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Abstract

Heat waves (HWs) and cold waves (CWs) can have considerable impact on people.
Mapping risks of extreme temperature at local scale, accounting for the interactions
between hazard, exposure and vulnerability, remains a challenging task. In this study,
we quantify risks from HWs and CWs for the Trentino-Alto Adige region of Italy from
1980 to 2018 at high spatial resolution. We use the Heat Wave Magnitude Index daily
(HWMId) and the Cold Wave Magnitude Index daily (CWMId) as the hazard indicators.

To obtain HWs and CWs risk maps we combined: i) occurrence probability maps of the

hazard obtained using the zero-inflated Tweedie distribution (accounting directly for the

absence of events for certain years); ii) normalized population density maps; and iii)

normalized vulnerability maps based on eight socioeconomic indicators. .The

methodology allowed us to disentangle the contributions of each component of the risk

relative to fotal change in risk. We find a statistically significant increase in HWs hazard

and exposure while CWs hazard remained stagnant in the analyzed area over the study
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period. A decrease in vulnerability to extreme temperature spells is observed trough the

region except in the larger cities where vulnerability jncreased. HWs risk increased in

- (Deleted: has

40% of the region, with the increase being greatest,in highly populated areas. Stagnant

CWs hazard and declining vulnerability result in reduced CWs risk levels_overall, except

for the_four main cities where jncreased vulnerability,and exposure increased risk levels, .-

These findings can help to steer investments in local risk mitigation, and this method

can potentially be applied to other regions where there is sufficient detailed data.

1 Introduction
Heat waves (HWs) and cold waves (CWs) are hazards that affect public health and the

environment (Gasparrini et al., 2015; Habeeb et al., 2015). With global warming, HW,

intensities and durations are expected to increase while those of CWs are expected to

decrease (Perkins-Kirkpatrick and Gibson, 2017; Russo et al., 2015; Smid et al., 2019),
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changing the, risks they pose to society. A recent report showed that in the year 2018

worldwide, 157 million more people were exposed to HWs compared to the year 2000

(Watts et al., 2018). In Europe, recent high intensity HW, events (2003 and 2018) --,

where HWs are defined as 3 days over 90" temperature percentile of the 1980-2010 --,
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2015 compared to the same month for the 5 previous years (Michelozzi et al., 2005,

2016), In Trentino Alto-Adige (our study region), Conti et al. (2005) showed that the

large HW of 2003, compared to the previous year, increased mortality by 32% in Trento

and 28% in Bolzano (the region’s_two main cities), In the city of Bolzano, it was found

S

’ CDeIeted: that for

) [Formatted: Italian

: - (Field Code Changed

CDeIeted: ,

(Deleted: mortality

s (Deleted: two

(Deleted: compared to the previous year

CDeIeted: also

N A A A A A AN A A NN A A A A A A A A A AL




90

95

100

05

that higher hospital admissions occurred during HW, events, particularly among elderly

(Deleted: s

women (Papathoma-Kohle et al., 2014). With regards to CWs in Europe, recent winters

have claimed_lives with 790 deaths in 2006, and 549 deaths in 2012 (Kron et al., 2019).

In Italy, de’Donato et al., (2013).report an jncrease in mortality (47%) for the timeframe

of the, 2012 CW in the city of Bolzano compared to the 4 previous winters (2008-2011),
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HWs and CWs events clearly drive risk but how do we define this risk? The United

Nations Office for Disaster Risk Reduction (UNDRR, 2021) and the Intergovernmental

Panel on Climate change (IPCC, 2014) define risk as a function of hazard, exposure,

and vulnerability. Hazard is defined as a process, phenomenon or human activity that

may cause loss of life, injury or other health impacts, property damage, social and

economic disruption or environmental degradation and hazards being characterized by

location, intensity or magnitude, frequency, and probability. Exposure is defined as

people, infrastructure, housing, production, and other tangible human assets present in
hazard-prone areas. Vulnerability is defined as the conditions that define the
susceptibility of an individual, infrastructure, or a community to be impacted by the

hazard. To successfully quantify risk, one must measure all three components: hazard,
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exposure, and vulnerability.

With regard, to temperature-related hazard and exposure, several studies have been

conducted at global-scale (e.g. Chambers, 2020; Dosio et al., 2018), continental (eg.

King et al., 2018), and at city-scale (e.g. Smid et al., 2019). Most studies focus on

human exposure (eg. Chambers, 2020; Tuholske et al., 2021) and on the exposure of

different land areas (e.g., Ceccherini et al., 2017; Oldenborgh et al., 2019; Russo et al.,

2016). These studies find increasing trends in HWs (Chambers, 2020; Dosio et al.,
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2018) and decreasing trends in CWs in their period of analysis (Oldenborgh et al., 2019,

Smid et al., 2019).

