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Abstract. We applied machine learning to improve the accuracy of present predictors of wave setup. Namely, we used an

evolutionary-based genetic programming model and a previously published dataset, which includes various beach and wave

conditions. Here, we present two new wave setup predictors, a simple predictor, which is a function of wave height, wave-

length, and foreshore beach slope, and a fitter, but more complex predictor, which is also a function of sediment diameter. The

results show that the new predictors outperform existing formulas. We conclude that machine learning models are capable of5

improving predictive capability (when compared to existing predictors) and also of providing a physically sound description

of wave setup.

1 Introduction

As the climate changes, coastal flooding is predicted to increase worldwide. Among the processes included to determine coastal

flooding, wave runup is recognized as one of its major contributors. Defined as the maximum vertical excursion of water above10

the mean water level, wave runup represents the action of the waves on the beachface. It comprises two different processes:

wave setup and swash. Its importance can be highlighted by the fact that neglecting the wave contribution to coastal flooding

can result in up to a ∼ 60% underestimation of the flooded area (Vousdoukas et al., 2016).

Wave setup (hereafter referred to simply as setup) is defined as the time-averaged additional elevation of the water level

due to breaking waves (Longuet-Higgins and Stewart, 1964). As waves approach the shoreline, their action induces the cross-15

shore transport of momentum, producing changes in pressure and velocity. To conserve the flow of momentum when meeting

obstacles, like a sloping beach, it is necessary to account for the action of a force known as radiation stress. Variations in

radiation stress result in a rise (setup) and fall (set-down) in the mean water level. Maximum set-down occurs at the wave’s

breaking point and decays seaward from that point, whereas setup develops in the shoreward direction (Bowen et al., 1968).

Besides being an important component of coastal flooding (Vitousek et al., 2017; Melet et al., 2020) directly impacting the20

design of coastal structures, setup is also important to the nearshore circulation, including undertow currents and groundwater

flows (Longuet-Higgins, 1983). Ultimately, setup is an important component in the flow and sediment exchanges between

the sub-aerial and submerged beachface. Thus, understanding and being able to predict wave setup is vital to protect coastal

resources and the population living near the shore in a more effective way.
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The setup contribution to extreme water levels was first noticed in 1938 during a hurricane on the east coast of the USA,25

where a water level 1 m higher than in calm water conditions was observed on an exposed beach (Saville, 1961). After this

event, many laboratory experiments and field measurements have been conducted to predict setup across the surf zone (Bowen

et al., 1968; Battjes, 1974; Guza and Thornton, 1981; Holman and Sallenger Jr, 1985; King et al., 1990; Yanagishima and

Katoh, 1990; Hanslow and Nielsen, 1993; Raubenheimer et al., 2001; Stockdon et al., 2006; Ji et al., 2018; O’Grady et al.,

2019). As a result, empirical setup predictors based on wave parameters, beach morphology, and surf zone processes have been30

developed (Dean and Walton, 2009; Gomes da Silva et al., 2020). Some of the most relevant will be presented next.

In one of the first studies about setup, Bowen et al. (1968) conducted a laboratory investigation with monochromatic waves.

Their results indicated that the theory, based on the concept of radiation stress, underpredicts measured setup values, especially

at the shoreline. The maximum setup (η̄M ), time-averaged elevation of the water level at the shoreline, became the focus of

subsequent studies.35

Battjes (1974) performed laboratory experiments estimating maximum setup as:

η̄M = 0.38γHb (1)

where Hb is the breaking wave height and γ =H/(η̄+h) assumes that the ratio between the height of a broken wave or bore

(H) and the water depth (h) remains approximately constant. King et al. (1990), using the same linear function of incident wave

height replacing H for Hrms (root mean square), was also able to accurately predict setup for a random wave field. However,40

the authors (and later Guza and Thornton, 1981) highlighted the fact that γ values in laboratory experiments are higher than in

field observations.

Through field data measured on a gently sloping beach, Guza and Thornton (1981) correlated maximum setup to the offshore

significant wave height (Hs0):

η̄M = 0.17Hs0 (2)45

This predictor underestimated setup at the shoreline, further suggesting that the slope of the setup is not constant across the surf

zone, as described in previous works (Bowen et al., 1968; Battjes, 1974). Later, Holman and Sallenger Jr (1985) found a more

accurate correlation than the one presented by Guza and Thornton (1981) by relating the setup with the surf similarity parameter

(Iribarren number: ξ0 = βf/(Hs0/L0)
0.5, where βf is the foreshore slope, Hs0/L0 is the wave steepness and L0 the offshore

wavelength). However, when isolating low tide data, no significant trend was found with ξ0, indicating the probable setup50

dependency on the entire surf zone’s bathymetry and not only on the foreshore slope. The same linear relationship between

setup and offshore wave height, influenced by tidal fluctuations and the local bathymetry, was also found by Raubenheimer

et al. (2001).

Considering the difficulty of defining the parameters used in the predictors above for natural beaches (opposite to laboratory

environments), Stockdon et al. (2006) proposed a simple empirical parameterization for setup:55

η̄M = 0.35βf (Hs0L0)
0.5 (3)
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This equation was based on an extensive dataset, ten experiments from the USA and the Netherlands, comprising a variety

of beach characteristics and wave conditions. As a result, Stockdon et al. (2006) found setup is best parameterized when

considering offshore over onshore wave hydrodynamics and using the foreshore slope instead of the surf zone slope. Moreover,

for fully dissipative conditions, the inclusion of βf in the parameterization appears to be unnecessary. The role of deep water60

waves and the inclusion of foreshore slope at steeper beaches had also been previously recognized by Hanslow and Nielsen

(1993).

Recently, Ji et al. (2018) proposed an empirical formula for maximum setup based on different beach slopes and wave

parameters through the use of a coupled wave-current model over a linear bathymetry. Besides beach slope, their results

showed that setup is also related to wave steepness:65

η̄M = 0.220(βs)
0.538Hs0

(
Hs0

L0

)−0.371

(4)

where βs is beach slope. Similar results confirming the role of wave height, beach slope, and wave steepness on maximum

setups were found by Yanagishima and Katoh (1990) and O’Grady et al. (2019). O’Grady et al. (2019) tested different empirical

equations and identified that deep water wave height explains 30% of setup variance, followed by an improvement of up to

12% if beach slope is added to the relationship and a further 12% when including wave steepness. Presently, among all studies70

providing empirical predictors of setup, the most widely used formulation is the one from Stockdon et al. (2006).

Despite an approximately linear relationship between setup at the shoreline and wave height, traditional setup estimates

usually do not account for all the complex processes involved in the environment, often translating into significant scatter

in predictions (Stephens et al., 2011; Stockdon et al., 2006; Gomes da Silva et al., 2020). Additional factors that may affect

the accuracy of setup predictors include: possible errors in the measurements (Guza and Thornton, 1981; King et al., 1990;75

Lentz and Raubenheimer, 1999), misinterpreted average position of the waterline and difficulty in detecting the maximum

setup (Guza and Thornton, 1981; Holman and Sallenger Jr, 1985; King et al., 1990; Lentz and Raubenheimer, 1999), as well

as simplifications and uncertain or unaccounted terms such as bottom stress, alongshore bathymetric features and infragravity

waves (Lentz and Raubenheimer, 1999; Ji et al., 2018; O’Grady et al., 2019). In an attempt to overcome these problems and

reduce scatter, innovative data-driven approaches, such as machine learning, are becoming increasingly popular since they can80

provide rapid and accurate predictions (Goldstein et al., 2019; Beuzen and Splinter, 2020).

