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Abstract. We applied machine learning to improve the accuracy of present predictors of wave setup. Namely, we used an

evolutionary-based genetic programming model and a previously published dataset, which includes various beach and wave

conditions. Here, we present two new wave setup predictors, a simple predictor, which is a function of wave height, wavelength,

and
::::::::
foreshore beach slope, and a fitter, but more complex predictor, which is also a function of sediment diameter. The results

show that the new predictors outperform existing formulas. Therefore, we
:::
We conclude that machine learning models are5

capable of not only improving prediction
:::::::::
improving

::::::::
predictive

:
capability (when compared to classical predictors) but

:::::::
existing

:::::::::
predictors)

:::
and

:
also of providing physically sound descriptions of the processes modelleda

:::::::::
physically

::::::
sound

:::::::::
description

:::
of

::::
wave

:::::
setup.

1 Introduction

As the climate changes, coastal flooding is predicted to increase worldwide. Among the processes included to determine coastal10

flooding, wave runup is recognized as one of its major contributors. Defined as the maximum vertical excursion of water above

the mean water level, wave runup represents the action of the waves on the beachface. It comprises two different processes:

wave setup and swash. Its importance can be highlighted by the fact that neglecting the wave contribution to coastal flooding

can result in up to a ∼ 60% underestimation of the flooded area (Vousdoukas et al., 2016).

Wave setup (hereafter referred to simply as setup) is defined as the time-averaged additional elevation of the water level due15

to breaking waves (Longuet-Higgins and Stewart, 1964). According to the same authors, as
::
As

:
waves approach the shoreline,

their action induces the cross-shore transport of momentum, producing changes in pressure and velocity. To conserve the flow

of momentum when meeting obstacles, like a sloping beach, it is necessary to account for the action of a force known as

radiation stress. This force is proportional to the wave energy and can be written as follows:

Sxx = E

(
2kh

sinh2kh
+

1

2

)
20

where Sxx is the flux of momentum in the direction of wave propagation, k = 2π/L is the wavenumber, L is the wavelength,

and h is the still water depth. E is the wave energy per unit surface area, defined as E = 1
8ρgH

2, where ρ is the density of water,

g is the gravitational acceleration, and H is the wave height. Inside the surf zone, and assuming shallow water conditions, the
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radiation stress expression can be simplified to:

Sxx =
3

2
E =

3

16
ρgH225

Variations in radiation stress result in a rise (setup) and fall (set-down) in the mean water levelrespectively shoreward and

seaward the waves’breaking point (Bowen et al., 1968).
:
.
:::::::::
Maximum

:::::::
set-down

::::::
occurs

::
at

:::
the

::::::
wave’s

::::::::
breaking

::::
point

::::
and

::::::
decays

:::::::
seaward

::::
from

:::
that

::::::
point,

:::::::
whereas

::::
setup

::::::::
develops

::
in

:::
the

:::::::::
shoreward

:::::::
direction

:::::::::::::::::
(Bowen et al., 1968)

:
.

Besides being an important component of coastal flooding (Vitousek et al., 2017; Melet et al., 2020) directly impacting

the design of coastal structures, setup is also important to the nearshore circulation, such as
:::::::
including

:
undertow currents and30

groundwater flows (Longuet-Higgins, 1983). Ultimately, setup is an important component in the flow circulation and so to

:::
and sediment exchanges between the sub-aerial and submerged beachface. Thus, understanding and being able to predict wave

setup is vital to protect coastal resources and people
::
the

::::::::::
population living near the shore in a more effective way.