Studies on HWs and CWs typically have used subjective numerical thresholds, on the

indicator to define severity and exposure to the hazards (e.g. 0<HWMId<3,

3<HWMId<6, 6<HWMId<9). However, extreme events are usually defined by their

return periods. In the case of HWs and CWs, fitting extreme value distributions to define
the return periods is difficult due to the possible absence of events in the analyzed time
frame (i.e. zero values, in the case where there are no HWs/CWs in a given year).
Generalized extreme value distribution (GEV) and non-stationary-techniques (Dosio et

al., 2018; Kishore et al., 2022; Russo et al., 2019) have enabled gstimation of HWs and

CWs' return periods, but neither approach explicitly accounts for a zero presence in an.

analyzed time series.,

In this study, for the first time, we use a distribution allowing for the direct fitting of zero-

values for extremes (years with no event): the zero-inflated distribution of Tweedie

families (Jorgensen, 1987; Tweedie, 1984). This distribution is also used to estimate

HWs and CWs frequency of occurrence. The Tweedie distribution has been used

mostly for the purpose of insurance claims analysis. Jt has seldom been applied in the

field of natural hazards, such as HWs mortality (Kim et al., 2017), droughts (TijJdeman et

al., 2020), or rainfall analysis (Dunn, 2004; Hasan and Dunn, 2011). The main
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advantage of the Tweedie distribution is the possibility of considering a range of

distributions fo describe continuous and semi-continuous domains; these include;

normal;, Gamma, Poisson; Compound Gamma-Poisson; and Inverse Gaussian (Bonat

and Kokonendiji, 2017; Rahma and Kokonendji, 2021; Shono, 2008; Temple, 2018).
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Moreover, for some of these distributions (i.e. Poisson mixtures of gamma distributions),

the Tweedie distribution approach explicitly enables the fitting of zero-inflated data. The

distribution’s main limitation is the complex distribution’s fitting methodology and the

difficulties in obtaining relevant information criteria, such as the Akaike’s information

criterion (Shono, 2008) The implication of these limitations are that the fitting’ of the

Tweedie distribution is computationally intensive and that it is difficult to compare its

goodness of fit to other distribution via the information criteria.,

To perform any risk analysis, vulnerability to the hazard must be quantified. HW, and

CW, vulnerabilities can be approximated though the combinations of several

socioeconomic indicators. Cheng et al. (2021) provide an overview of the different types

of indicators used in the literature to quantify vulnerability. The indicators can be

diverse, ranging from population structure (e.g., age and health characteristics), social

status, economic conditions, community (cultural) group characteristics, and household

physical characteristics. At the community level in the United States, jndicators such as

social isolation, presence of air conditioning, proportion of elderly and proportion of

diabetics in the population have been found to be key for human vulnerability to
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Tweedie families (Jorgensen, 1987; Tweedie, 1984) to
estimate HWs and CWs frequency of occurrence, which
enabled us to directly account for the possible zero
values. The Tweedie distribution has been used mostly
for the purpose of insurance claims analysis, but has
seldom been applied in the field of natural hazards,
such as HWs mortality (Kim et al., 2017), droughts
(Tijdeman et al., 2020), and rainfall analysis (Dunn,
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many distributions for the continuous and semi-
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(Bonat and Kokonendji, 2017; Rahma and Kokonendji,
2021; Shono, 2008; Temple, 2018). Moreover, for some
of these distributions (i.e. Poisson mixtures of gamma
distributions) it explicitly enables the fitting of zero-
inflated data. Tweedie distribution main limitation is the
complex distribution’s fitting methodology and the
difficulties to compare it to other models via information

b criteria such as the Akaike's information criterion
1:( (Shono, 2008).
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temperature extremes (Reid et al., 2009). At the pational level in Korea, Kim et al.

(2017) found that elderly living alone, agricultural workers and unemployed are the main

indicators for vulnerability to heat wave days and tropical nights. Vulnerability indicators,

jn_combination with temperature-mortality relationships, have also been appraised at
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city scale for HWs (Ellena et al., 2020) and at regional scale (Lépez-Bueno et al., 2021)

for CWs (Karanja & Kiage 2021). A study, on social vulnerability to natural hazards in
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255  For ltaly, Morabito et al (2015) conducted a risk analysis of heat on elderly in the major
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The Trentino Alto-Adige region (Figure 1) is a mountainous region in northern Italy, (Deleted: risks’ components to its change )
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which borders Austria. The elevation of the region varies from 65m for lake Garda to
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of Bolzano). Its most populous cities (population for 2022 in parenthesis) are the two
provincial capitals, Trento (118509) and Bolzano (107025), as well as minor cities such
as Merano (40994) and Rovereto (39819). The main rivers in the region are the Adige,

and its tributary, the Isarco. Due to its diverse geography, the climate is also diverse,
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3 Methodology
3.1 Temperature data