Machine Learning (ML) is a field of computer science focused on developing algorithms that discover relationships between

variables by self-improving predictive performance based on a given dataset, without being explicitly programmed to solve

that particular problem. Over the past few years, published works have explored the range of applicability of ML approaches,

resulting in higher performance and more cost-effective predictors (Goldstein et al., 2019). In coastal sciences, some of the85

most widely used techniques are k-Nearest Neighbors, Decision Trees, Random Forests, Bayesian Networks, Artificial Neural

Networks, and Support Vector Machines (Beuzen and Splinter, 2020). Less known, yet powerful, an algorithm that can provide

further insights into the impacts of the underlying processes is Genetic Programming (GP). One of the main advantages of this

approach is the ability to develop reliable, robust, and reproducible predictors. Moreover, it is proven to be a powerful technique

capable not only of improving predicting capability but also of being interpretable and potentially providing insight into coastal90
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processes (Passarella et al., 2018). Studies using GP have focused on developing predictors for wave (Karla et al., 2008;

Kambekar and Deo, 2012) and wave ripple (Goldstein et al., 2013) characteristics, sea level (Ghorbani et al., 2010), particle

settling velocity (Goldstein and Coco, 2014), open-channel flow mean velocity (Tinoco et al., 2015), swash (Passarella et al.,

2018), water turbidity (Wang et al., 2021) and runup (Franklin and Torres-Freyermuth, 2022). GP results usually performed

better (in terms of minimizing prediction errors) than other commonly used algorithms. Overall, machine learning has shown95

great promise for coastal applications, and to the authors’ knowledge, it has never been applied to predict wave setup. The

amount of available data provides a unique opportunity to develop a novel and more accurate predictor.

In this paper, we propose improving the predictability of wave setup using an evolutionary-based genetic programming

model. The paper is organized as follows: Section 2 describes the data, model setup, and model evaluation methods. In Sect. 3,

we present the model results and the evaluation of the wave setup equation and compare the newly developed empirical100

formulas with several other existing formulations. Section 4 discusses the results obtained and limitations of this approach.

Finally, we present the conclusions in Sect. 5.

2 Methodology

In this section, we present the data used in this work and the preprocessing methodology followed (2.1); the evolutionary

genetic programming model (2.2); and the methods used to evaluate the model predictions accuracy against the testing data105

and some of the most widely known predictors in the literature (2.3).

2.1 Data

To make setup predictions using a data-driven model, it is necessary to have the input and output data to train it. The input data

is related to physical processes that induce the output, wave setup. In this work, we used a dataset meeting these requirements,

representing a large variety of beach and wave conditions compiled by Stockdon et al. (2006). The data is freely available,110

and details on how to access it can be found in the Code and data availability section. The dataset contains measurements

of: maximum setup (η̄M ), foreshore beach slope (βf ) - average foreshore slope with respect to still water level ± twice the

standard deviation of the continuous water level, and associated offshore wave characteristics (Hs0 – significant wave height,

and Tp – peak period) from 10 field experiments on sandy beaches resulting in a total of 491 measurements. Details of the

field experiments can be found in Stockdon et al. (2006). From these measurements, additional parameters such as the offshore115

wavelength (L0 = gTp
2/2π) and the Iribarren number (ξ0) were calculated. Median sediment diameter (D50) data was obtained

from reports and papers describing the beaches. Table 1 provides full details of the dataset used in this work, including the

location and dates of the experiments and the range and average conditions of the environmental parameters. Figure 1 shows the

range for some of the parameters available in the dataset. Beach types vary from highly dissipative (ξ̄0 = 0.11 in Terschelling)

to fully reflective (ξ̄0 = 2.17 in San Onofre) average conditions, with η̄M ranging from 0.00 (Terschelling) to 1.55 m (Duck120

94).
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Figure 1. Environmental parameters of the dataset: deep-water wave height (Hs0) versus peak period (Tp). The colours represent the Iribarren

number (ξ0) where values <0.3 (green) characterize dissipative beaches, values >1.25 (blue) characterize reflective beaches, and values

between both (red) characterize intermediate beaches.

2.1.1 Training and testing sets

The target of ML is to use observed data to develop a model able to predict future (unseen) instances. In that sense, the first

step is to preprocess the data by normalizing all variables and splitting the dataset into training and testing sets. The training

set is used to build and optimize the model, while the testing set is used to quantify the model’s performance (i.e., its ability to125

generalize).

There is no general consensus on which method should be used to split the dataset. In our case, we sought to include the most

representative cases from the entire dataset, guaranteeing that the most diverse environmental conditions were well represented

in our training set. In addition, the model’s aim was not to learn on the largest dataset but to achieve data comprehensiveness

with a rather small sample, to later benchmark the model performance against a larger test set. Hence, for this work, we chose130

the maximum dissimilarity algorithm (MDA; Camus et al., 2011) as the selection routine.

The MDA aims to select points within the series that are the most dissimilar, ensuring the environment’s most diverse repre-

sentation from the original 491 data measurements (Camus et al., 2011). Each data point is a 7-dimensional vector consisting

of all the variables in the dataset (η̄M , Hs0, Tp, βf , L0, ξ0 and D50). During the selection phase, the parameters are normalized

between 0 and 1 to receive the same weight in the similarity criteria. The calculation starts by selecting an extreme case. We135

used the largest wave setup value (η̄M = 1.55 m) and its related variables as the initial data point. Subsequent points are picked

based on the maximum dissimilarity (i.e., largest distance) with respect to the previously selected cases, which no longer par-
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Table 1. Range and average (in brackets) environmental conditions for Stockdon’s compiled database (Stockdon et al., 2006). Notice that at

times only the average value is available.

