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Abstract. Hydro-numerical models are increasingly important to determine the adequacy and evaluate the effectiveness of 

potential flood protection measures. However, a significant obstacle in setting up hydro-numerical and associated flood 15 

damage models is the tedious and oftentimes prohibitively costly process of acquiring reliable input data, which particularly 

applies to coastal megacities in developing countries and emerging economies. To help alleviate this problem, this paper 

explores the usability and reliability of flood models built on open-access data in regions where highly-resolved (geo)data are 

either unavailable or difficult to access, yet where knowledge about elements at risk is crucial for mitigation planning. The 

example of Ho Chi Minh City, Vietnam, is taken to describe a comprehensive, but generic methodology for obtaining, 20 

processing and applying the required open-access data. The overarching goal of this study is to produce preliminary flood risk 

maps that provide first insights into potential flooding hotspots demanding closer attention in subsequent, more detailed risk 

analyses. As a key novelty, a normalized flood severity index (INFS), which combines flood depth and duration, is proposed to 

deliver key information in a preliminary flood hazard assessment. This index serves as an indicator that further narrows down 

the focus to areas where flood hazard is significant. Our approach is validated by a comparison with more than 300 flood 25 

samples locally observed during three heavy rain events in 2010 and 2012, which correspond to INFS-based inundation hotspots 

in over 73% of all cases. These findings corroborate the high potential of open-access data in hydro-numerical modeling and 

the robustness of the newly introduced flood severity index, which may significantly enhance the interpretation and 

trustworthiness of risk assessments in the future. The proposed approach and developed indicators are generic and may be 

replicated and adopted in other coastal megacities around the globe. 30 

Keywords: urban flooding, disaster risk, open-access data, numerical modelling, surface runoff model, Ho Chi Minh City, 

Southeast Asia 
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1 Introduction 

With more than half a million deaths between 1980 and 2009 and nearly three billion people affected, flood events are 

doubtlessly the most common and impactful natural disasters worldwide (Hong et al., 2018; Hallegatte et al., 2013; Doocy et 35 

al., 2013). Climate change is expected to significantly amplify the probability of extreme flood events over the next decades, 

especially in Southeast Asia where the number of coastal cities is disproportionately high (Hanson et al., 2011). This trend is 

especially worrisome since half of the people living in cities with at least 100,000 inhabitants are not farther than 100 km from 

the coast (Barragán and Andrés, 2015). Some of these cities are also accompanied by uncontrolled urban sprawl (Phung, 2016; 

Kontgis et al., 2014; Huong and Pathirana, 2013; Storch, 2011), which exacerbates the risk of disaster-induced damages and 40 

losses due to the combination of increased exposure and vulnerability (IPCC, 2022). To respond to this problem, local decision-

makers require a sound understanding of the complex inter-play of underlying natural processes and oftentimes hidden socio-

economic drivers that dictate the feasibility and effectiveness of possible adaptation strategies (Beven, 2011; Thorne et al., 

2015). This knowledge can be advanced through the application of hydro-numerical models, which are increasingly becoming 

the preferred option for inundation mapping (Dasallas et al., 2022). These, in turn, rely on information about prevailing 45 

environmental constraints, such as the topography and hydro-meteorological conditions (Quan et al., 2020; Nkwunonwo et al., 

2020; Kim et al., 2019; Ozdemir et al., 2013).  

With respect to Southeast Asia, many national institutions still refrain from making this crucial input data available for various 

(technical or political) reasons (Kim et al., 2018; Hamel and Tan, 2021; Liu et al., 2020), which complicates numerical studies, 

especially for independent parties. Not only is the acquisition of these data sets prohibitively costly, but they also often lack 50 

the required spatial and temporal coverage needed for proper derivation of boundary conditions and model set-up. Furthermore, 

it is often the case that such data are badly described and lack the necessary meta-data. However, relevant information is 

increasingly published, either in connection with scientific articles or at freely accessible repositories (Di Baldassarre and 

Uhlenbrook, 2012; René et al., 2014). An increasing number of online media articles, open climate models and code 

repositories further add to this trend. Accordingly, several studies have recently discussed the possibility and implications of 55 

deriving modeling inputs from open-access data sources. This includes local hydro- and meteorological boundary conditions, 

such as rainfall intensities (Zhao et al., 2021) and sea level rise scenarios (Brown et al., 2016), as well as topographic elevation 

models (Schellekens et al., 2014; Sanders, 2007). In addition, the expansion of social media applications continuously 

improves the potential to validate the results of urban flood models (Wang et al. 2018; Feng et al., 2020). Increasing efforts 

are being made to build models based in part on open-access data in regions where data is scarce (Mehta et al., 2022; Trinh 60 

and Molkenthin, 2021; Pandya et al., 2021; Ekeu-wei and Blackburn, 2020), including models capable of mapping urban 

inundation during or shortly after an extreme event by leveraging data generated from social media (Guan et al., 2023). 

However, all aforementioned attempts still relied partially on locally sourced, non-open-access data. In fact, to this date, no 

study is known to utilize a urban surface runoff model, which is exclusively built on freely available data, although this would 

be a worthwhile target to illustrate the necessity as well as the benefits of comprehensive data accessibility. Even though such 65 
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open-access data cannot always be the basis for flood maps that can be considered as truth (especially when validation data is 

lacking), their potential usefulness should not be overlooked. Especially, when the overarching goal is to improve system 

understanding (i.e. knowledge about the causalities between drivers and resulting impacts), generating flood estimation maps 

can open up opportunities to gain insights for subsequent decision-making processes regarding more detailed modelling for 

critical areas. Furthermore, no efforts are known to develop a simple flood severity index that combines flood depth and 70 

duration, both of which have a significant impact (Rättich et al., 2020). Such an index could deliver a more complete picture 

of the potential damage of flooding, even in the absence of extensive data necessary for a sophisticated damage model. 

Studying the metropolitan area of Ho Chi Minh City (HCMC), Vietnam, a city that epitomizes the complex interplay of disaster 

risk components in an environment where accessibility to official data or capacities are limited (Kreibich et al., 2022), this 

paper explores if and by what means an urban flood model can be developed without acquiring any exclusive (geo)spatial or 75 

hydro-meteorological data. With the overarching goal of providing a methodology for researchers to build low-cost, low-effort 

and fully transparent hydro-numerical models for any part of the globe where either data is scarce or capacities and competence 

are limited, this manuscript investigates the usability and reliability of hydro-numerical models that are built exclusively on 

open-access data. The paper focuses on the methodological steps required to derive boundary conditions from cross-

referencing of several freely accessible and reliable sources. These include open-access satellite imagery, governmental and 80 

scientific databases as well as data and information from open-access journal articles. Such low-cost, low-effort models are 

ideal for preliminary food hazard assessment in any flood risk analysis, especially in rapidly developing urban agglomerations 

where data are scarce and modeling expertise is often limited. Secondly, the paper introduces a new perspective on flood 

intensity by proposing a normalized index, which integrates simulated flood depth and duration to paint a more complete 

picture of flood hazard, while facilitating an estimation of damage potential, especially for cities located in low-elevation 85 

coastal zones (LECZ) where flow velocity due to pluvial flooding plays a secondary role. Both approaches are finally validated 

by contrasting the individual model components and resulting inundation hotspots with conventionally acquired information 

and data from local partners. It, therefore, justifies the developed concept, accounts for the feasibility of the primary objective 

and legitimates the call for open-access data and open science (Miedema, 2022) in the field of urban flood modeling on a 

worldwide scale. The presented methodology can be seen as an orientation for city planners and authorities from data-scarce 90 

regions, helping them to readily estimate where inundation hotspots with particularly high damage potential are located in a 

first flood hazard assessment. It allows them to focus, subsequently, on building more detailed damage models for the most 

heavily exposed city districts. Such detailed damage models usually require more extensive and expensive data collection (e.g. 