360 In order to quantify the HWs and CW hazard, we used the freely available spatial
temporal temperature dataset by Crespi et al. (2021). It consists of gridded daily

temperatures for the entire Trentino Alto-Adige region covering the period of 1980-2018

at a resolution of 250 meters. The dataset is based on more than 200 station’s daily | (Deleted: This
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records fhat have been quality controlled and homogenized. The interpolation method is
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based on a combination of 30-year temperature climatology (1981-2010), daily

anomalies and accounts explicitly for topographic features (i.e. elevation, slope) that are

crucial in orographically complex areas Jike the Trentino Alto-Adige region. The leave
one out cross validation presented in Crespi et al. (2021) finds a mean correlation

coefficient that is higher than 0.8 and mean absolute errors of around 1.5 degree

Celsius (on average across months and stations used for the interpolation),,

3.2 Hazard quantification and distribution fitting

3.2.1 Hazard quantification

To quantify the hazard, we used the HWMId (Russo et al., 2015) and the CWMId (Smid
et al., 2019). These indices represent a way of measuring extreme temperature events

while considering their durations, intensities, and accounting for site-specific historical

climatology (30years).

According to Russo et al. (2015), HWMId is defined as the maximum magnitude of the
HWs in a year. A HW occurs when the air temperature is above a daily threshold for
more than three consecutive days. The threshold is set to the 90™ percentile of the
temperature data of the day and the window of 15 days before and after throughout the
reference period 1981-2010. The magnitude of a HW is the sum of the daily heat
magnitude HMy of all the consecutive days composing the HW (Equation 1):

Tyq — Tsoy2sp

if T, >T
HMq(Ta) = ) Taoyzsp — Tsoyzsp soy23p
0

if Ty < T3oy25p
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and it represents the best product for the area, more
attention should be given to measuring meteorological
variables in orographically complex area and at high
elevation. This will in turn reduce the uncertainty in
spatial interpolation and improve the quantification of
impacting hazards such as HWs and CWs.
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where HMq(Tq) corresponds to the daily heat magnitude, Tqthe temperature of the day
in question and T3oy25, and T3oy75p correspond to the 251 and 75™ percentile of the
yearly maximum temperature for the 30 years of the reference period (1981-2010). The
interquartile range (IQR, i.e. the difference between the Tsoy75p and Taoy2sp percentiles of
the daily temperature) is used as the heatwave magnitude unit and represents a non-
parametric measure of the variability of the temperature timeseries. Therefore, a value
of HMy equals to 3 means that the temperature anomaly on day d with respect to T3oy25p
is 3 times the IQR. Finally, for a given year HWMId corresponds to the highest sum of
magnitude (HMd) over the consecutive days composing a heatwave event (with only

days with HMd > 0 considered).

Analogously to the HWMId, CWMId is defined as the minimum magnitude of the CWs in
a year (Smid et al., 2019). A CW occurs when the air temperature is below a daily
threshold for more than three consecutive days. The threshold is set to the 10th
percentile of the temperature data of the day and the window of 15 days before and

after throughout the reference period 1981-2010.
The daily cold magnitude corresponds to (Equation 2):

Td - T30y75p

_ if T; < T
CMy(Ta) = | Taoy7sp — Tsoy2sp 47 s
0

if Ty > Taoy75p

(2)

where CMq(Tq) corresponds to the cold daily magnitude, Tq the daily temperature and
Taoy25p and Taoy7sp correspond to the 251 and 75™ percentile yearly temperature for the

30 years used as a reference. Inversely to HWMId, the lowest cumulative magnitude

10
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[0,+Inf[ , we use the Tweedie distribution (Jorgensen, 1987; Tweedie, 1984), a
distribution that can act as zero-inflated, thus accounting for the presence of zeros

directly. The Tweedie distribution is an exponential dispersion model which has a

probability density function of the form (Eguation 3): [Deleted: e

1
35 £(,6,®) = a(y, &) x exp [ {y6 — k(6)}

where @ corresponds to its dispersion parameter that is positive, 6 to its canonical
parameter, and k() the cumulant function. The function a(y, ®) generally cannot be
written in closed form. The cumulant function is related to the mean (u, = «'(8)) and
440 variance (o, = ® = x"(6)) and in the case of a Tweedie distribution the variance has a

power relationship with the mean (Equation 4):

Oy = D * (Uy)p

where p corresponds to the power parameter that is positive.
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Depending on the value of p, the distribution will behave differently. In the case where p
is between 1 and 2, it belongs to the compound Poisson-gamma distribution with a
mass at zero, while other p values can make the distribution correspond to a normal,

450 Poisson, or gamma distribution, among others. The use of the Tweedie distribution is

retained, permitting us fo consider the zero values, while also considering other [Deleted: as it permits

distributions should there be an absence of zero values.

