region. With

regards to the location of these trends, some of the highest parts of the regions have

the greatest coefficient of increase (north of Bolzano and in the mountains located

north-west of the region). For all CWs, we do not find statistically significant trends in

any part of the region.
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Figure 2: Trends in heat waves (HWs) and cold waves (CWSs) using the robust linear

model based on yearly HWMId and CWMId magnitudes from 1980 to 2018 for HWs a)

with HWMId > 0, b) with HWMId > HW5Y, ¢) HWMId > HW10Y and for CWs and d) with

CWMId > 0, e) with CWMId > CW5Y, f) CWMId > HW10Y
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4.2 Population exposure

In total, between 1980 and 2000, in the study region, about 900 000 people were
exposed to a 5-year HW event, 250 000 to 10-year HW event, 3million to 5-year CW
event and 1.9 million to 10-year CW event. Between 2000 and 2018, the values
increased to over 5millions for 5-year HW event and to about 2.5million for 10-year HW
event but decreased to 2.4 million for 5-year CW event and to 500 000 for 10-year CW
event. However, due to the importance of the demographic change in the region
(increase of population by 23%), it is important to study the percent of population
impacted by these different events to understand whether these changes are due to

demographic changes or the change in the frequency of events.

Figure 3Error! Reference source not found. presents the share of the population
exposed to HWs and CWs intensities larger than those of 5-year and 10-year events
over the period 1980 to 2018 on a yearly basis. It shows that a higher share of the
population was exposed to HWs more frequently after 2000 compared to the first two
decades (80s and 90s). For both return periods, the robust linear model indicates a
significant increase in population exposed to HWs over the region with a coefficient for
the increase of nearly 1% per year for HWs>HW5Y and 0.02% for HWs>HW10Y. We

did not find a significant trend in human exposure to CWs in the region.
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Figure 3: Percentage of population exposed to heat wave and cold wave events greater

than the return levels of 5years and 10years over the span of 1980-2018

4.3 Vulnerability quantification

The vulnerability for the region (Figure 4: Calculated extreme temperatures vulnerability
index for the three years of the census records (1991, 2001, 2011) with the borders of
the municipalities in black) decreases in time, with an average value of 0.42 in 1991,
0.32in 2001 and 0.27 in 2011. The main reason for the decrease in vulnerability at
regional scale is the improvement in overall education level and housing conditions (i.e.,
fewer people living in old and poor housing conditions). However, by contrast, for the
larger cities (those with a population over 30,000: Merano, Bolzano, Trento, Rovereto),
the vulnerability has increased from 0.28 in 1991 to 0.30 in 2001 and 0.32 in 2011,
averaged for those cities (see Figure S5 In the supplemental material). The increase in
these cities’ vulnerability relates to the older age indicator and social status, with a
growing portion of the population above 55 and an increase in the number of isolated

households (i.e., people living alone).
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Figure 4: Calculated extreme temperatures vulnerability index for the three years of the

census records (1991, 2001, 2011) with the borders of the municipalities in black

4.4 Risk quantification

Error! Reference source not found. Figure 5 shows the trend in risk for the whole
region over the period 1980-2018. The robust linear model shows significant increasing
trend in HWSs risk in 40% of the area, with a significant decreasing risk in some isolated
parts of the region of study. While the risk from CWs has decreased over most of the
region since the 1980s, in the major cities (Trento, Rovereto, Bolzano and Merano) we

found an increase in CWs risk.

23



Decadal means of the annual regional risk values confirm these trends, with the HWs

risk increasing from 0.119 in the 1980s to 0.133 for the 2010s, while CWs risk has

decreased from 0.134 in the 1980s to 0.124 in the 2010s. Decadal means of HWs risk
435 for the large cities show a stronger trend compared to the whole region. We found that

the average HWs risk in the main cities increased by nearly 45% compared to the 12%

>2.0
1.6
1.2
0.8
0.4
0
-0.4
-0.8
L -1.2
_-1.6

<-2.0
Yearly change (x103) [Jimportant cities Yearly change (x103)
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increase in the whole region. Decadal means of CWs risk for the main cities increased

by nearly 17% whereas in the whole region, it decreased by 7%.

Figure 5: Trends of a) heat waves and b) cold waves risks using the robust linear
440 method, colors indicating an increase in the risk and grey a decrease, significance is

indicated with the hashing, the yearly change being the robust linear model coefficient.