detailed topography, detailed time series for certain flood events, drainage networks, flood protection systems, land use, socio-

economic vulnerability, etc.) and are indispensable for quantifying risk as a function of hazard, exposure and vulnerability. 95 

The methodology proposed in the following is especially beneficial in those situations where such highly resolved data are 

(still) missing, inaccessible or require significant resources. 
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2 Materials and Methods 

There are generally two essential inputs that a hydro-numerical model needs to produce reliable results. These are elevation 

data including the hydraulic roughness as well as the model domain based on topographic boundaries (Figure 1 (a)) and, 100 

secondly, hydro-meteorological data, such as tidal water levels, river discharge and precipitation data depending on the 

investigated environment (Figure 1 (b)). The ensuing simulation results can be interpreted using model outputs like flood depth 

and duration, which can be combined into flood severity (Figure 1 (c)) as will be explained within this work. The acquisition, 

processing and implementation of the input as well as the processing of the output data require further methodological steps, 

which will be discussed in the following subsections. Regarding data acquisition, special attention needs to be given to the 105 

source, since it dictates the reliability and completeness of the data. Generally, the search priority of terrain data, as well as 

hydro-meteorological data follows the same path, with official sources at the top, followed by global repositories, peer-

reviewed literature, grey literature (i.e. publicly available reports and assessments) and finally regional and global models. 

This workflow will be demonstrated in the following sections using the example of a HEC-RAS 2D model – a capable and 

freely available program by the U.S. Army Corps of Engineers (USACE) based on the 2D shallow water equations – built for 110 

the metropolitan region of HCMC. 

 
Figure 1: WORK FLOW: (a) The first panel shows the topographic data from which the local catchments can be determined that 

define the final model domain; (b) in the second step, hydro-meteorological time-series are defined, which serve as boundary 

conditions for the numerical model; (c) thirdly, simulation results are presented for the HCMC urban districts (hatched area in b) 115 
in terms of maximum flood depth, significant flood duration as well as in the integrated form of a normalized flood severity index 

(INFS) that is to be defined within this work. Topographic data visualized using scientific color maps created by Crameri (2021). All 

other maps use colors for illustration purposes only. 
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2.1 Surface Elevation Data 

2.1.1 Topographic Data 120 

For most parts of the world, accurate and reliable data on local topography is hard to acquire without significant financial 

efforts. Data from high-resolution Light Detection and Ranging (LiDAR) is freely available only for the coastal USA, coastal 

Australia and parts of Europe, but not for the majority of developing countries or emerging economies like Vietnam (Meesuk 

et al., 2015). This is particularly problematic when setting up urban surface runoff models, which heavily depend on terrain 

elevation. For the rest of the world, the only alternative to own (self-conducted) measurements or unvalidated commercial 125 

digital elevations models (DEMs) (Planet Observer, 2017; Takaku and Tadono, 2017; Intermap, 2018), both of which are 

prohibitively costly (Hawker et al., 2018), are open-access satellite-based DEMs. An example of such open-access DEMs is 

the highly popular Shuttle Radar Topography Mission (SRTM) (Hu et al., 2017; Sampson et al., 2016; Jarihani et al., 2015; 

Rexer and Hirt, 2014), which was acquired in 2000 and covers around 99.7% of the global populated areas (Bright et al., 2011). 

However, these models have substantial vertical errors and relatively coarse resolutions. Accordingly, they cannot reflect 130 

micro-topographic features or infrastructure developments in relatively flat terrain (Gallien et al., 2011; Chu and 

Lindenschmidt, 2017). This is particularly evident for urban settings with a significant positive bias created by the backscatter 

of buildings and vegetation (Becek, 2014; Shortridge and Messina, 2011; Tighe, M. & Chamberlain, D., 2009; LaLonde et al., 

2010), making them unsuitable to resolve terrain features that actually control flood extents and dynamics (Schumann et al., 

2014). In fact, the mean error of SRTM can reach up to 3.7 m when compared to LiDAR (Kulp and Strauss, 2019), significantly 135 

distorting simulated flood extents for coastal areas under considerable tidal influences. Furthermore, considerable problems 

may arise due to differences in geodetic referencing for various digital elevation models, which can lead to false absolute 

surface elevations (Minderhoud et al., 2019). An attempt to rectify these errors was undertaken by Kulp and Strauss (2018), 

who developed a novel CoastalDEM by using a neural network to perform a nonlinear, non-parametric regression analysis of 

SRTM errors, suggesting better performance and adequacy in urban environments. Another attempt at correcting a satellite-140 

based DEM was done by Hawker et al. (2022), who created FABDEM by removing buildings and forests from COPERNICUS 

DEM through the use of machine learning. Although CoastalDEM and FABDEM have the ability to provide better elevation 

accuracy in urban settings, its plausibility still needs to be checked for each individual study area. This can be done through 

the inspection of terrain elevation at key locations, which can either be structures (canal banks, dikes, flood protection 

structures) or locations where flooding is frequently reported (hotspots), all the while taking the elevation data of other satellite-145 

DEMs like ALOS, ASTER, SRTM and COPERNICUS into account. Another issue with the freely available version of 

CoastalDEM is its resolution of 3 arc seconds, whereas other open access satellite-based DEMs are available in a 1 arc second 

resolution. A list of available DEM data sets, their resolution and providing agencies is given in Table 1. 
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Table 1. A list of freely available DEMs along with their different versions, their issuers and their date of issuance as well as their 150 
resolution and vertical accuracy. 

Freely Available Satellite DEMs  

Name Version Issuer with Link (Reference) 
Publication 

Date 

Horizontal 

Resolution 
Vertical Accuracy 

SRTM 

1 

NASA 

(EROS, 2018) 

2004 3-arcsecond 

16 m absolute error (Globe) 

(Farr et al., 2007) 
2.1 2005 3-arcsecond 

3 2013 1-arcsecond 

ALOS 

1 

JAXA 

(OpenTopography, 2016) 

2015 1-arcsecond 

4.10 m RMSE (Globe) 

(Tadono et al., 2015) 
2 2017 1-arcsecond 

3 2020 1-arcsecond 

ASTER 

1 

NASA/METI 

(ASTER) 

2009 1-arcsecond 
9.34 m RMSE (US) 

(Gesch et al., 2012) 

2 2011 1-arcsecond 
8.68 m RMSE (US) 

(Gesch et al., 2012) 

3 2016 1-arcsecond 
8.52 m RMSE (US) 

(Gesch et al., 2016) 

COPERNICUS 1 
ESA 

(Copernicus DEM, 2019) 
2019 1-arcsecond 

<4 m absolute error 

(Copernicus DEM, 2019) 

CoastalDEM 

1.1 
Climate Central 

(Kulp and Strauss, 2018) 

2018 3-arcsecond 
4.02 m RMSE (Globe <5 m) 

(Kulp and Strauss, 2021) 

2.1 2022 3-arcsecond 
2.63 m RMSE (Globe <5 m) 

(Kulp and Strauss, 2021) 

FABDEM 
1.0 Fathom Global 

(Hawker et al., 2022) 

2022 1-arcsecond <2.88 m absolute error 

(Hawker et al., 2022) 1.2 2023 1-arcsecond 

To utilize an open-access satellite-based DEM in reliable flood simulations, several processing steps are necessary, which, for 

the case of HCMC, are summarized in Figure 2 below. One solution to circumvent the limitation of vertical errors can be a 

height correction of SRTM (Figure 2(b)) based on CoastalDEM (Figure 2(a)). To that end, an offset map representing the 

difference between SRTM and CoastalDEM is created (Figure 2 (c)) and downscaled using a surface spline interpolation. This 155 

offset map is then added to the SRTM, which results in a height-corrected, higher-resolution elevation model (Figure 2 (d)). 