Site

(Experiment)

Date

(Data Points)
η̄M (m) Hs0 (m) Tp (s) βf L0 (m) ξ0 D50 (mm)

Duck, NC

(Duck 82)

5-25 Oct 1982

(36)

0.07-1.50

(0.78)

0.48-4.08

(1.71)

6.30-16.50

(11.86)

0.09-0.16

(0.12)

61.92-424.71

(233.61)

0.68-2.38

(1.48)
(0.75)

Scripps Beach, CA

(Uswash)

26-29 Jun 1989

(41)

0.06-0.33

(0.18)

0.54-0.84

(0.69)
(10.00)

0.03-0.06

(0.04)
(156.00)

0.41-0.94

(0.58)
(0.20)

Duck, NC

(Delilah)

6-19 Oct 1990

(138)

0.11-1.01

(0.49)

0.52-2.51

(1.40)

4.68-14.79

(9.25)

0.03-0.14

(0.09)

34.17-341.24

(139.58)

0.40-1.77

(0.91)
(0.36)

San Onofre, CA
16-20 Oct 1993

(59)

0.23-0.81

(0.50)

0.51-1.07

(0.81)

13.00-17.00

(14.87)

0.07-0.13

(0.10)

263.64-450.84

(348.81)

1.51-2.72

(2.17)
(0.20)

Gleneden, OR
26-28 Feb 1994

(42)

0.30-0.87

(0.64)

1.83-2.25

(2.06)

10.45-16.00

(12.36)

0.03-0.11

(0.08)

170.36-399.36

(244.38)

0.26-1.23

(0.86)
(0.40)

Terschelling, NL
2-22 Apr 1994

(6)

0.05-0.51

(0.27)

1.41-3.93

(2.84)

6.50-10.60

(8.73)

0.02-0.03

(0.02)

65.91-175.28

(122.14)

0.13-0.21

(0.15)
(0.22)

Terschelling, NL
1-21 Oct 1994

(8)

0-0.10

(0.05)

0.51-1.97

(1.09)

4.80-10.40

(7.89)

0.01-0.02

(0.01)

35.94-168.73

(104.20)

0.07-0.25

(0.11)
(0.22)

Duck, NC

(Duck 94)

3-21 Oct 1994

(52)

0.27-1.55

(0.80)

0.73-4.06

(1.89)

3.82-14.77

(10.51)

0.06-0.10

(0.08)

22.76-340.32

(182.66)

0.36-1.39

(0.82)

0.25-2.00

(0.65)

Agate Beach, OR
11-17 Feb 1996

(14)

0.20-0.65

(0.38)

1.85-3.14

(2.48)

7.06-14.32

(11.85)

0.01-0.02

(0.02)

77.76-319.90

(228.53)

0.10-0.22

(0.16)
(0.20)

Duck, NC

(SandyDuck)

3-30 Oct 1997

(95)

0.01-0.91

(0.32)

0.35-3.57

(1.37)

3.70-15.39

(9.48)

0.05-0.14

(0.09)

21.36-369.49

(151.66)

0.32-3.25

(1.12)

0.90-1.65

(1.13)

ticipate in the selection. The selection of cases ends when the algorithm reaches the number of points determined by the user,

after which the denormalized (i.e., original data) training and test sets are reported.

MDA was applied to select 150 data points (∼ 30% of the original dataset), which form the training set. The remaining data140

(∼ 70%) was used as the testing set to evaluate the model’s ability to generalize. Besides, having a more extensive testing set

ensures a more accurate estimation of model performance, and by avoiding a large training set, we prevent overfitting. The

results of MDA selection are shown in Fig. 2.

2.2 Genetic Programming

Genetic Programming (GP) is an evolutionary computational method for which computers automatically solve a problem145

without requiring a functional prediction form in advance (Koza and Poli, 2005; Poli et al., 2008). In GP, individuals of

a population are computer programs (i.e., equations) of varying size and shape that genetically “breed” (Koza, 1992). The
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Figure 2. Results of MDA selection and correlation between the variables of the dataset. In red is the training set (∼ 30% of the original

dataset), and in black is the testing set (∼ 70%). Environmental variables considered: maximum wave setup (η̄M ), deep-water significant

wave height (Hs0), peak period (Tp), foreshore beach slope (βf ), deep-water wavelength (L0), Iribarren number (ξ0), and median sediment

diameter (D50).

separate elements forming the equations (variables and mathematical operators) represent each individual’s chromosomes.

Inspired by natural selection and the “survival of the fittest”, GP uses an initial population of equations where the fitter ones

(parents) are selected to breed a new generation of offspring (i.e., new equations). At each generation, a new population is150

created through the application of genetic operations (evolutionary process): reproduction, crossover and mutation. In the end,

the final optimized predictor (within user-defined expression complexity limits) can be represented in a mathematical form.

The step-by-step process involved in implementing the GP model is illustrated in Fig. 3 and further explained as follows:

[1] Initialization. An initial population of random equations is created by selecting a set of independent variables, math-

ematical operators, and constant values, which are introduced in agreement with the control parameters of the model set155

by the user (see Table 2). It is important to highlight that GP does not require non-dimensional (normalized) inputs.

[2] Selection. “Tournament” selections between equations are performed in order to decide which equations will evolve

in the next generation. Among the selected equations for each tournament, chosen at random from the population, the

GP model finds the one that best fits the training data (i.e., lowest fitness function). As the fitness function, we selected

the mean absolute error (MAE), which is formulated as:160

MAE=
1

n

n∑
i=1

|Mi −Pi| (5)

where n is the number of measured values; and Mi and Pi denote measured and predicted values, respectively.
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Figure 3. Main loop of the GP model (inspired by Poli et al. (2008)). The equations encoded as a tree with variables, operators, and

coefficients shown in the evolution framework are examples of genetic operations for the reader’s easy visualization. The solution shown in

the termination framework is the same one presented later in the Results section.

[3] Evolution. From the best solutions, a new set of solutions is created through an evolutionary process. Genetic oper-

ations are applied to the winner of each tournament at random. Therefore, fitter individuals are more likely to produce

new equations than inferior individuals. New equations for the next generation are created by: (a) Crossover: Merging165

random chromosomes/parts from two tournament winners; (b) Mutation: Selecting random chromosomes/parts of the

tournament winner to change, and; (c) Reproduction: Copy of the tournament winner. A parsimony coefficient is used to

penalize long equations, avoiding bloat (longer equations with no significant improvement in fitness). It is used during a

tournament to deduct from the fitness result of the longer equation among two competitors that present identical results,

the longer one being discarded.
::::::
discard

:::::
from

:::
the

:::::
fitness

::::::
results

:::
the

::::::
longer

:::::::
equation

::::::
among

::::
two

::::::::::
competitors

:::
that

:::::::
present170

:::::::
identical

::::::
results.

[4] Termination. The execution of the model stops when the termination criteria is reached. The final solution (i.e.,

equation – encoded as a tree with variables, operators, and coefficients) is the one that reaches the established minimal

error (stopping criteria) or the best one at the specific number of generations predetermined by the user.

In this work, the GP model was built using the GPLearn Python module (Stephens, 2015), a machine learning library ex-175

tended from Scikit-Learn (Pedregosa et al., 2011). We have run the model with different setups such as different mathematical

operators (addition, subtraction, multiplication, division, square root, power, log, absolute, inverse, sine, cosine, tangent), pop-

ulation sizes (2,000 - 500,000), generations (20 - 10,000), tournament sizes (10 - 1,000), parsimony coefficients (0.0005 - 0.01)

and genetic operations proportions. Although it is not strictly necessary, we have also run the model using a normalized input.
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Table 2. Hyperparameters setup of the GPLearn model.