We fit the distribution to the previously found HWMId and CWMId values with the help
of the Tweedie R package (Dunn, 2021). It provides distribution density, distribution
455  function, quantile function, random generation for the Tweedie distributions. The

Tweedie parameters (i.e. mean, power, and dispersion) have been estimated by the

“tweedie.profile” function (Dunn, 2021) using the maximum likelihood as described by [Deleted: 2015

Dunn and Smyth (2005). An example of the fitted distribution for Bolzano and Trento (Deleted: Dunn (2015) and

can be found in the supplementary material (Figure S1). It is also possible to use the

T60 same package to estimate a quantile using the fitted distribution, permitting us to [Deleted: . This enables
estimate specific return levels for return periods T for both HWMId and CWMId. For this

study two return levels are retained, 5 years (HW5Y for HW, and CW5Y for CW) and 10

years (HW10Y for HWs and CW10Y for CW). This choice aims to account for poth the [Deleted: for of

length of the analyzed period (39 years) and the type of hazards we are analyzing (HWs

465 and CWs usually do not occur every year). Higher return level estimations would be [Deleted: doesn't

affected by extrapolation effects and higher uncertainties. [Deleted: uncertainty

For statistical fit verification, the Kolmogorov—Smirnov (KS) test on two samples is used

with one sample being the HWMId or CWMId values, and the other sample being a [Deleted: found
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is one of the most commonly used in the literature for zero inflated Tweedie distribution
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(Goffard et al., 2019; Johnson et al., 2015; Rahma and Kokonendji, 2021). The null
hypothesis of this test is that the two samples belong to the same distribution. If the P-
value for this test is below the significance level a of 5%, the null hypothesis is rejected,

otherwise we cannot reject the null hypothesis at this significance level.

3.3 Exposure quantification

To quantify the population exposed to HWs and CWs, we use time-varying population

data, from the Global Human Settlement Layer (GHSL) (Schiavina et al., 2019). The [Deleted:
population data is available at a resolution of 250m for the following years: 1975, 1990,
2000 and 2015. Both these data, and the population count done by the lItalian national [Deleted:i

statistical institute, indicate a growing population throughout the region_in the period for

which data is available(overall 23%, 1975-2015).
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period 1980-2018, following the methodology presented in other studies (e.g. Formetta
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and Feyen, 2019; Neumayer and Barthel, 2011). We linearly interpolated the data in

time for the period 1980 to 2015 (assuming a constant rate in between available years)

and we used the closest year for the period 2016-2018.

Following recent studies (King and Harrington, 2018; Russo et al., 2019), for each year,

a pixel is considered exposed to HW/CWs hazard (or to a 5 or 10 year return-period
HWs/CWs) if, for that year, the HWMId/CWMId of the pixel is greater than zero (or

greater than the corresponding return level HW5Y/CW5Y or HW10Y/CW10Y,
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respectively).This is the exposition factor, and it is a binary value (0 meaning un-

exposed or 1 meaning exposed).
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The percentage of population exposed js calculated on annual basis over the study

(Deleted: are

period (1980-2018) and with the help of population data)inearly interpolated from 1980

(Deleted: , also

to 2018.

Using this population data, the percentage of population exposed js then calculated

(Deleted: are

using the following equations (Equations 5 and 6):

Population exposed(t) = Z EF; * population;(t)

. Population exposed(t)
Percentage of population exposed (t) =

Total population (t)

where i corresponds to the pixels, t to the year being analyzed, EF to the exposition

factor mentioned above (binary).