Depending on the use case, the resulting elevation model can be further processed through the use of a 2D median filter (Figure 

2 (e)) to smooth out the surface and reduce noise (Ansari and Buddhiraju, 2018). Furthermore, filling algorithms can be used 

to counteract artifactual sinks and holes with no physical meaning that typically arise in remote sensing. These sinks and holes 

can be closed by a variety of methods. A comprehensive list of filling algorithms can be found in the works of Lindsay (2016). 160 

https://earthdata.nasa.gov/learn/articles/nasa-shuttle-radar-topography-mission-srtm-version-3-0-global-1-arc-second-data-released-over-asia-and-australia
https://portal.opentopography.org/raster?opentopoID=OTALOS.112016.4326.2
https://asterweb.jpl.nasa.gov/gdem.asp
https://spacedata.copernicus.eu/explore-more/news-archive/-/asset_publisher/Ye8egYeRPLEs/blog/id/434960
https://go.climatecentral.org/coastaldem/
https://www.fathom.global/product/fabdem/
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It is recommended to only use these after incorporating bathymetric data (Section 2.1.2) into the DEM (Figure 2 (f)) to 

guarantee proper water routing (i.e. from higher-lying to lower-lying cells). 

In the case of HCMC, the adequacy of these five elevation models was assessed by considering their terrain elevation at the 

inner-city canal banks that are well-known inundation hotspots. Only CoastalDEM delivered a plausible average terrain 

elevation of 0 m above mean sea level (MSL) at this location, while all others returned average terrain elevations of +6 m and 165 

higher. As this level is far above storm surge peak water heights (FIM, 2013), the comparison suggests best accuracy for 

CoastalDEM. An adequate representation of the canal bank elevations is especially important for flood modeling, since riparian 

areas are highly exposed to flooding through storm surges and because such events cause significant backwater effects that 

have a crucial impact on water drainage. 

To evaluate the accuracy of the end result, a statistical comparison using the mean absolute error (MAE), the mean error (ME), 170 

the root mean square error (RMSE) and the standard deviation (STD) was made between SRTM, CoastalDEMv1 and the 

generated DEM, on the one hand side, and LiDAR data from 2020 at three locations across HCMC on the other (Table 2). 

These locations, their extents and corresponding LiDAR characteristics can be found in the Supplementary Material of this 

article. The generated DEM shows a reduced error when compared to SRTM and CoastalDEMv1 versus the LiDAR data set 

across all three areas. Specifically, the positive bias of SRTM is eliminated, all the while halving the negative bias of the 175 

CoastalDEMv1 across all presented metrics. Although the ME of the generated DEM was calculated to be -0.45 m, it still 

offers a substantial improvement not only over SRTM (mean error of 1.22 m) and CoastalDEMv1 (mean error of -0.91 m), 

but also over all other DEMs presented in Table 1. The same applies for the absolute mean error, the RMSE and the STD of 

the error. A detailed comparison for all DEMs of Table 1 is provided in the Supplementary Material. 

Table 2.  A statistical comparison of SRTM, CoastalDEMv1 and the generated DEM with LiDAR data across three areas in HCMC 180 

Statistical Comparison Relative to LiDAR Data 

Area (Km2) 

MAE (m) ME (m) RMSE (m) STD (m) 

SRTM Coastal

DEMv1 

Generated 

DEM 

SRT

M 

Coastal

DEMv1 

Generated 

DEM 

SRTM Coastal

DEMv1 

Generated 

DEM 

SRTM Coastal

DEMv1 

Generated 

DEM 

1 96 2.47 1.34 0.81 1.28 -1.0 -0.51 3.32 1.81 0.96 3.07 1.52 0.81 

2 48 2.51 1.22 0.80 1.20 -0.73 -0.38 3.21 1.62 0.95 3.03 1.41 0.86 

3 21 8.44 4.58 0.62 0.98 -1.1 -0.39 3.56 1.74 0.75 3.33 1.43 0.64 

Total 165 2.5 1.3 0.77 1.22 -0.91 -0.45 3.33 1.71 0.93 3.12 1.45 0.81 
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Figure 2. TERRAIN DATA: (a) represents the CoastalDEM, which is subtracted from the SRTM shown in (b) to produce the 

elevation offset map presented in (c). (d) is the result of adding (b) to (c). (e) depicts the result of the 3×3 2D median filter, which was 

then filled and enriched with bathymetric data, leading to the final elevation model shown in (f). Topographic data visualized using 

scientific color maps created by Crameri (2021). 185 

2.1.2 Bathymetric Data 

An intrinsic drawback of satellite-based DEMs is the inability of the synthetic aperture sensors (SAR) to determine the 

geometry of river beds (Farr et al., 2007). Additionally, the generated pixels include surrounding regions, resulting in greatly 

overestimated channel depths (Yan et al., 2015b). Therefore, bathymetric data from other sources has to be incorporated into 

any satellite-based DEM. The availability of reliable open-access bathymetric data, with a resolution sufficient for use in flood 190 

modeling, greatly differs between countries and is generally more difficult to acquire. In fact, the availability of such data is 

restricted even in many developed countries (Moramarco et al., 2019), oftentimes requiring expensive surveys that are limited 
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to local scale (Guan et al., 2023). To circumvent this problem, more extensive research for bathymetric data into peer-reviewed 

articles as well as engineering reports (grey literature) is recommended. Where such literature does not exist, river width and 

depth can either be approximated (Patro et al., 2009; Neal et al., 2012; Yan et al., 2015a), obtained from calculated global river 195 

width and depth databases (Yamazaki et al., 2014; Andreadis et al., 2013), or surveyed in waterways with unknown 

navigational depths. 

In the example of HCMC, the hydrological situation (Figure 3 (a)) is defined by two major streams, namely the Dong Nai 

River, which passes the urban districts at the eastern city boundary, and the Sai Gon River, which enters the urban area at the 

central north and flows into the larger Dong Nai at the central south. These waterbodies are fed by a complex network of 200 

artificial canals that drain the inner city. Both the natural and man-made waterways have to be incorporated into the DEM. To 

that end, the bathymetry of the Dong Nai River can be approximated from a research article by Gugliotta et al. (2020), who 

digitized bathymetric maps originally prepared by the US Army Corps of Engineers (USACE) in 1965 (Figure 3 (c)). No open-

access data exists for the Sai Gon River, thus requiring an assumption based on official navigation depths at different shipping 

terminals along the river. The Sai Gon bed elevation was approximated through interpolation between locations with known 205 

navigation depths (10.5 m below MSL at Ben Nghe Port, 8.5 m below MSL at Tan Thuan Port, 6.5 m below MSL at Truong 

Tho Port) (Ben Nhge Port Company Ltd., 2014; Trameco S.A., 2014; Saigon Port Joint Stock Company, 2019) and 

extrapolation beyond the most upstream value with a slope of 0.1%. This slope represents the average of the Sai Gon at its 

midsection (IGES, 2007) and was extended until the northern boundary of the model (Figure 3 (b)). 

 210 

Figure 3. RIVER BATHYMETRY: (a) shows the location of the ports used to determine the depth of the Sai Gon River as well as 

the stationing for the river bed elevation. (b) and (c) show the constructed Sai Gon River and digitized Dong Nai River longitudinal 

profiles, respectively. 
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The results of a sensitivity analysis to quantify the impact of this assumption on the simulation results is presented in Section 

3.2. For the inner-city canals, a survey conducted by the Japan International Cooperation Agency (JICA, (2001) determined 215 

the average depth of these canals to range between 1.82 m and 3.82 m below MSL. Given that neither detailed cross-sections 

nor profiles were available, all identified canals and channels were set to a depth of 3 m below MSL. For the specific case of 

HCMC, the aforementioned processing steps lead to the final elevation model: a height corrected, 2D median filtered and filled 

SRTM topography with a 1 arc second resolution that incorporates bathymetric data for all relevant waterbodies (Figure 2 (f)). 