Parameter Value

Independent Variables Hs0 (m), Tp (s), βf , L0 (m), ξ0, D50 (m)

Mathematical Operators +, −, ×, ÷, √

Constant Range [-5, 5]

Population Size 5000

Generations 1000

Tournament Size 20

Fitness Function Mean Absolute Error (MAE)

Genetic Operations Crossover (70%), Mutation (25%) and Reproduction (5%)

Parsimony Coefficient 0.0005

Stopping Criteria 0.01

The choice of the values above was driven by extensive testing and sensitivity analyses performed as part of this

work. The final model setup for each equation varies slightly. Details of both final codes are available and can be

accessed through the Code and data availability section.

All the runs stopped by reaching the number of chosen generations since we set a very low stopping error criteria. In the end,180

the best predictors were found through the general model setup presented in Table 2, and minimal or no improvement was

achieved with more complicated equations. To select the best predictor, we focused on finding the balance between achieving

a low error reduction and high predicting capabilities, and obtaining simpler, physically meaningful equations. The code is

available, and details on how to access it can be found in Code and data availability section.

2.3 Model Evaluation185

The testing dataset was used to evaluate the GP predictor’s performance through several statistical parameters, including the

square of the Correlation Coefficient (the square of Pearson’s Correlation - r2 - Eq. (6)), Coefficient of Determination (R2 -

Eq. (7)), modified Index of Agreement (d1 - Eq. (8)), Mean Absolute Error (MAE - see Eq. (5)), and Root Mean Square Error

(RMSE - Eq. (9)), which are defined as follows:

r2 =

(∑n
i=1(Mi − M̄)(Pi − P̄ )

)2∑n
i=1(Mi − M̄)2

∑n
i=1(Pi − P̄ )2

(6)190

R2 = 1−
∑n

i=1(Mi −Pi)
2∑n

i=1(Mi − M̄)2
(7)

d1 = 1−
∑n

i=1 |Mi −Pi|∑n
i=1(|Mi − M̄ |+ |Pi − M̄ |)

(8)
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RMSE =

√√√√ 1

n

n∑
i=1

(Mi −Pi)2 (9)

where M̄ and P̄ are the corresponding average values of measured and predicted parameters, respectively.

The values of r2 and R2 are measures of linear correlation, where r2 explain the proportion of variance between two sets of195

data, and R2 is used to evaluate how well the model predicts in comparison to actual measurements (the model’s performance).

Alternatively, d1 is also used to evaluate the agreement between predicted and measured values. For further details about d1

the reader is referred to Willmott (1981) and Willmott et al. (1985). r2, R2, and d1 are dimensionless, and values closer to 1

represent better agreements. In contrast, MAE and RMSE measure the errors given by the difference between predicted and

measured values; in addition, the second penalizes large errors (bad predictions). Both MAE and RMSE are expressed in the200

same units of η̄M (m), which means that lower values (closer to 0) indicate more accurate predictions.

Because each metric has its own strengths and limitations, the combination of these five different criteria allowed for a more

comprehensive comparison between the model results. Moreover, these same statistical parameters were used to compare the

present model with other existing predictors, namely Guza and Thornton (1981), Holman and Sallenger Jr (1985), Yanagishima

and Katoh (1990), Hanslow and Nielsen (1993), Stockdon et al. (2006), Ji et al. (2018) and O’Grady et al. (2019).205

3 Results

From the multiple equations obtained as an output from the GP model, we selected two predictors of wave setup. A simple

predictor is presented in Eq. (10). Alternatively, a more complex but also more accurate predictor, which maintains physical

interpretability, is presented in Eq. (11).

η̄M = 0.355Hs0ξ0
0.5 (10)210

η̄M =
Hs0

4.08

(
ξ0
3.25

+
ξ0

ξ0 +0.64
+

ξ0
1625D50 + ξ0

)
(11)

Here, it is important to highlight that the coefficient 1625 in Eq. (11) is dimensional, with units of m−1. Also, we did simplify

the Eq. (11) from the original one, presenting fewer coefficients but with the same output.

Equation (10) stands out for its simplicity. It is also very similar to previous predictors found in the literature (e.g. Holman

and Sallenger Jr, 1985; Stockdon et al., 2006; Ji et al., 2018; O’Grady et al., 2019). However, the new models presented here215

differ from previous equations (except Holman and Sallenger Jr, 1985) by considering wave height, wavelength, and foreshore

beach slope combined, in terms of the non-dimensional Iribarren number. Furthermore, the complexity of Eq. (11) is slightly

higher because of the additional terms it includes. Similarly to Eq. (10), the first two terms depend only on the wave height

and Iribarren number (i.e., they are informed by wave dynamics and beach slope). The third term in Eq. (11) includes D50,
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Figure 4. Measured versus predicted maximum wave setup (η̄M ) using the testing data for Eq. (10) (left panel) and Eq. (11) (right panel). The

metrics used to evaluate the GP predictors’ performance are also presented. r2 = the square of the Correlation Coefficient, R2 = Coefficient

of Determination, d1 = modified Index of Agreement, MAE = Mean Absolute Error, and RMSE = Root Mean Square Error. Different

markers/colours refer to different field experiments, as referenced in the legend.

measured in m. Therefore, it requires a dimensional coefficient for the predictor to be dimensionally consistent. As a result,220

this term contains information on the wave dynamics and beach slope, but also on the sediment size. We remark that this is the

first time that grain size is introduced in a wave setup equation.

Figure 4 presents the scatter plots between measured and predicted η̄M obtained from Eqs. (10) and (11). The data shown

in the figures are the testing data and the metrics used to evaluate the GP predictors’ performance. Although more complex,

Eq. (11) represents the best equation in terms of the lowest error when considering the RMSE = 0.14 m, in comparison with225

a RMSE = 0.16 m from Eq. (10) (a 12.5% difference). Nevertheless, note that both equations have the same MAE = 0.11

m. Equation (11) also yields higher values of r2 = 0.70, R2 = 0.70, and d1 = 0.72 as compared to Eq. (10) (r2 = 0.65, R2 =

0.64, and d1 = 0.71), indicating a better fit of the Eq. (11) with the testing data. Furthermore, Eq. (10) and Eq. (11) performed

well on beaches with dissipative (Agate 96) and reflective (San Onofre) conditions. Among all field experiments, Duck 94

(intermediate to reflective with large wave conditions) was the beach that showed less correlation with our models.230

A successful predictor should present physical interpretability, but it also must be coherent with the real environment.

Therefore, Fig. 5 presents a sensitivity analysis with data in the range measured (in red) and extrapolated (in black) to evaluate

the influence of the input variables on η̄M . In both models we observe a positive correlation between η̄M and Hs0, and

between η̄M and ξ0. As expected, the linear relationship between η̄M and Hs0 means that larger waves produce greater setups.

Regarding Iribarren number, η̄M is proportional to the square root of ξ0 in Eq. (10), and a similar non-linear relationship235

appears in Eq. (11). In this case, greater setups are likely to occur for reflective beach conditions (higher ξ0). However, the

rate of increase in setup decreases with higher Iribarren numbers in both cases. On the other hand, D50 (which only appears in

Eq. (11)) is negatively correlated with η̄M , meaning that greater setups are expected to occur on beaches with smaller sediment

diameters. The variation in setup with D50 appears to be of lower magnitude in comparison with Hs0 and ξ0. Although, with
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Figure 5. General behaviour of the maximum wave setup (η̄M ) predictors presented in Eq. (10) (left panels) and Eq. (11) (right panels), as

a function of deep-water significant wave height (Hs0), Iribarren number (ξ0) and median sediment diameter (D50). D50 is represented by

its minimum (0.2 mm), mean (0.5 mm) and maximum (2.0 mm) values in the dataset. Data within the measured range are depicted in red.