3.4 Vulnerability quantification

We express HWs and CWs vulnerability using eight indicators as in Ho et al. (2018);,

(Deleted: s

they, quantify community vulnerability to HWs and CWs events based on extreme age,

o (Deleted: who

household physical characteristics, social status and economic conditions. The list of

variables considered js reported in Table 1.
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Table 1. Vulnerability indicators used (after Ho et al., 2018)
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Category Indicator Definition
Older Age Population over 55 years old
Extreme Age
Infants Population under 5 years old
Percentage of household living in
People in old housing built prior to 1960
Household houses (corresponding to when better
physical insulation started being implemented)
characteristics

People in poor

living condition

Percentage of household living in other
type of housing not meant for

inhabitation (cellar, attics)

Low education

Population with low education (no

population middle-school diploma)
Social Status
People living
Number of single-person households
alone
Low-income Population in a household with children
Economic Status population and no money-earning members
Unemployed Unemployment rate
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The spatially varied indicators are freely available in the census records (i.e. sub-city
540 level) from the Italian national statistical institute (ISTAT, 2021) for three different years

(1991, 2001 2011). Given the data time constraints, vulnerability is thus derived for

(Deleted: o

‘ these three years only.

The methodology to quantify vulnerability uses the equal weight analysis (EWA, e.g. Liu

et al, 2020). Firstly, the individual indicators are standardized between 0 and 1, prior to

(Deleted: all

1545 aggregation (their sum); the standardization is done at the city level for the three years

of record (1991, 2001, 2011) based on Equation 7:

Indicator(t) — min(Indicator
Standardized Indicator (t) = Q) ( 1991,2001,2011)

maX(Ind1C3t0r1991,2001,2011) — min (Indicator;g91,2001,2011)

(7)

550 Secondly, the EWA is performed according to Equation 8:

y: Standardized indicator (t)

Vulnerability = number of indicators

(8)

This approach was chosen as it is the simplest method for weighing the vulnerability
555 indicators and it is commonly applied in the literature with regards to HWs and CWs

(e.g. Buscail et al., 2012; Buzasi, 2022).
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Finally, we created yearly varying vulnerability maps for the period 1980-2018 following

the same linear interpolation approach used for the population.

(Deleted: we

3.5 Risk Quantification

Risk js a function of hazard, exposure and vulnerability, multiplied to quantify risk

(UNDRR, 2021). This is one of the two most commonly used approaches in literature
(Dong et al., 2020; Quader et al., 2017; Russo et al., 2019), with the other approach
being the addition of the different risk components. Multiplication when compared to
addition is found to better highlight the complex relationship between the different

components, due the multiplication of the multivariate probabilities of independent

(Deleted: here is assumed to be

(Deleted: which are

- (Deleted: then

AN

CDeIeted: as

variables following a product law (El-Zein and Tonmoy, 2015; Estoque et al., 2020;

(Deleted: follow

Peng et al., 2017).

The risk is calculated as per Dong et al. (2020) (Equation 9):

(Deleted: e

Risk = i/Hazard * Exposure * Vulnerability

)

with each of the risk components having a value in [0,1]. The hazard is computed as the

probability of occurrence of HWs/CWs using the fitted Tweedie distributions probability

(Deleted: by

function for each pixel. Exposure is the standardized population density. The
vulnerability derived from standardized variables is also between [0,1]. The resulting risk

is therefore bound by 0 and 1, with 0 corresponding to the lowest level of risk and 1 to

(Deleted: also

the highest level of risk.

The risk is calculated at the municipality level because it is the lowest level of resolution

of the three elements that compose it.
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In order to further investigate which are the driving factors of the risk, we disentangle

the marginal effect of each component (i.e. hazard, exposure, and vulnerability) for both

period).

HWs and CWs. In turn, one of them is allowed to vary across 1980-2018 and two of : (Deleted:
them are kept constant (to their value at the year 2003, the middle of the analyzed
3.6 Trend analysis & statistical significance : [ Deleted: s

The trends are analyzed using the robust regression technigue (Huber, 2011) which is

often used to assess trends in natural hazards (Formetta and Feyen, 2019 for multiple

hazards and Kishore et al., 2022 specifically for HWs). Robust regression seeks to

overcome part of the limitations of traditional regression analysis.

For example, the linear regression least squares method is optimal when the

regression’s assumptions (normal distribution, independence, equal variance) are valid

(Filzmoser and Nordhausen, 2021; Khan et al., 2021), This method can be sensitive to

outliers or if normality is dissatisfied (Khan et al., 2021; Brossart et al., 2011), The

robust regression method is designed to limit the effect that invalid assumptions have

on the regression estimates (Filzmoser and Nordhausen, 2021; Alma, 2011).