The highest annual risk levels for both HWs and CWs coincide with the years with the

highest hazard intensity (2003 for HW and 1985 for CW, see Figure S6 in the
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supplementary material), indicating that the hazard is potentially the main factor for risk.
However, risks are further modulated by exposure and vulnerability. The risks are found

to be the highest in the largest cities (Bolzano, Merano, Rovereto and Trento).

Figure 6 shows the marginal effect of the driving factor behind the trends in HWs and
CWs risks. Figure 6-a, Figure 6-c, and Figure 6-e (Figure 6-b, Figure 6-d, and Figure 6-
f) show the trend in HWs (CWSs) risks with only vulnerability, only exposure, and only

hazard changing, respectively.

The results in Figure 6-a and Figure 6-b show the same patterns as well as Figure 6-c
and Figure 6-d because exposure and vulnerability are the same for both HWs and

CWs and hazard is the only differing variable.

Figure 6-a (Figure 6-b) show increasing trends in risk (due to change in vulnerability
only) in the main cities and nearby areas. Decreasing trends are found for most of the

remaining region.

Figure 6-c (Figure 6-d) show increasing trends in risk (due to change in exposure only)
in/near urban areas and decreasing trends in zones at high elevations and far from the

urban centers.

Figure 6-d show that the hazard is the main driver of risk for HWs, with statistically
significant increasing trends, more evident in and around highly populated areas.
Finally, Figure 6-e show no significant trends in CWs risk (due to change in hazards

only).
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Figure 6: Trends of heat waves (and cold waves) risks due to changes in: a (b)

vulnerability only, ¢ (d) exposure only, and e (f) hazard only. Trends found with the
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robust linear method, colors indicating an increase in the risk and grey a decrease,
significance is indicated with the hashing, the yearly change being the robust linear

model coefficient.

5 Discussion

The years found with the greatest HWs for the region agree with those of Russo et al.
(2015), who found very high HWs in 1983, 2003 and 2015 in their analysis of the ten
greatest HWs in Europe since 1950. The fact that four of the six largest HWs occurred
in the last decade suggests that climate change is already influencing the intensity and
frequency of HWs in the Trentino Alto-Adige region. With regards to CWs, Jarzyna &
Krzyzewska, (2021), have also found cold spells in the years 1985 and 2012 using
different methodologies for other locations throughout Europe. Similarly, other studies
have found 1985 to be a year of an exceptional CW in Europe (Spinoni et al., 2015;

Twardosz and Kossowska-Cezak, 2016).

The significant increasing trend we found in HWs events are consistent with other
studies in Europe over the last decades (e.g. Perkins-Kirkpatrick and Lewis, 2020;
Piticar et al., 2018; Serrano-Notivoli et al., 2022; Spinoni et al., 2015; Zhang et al.,
2020). The location of our highest increasing trends in HWs events are concordant to
those of the higher increase in temperatures found at higher elevations by Acquaotta et
al., (2015) in north-west Italy. Our results for HWSs are also in line with the finding of
Bacco et al., (2021) that analyzed trends in temperature extremes over northeastern
regions of Italy (including Trentino Alto-Adige) based on homogenized data from dense

station networks. They also found widespread warming, with significant positive trends
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in maximum-related mean and daytime temperature extremes. The lack of trend in CWs
events is also in agreement with previous research that could not detect any trend in

extreme cold spells (Jarzyna and Krzyzewska, 2021; Piticar et al., 2018).

The trends in vulnerability and their absence of statical significance strongly depend on
the available data. In our case they are the output of specific national census carried out
every ten years and aggregated at the city spatial scale. From the other side, these data
represent a freely available option to quantify the vulnerability to natural hazards, which
is a crucial component for the risk quantification (e.g. Formetta and Feyen, 2019,

Frigerio & De Amicis, 2016).

The two driving factors behind the increase in vulnerability (elderly population and
isolation) have also been found as some of the main factors for vulnerabilities in other
regions of Europe (LOpez-Bueno et al., 2021; Poumadere et al., 2005). The results of
our vulnerability analysis contrast with the findings of Frigerio & De Amicis (2016), who
report increasing vulnerabilities for municipalities of the Bolzano province and slightly
decreasing to steady vulnerabilities in the Trento province. This contrast, between our
finding and theirs, is related to the use of different indicators (employment, social-
economic status, family structures, race/ethnicity, and population growth) and a different
methodology for calculating the vulnerability where the normalization of indicators is
applied across all of Italy in their study, as opposed to only over the Trentino Alto-Adige
region in this study, the latter characterizing better local vulnerability. The selection of

different indicators and methodology might yield different results.