Black represents an extrapolated range for Hs0 and ξ0. Note the different Y and X-axis ranges for each graph.

increasing Hs0, the sensitivity of η̄M to the median grain size (D50) increases. This is not the case for ξ0. On the contrary, there240

is a slight decrease in the sensitivity of η̄M as a function of D50 with larger ξ0 values. Here, we have expanded the predictor’s

use beyond the range of the measurements that comprise the dataset, to test its general behaviour and stability, showing that

the predictors work sensibly also beyond the range of the available measurements. Smaller values of Hs0 and ξ0 never result

in negative η̄M values, and the observed trends continue beyond the training range.

Using the entire dataset (training + testing), we also compared the results of Eq. (10) and Eq. (11) with the most widely245

known predictors in the literature. Table 3 and Fig. 6 show the performance of nine distinct empirical equations, including

the ones presented in this work, in determining maximum wave setup. Eqs. (10) and (11) show a good agreement with the

measured dataset, with less scatter (especially Eq. (11)) if compared with the others. Overall, our ML-driven approach achieved

better results with Eq. (11) outperforming all other predictors. Similarly, Eq. (10) exhibits good results, the same ones as Ji

et al. (2018)’s equation, which also performs well on dissipative and reflective beach conditions. In comparison, Stockdon250

et al. (2006) formulation presents lower metrics results. Correlation and agreement results showed by O’Grady et al. (2019)’s

equation are also close to Eqs. (10) and (4) (Ji et al., 2018).
:::::::::::::
Ji et al. (2018)’s

::::
and

:::
Eq.

::::
(10)

::
in

:::
this

:::::
work.

:
In contrast, their model

prediction is worse. Finally, the predictors of Holman and Sallenger Jr (1985) and Hanslow and Nielsen (1993) produce more

scatter and tend to overestimate the results, while Guza and Thornton (1981) and Yanagishima and Katoh (1990)’s predictors

largely underestimate the setup values. This results in very low coefficients of determination, meaning that their predictions255

match poorly with observations. Here, it is worth pointing out that models with the same correlation coefficient, e.g. Holman

and Sallenger Jr (1985) and Stockdon et al. (2006), present similar patterns. However, the coefficient of determination appears

12



Table 3. Statistical metrics of predictors’ performance using measured data from Stockdon et al. (2006). We assumed Hrms0 =Hs0/2
0.5,

following Rayleigh distribution in deep water. η̄M = maximum wave setup; r2 = the square of the Correlation Coefficient, R2 = Coefficient

of Determination, d1 = modified Index of Agreement, MAE = Mean Absolute Error, and RMSE = Root Mean Square Error.

Author η̄M predictor r2 R2 d1 MAE (m) RMSE (m)

Present work - Eq. (10) 0.355Hs0ξ0
0.5 0.58 0.57 0.68 0.13 0.19

Present work - Eq. (11) Hs0
4.08

(
ξ0
3.25

+ ξ0
ξ0+0.64

+ ξ0
1625D50+ξ0

)
0.64 0.64 0.70 0.12 0.17

Guza and Thornton (1981) 0.17Hs0 0.30 -0.45 0.43 0.27 0.34

Holman and Sallenger Jr (1985) 0.46ξ0Hs0 0.49 0.08 0.60 0.20 0.27

Yanagishima and Katoh (1990) 0.052Hs0

(
Hs0
L0

)−0.2 0.39 -0.83 0.41 0.31 0.38

Hanslow and Nielsen (1993) 0.048Hrms0L0
0.5 0.38 0.12 0.50 0.22 0.27

Stockdon et al. (2006) 0.35βf (Hs0L0)
0.5 0.49 0.44 0.66 0.15 0.21

Ji et al. (2018) 0.220βs
0.538Hs0

(
Hs0
L0

)−0.371 0.58 0.57 0.68 0.13 0.19

O’Grady et al. (2019) 0.92βfHs0

(
Hs0
L0

)−0.3 0.55 0.51 0.68 0.14 0.20

to better describe the accuracy of the model predictions. Considering the coefficient of determination, the Stockdon et al.

(2006)’s equation performs better than Holman and Sallenger Jr (1985)’s.

4 Discussion260

We have presented two predictors that demonstrate the predictive capability of genetic programming. The results show that

the novel GP predictor (Eq. (11)) outperforms existing formulas by presenting a fitter equation for the entire dataset compiled

by Stockdon et al. (2006). Likewise, Eq. (10) also provides promising results. Additionally, unlike most previous predictors,

they also present a good fit for both dissipative (Agate 96) and reflective (San Onofre) beach conditions. Although the main

advantage of the GP model is the possibility of fully exploring multiple equation forms from different model parameters265

trying to find a more accurate variable combination during evolution, the final selection of the proposed solution remains

subjective. This last step requires the user to have knowledge of the specific topic, so that the expression chosen is dimensionally

and physically correct. Generally, as the complexity of the solutions increases, the error decreases. Therefore, more complex

predictors usually fit the training dataset better than simpler ones. However, they may become too specific for the training

dataset, thus, they may lose generalization power (due to overfitting) when applied to different datasets (Tinoco et al., 2015;270

Passarella et al., 2018). As a result, the proposed solutions should ideally be simple, easy-to-use and to interpret, and have a

physical meaning.

The variables (Hs0, βf , L0) in the two obtained predictors are the same as those used in previous published works (Holman

and Sallenger Jr, 1985; Stockdon et al., 2006; Ji et al., 2018; O’Grady et al., 2019) but with a different arrangement. The
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Figure 6. Measured versus predicted maximum wave setup (η̄M ) using the entire dataset (training + testing) for nine distinct empirical

equations, including the ones presented in this work. Different markers/colours denote different field experiments, as referenced in the

legend.

result is in agreement with Longuet-Higgins and Stewart (1964), who stated the cross-shore gradient of radiation stress is275

principally controlled by the wave height. Additionally, in line with O’Grady et al. (2019), we found the wave setup predictor

is best parameterized with the inclusion of wave steepness and beach slope (through the Iribarren number) along with the wave

height. Although playing a limited role, sediment diameter also appears in Eq. (11) improving the performance of the predictor

by establishing a non-linear, inversely proportional relationship with the maximum wave setup.