To confirm the statistical significance of the trends, the false discovery rate (FDR)

methodology is used according to Wilks (2016) and Leung et al. (2019), with a
significance level a=0.05. The FDR is defined as the statistically expected fraction of
null hypothesis test rejections at the grid cell for which the respective null hypotheses

are frue (Wilks 2016).,
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4 Results
4.1 Hazard quantification and trends
For HWs hazard intensities, the most notable year on record (1980-2018) in the region

is 2003, where HWMId reached a pixel maximum of 30.4 and a median value of 16.9

over the area (Figure 2). The second most intense HW occurred in 2015 and the third (Deleted: S2 in the supplementary material

most intense in 1983. Out of the six years with the highest median HWMId between (Deleted: From

1980 and 2018, four occurred in the last decade (2010, 2013, 2015, 2017), suggesting
that climate change is already increasing the frequency of heat waves in the Trentino
Alto-Adige region. For CW, only 1985 stands out, with a maximum and median CWMId
of 27 and 14.5, respectively, or nearly three times more than that of any other year on

record. The second strongest cold wave occurred in 2012.

NN

HWMId.1983 HWMId.2003 HWMId.2015 30 [Formatted: English (US)
R % [Formatted: Normal, Don't keep with next
N 20 {
‘ 15
: 10
) s

CWMId.2009 CWMId.2012

Figure 2: Regional Heat wave Magnitude Index daily (HWMId) and Cold Wave

Magnitude index daily (CWMId) maps for single years with the highest regional average

on record (1980-2018)
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The KS tests p-values (Figure S2 in the supplementary material), indicate that the fitting

of the Tweedie distribution with power parameter values between [1,2] cannot be

) ) (Deleted: A

rejected for both HWMId and CWMId. This gnables us to estimate return levels for both

(Deleted: shows that the Tweedie distribution

HWs and CWs and analyze trends based on them. The return levels for return periods
of 5 years (HW5Y, CW5Y) and years (HW10Y, CW10Y) for every pixel are shown in

Figure S3 in the supplementary material,,

. | the entire region

| Auto

Fitting the robust linear model to the HWs values, statistically significant positive trends

are found for HWs (i.e. HWMId > 0) and HWs with a magnitude larger than the 5-year

event (HWMId > HW5Y) in most pixels of the region (Figure 3). For rarer events, those

\ (Deleted: 4

larger than the 10-year event (HWMId > HW10Y), no statistically significant increase in

HWs intensity are found in the region. Regarding Jocation of these trends, some of the

o (Deleted:
CDeIeted:
“(Deleted: 2

highest elevation parts of the region have the greatest coefficient of increase (i.e. north

o (Deleted: the

of Bolzano and in the mountains located in the north-west of the region). For all CWs,

we do not find statistically significant trends in any part of the region.
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Figure 3: Trends in heat waves (HWs) and cold waves (CWs) using the robust linear Deleted: | ]
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model based on yearly HWMId and CWMId magnitudes from 1980 to 2018 for HWs a) EDeleted, %

with HWMId > 0, b) with HWMId > HW5Y, c¢) HWMId > HW10Y and for CWs and d) with

680 CWMId >0, e) with CWMId > CW5Y, f) CWMId > HW10Y

4.2 Population exposure,
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Summing the overall number of people exposed over intervals (i.e. one person can be : '[Deleted: In total,
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exposed each year and therefore counted multiple times over the interval), between Auto, Not Highlight
1980 and 2000.in the study region, about 900 000 people were exposed to a 5-year HW .- {Deleted:,

585 event, 250 000 to 10-year HW event, 3 million to 5-year CW event and 1.9 million to 10-

year CW event. More recently, between 2000 and 2018, the population exposure values .-(Deleted: B )

increased significantly to over 5 million for 5-year HW event and to about 2.5 million for
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10-year HW event but the numbers decreased for CW events, to 2.4 million for 5-year

CW event and to 500 000 for 10-year CW event. Due to the importance of the

demographic change in the region_over the full study period (increase of population by

23%), it is important to analyze the percentage of population impacted by these different |

events. This will help us to disentangle what is driving these changes, e.q. whether

these changes are due to demographic changes or to the change in the frequency of

events, or both.

Figure 4Error! Reference source not found. presents the share of the population

Deleted: between 1980 and 2000, in the study region,
about 900 000 people were exposed to a 5-year HW
event, 250 000 to 10-year HW event, 3million to 5-year
CW event and 1.9 million to 10-year CW event.
Between 2000 and 2018, the values increased to over
Smillions for 5-year HW event and to about 2.5million
for 10-year HW event but decreased to 2.4 million for 5-

.| year CW event and to 500 000 for 10-year CW event.
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exposed to HWs and CWs intensities larger than those of 5-year and 10-year events
over the period 1980 to 2018 on a yearly basis. It shows that a higher share of the
population was exposed to HWs more frequently after 2000 compared to the first two
decades (80s and 90s). For both return periods, the robust linear model indicates a

significant increase in the share of population exposed to HWs across the region, with a
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coefficient for the increase of nearly 1% per year for HWs>HWS5Y and 0.02% for
HWs>HW10Y. We did not find a significant trend in human exposure to CWs in the

region,,
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Figure 4: Percentage of population exposed to heat wave and cold wave events greater

than the return levels of Syears and 10years over the span of 1980-2018

4.3 Vulnerability quantification,

The vulnerability for the region (Figure 5) decreases with time, with an average value of