Based on this model, various local flow catchments can be defined of which, however, not all contribute to pluvial flooding in 220 

the metropolitan area. Therefore, the perimeter of the flood model is set to include the central 18 key urban catchments which 

contribute to flooding inside HCMC (Figure 4). This allows to limit simulations to the area of interest and hence to decrease 

computation times without affecting simulated flood depths. Although based on several case-specific simplifications, this 

methodology illustrates how free satellite-derived DEMs can readily be combined with public information on river 

bathymetries and finally produce a terrain model that can be used for hydro-numerical simulations. 225 

 

Figure 4. URBAN CATCHMENTS: The hydrological make-up of HCMC where all of the local catchments that could be determined 

through the processed DEM are presented. On this basis, 18 key urban catchments were defined, which contribute the greatest part 

to pluvial flooding within the city. The boundary of the hydro-numerical model equals the perimeter of these catchments in order 

to decrease computation times without affecting simulated flood depths. 230 
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2.1.3 Hydraulic Roughness Coefficient and Model Calibration 

Due to the 1 arc second resolution, buildings and extensive vegetation that significantly reduce the available cross-section for 

water routing are not represented as no-flow areas in the final DEM. Instead, an equivalent Manning friction coefficient was 

considered in the simulated hydraulic roughness, representing an additional macro-roughness effect that would be neglected 

if set to the value of, for example, concrete (Chen et al., 2012; Taubenböck et al., 2009; Vojinovic and Tutulic, 2009). HCMC, 235 

for instance, is a densely built urban city, whose surface is mostly composed of asphalt or concrete with very low roughness. 

To allow for this effect, a roughness coefficient range of 0.05 to 0.105 s/m1/3 for urban environments has been proposed (Hejl, 

1977), whereby specific values depend on the ratio of built-up to non-built-up areas. In order to determine the optimal Manning 

friction coefficient for the presented model (uniformly applied across the whole modelling domain), a calibration was 

undertaken using inundation depths and locations across HCMC provided by local partners for three severe rain events. The 240 

simulated flood depths for the respective boundary conditions (Precipitation depth (P) and high-water level (HWL)) for 

inundation events on the 01/07/2010, 09/07/2012 and 01/10/2012), respectively, are then compared at the observation points 

using the RMSE, the Nash-Sutcliffe Efficiency (NSE) and the percentage bias (PBIAS) to assess the quality of the results 

(Table 3). 

Table 3. Model calibration for different Manning friction coefficients focusing on reported inundations during three rain events (left 245 
column) and corresponding RMSE, NSE and PBIAS values. 

 

Calibration 

Events 

Manning Friction Coefficient 

n = 0.08 s/m1/3 n = 0.10 s/m1/3 n = 0.12 s/m1/3 

RMSE NSE PBIAS RMSE NSE PBIAS RMSE NSE PBIAS 

Event 1 

Date: 01/07/2010 

P = 79 mm 

HWL = 1.10 m 

23 Observations 

0.02 -5.25 37.5 0.01 0.50 5 0.02 -1.75 -25.6 

Event 2 

Date: 09/07/2012 

P = 58 mm 

HWL = 1.12 m 

19 Observations 

0.03 0.14 21.4 0.02 0.64 10.7 0.03 0.29 -15.3 

Event 3 

Date: 01/10/2012 

P = 74 mm 

HWL = 1.15 m 

18 Observations 

0.04 -3.23 33.7 0.03 0.52 6.2 0.05 -1.42 -17.9 

Following this approach, the best results for the RMSE, NSE and PBIAS are obtained for a Manning friction coefficient of 

0.10 s/m1/3, which corresponds to the higher bound of the proposed range for mimicking urban settings (Schlurmann et al., 
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2010). The achieved NSE values of 0.50 to 0.64 are particularly encouraging when compared to the calibration of the flood 

model by Le Binh et al. (2019) that achieved values of 0.51 to 0.89 using 2 m resolution LiDAR data. The presented model 250 

was validated, subsequently, for a Manning friction coefficient of 0.10 s/m1/3 using a fourth, independent rain event. Detailed 

results of this validation are presented in section 3.1. 

2.2 Hydro-meteorological Boundary Conditions 

As in the case of terrain and bathymetric data, the availability of data pertaining to hydro-meteorological boundary conditions 

varies widely depending on the region to be modeled. Nevertheless, a similar approach as proposed for the elevation data can 255 

be adopted, whereby information and data originating from official sources have the highest priority, followed by open-source 

repositories, peer-reviewed literature, grey literature and regional models in descending order of importance. Generally, raw 

time series allow for an independent determination of intensities and return periods of extreme events by fitting the data to a 

probability function, e.g. Gumbel, Fréchet, or Weibull distributions. A review of this methodological approach can be found 

in Hansen (2020). However, when there is consensus in the literature, such time series in sufficient temporal resolution, i.e. 260 

daily or even monthly cumulative data, are absent or an independent statistical analysis is not necessary, extreme values from 

the literature can be used. This process can be illustrated through the example of HCMC, ` riverine, tidal and precipitation 

boundary conditions are needed. Nonetheless, given that the greatest problem for the inhabitants and authorities of HCMC is 

frequent, economically disrupting flooding due to the combination of heavy rain and high tidal water levels, the focus of this 

manuscript was put on precipitation, which is why the exemplary probabilistic analysis will only be shown for precipitation 265 

data. The methodology, however, can be applied to all other hydro-meteorological boundary data as well. 

2.2.1 River Discharge Data 

Discharge data is typically readily available, especially in the presence of reservoirs along a river. For the Sai Gon and the 

Dong Nai Rivers, however, no open-access discharge data exists following the FAIR principles in data policy and stewardship 

(GO FAIR, 2016; Wilkinson et al., 2016; Mons et al., 2017), although both are regulated by upstream reservoirs. Nevertheless, 270 

singular extreme discharge rates and their respective return periods can be found in the additional material of a research article 

by Scussolini et al. (2017). Furthermore, long-term mean river discharges of 54 m3/s for the Sai Gon and 890 m3/s for the Dong 

Nai, respectively, were reported by Tran Ngoc et al. (2016), with the long-term mean river discharge of the Sai Gon River 

corresponding well to the net discharge of 30 and 65 m3/s for 2017 and 2018 calculated by Camenen et al. (2021). Extreme 

values can be used to investigate fluvial flooding, while the average values are of use when investigating the influence of other 275 

flood drivers in isolation. Notwithstanding the indisputable temporal variability of river discharge in nature, stationary flow 

conditions can be assumed for the upstream boundaries of many flood models. Specifically, this holds for all settings, in which 

other flood drivers with significantly higher rates of change exist, such as in coastal storm surge or rainfall run-off models 

(Sandbach et al., 2018). For the case of HCMC, it is assumed that both the lowland location of the model domain and officially 

operated reservoirs upstream of the Sai Gon and Dong Nai Rivers justify this simplification.  280 
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2.2.2 Tidal Data 

Although an official gauge station exists at Nha Be (cf. location in Figure 4), directly at the southern boundary of the HCMC 

model domain, the corresponding tidal time-series are not publicly available. Nevertheless, data from about 300 tide gauge 

stations are obtainable from the public repository of the University of Hawaii Sea Level Center including a station in Vung 

Tau (Caldwell et al., 2015). This gauge is located around 70 km downstream of Nha Be at the South China Sea and documents 285 

the periods of 1986-2002 and 2007-2021 almost consistently. To extrapolate that time series to the southern boundary of the 

model, a linear increase in the water levels can be assumed: as Gugliotta et al. (2019) report, high and low water levels steadily 

increase with a scaling factor of 1.05 between Vung Tau and Nha Be. In order to validate this approach, official Nha Be tidal 

time series were compared to the publicly available Vung Tau tidal time series for the year 2016. In fact, after adjusting for a 

temporal phase shift of 1.8 hours and adjusting the water levels by a factor of 1.05, a linear regression returns a coefficient of 290 

determination of R2 = 0.964 and a RMSE of 0.157 m with a p-value of p < 0.001. Extrapolated and observed tidal time series 

of Nha Be are juxtaposed in Figure 5. 