Most wave setup studies (e.g. Guza and Thornton, 1981; King et al., 1990) present the offshore wave height as the primary280

contributing factor to wave setup, since it dictates the energy available for the production of setup. Nevertheless, the wave setup
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is not simply a result of incident waves but is also induced by the shape of the beach profile. Studies have shown that detailed

knowledge of the beach morphology can help improve the predictor (Stephens et al., 2011; O’Grady et al., 2019; Gomes da

Silva et al., 2020). However, there is no consensus on which region to use to estimate the beach slope. Some works include

only the foreshore beach slope (Holman and Sallenger Jr, 1985; Hanslow and Nielsen, 1993; Stockdon et al., 2006; O’Grady285

et al., 2019) into the predictor, and some use the average surf zone beach slope (Bowen et al., 1968; Raubenheimer et al.,

2001; Stephens et al., 2011; Gomes da Silva et al., 2020). Despite being difficult to quantify, the role of beach slope is essential

in incorporating the effect of the cross-shore beach profile in estimating wave setup. The presence of sediment diameter in

Eq. (11) also needs careful further consideration. As in Poate et al. (2016) and Power et al. (2019), who stated the importance

of grain size in runup parameterization, its inclusion also improves wave setup prediction. This second-order effect could be290

tentatively related to beach permeability, which increases with sediment size and results in a lower setup. However, the limited

amount of sediment diameter data may not be entirely appropriate to claim such finding. An avenue for future research includes

the validation of the GP predictors (Eqs. (10) and (11)) by applying them to datasets not included in the training. This will

further assess the predictive capability of the new formulas and the importance of each term in the equations.

More importantly, the novel inclusion of D50 as a second-order effect may indicate that we still have very limited information295

to describe an entire beach. Other examples of second-order effects are not considering the presence of multiple bar systems

or even incorporating wave direction. After over 50 years of research, wave setup prediction still presents a number of issues

to be solved in future works which can enhance parametric predictors based on environmental variables. These also include

the influence of beach permeability (Longuet-Higgins, 1983; Nielsen, 1988, 1989) and tide (Holman and Sallenger Jr, 1985;

Raubenheimer et al., 2001; Stockdon et al., 2006) as second-order processes subject to discussion. More recently, works from300

Guérin et al. (2018) and Martins et al. (2022) investigated the role of the wave-induced nearshore circulation processes (bottom

stress, vertical mixing, and vertical and horizontal advection), resulting in an improved wave setup prediction across the surf

zone. The contribution of these parameters can be even larger on steeper beach slopes (Martins et al., 2022).

In the field, different methodologies have been used to measure wave setup. Applied equipments include resistance wire

runup meters (Guza and Thornton, 1981), manometer tubes (Nielsen, 1988), pressure transducers/sensors (King et al., 1990;305

Lentz and Raubenheimer, 1999; Raubenheimer et al., 2001), sonar altimeters (Lentz and Raubenheimer, 1999; Raubenheimer

et al., 2001), and video cameras (Holman and Sallenger Jr, 1985). O’Grady et al. (2019) suggested that around ∼ 46% of the

setup variance is possibly explained by measurement errors or related to critical processes that could not be translated into

simple predictors yet. Since the surf and swash zones are a highly dynamic environment, the bathymetry is rapidly evolving

and changes are difficult to predict. In an attempt to overcome this problem, Ji et al. (2018) used a wave-current numerical310

model to generate setup data for idealized beach conditions. Even with such approach, there is still a significant scatter around

the wave setup predictor. Furthermore, Martins et al. (2022) suggest that it might be difficult to differentiate between swash

and wave motions near the shoreline in the field, particularly for steeper foreshores. The considerable influence of the swash

circulation within a cusp field during the Duck 94 experiment described by Stockdon et al. (2006) could be an explanation for

the lowest correlation of the measured data with the GP predictors results. In essence, measuring and accounting for all the315

effects and processes that may be important for wave setup remains an arduous challenge.
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5 Conclusions

In this work, we proposed two new empirical equations for the maximum wave setup using data compiled by Stockdon et al.

(2006) to feed an evolutionary-based genetic programming model. A simple, yet accurate, predictor and a more complex

but fitter predictor, which maintains physical interpretability, were tested and evaluated against other seven widely known320

empirical equations for maximum wave setup. The results of both GP-based predictors emphasized similarities with previous

ones and incorporated new dependencies. Compared with previous predictors, the new ones (particularly Eq. (11)) demonstrate

an improvement in prediction performance and goodness of fit for a wide range of environmental conditions, including both

dissipative and reflective beaches. The novel predictors are simple, can be easily used in practical applications, and open up

new paths for future wave setup research.325

So far, only a few studies have addressed wave setup predictions, and all past predictors present significant scatter around

the data. All predictors share similarities in their structure, possibly indicating that limits in predictability are related to the

use of oversimplified variables, Hs0, Tp, βf , and D50, that do not fully capture the complexity of surf zone processes. The

use of additional parameters (e.g., to better describe the surf zone seabed profile and nearshore circulation processes) appears

necessary to more accurately describe wave setup in a natural environment. As additional data become available and better330

algorithms are developed, more accurate predictors will be generated. Data-driven approaches are able to extract patterns from

samples resulting in higher performance and more cost-effective predictors. Although we still need to deal with data scarcity

and measurement uncertainties, our results reveal that the genetic programming model is competent in data generalisation.

Being a data-driven technique, it will be more accurate as additional high-quality data becomes available.

Understanding and predicting nearshore processes is vital to protect coastal resources and people living near the shore. The335

results of this work can contribute to improving the predictability of wave setup, a key factor in coastal flooding. Additionally,

we also seek to stimulate further discussion about the use of machine learning as a powerful data analysis tool and the possibility

of its use to improve coastal sciences/management.

Code and data availability. The dataset is available in Stockdon and Holman (2011) and also can be downloaded from https://coastalhub.

science/data (Wave Runup Field Data). Implementation of the GP model in Python is publicly available in https://github.com/chardalinghaus/340
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Author contributions. All authors developed the concept for this study and the methodology. C.D. performed the analysis and wrote the first

draft of the manuscript. All authors verified the analysis, discussed the results and edited the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

16

https://coastalhub.science/data
https://coastalhub.science/data
https://coastalhub.science/data
https://github.com/chardalinghaus/WaveSetup_GP
https://github.com/chardalinghaus/WaveSetup_GP
https://github.com/chardalinghaus/WaveSetup_GP


Acknowledgements. Charline Dalinghaus is supported by a Doctoral Scholarship from The University of Auckland. The authors are grateful345

to Dr. Francesca Ribas and the other Anonymous Referee, whose comments greatly improved the quality of the manuscript.

17



References

Battjes, J. A.: Computation of set-up, longshore currents, run-up and overtopping due to wind-generated waves, Ph.D. thesis, Delft University

of Technology, http://resolver.tudelft.nl/uuid:e126e043-a858-4e58-b4c7-8a7bc5be1a44, 1974.

Beuzen, T. and Splinter, K.: Machine learning and coastal processes, in: Sandy Beach Morphodynamics, edited by Jackson, D. W. T. and350

Short, A. D., pp. 689–710, Elsevier, https://doi.org/10.1016/B978-0-08-102927-5.00028-X, 2020.

Bowen, A., Inman, D., and Simmons, V.: Wave ‘set-down’and set-up, Journal of Geophysical Research, 73, 2569–2577, https://doi.org/10.

1029/JB073i008p02569, 1968.