Our findings related to the increase in HWs risks are consistent with Smid et al., (2019),

which showed an increase of risk in both current and the future period for European
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capitals; the same study highlights a future decrease in CWs risk for these same cities.
We found that CWs risk is still increasing for the main cities of our study. This is also the
case for other cities in mountainous regions, such as highlighted by L6pez-Bueno et al.
(2021) for the city of Madrid, where the urban area was found to be the more at CWs

risk compared to the rural area.

The analysis of the trends of risk while changing only one of its three variables and
keeping constant the remaining two shows that hazard and vulnerability are the main
driving factor of the HWs risk. The changes in HWs risk due to hazard also highlights
the presence of urban heat island in the most populated cities of the region (in Figure 6-
e these are the zones of the highest increasing trends in risk). This has also been found
in other in urban areas (e.g. Morabito et al., 2021). The changes in CWs risk is mainly
explained by the demographic and vulnerability changes, which are increasing

infaround urban areas and decreasing elsewhere.

The changes found in HWs and CWs risk due to changes in exposure or vulnerability
only is partially explained by rural-urban migration and an aging population, which is

presented in other studies such as (Reynaud and Miccoli, 2018).

6 Summary and conclusions

Our study is one of the first to calculate risks of HWs and CWs and their trends at the
community and city level for a region over 39 years. This is done by first quantifying the
historical hazard of extreme temperature events using the HWMId and CWMId
indicators, at high spatial resolution (250 m) in the Trentino Alto-Adige region for the

period 1980-2018. The hazard probability of occurrences are then quantified by fitting a
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Tweedie distribution to the HWMId and CWMId values, explicitly accounting for zero
values in their time series. Two types of population exposure are found using the

different hazard levels (5 years and 10 years return level). Vulnerability is calculated
using 8 different socioeconomic indicators. Combining all these findings, the spatio-

temporal HWs / CWs risk over the time-period and at the city level is calculated.

Over the past 4 decades, HWs, i.e. HWMId>0, (and extreme HWSs, i.e. HWMId>HWS5Y)
showed increasing trends in most of the region, with 98% (70%) being statistically
significant. This results in an increasing exposure of people to extreme heat spells. For
CW, we did not find a trend in hazard frequency and intensity and exposure to extreme
cold remain constant. With regards to risk, in the region in general a steady increase
(~12%) in HWs risk and a decrease (~7%) in CWs risk are found. However, in the larger
cities of the region, a much stronger rise in HWSs risk (~45%) and CWs risk (~17%)
occur. This is linked with demographic changes and the social status of city inhabitants,
with more people and an ageing population living in cities and an increase in the

number of people living alone.

The findings of this work shows that municipalities and cities in the Trentino Alto-Adige
region have been seen increasing trends in HWs risk over the timeframe 1980-2018,
while potentially experiencing the same levels of CWs risk. Our detailed analysis shows
where to prioritize risk mitigation measures to reduce the hazard and vulnerability.
Measures to mitigate heat in cities include, for example, greening of cities (Alsaad et al.,
2022; Taleghani et al., 2019), while vulnerability could be decreased by improving the
social and living conditions of citizens, especially of the elderly who are more vulnerable

(Orlando et al., 2021; Poumadeére et al., 2005; Vu et al., 2019), particularly in the cities
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of this region where they are becoming more numerous. If detailed data are available
for temperature, exposure and vulnerability indicators, the methodology presented here
could be applied to other regions in- and outside Italy to help steer local climate

560 adaptation investments at the city level.

Code availability
The code used for calculating HWMId and CWMId is free and open source, it is the
extRemes package of R which is findable here: https://cran.r-

565 project.org/package=extRemes.

Data availability
All data used in this study is available freely and openly online. The temperature
data(Crespi et al., 2021) is available at the following location:

https://doi.pangaea.de/10.1594/PANGAEA.924502. The population data from the GHSL

570 is available at this location: https://data.jrc.ec.europa.eu/collection/ghsl. The indicator

data used to calculate the vulnerable is available from ISTAT: https://www.istat.it/en/.
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