0.42in 1991, 0.32 in 2001 and 0.27 in 2011. The main reason for the decrease in
vulnerability at regional scale is the improvement in overall education level and housing

conditions (i.e., fewer people living in old and poor housing conditions). By contrast, for
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the larger cities (those with a population over 30,000: Merano, Bolzano, Trento,

Rovereto), the vulnerability jncreased from 0.28 in 1991, to 0.30 in 2001, and 0.32 in
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2011_(with vulnerability values, averaged for those cities; see Figure S4, In the

supplemental material). The increase in these cities’ vulnerability relates to the rise in

age (i.e. the older age indicator) and change in social status; with_time, there is a
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growing portion of the population above 55 and an increase in the number of people

- (Deleted: (i.e., people living alone)

living alone in isolated households,
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Figure 5; Calculated extreme temperatures vulnerability index for the three years of the )

census records (1991, 2001, 2011) with the borders of the municipalities in black

4.4 Risk quantification,

Figure 6,shows the trend in risk for the whole region over the period 1980-2018. The

robust linear model shows a significant increasing trend for HW, risk in 40% of the

region’s area, with a significant decreasing risk in some isolated parts of the region of
study. While the risk from CWs has decreased over most of the region since the 1980s,

an increase is found in the major cities (Trento, Rovereto, Bolzano and Merano),
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Decadal means of the annual regional risk values confirm these trends, with the HW, risk (Deleted: s
[70 increasing from 0.119 in the 1980s to 0.133 for the 2010s, while CW,risk has decreased : (Deleted: s
from 0.134 in the 1980s to 0.124 in the 2010s. Decadal means of HW, risk for the large : (Deleted: s
cities show a stronger trend compared to the whole region. We found that the average
HW, risk in the main cities increased by nearly 45% compared to the 12% increase in : (Deleted: s
the whole region. Decadal means of CWs risk for the main cities increased by nearly
775 17% whereas in the whole region, it decreased by 7%.
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Figure 6; Trends between 1980 and 2018 of a) heat waves and b) cold waves risks - (Deleted:
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decrease, significance is indicated with the hashing, the yearly change being the robust

linear model coefficient.

The highest annual risk levels for both HWs and CWs coincide with the years with the

highest hazard intensity (2003 for HW and 1985 for CW, see Figure S5,in the
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supplementary material), indicating that the hazard is potentially the main factor for risk.
However, risks are of course further modulated by exposure and vulnerability. The risks

are found to be the highest in the largest cities (Bolzano, Merano, Rovereto and Trento).

Figure 7, shows the marginal effect of the driving factor behind the trends in HWs and : (Deleted: 6
CWs risks. Figure 7a, Figure 7c, and Figure 7e (Figure 7b, Figure 7d, and Figure 7f) : [Deleted: 6-
show the trend in HWs (CWs) risks with only vulnerability, only exposure, and only g::::::e
hazard changing, respectively. g:::::: 2:

“?(Deleted: 6-
Figure 7a and Figure 7b show trends in risk due to changes in vulnerability only, ‘(D leted: 6-

effectively indicating the locations of the increases/decreases in risk due the changes of

vulnerability indicators, that are equally weighted (seen in Figure 5). These trends are

found to be increasing in the main cities and nearby areas and are found to be

decreasing for the rest of the region.

Figure 7c and Figure 7d show trends in risk due to change in exposure only, indicating

the locations of changing risk due to the changes in population (exposed) only. The HW

and CW risks are found to be increasing in/near urban areas and decreasing in zones at

high elevations and far from the urban centers.

Figure 7e shows the trends in HWs risk due to hazard only, with statistically significant

increasing trends being more evident in and around highly populated areas. The figure

shows that hazard is the main driver of risk for HWSs, with the significant increasing

hazard trends cancelling (as can be seen in Figure 6a) most of the significant

decreasing trends of the other two elements (exposure and vulnerability) seen in the

Figure 7a and 7c.
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Finally, Figure 7f shows no significant trends in CWs risk due to change in hazards only.

The figure indicates that the combination of three elements of the risk equation

(Equation 9) is the main driver of its risk (Figure 6b) rather than the CWs hazard only.
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equally weighted (seen in Figure 5). These trends are
found to be increasing in the main cities and nearby
areas but are found to be decreasing for the rest of the
region.