Camus, P., Mendez, F. J., and Medina, R.: A hybrid efficient method to downscale wave climate to coastal areas, Coastal Engineering, 58,

851–862, https://doi.org/10.1016/j.coastaleng.2011.05.007, 2011.355

Dean, R. G. and Walton, T. L.: Wave Setup, in: Handbook of Coastal and Ocean Engineering, edited by Kim, Y. C., pp. 21–43, World

Scientific, https://doi.org/10.1142/9789812819307_0001, 2009.

Franklin, G. L. and Torres-Freyermuth, A.: On the runup parameterisation for reef-lined coasts, Ocean Modelling, 169, 101 929, https:

//doi.org/10.1016/j.ocemod.2021.101929, 2022.

Ghorbani, M., Makarynskyy, O., Shiri, J., and Makarynska, D.: Genetic programming for sea level predictions in an island environment, The360

International Journal of Ocean and Climate Systems, 1, 27–35, https://doi.org/10.1260/1759-3131.1.1.27, 2010.

Goldstein, E. B. and Coco, G.: A machine learning approach for the prediction of settling velocity, Water Resources Research, 50, 3595–3601,

https://doi.org/10.1002/2013WR015116, 2014.

Goldstein, E. B., Coco, G., and Murray, A. B.: Prediction of wave ripple characteristics using genetic programming, Continental Shelf

Research, 71, 1–15, https://doi.org/10.1016/j.csr.2013.09.020, 2013.365

Goldstein, E. B., Coco, G., and Plant, N. G.: A review of machine learning applications to coastal sediment transport and morphodynamics,

Earth-Science Reviews, 194, 97–108, https://doi.org/10.1016/j.earscirev.2019.04.022, 2019.

Gomes da Silva, P., Coco, G., Garnier, R., and Klein, A. H. F.: On the prediction of runup, setup and swash on beaches, Earth-Science

Reviews, 204, 103 148, https://doi.org/10.1016/j.earscirev.2020.103148, 2020.

Guérin, T., Bertin, X., Coulombier, T., and de Bakker, A.: Impacts of wave-induced circulation in the surf zone on wave setup, Ocean370

Modelling, 123, 86–97, https://doi.org/10.1016/j.ocemod.2018.01.006, 2018.

Guza, R. T. and Thornton, E. B.: Wave set-up on a natural beach, Journal of Geophysical Research: Oceans, 86, 4133–4137, https://doi.org/

10.1029/JC086iC05p04133, 1981.

Hanslow, D. and Nielsen, P.: Shoreline set-up on natural beaches, Journal of Coastal Research, SI, 1–10, 1993.

Holman, R. A. and Sallenger Jr, A.: Setup and swash on a natural beach, Journal of Geophysical Research: Oceans, 90, 945–953, https:375

//doi.org/10.1029/JC090iC01p00945, 1985.

Ji, C., Zhang, Q., and Wu, Y.: An empirical formula for maximum wave setup based on a coupled wave-current model, Ocean Engineering,

147, 215–226, https://doi.org/10.1016/j.oceaneng.2017.10.021, 2018.

Kambekar, A. and Deo, M.: Wave prediction using genetic programming and model trees, Journal of Coastal Research, 28, 43–50, https:

//doi.org/10.2112/JCOASTRES-D-10-00052.1, 2012.380

Karla, R., Deo, M., Kumar, R., and Agarwal, V. K.: Genetic programming to estimate coastal waves from deep water measurements, Inter-

national Journal of Ecology & Development, 10, 67–77, 2008.

18

http://resolver.tudelft.nl/uuid:e126e043-a858-4e58-b4c7-8a7bc5be1a44
https://doi.org/10.1016/B978-0-08-102927-5.00028-X
https://doi.org/10.1029/JB073i008p02569
https://doi.org/10.1029/JB073i008p02569
https://doi.org/10.1029/JB073i008p02569
https://doi.org/10.1016/j.coastaleng.2011.05.007
https://doi.org/10.1142/9789812819307_0001
https://doi.org/10.1016/j.ocemod.2021.101929
https://doi.org/10.1016/j.ocemod.2021.101929
https://doi.org/10.1016/j.ocemod.2021.101929
https://doi.org/10.1260/1759-3131.1.1.27
https://doi.org/10.1002/2013WR015116
https://doi.org/10.1016/j.csr.2013.09.020
https://doi.org/10.1016/j.earscirev.2019.04.022
https://doi.org/10.1016/j.earscirev.2020.103148
https://doi.org/10.1016/j.ocemod.2018.01.006
https://doi.org/10.1029/JC086iC05p04133
https://doi.org/10.1029/JC086iC05p04133
https://doi.org/10.1029/JC086iC05p04133
https://doi.org/10.1029/JC090iC01p00945
https://doi.org/10.1029/JC090iC01p00945
https://doi.org/10.1029/JC090iC01p00945
https://doi.org/10.1016/j.oceaneng.2017.10.021
https://doi.org/10.2112/JCOASTRES-D-10-00052.1
https://doi.org/10.2112/JCOASTRES-D-10-00052.1
https://doi.org/10.2112/JCOASTRES-D-10-00052.1


King, B., Blackley, M., Carr, A., and Hardcastle, P.: Observations of wave-induced set-up on a natural beach, Journal of Geophysical

Research: Oceans, 95, 22 289–22 297, https://doi.org/10.1029/JC095iC12p22289, 1990.

Koza, J. R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, The MIT Press, Cambridge, Mas-385

sachusetts, 1992.

Koza, J. R. and Poli, R.: Genetic programming, in: Search Methodologies, edited by Burke, E. K. and Kendall, G., pp. 127–164, Springer,

Boston, Massachusetts, https://doi.org/10.1007/0-387-28356-0_5, 2005.

Lentz, S. and Raubenheimer, B.: Field observations of wave setup, Journal of Geophysical Research: Oceans, 104, 25 867–25 875, https:

//doi.org/10.1029/1999JC900239, 1999.390

Longuet-Higgins, M. S.: Wave set-up, percolation and undertow in the surf zone, Proceedings of the Royal Society of London. A. Mathe-

matical and Physical Sciences, 390, 283–291, https://doi.org/10.1098/rspa.1983.0132, 1983.

Longuet-Higgins, M. S. and Stewart, R. W.: Radiation stresses in water waves; a physical discussion, with applications, Deep Sea Research

and Oceanographic Abstracts, 11, 529–562, https://doi.org/10.1016/0011-7471(64)90001-4, 1964.

Martins, K., Bertin, X., Mengual, B., Pezerat, M., Lavaud, L., Guérin, T., and Zhang, Y. J.: Wave-induced mean currents and setup over395

barred and steep sandy beaches, Ocean Modelling, 179, 102 110, https://doi.org/10.1016/j.ocemod.2022.102110, 2022.

Melet, A., Almar, R., Hemer, M., Le Cozannet, G., Meyssignac, B., and Ruggiero, P.: Contribution of wave setup to projected coastal sea

level changes, Journal of Geophysical Research: Oceans, 125, e2020JC016 078, https://doi.org/10.1029/2020JC016078, 2020.