 

Figure 5. WATER-LEVEL COMPARISON (a) Time series of the Nha Be tidal gauge for 2016 versus data from Vung Tau after 

adjusting by a scaling factor of 1.05 and removing the temporal phase shift of 1.8 hrs. (b) Exemplary section of the same time series 295 

illustrating the fit of tidal high-water levels. (c) Linear regression for all hourly data points and corresponding quality estimates R² 

and RMSE. 

Especially the depicted quality estimates corroborate the findings of Gugliotta et al. (2019) in regards to the water level relation 

between Vung Tau and Nha Be all the while validating the proposed approach for water level extrapolation. A drawback of 

this approach is the inability to calculate the temporal phase shift in water stages and discharges between Vung Tau and Nha 300 

Be. The reconstructed tidal data can be analyzed probabilistically for the determination of extreme tidal water levels if needed. 

In the present study case, an eight-day time series representing mean tidal conditions is used as the southern boundary of the 

hydro-numerical model. The eight-day timeframe was chosen following two purposes: first, to ensure a so-called spin-up time 

needed for the numerical stabilization of water levels, and second, to allow for physically realistic routing and concentration 

of rainfall runoff within the model domain. 305 
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2.2.3 Precipitation Data 

In the example of HCMC, precipitation depths with return periods of 5 years and less vary greatly in existing literature (Khiem 

et al., 2017; Quân et al., 2017; Loc et al., 2015; FIM, 2013; Viet, 2008; Nhat et al., 2006). In particular, the values for a storm 

of 3-hour duration and 2-year return period range from 28 mm/hour to 45 mm/hour, requiring an independent statistical 

analysis. Daily precipitation time series for the Tan Son Hoa weather station in central HCMC spanning from 1960 to 2012 310 

can be obtained from the repository of the National Oceanic and Atmospheric Administration (NOAA), which publishes 

quality-checked precipitation data for several weather stations across the globe (NOAA, 2022). To determine the daily extreme 

precipitation depth for return periods of 2 years and greater, the data are fitted to a Gumbel distribution where the mean �̅�𝑛 and 

standard deviation σ𝑛 of the Gumbel variate are taken as a function of the record length, which is equal to the number of 

years (n = 28): 315 

 

𝑃𝑇,24ℎ = 𝑃 + [
−𝑙𝑜𝑔 (𝑙𝑜𝑔(𝑇/(𝑇 − 1))) − 𝑦

𝑛

𝜎𝑛

] 𝜎 (1) 

 

where �̅�𝑛 is 0.5343 and 𝜎𝑛 is 1.1047 for n = 28 (Selaman et al., 2007). Using the Cramér-von Mises criterion, a 𝑛𝜔2 of 0.2831 

is calculated, which satisfies testing for 𝛼 = 0.1 (Dyck, 1980). In contrast, the probability of occurrence for return periods of 320 

2 years and less can be calculated by ranking the precipitation depth of the raw data using (2𝑖 − 1)/2𝑚 where 𝑖 is the rank of 

the data point and m is the total number of data points. Given the 24 hours temporal resolution of the raw data, a scaling 

function is applied to determine the intensities for lower durations (Menabde et al., 1999): 

 

𝑖𝑇,𝑑 =
𝑃𝑇,𝐷

𝐷
(

𝑑

𝐷
)

−𝛽

(2) 325 

 

where 𝑖𝑇,𝑑 is the intensity for duration 𝑑 and return period 𝑇, 𝑃𝑇,𝐷 is the precipitation depth to be scaled and 𝛽 is the scaling 

factor. Based on the literature average for HCMC, 𝛽 is assumed to equal 0.854 (Khiem et al., 2017; Nhat et al., 2006). The 

ensuing Intensity-Duration-Frequency (IDF) curves, which reflect the precipitation depth as a function of storm return period 

and duration, are presented in Figure 6. 330 
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Figure 6. INTENSITY-DURATION FREQUENCY: (a) depicts the return period of heavy rain events plotted against the 

precipitation depths for the raw data, the raw yearly maxima, the Weibull distribution and the Gumbel distribution. (b) zooms in 

from (A) for the return period of 5 years and less, showing for which return periods the probability of occurrence and the Gumbel 

distribution are taken into consideration. (c) is the end result, showing the different IDF curves for return periods of 0.1 to 5 years. 335 
Data visualized using scientific color maps created by Crameri (2021) . 

Using official hourly precipitation data for the Tan Son Hoa weather station over the same period, the performance of the 

NOAA time series as well as the adequacy of the temporal scaling factor 𝛽 was evaluated (Table 4). The mean value of the 

daily yearly maximum precipitation is 94.7 mm and 104.3 mm, while the standard deviation is 69.13 mm and 40.64 mm for 

the NOAA and the official hourly precipitation data, respectively. The similarities and differences between the statistical results 340 

of both time series will be further discussed in Section 4. 
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Table 3. A statistical comparison of the NOAA and official hourly precipitation data along with a measure of the goodness of fit 

using the average temporal scaling factor from literature as well as the temporal scaling factor fit to the official data. 

 Validation of the IDF Curves 

Return Period 

(Years) 

Calculated Daily 

Cumulative Rain (mm) Best 𝜷 Value 

Fit to Official 

Goodness of Fit using 𝜷 = 𝟎. 𝟖𝟓𝟒 (A) and Best 𝜷 Fit Value (B) 

NOAA Official 
SSE R2 Adjusted R2 RMSE 

A B A B A B A B 

1 73.9 90.5 0.883 373 210 0.838 0.912 0.865 0.924 7.89 5.92 

2 84.3 97.6 0.871 219 130 0.913 0.948 0.927 0.957 6.04 4.66 

3 117.8 114.6 0.863 18 25 0.994 0.992 0.995 0.994 1.75 2.03 

5 155.2 133.5 0.856 280 303 0.930 0.925 0.942 0.937 6.84 7.10 

10 202.2 157.3 0.850 1324 1199 0.748 0.772 0.790 0.810 14.85 14.13 

25 261.5 187.3 0.844 3779 3107 0.464 0.559 0.553 0.633 25.13 22.76 

50 305.5 209.6 0.841 6421 5104 0.250 0.404 0.375 0.503 32.71 29.17 

 

As for the creation of an adequate hyetograph, i.e. the development and representation of precipitation depth over time, 345 

numerous algorithms for the creation of a design storm are available (Balbastre-Soldevila et al., (2019).  For rain events in 

HCMC, the linear/exponential synthetic storm of Watt et al. (1986) has been taken to create the hyetograph of a 3-hour 

duration, 1-year return period rain event, since it matches the hyetograph according to decision 752/QD TTg by the HCMC 

government. The simple example of deducing the river discharge, tidal water levels and precipitation hyetograph for HCMC 

illustrates, how open data, even if not in the form of time series, can be utilized to define reasonable boundary conditions for 350 

an urban flood model. 

2.3 Processing of Flood Simulation Results 

2.3.1 Use of Difference Plots 

Ultimately, the presented methodology allows for setting up a hydro-numerical flood model that simulates surface run-off in 

a setting where urban features cannot be fully represented, e.g. exclusion of small-scale topographic elements like flood 355 

protection structures (artificial bank elevation, flood protection walls, etc.) or underground systems like technical details of a 

local stormwater drainage system. Given the regional scale of many models, however, it is assumed that the absence of the 

latter is compensated by the hydraulic efficiency of a smoothed and filled DEM, which guarantees that water always flows 

towards the lowest elevations driven by gravity, effectively mirroring the functions of a stormwater drainage system. 