Figure 7c and Figure 7d show trends in risk due to
change in exposure only, effectively indicating the
location of increases and decreases in risk due to the
changes in population (exposed) throughout the region.
The risks are found to be increasing in/near urban areas
and decreasing in zones at high elevations and far from
the urban centers.

Figure 7e shows the trends in HWs risk due to hazard
only, with statistically significant increasing trends being
more evident in and around highly populated areas. The
figure shows that hazard is the main driver of risk for
HWs, with the significant increasing hazard trends
cancelling (as can be seen in Figure 6a) most of the
significant decreasing trends locations of the other two
elements (exposure and vulnerability) seen in the
Figure 7a and 7c. |

Finally, Figure 7f shows no significant trends in CWs
risk due to change in hazards only. The figure indicates
that CWs hazards are not the main driver of its risk
(Figure 6b) but rather a combination of three elements
of the risk equation (Equation 9).1

Deleted: The results in Figure 6-a and Figure 6-b show
the same patterns as well as Figure 6-c and Figure 6-d
because exposure and vulnerability are the same for
both HWs and CWs and hazard is the only differing
variable.

Figure 6-a (Figure 6-b) show increasing trends in risk
(due to change in vulnerability only) in the main cities
and nearby areas. Decreasing trends are found for most
of the remaining region.

Figure 6-c (Figure 6-d) show increasing trends in risk
(due to change in exposure only) in/near urban areas
and decreasing trends in zones at high elevations and
far from the urban centers.

Figure 6-d show that the hazard is the main driver of
risk for HWs, with statistically significant increasing
trends, more evident in and around highly populated
areas. Finally, Figure 6-e show no significant trends in
CWs risk (due to change in hazards only).q|
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changes in: a (b) vulnerability only, c (d) exposure only, and e (f) hazard only. Trends
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found with the robust linear method, colors indicating an increase in the risk and grey a
decrease, significance is indicated with the hashing, the yearly change_(x10-%) being the

robust linear model coefficient.

5 Discussion

The hazard analysis presented in this paper relies on the Crespi et al. (2021) air «

temperature database. Although Crespi et al. (2021) is based on a state-of-the-art

interpolation approach and represents, the best product for the area, more attention

should be given to measuring meteorological variables in orographically complex areas,

and at high elevation. A more in-depth analysis of this sort will in turn reduce uncertainty .-

in spatial interpolation and improve the quantification of hazards such as HWs and CWs

and related risks.

The findings of this study agree with Russo et al. (2015), which found the greatest HWs )

in the region in 1983, 2003 and 2015 in their analysis of Europe since 1950. The fact

that four of the six largest HWs occurred in the last decade suggests that climate

change is already influencing the intensity and frequency of HWs in the Trentino Alto-

Adige region. Regarding CWs, Jarzyna & Krzyzewska, (2021), also found cold spellsin

the years 1985 and 2012 using different methodologies for other locations throughout

Europe. Similarly, other studies found 1985 to be a year of an exceptional CW in

Europe (Spinoni et al., 2015; Twardosz and Kossowska-Cezak, 2016).

Figure 3a indicates that a strong increase in heatwave trends is observed in the

northwest and the north of our study area. Both areas are at a high elevation (between

~1000m and ~3900m) and one includes the highest mountain in the analyzed area.
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These results are consistent to those presented by Acquaotta et al., (2015), which found

higher increases in temperatures at higher elevations in north-west ltaly.

Our results for HWs are also in line with the finding of Bacco et al., (2021) that analyzed
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trends in temperature extremes over northeastern regions of Italy (including Trentino

Alto-Adige) based on homogenized data from dense station networks. Bacco et al.

(2021) also found widespread warming, with significant positive trends in maximum-

related mean and daytime temperature extremes. The lack of trend in CWs events is

also in agreement with previous research that could not detect any trend in extreme

cold spells (Jarzyna and Krzyzewska, 2021; Piticar et al., 2018).
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(Reynaud and Miccoli, 2018) who demonstrated these in Italy and more specifically our

study area.
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Code availability
The code used for calculating HWMId and CWMId is free and open source, it is the

extRemes package of R which is available here: https://cran.r-
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project.org/package=extRemes.

Data availability
All data used in this study is available freely and openly online. The temperature

data(Crespi et al., 2021) is available at the following location:

presented here could be applied to other regions inside, and outside of Italy to help steer : (Deleted: -
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https://doi.pangaea.de/10.1594/PANGAEA.924502. The population data from the GHSL
is available at this location: https://data.jrc.ec.europa.eu/collection/ghsl. The indicator
data used to calculate the vulnerable is available from ISTAT: https://www.istat.it/en/, (Deleted:
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