Nielsen, P.: Wave setup: A field study, Journal of Geophysical Research: Oceans, 93, 15 643–15 652, https://doi.org/10.1029/

JC093iC12p15643, 1988.400

Nielsen, P.: Wave setup and runup: An integrated approach, Coastal Engineering, 13, 1–9, https://doi.org/10.1016/0378-3839(89)90029-X,

1989.

O’Grady, J., McInnes, K., Hemer, M., Hoeke, R., Stephenson, A., and Colberg, F.: Extreme water levels for Australian beaches us-

ing empirical equations for shoreline wave setup, Journal of Geophysical Research: Oceans, 124, 5468–5484, https://doi.org/10.1029/

2018JC014871, 2019.405

Passarella, M., Goldstein, E. B., De Muro, S., and Coco, G.: The use of genetic programming to develop a predictor of swash excursion on

sandy beaches, Natural Hazards and Earth System Sciences, 18, 599–611, https://doi.org/10.5194/nhess-18-599-2018, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.:

Scikit-learn: Machine learning in Python, The Journal of Machine Learning Research, 12, 2825–2830, https://doi.org/10.48550/arXiv.

1201.0490, 2011.410

Poate, T. G., McCall, R. T., and Masselink, G.: A new parameterisation for runup on gravel beaches, Coastal Engineering, 117, 176–190,

https://doi.org/10.1016/j.coastaleng.2016.08.003, 2016.

Poli, R., Langdon, W. B., and McPhee, N. F.: A field guide to genetic programming, published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk (with contributions by JR Koza), 2008.

Power, H. E., Gharabaghi, B., Bonakdari, H., Robertson, B., Atkinson, A. L., and Baldock, T. E.: Prediction of wave runup on beaches using415

Gene-Expression Programming and empirical relationships, Coastal Engineering, 144, 47–61, https://doi.org/10.1016/j.coastaleng.2018.

10.006, 2019.

Raubenheimer, B., Guza, R., and Elgar, S.: Field observations of wave-driven setdown and setup, Journal of Geophysical Research: Oceans,

106, 4629–4638, https://doi.org/10.1029/2000JC000572, 2001.

19

https://doi.org/10.1029/JC095iC12p22289
https://doi.org/10.1007/0-387-28356-0_5
https://doi.org/10.1029/1999JC900239
https://doi.org/10.1029/1999JC900239
https://doi.org/10.1029/1999JC900239
https://doi.org/10.1098/rspa.1983.0132
https://doi.org/10.1016/0011-7471(64)90001-4
https://doi.org/10.1016/j.ocemod.2022.102110
https://doi.org/10.1029/2020JC016078
https://doi.org/10.1029/JC093iC12p15643
https://doi.org/10.1029/JC093iC12p15643
https://doi.org/10.1029/JC093iC12p15643
https://doi.org/10.1016/0378-3839(89)90029-X
https://doi.org/10.1029/2018JC014871
https://doi.org/10.1029/2018JC014871
https://doi.org/10.1029/2018JC014871
https://doi.org/10.5194/nhess-18-599-2018
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1016/j.coastaleng.2016.08.003
http://lulu.com
http://www.gp-field-guide.org.uk
https://doi.org/10.1016/j.coastaleng.2018.10.006
https://doi.org/10.1016/j.coastaleng.2018.10.006
https://doi.org/10.1016/j.coastaleng.2018.10.006
https://doi.org/10.1029/2000JC000572


Saville, T. J.: Experimental determination of wave set-up, in: Proceedings 2nd Technical Conference on Hurricanes, pp. 242–252, U.S.420

Department. of Commerce, Nat. Hurricane Res. Proj., 1961.

Stephens, S. A., Coco, G., and Bryan, K. R.: Numerical simulations of wave setup over barred beach profiles: implications for predictability,

Journal of Waterway, Port, Coastal, and Ocean Engineering, 137, 175–181, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000076,

2011.

Stephens, T.: Genetic programmin in python, with a scikit-learn inspired API: gplearn, https://gplearn.readthedocs.io/en/latest/, 2015.425

Stockdon, H. F. and Holman, R. A.: Observations of wave runup, setup, and swash on natural beaches: U.S. Geological Survey Data Series

602, https://pubs.usgs.gov/ds/602/, 2011.

Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger Jr, A. H.: Empirical parameterization of setup, swash, and runup, Coastal

Engineering, 53, 573–588, https://doi.org/10.1016/j.coastaleng.2005.12.005, 2006.

Tinoco, R., Goldstein, E., and Coco, G.: A data-driven approach to develop physically sound predictors: Application to depth-averaged430

velocities on flows through submerged arrays of rigid cylinders, Water Resources Research, 51, 1247–1263, https://doi.org/10.1002/

2014WR016380, 2015.

Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., and Storlazzi, C. D.: Doubling of coastal flooding frequency within

decades due to sea-level rise, Scientific Reports, 7, 1–9, https://doi.org/10.1038/s41598-017-01362-7, 2017.

Vousdoukas, M. I., Voukouvalas, E., Mentaschi, L., Dottori, F., Giardino, A., Bouziotas, D., Bianchi, A., Salamon, P., and Feyen, L.: De-435

velopments in large-scale coastal flood hazard mapping, Natural Hazards and Earth System Sciences, 16, 1841–1853, https://doi.org/10.

5194/nhess-16-1841-2016, 2016.

Wang, Y., Chen, J., Cai, H., Yu, Q., and Zhou, Z.: Predicting water turbidity in a macro-tidal coastal bay using machine learning approaches,

Estuarine, Coastal and Shelf Science, 252, 107 276, https://doi.org/10.1016/j.ecss.2021.107276, 2021.

Willmott, C., Ackleson, S., Davis, R., Feddema, J., Klink, K., Legates, D., O’donnell, J., and Rowe, C.: Statistics for the evaluation and440

comparison of models, Journal of Geophysical Research: Oceans, 90, 8995–9005, https://doi.org/10.1029/JC090iC05p08995, 1985.

Willmott, C. J.: On the validation of models, Physical geography, 2, 184–194, https://doi.org/10.1080/02723646.1981.10642213, 1981.

Yanagishima, S. and Katoh, K.: Field observation on wave set-up near the shoreline, in: 22nd International Conference on Coastal Engineer-

ing, pp. 95–108, 1990.

20

https://doi.org/10.1061/(ASCE)WW.1943-5460.0000076
https://gplearn.readthedocs.io/en/latest/
https://pubs.usgs.gov/ds/602/
https://doi.org/10.1016/j.coastaleng.2005.12.005
https://doi.org/10.1002/2014WR016380
https://doi.org/10.1002/2014WR016380
https://doi.org/10.1002/2014WR016380
https://doi.org/10.1038/s41598-017-01362-7
https://doi.org/10.5194/nhess-16-1841-2016
https://doi.org/10.5194/nhess-16-1841-2016
https://doi.org/10.5194/nhess-16-1841-2016
https://doi.org/10.1016/j.ecss.2021.107276
https://doi.org/10.1029/JC090iC05p08995
https://doi.org/10.1080/02723646.1981.10642213