Furthermore, there is significant evidence for the ineffectiveness of the stormwater drainage system in the particular case of 360 
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HCMC (Le Dung et al., 2021; Nguyen, 2016). The local drainage system is not well maintained and has limited functionality 

(Nguyen et al., 2019). Drainage capacity is therefore strongly hampered in case of storm events, which justifies its exclusion 

from the model representing a conservative approach. 

In contrast, the absence of flood protection structures in the model has a significant impact on the run-off dynamics, whereby 

flooding can even occur in places where no inundation is plausible under normal conditions, i.e. no rain, mean tide and mean 365 

river flow. To counteract this effect, simulated water levels are corrected by taking the results of the regular conditions as a 

reference. This reference was defined based on flooding threshold values determined with local partners, information from 

grey literature like the JICA reports (JICA, 2001) as well as different media articles, whose URLs can be found in the 

Supplementary Material. Accordingly, only the additional flooding (above regular inundations) is considered as the actual 

level of flooding when simulating events with more intense conditions. In order to isolate the impacts of additional flooding, 370 

the results of the simulation under normal conditions are then subtracted from the results of simulations under more intense 

conditions either occurring in combination or in isolation. 

In the HCMC example, the 1-year return period, 3-hour duration (3h1y) rain event is taken for a detailed investigation. The 

reason for this choice is that these yearly recurring events are not usually put into focus when conducting flood simulations, 

although they bring about major economic losses that are comparable to and sometimes even greater than those from extreme 375 

flood events (ADB, 2010). In turn, the results of the simulation under long-term average tidal and riverine conditions are 

subtracted from the results of the simulation for a 3h1y rain event with mean tide and mean river discharge. These difference 

plots finally reflect the extents and dynamics of typical inundations induced by the isolated 3h1y rain event. This 

methodological approach can be easily applied to a variety of scenarios and corresponding simulations. 

2.3.2 Flood Intensity Proxies 380 

In urban flood modelling, the intensity of flooding in a predefined area is typically expressed in terms of maximum simulated 

flood depths. Although this value is a good indicator for the exposure and scale of affected people during extreme events, it 

fails to provide an accurate estimate of projected damages or losses. This is especially important when taking into consideration 

that, particularly in coastal cities, certain flood depths can persist for a much longer time than others due to tidally induced 

backwater effects (Andimuthu et al., 2019). This flood duration, on the other hand, is very important when events of marginal 385 

intensity, i.e. high probability of occurrence, are investigated, since it can be an indicator for the persistence of economic and 

social disruption (Debusscher et al., 2020; Ismail et al., 2020; Feng et al., 2017; Wagenaar et al., 2017; Shrestha et al., 2016; 

Wagenaar et al., 2016; Koks et al., 2015; Molinari et al., 2014; Thieken et al., 2005) in residential and industrial areas (Tang 

et al., 1992), as well as in an agricultural context (O’Hara et al., 2019). This effect can best be expressed through the creation 

of a ‘duration over threshold’ map, which depicts how long a certain flood depth is exceeded. This threshold value can be 390 

adjusted according to the local constraints. In the case of HCMC, the threshold depth was set to 0.10 m, given that this value 

corresponds to the minimum reported flood depth provided by local partners.  
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In an attempt to combine the perspectives of flood intensity and duration, a simple 2-parametric but more integrative proxy, 

namely the ‘Normalized Flood Severity Index (INFS)’, is defined and tested in this study. This proxy helps to identify areas 

where the combination of both time-independent maximum flood depth and the duration over threshold is at its maximum and 395 

where the largest flood impacts and, accordingly, the most severe damage potential can be expected. This is particularly useful 

when considering the high economic damage caused by less severe but more frequent urban floods that HCMC regularly 

suffers from (ADB, 2010). In order to increase the robustness of the dimensionless INFS against numerical divergence and 

artifacts, the normalization is based on the 95th (spatial) percentile of flood depth and duration. Depending on the specific case, 

however, this reference for normalization may be adjusted. The INFS at each grid cell (x,y) can be expressed as follows: 400 

𝐼𝑁𝐹𝑆(𝑥, 𝑦)(%) =
𝑑𝑚𝑎𝑥(𝑥, 𝑦) ∗ 𝑇𝑑>10𝑐𝑚(𝑥, 𝑦)

𝑑𝑚𝑎𝑥,95%(𝑥, 𝑦) ∗ 𝑇𝑑>10𝑐𝑚,95%(𝑥, 𝑦)
∗ 100 (3) 

 

where 𝑑𝑚𝑎𝑥(𝑥, 𝑦) refers to the maximum (temporal) simulated flood depth at the local cell with coordinates x and y and 

𝑇𝑑>10𝑐𝑚(𝑥, 𝑦) refers to the scenario-based flood duration over the pre-defined threshold of 0.10 m. 

Due to its normalization, the application of the INFS is not restricted to singular analyses, but can also be considered as an 405 

indicator to express changes in flood severity due to changing boundary conditions. For example, when taking climate change 

scenarios into account, the INFS can be computed for a particular case and then normalized according to the base case without 

climate change effects. 

3 Model Performance 

Even in cases where topographic and hydro-meteorological data is sparse or hard to obtain, it should always be possible to 410 

gather the most essential boundary conditions and compose a basic hydro-numerical model following the aforementioned 

methodology. To showcase the applicability and performance of this approach, the following section provides information 

regarding the validation results for the exemplary surface runoff model of HCMC as well as a sensitivity analysis that 

scrutinizes the validity of the described assumptions concerning the local bathymetry. Subsequently, the simulation results are 

analyzed using the indicators and parameters defined in Section 2.3 to determine local flooding hotspots. Data on inundation 415 

depths and locations provided by local partners are used in a subsequent step to cross-check the performance of the latter and 

newly proposed flood intensity proxy, the INFS. 

3.1 Model Validation 

Using a Manning friction coefficient of 0.10 s/m1/3, the validation of the model was accomplished by simulating a torrential 

rain event that occurred during the monsoon season on 14/06/2010. During this event, a total of 73 mm of rain fell on HCMC, 420 

while tidal water levels reached maximum heights of 1.15 m. Scattered across the city, flooding was reported for 25 observation 
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points at street level. The maximum flood inundation depths were determined using the difference plot method described in 

section 2.3. The simulated and reported flood depths at these observation points are listed in Table 2 of the Supplemental 

Material. The performance of the validation run was quantified using the NSE, RMSE and PBIAS metrics, which were 

calculated to be 0.7, 0.03 m and 4%, respectively. Additionally, Figure 7 shows that the simulated flood depths matched the 425 

observations at 62% of all points, while diverging by 5 cm and 10 cm at 33% and 5% of the observation points, respectively. 

The exact coordinates and locations of the observation points along with the accompanying street names are also included in 

section 3 of the Supplementary Material. The high resemblance of simulation results and observations underlines the validity 

of the employed methodology. 

 430 

Figure 7. MODEL VALIDATION: (a) Location of the 25 reported inundations (red crosses) that were used for validation, (b) 

simulated flood depths plotted against the reported flood depths along with the linear regression (in blue) and the calculated R2, 

NSE, RMSE and PBIAS (bottom right). (c) Frequency of absolute vertical differences between the observed and simulated flood 

depths at the 25 observation points across HCMC. 

3.2 Sensitivity Analysis for the Assumed River Bed Elevation 435 

Given that the Sai Gon bathymetry is approximated by assumptions that are solely based on the officially maintained fairway 

depth, it seems mandatory to assess the sensitivity of simulation results to variations of water depth in the Sai Gon River. The 

river bed elevation is thus varied between the 1.0 and 1.8-fold of the navigation depth in increments of 0.2. The results of this 

simulation are shown by longitudinal sections in Figure 8. Specifically, the simulated water surface levels increase at points A 

(inner-city low point that is a known flooding hotspot), B (canal intersection where frequent flooding occurs) and C (outlet of 440 

the Ben Nghe canal) with increasing river bed elevation. Nevertheless, the maximum nominal difference in the water surface 

levels is 7 cm at point A and 12 cm at both B and C. Comparing depths of 1.2 times and 1.8 times the fairway depth, this 

difference is 4 cm at point A, which can be considered negligible. Given the low sensitivity of the water surface level to the 

depth of the Sai Gon, employing the assumption stipulated in section 2.1.1 is rendered sufficient for the flood model. 

(a) (c) 

(b) 
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 445 

Figure 8. DEPTH SENSITIVITY: Impact of varying the depth of the Sai Gon River on simulated water depths at three different 

locations (Point A: inner-city low point, Point B: canal intersection and Point C: city outlet). The zoom box in the lower left corner 

highlights the maximum difference of 12 cm at a +80% increase of the river depth. Data visualized using scientific color maps created 

by Crameri (2021). 

3.3 Performance of the Flood Intensity Proxies 450 

The 3-hour duration, 1-year return period rain event with a precipitation depth of 54 mm can be investigated using the flood 

intensity proxies defined in Section 2.3.2. The choice of this particular precipitation event is explained in Section 2.3.1. 

Comparing Figures 9(a) and 9(b) illustrates the similarities and differences between maximum flood depth (dmax) and duration 

over threshold (Td>10cm). As can be seen, a high dmax does not necessarily translate to a high Td>10cm and vice versa as evident 

by the areas on the western bank of the Sai Gon River. At this location, a relatively high dmax but a relatively short Td>10cm can 455 

be observed. This example epitomizes the usual shortcomings of using only one of the classical proxies for assessing flood 

damage potential. By combining these, however, inundation hotspots with significant damage potential can be discovered in 

the distribution of dimensionless INFS values (Figure 9 (c)). In particular, the locations of reported inundations where sustained 

flooding demonstrably occurred, and the INFS heat map show considerable spatial overlapping. While the INFS only covers 19% 
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of the total area of HCMC, around 73% of the reported inundations lie inside or within 100 meters of the highlighted areas. 460 

These figures are opposed to 78% and 73% for the dmax and Td>10cm, that cover 38% and 34% of the area, respectively (Table 4). 

The small spatial extent of the INFS heat map, relative to the dmax and Td>10cm maps, coupled with the relatively high coverage 

of reported flooding locations corroborates the usefulness of the proposed index in successfully localizing flooding hotspots 

and quantifying their spatial extents. 

Table 4. Performance of the different flood proxies in terms of the spatial overlapping with the locations of reported inundations 465 

Flood Proxy 
Spatial Overlap with Reported 

Inundations (%) 
Area Coverage (%) 

Accuracy Ratio vs. a Random Area 

with Equal Coverage (-) 

Maximum Flood 

Depth dmax 
78% 38% 2.05 

Duration over 

Threshold Td>10cm 
73% 34% 2.15 

Normalized Flood 

Severity Index INFS 
73% 19% 3.84 
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Figure 9. FLOOD INTENSITY: (a) depicts the time-independent maximum flood depth in meters, while (b) depicts the duration 

over a threshold of 10 cm in hours. (c) reveals the results of INFS, whereby hotspots of this index (covering 19% of HCMC) show a 

high spatial overlapping with the reported inundations (73% inside or within 100 m). All data was visualized using scientific color 470 
maps created by Crameri (2021). 
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4 Discussion 

Since topographic data plays a significant role in flood modeling, its validation is imperative. However, difficulties in this 

respect arise from the lack of ground truthing data in many countries if local topographic surveys or LiDAR data are 

inaccessible. The only data close to ground truth in the case of HCMC is the JICA report from 2001 (JICA, 2001), in which 475 

various canal bank elevations can be found. Furthermore, there is a substantial difference between high-resolution LiDAR data 

and satellite-derived DEMs that cannot be closed independent of the amount of processing. As for the satellite DEMs, there 

exists a multitude of such models that need to be carefully considered for each specific task. Some more recently provided 

terrain and elevation models, like the COPERNICUS DEM, do offer advantages in terms of lower noise levels and resolution, 

but do not represent the actual surface elevation in an urban environment, which is especially problematic in urban coastal 480 

agglomerations where flawed terrain heights can have a significant impact on flooding extents due to tidal effects. Even the 

assumption that CoastalDEM or FABDEM represent the actual surface elevation is vague in the context of Southeast Asian 

coastal cities. In fact, Vernimmen et al. (2020) calculated an average error for the Mekong Delta area in Vietnam of +1.23 m 

for the SRTM and -1.35 m for the CoastalDEM, concluding that the SRTM generally overestimates surface elevation, while 

CoastalDEM underestimates it. Building on that approach, a comparison of the performance of the various DEMs in terms of 485 

representing the canal bank elevations reported by JICA (2001) can be undertaken for the Tau Hu - Ben Nghe Canal (cf. 

Figure 3), with the results shown in Table 5.  

Table 5. Absolute bank elevations for the Tau Hu - Ben Nghe canal according to ground truth data by JICA (2001) and from seven 

freely available satellite-based DEMs.  The statistical ranges suggest an overestimation for SRTM, ALOS, ASTER, COPERNICUS 

DEM, CoastalDEMv2.1 and FABDEM as well as an underestimation for the CoastalDEMv1.1, respectively. 490 

Tau Hu - Ben Nghe Canal Bank Elevations 

 
JICA SRTM ALOS ASTER 

COPERNICUS 

DEM 
CoastalDEMv1.1 CoastalDEMv2.1 FABDEM 

Minimum (m MSL) +0.9 +7.4 +6.6 +7.6 +4.3 -2.1 +2.3 +2.6 

Average (m MSL) +1.8 +5.9 +9.1 +11.3 +12.1 -0.3 +3.2 +3.9 

Maximum (m MSL) +2.9 +13.2 +40.1 +17.7 +16.2 +1.0 +8.2 +5.3 

 
The findings in Table 5 are similar to those of Vernimmen et al. (2020), whereby the Tau Hu - Ben Nghe canal bank elevation 

is overestimated by +4.1 m on average in the SRTM while being underestimated by -2.1 m in the first version of CoastalDEM, 

thus corroborating the conclusions reached by Schumann and Bates (2018) on the inadequacy of most open access DEMs for 

flood simulations, especially in urban environments. The newer version of the CoastalDEM (CoastalDEMv2.1), with 495 

supposedly improved accuracy, overestimates the canal bank elevations and shows a great divergence from CoastalDEMv1.1, 

which highlights the difficulty of accurately representing topography in densely built environments even with the help of 

artificial intelligence. 

The reliability of these findings was further reinforced by the comparison of SRTM, CoastalDEM and the generated DEM 

with three LiDAR areas presented in Section 2.1.1., which showed that SRTM overestimates the terrain by up to 1 m, while 500 

CoastalDEMv1.1 and the generated DEM tend to underestimate the terrain elevation by 1 m and 0.5 m, respectively. This 
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clearly shows that the proposed processing steps to leverage SRTM and CoastalDEM lead to a DEM with a smaller bias than 

the two original data sets.  Furthermore, it is important to measure the amplitude of this bias with regards to other open-access 

DEMs (SRTM, ALOS, ASTER, COPERNICUS). The positive bias of these traditional DEMs can reach up to +7.5 m against 

the LiDAR data, rendering them completely unreliable for urban flood modelling purposes. This corroborates the conclusions 505 

made by Hawker et al. (2018) in regards to the limited usability of existing DEMs on the global scale. In this regard, the 

corrected DEM is far more reliable than any other open-access DEM and can confidently be used, especially in the outlined 

context of preliminary flood estimations. 

Additionally, the topography of HCMC is affected by varying degrees of land subsidence, ranging from 0.3 to 5.3 cm/yr (Duffy 

et al., 2020). In some areas, peak values even reach 8.0 cm/yr (Ho Tong Minh et al., Preprint), which further exacerbates the 510 

uncertainty in elevation. Nevertheless, in the presented workflow, the underestimation of the CoastalDEM is successfully 

counteracted with the use of difference plots (cf. details in Section 2.3.1), through which only additional water levels (in excess 

of the normal conditions) are considered as actual flooding. Backed up by the model calibration and validation, the joint use 

of the final (corrected) DEM and the difference plots delivers flood simulations that successfully reproduce known inundation 

hotspots in HCMC. 515 

In terms of the roughness coefficient, the optimal value determined through model calibration matches the value of a more 

recent study by Beretta et al. (2018), who concluded that using a value of 0.10 in the absence of buildings had similar flood 

results as incorporating those elements. This reinforces the idea that replacing buildings with a higher (macro-)roughness 

coefficient could account for the obstruction effect seen during urban floods when only coarse elevation data is available. 

However, another method that was implemented by Taubenböck et al. (2009) and Schlurmann et al. (2010) lies in the usage 520 

of a building mask within the DEM as a replacement to mimic infrastructure footprints, thereby limiting flood flow dynamics 

to residual open spaces. Although this method may prove useful in case the resolution of the DEM is 10 m or higher, it might 

not be easily implemented at DEM resolutions of 30 m or coarser. In the present case, the elevated roughness coefficient offers 

an adequate solution to this problem that does not substantially alter the maximum flood depths and durations, especially when 

considering that buildings themselves are not impermeable, yet basements can get flooded during rain events (Sandink, 2016). 525 

Looking at the tidal data, the case of HCMC reveals a particular shortcoming of the proposed methodology, namely the 

temporal phase shift between the tidal time series at Vung Tau and Nha Be cannot be determined from one data set alone. 

However, it can be assumed that this relatively small phase shift (1.8 hours in this case) has a negligible impact when 

investigating flooding or backwater effects during storm events given that the phase shift between the start of a rain event and 

tidal high water can be of much greater importance. Accordingly, sensitivity analyses have to show the worst-case scenario 530 

for each particular setting anyway. 

Comparing the open-access daily precipitation time series with the official hourly precipitation time series at the Tan Son Hoa 

weather station shows a certain discrepancy between the two data sets, which becomes evident when comparing yearly mean 

values (94.7 mm vs. 104.3 mm) and standard deviations (69.13 mm vs. 40.64 mm) of the daily maxima, respectively. While 

the differences are reasonable especially for return periods of 5 years and less, the effect of this discrepancy, driven mainly by 535 
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the big difference in the standard deviation, are accentuated for higher return period intensities. As for the temporal scaling 

factor 𝛽, the fitting to the hourly precipitation data reveals that 𝛽 decreases with increasing return periods where a value of 

0.858 corroborates the average calculated through literature. Taking into account the variation in 𝛽 relative to the return period 

improved the goodness of fit for the temporal scaling function. However, it was not sufficient to offset the discrepancy between 

the two data series. 540 

In regards to the validation and calibration data, it is a well-known problem that reliable measurements of flood depth and 

extent during urban floods are hard to acquire (Wang et al., 2018). This study could fortunately rely on reported inundation 

depths and locations across HCMC that were provided by local partners. To remedy this limitation, it could be argued that 

existing surveillance cameras throughout cities could be used to monitor time-varying water levels during flooding (Muhadi 

et al., 2021), which can either be done manually (Liu et al., 2015) or automatically (Moy de Vitry et al., 2019; Feng et al., 545 

2020), providing crucial validation data that could go a long way in helping urban flood models to become more accurate 

without additional costs. Furthermore, user-generated images can also offer an additional way of quantifying flooding (Ahmad 

et al., 2018), whose acquisition became much easier with the proliferation of social media (Chaudhary et al., 2020). 

Open-access data do not usually offer the detail required to build models to estimate flood damage, which typically require 

extensive data, whose acquisition is oftentimes laborious and prohibitively costly. The INFS, presented in Section 2.3.2, 550 

combines flood depth and duration from a hydro-numerical model that may further be used as input of flood damage models. 

The comparison with inundation hotspots across HCMC as documented by local partners, proved the usefulness of this 

indicator in estimating concentrated flood risk. Equal weighting was given for both flood depth and duration to ensure that the 

results are not biased, especially considering the lack of additional data clarifying whether flood depth or duration plays a 

bigger role in damage for a particular location. This weighting can be different depending on the case and the local composition 555 

of flood damage. Future users are, of course, free to change the weighting and adapt it to a specific use case. 

One limitation of the INFS can be seen in the exclusion of flow velocity, which was shown to play a significant role in pedestrian 

casualties (Musolino et al., 2020). However, quantifying this component can only be done through highly resolved flood 

models for particular city districts where flow obstacles can be accurately represented. Furthermore, flow velocity 

demonstrably plays a secondary role in LECZs where urban or rural terrain is rather flat (Wagenaar et al., 2017; Amadio et al., 560 

2019). In such settings, the impact of flow velocity is rather small when compared to those of flood depth and duration, 

particularly for estimating monetary loss (Kreibich et al., 2009), and even more so in the rainfall-runoff scheme presented here. 

Nevertheless, through the proposed methodology, open-access data can be leveraged to determine urban areas with high 

damage potential where the procurement of highly resolved data for a more detailed flood model is required. In these highly 

resolved models, even flow velocity can be considered to quantitatively determine the associated risk to pedestrians. Moreover, 565 

it can be argued that the INFS lacks the detail as well as the complexity of sophisticated flood damage models that are based on 

much more extensive and comprehensive data. However, the purpose of the INFS concept and demonstrated application is not 

to replace established flood damage estimations but rather to complement these by enhancing the basic interpretation of hydro-

numerical results through the combination of flood depth and duration. This makes the INFS an effective tool in terms of a first 



 

26 

 

estimation when striving to determine inundation hotspots by robust mathematical models with high damage potential that 570 

demand attention in terms of emergency efforts and/or relief. This tool enables stakeholders as well as researchers to narrow 

down the focus to those areas with the highest damage potential in order to advance adaptation schemes under climate change 

and its projected impacts to LECZs (Scheiber et al., in review). 

5 Conclusion 

Hydro-numerical models are a powerful instrument to understand the dynamics of urban flooding, assess areas of exposure 575 

(flooding hotspots) and progress possible mitigation strategies. In many settings, however, essential information about 

topographic, bathymetric and hydro-meteorological constraints is hard to acquire without substantial costs, rendering 

independent but trustworthy analyses and evaluation for adaptation measures difficult, especially when such studies are to be 

done on wider scale. The present paper addresses this shortcoming and presents a methodology to create a surface runoff 

model, which is capable of producing urban flood estimations for the exemplary case of HCMC, albeit solely based on open 580 

data sources according to the FAIR principles (GO FAIR, 2016). The process used to build this schematic yet flexible model 

can, at least partially, be used to simulate flood drivers in any urban setting. In addition, a newly proposed flood intensity 

proxy with a 2-parametric representation of flood depth and duration, the normalized flood severity index (INFS), is defined as 

a means of localizing potential flood damage hotspots. The INFS uncovers flooding hotspots in HCMC, whereby 73% of the 

more than 300 reported inundations were inside or within 100 m of the  spatial extent of the INFS that, in turn, covered only 585 

19% of the total area of the city. The employed methodology for the model setup alongside the enhancement of the INFS is 

particularly helpful when trying to localize inundation hotspots where the procurement of highly-resolved data for more 

detailed urban flood modelling is more worthwhile. The findings add to the current research in urban hydrological modelling 

and flood risk management and exemplify, which opportunities lie in the continuously growing amount of freely available 

data. At last, it hopefully encourages researchers to make their work accessible and thus contribute to independent and more 590 

equal sciences. 
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