The setup contribution to extreme water levels was first noticed in 1938 during a hurricane on the east coast of the USA,

where a water level 1 m higher than in calm water conditions was observed on an exposed beach (Saville, 1961). After this35

event, many laboratory experiments and field measurements have been conducted using Eq. (2) as the initial point to predict

setup across the surf zone (Bowen et al., 1968; Battjes, 1974; Guza and Thornton, 1981; Holman and Sallenger Jr, 1985; King

et al., 1990; Yanagishima and Katoh, 1990; Hanslow and Nielsen, 1993; Raubenheimer et al., 2001; Stockdon et al., 2006; Ji

et al., 2018; O’Grady et al., 2019). As a result, empirical setup predictors based on wave parameters, beach morphology, and

surf zone processes have been established
::::::::
developed

:
(Dean and Walton, 2009; Gomes da Silva et al., 2020). Some of the most40

relevant will be presented next.

Bowen et al. (1968) performed
::
In

:::
one

::
of

:::
the

::::
first

::::::
studies

:::::
about

:::::
setup,

:::::::::::::::::
Bowen et al. (1968)

::::::::
conducted

:
a laboratory investiga-

tion of monochromatic wavesand related the setup gradient to the beach slope (βs)and the ratio of wave height to the mean

water depth (γ)
::::
with

:::::::::::::
monochromatic

::::::
waves.

:::::
Their

::::::
results

::::::::
indicated

:::
that

:::
the

::::::
theory,

::::::
based

::
on

:::
the

:::::::
concept

::
of

::::::::
radiation

::::::
stress,

:::::::::::
underpredicts

::::::::
measured

:::::
setup

::::::
values,

:::::::::
especially

::
at

:::
the

:::::::::
shoreline.

:::
The

:::::::::
maximum

:::::
setup

:::::
(η̄M ),

::::::::::::
time-averaged

::::::::
elevation

:::
of

:::
the45

::::
water

:::::
level

::
at

:::
the

::::::::
shoreline,

:::::::
became

:::
the

::::
focus

::
of
::::::::::

subsequent
::::::
studies.

:

::::::::::::
Battjes (1974)

::::::::
performed

:::::::::
laboratory

::::::::::
experiments

:::::::::
estimating

:::::::::
maximum

::::
setup

:
as:

dη̄

dx
η̄M

:
=

βs

1+8/3γ2
0.38γHb
:::::::

(1)

where η̄ is the setup inside the surf zone, x is the cross-shore coordinate,
:::
Hb ::

is
:::
the

:::::::
breaking

:::::
wave

:::::
height

:
and γ =H/(η̄+h)

assumes that the ratio between the height of a broken wave or bore (H) and the water depth (h) remains approximately constant.50

Their results indicated that the theory underpredicts the measured setup values, especially at the shoreline, where the maximum

setup occurs.

Battjes (1974) performed laboratory experiments and, using Eqs. 2 and 3, estimated the maximum setup (η̄M ) at the shoreline

as:

η̄M = 0.38γHb55
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where Hb is the breaking wave height. King et al. (1990), using the same linear function of incident wave height but re-

placing H for Hrms (root mean square), was also able to accurately predict setup for a random wave field. The authors

(but also Guza and Thornton, 1981)
::::::::
However,

:::
the

::::::
authors

::::::::::::::::::::::::::::::
(and later Guza and Thornton, 1981) highlighted the fact that γ val-

ues in field observations are much lower than in laboratory experiments
::::::::
laboratory

::::::::::
experiments

:::
are

::::::
higher

:::
than

::
in
::::
field

:::::::::::
observations.

Through field data measured on a gently sloping beach, Guza and Thornton (1981) correlated maximum setup to the offshore60

significant wave height (Hs0):

η̄M = 0.17Hs0 (2)

This predictor underestimated setup at the shoreline, further suggesting that the slope of the setup is not constant across the surf

zone, as already seen by
::::::::
described

::
in previous works (Bowen et al., 1968; Battjes, 1974). Later, Holman and Sallenger Jr (1985)

found a more accurate correlation than only using Hs0 by relating setup and
:::
the

:::
one

::::::::
presented

::
by

:::::::::::::::::::::::
Guza and Thornton (1981)

::
by65

::::::
relating

:::
the

:::::
setup

:::
with

:
the surf similarity parameter (Iribarren number: ξ = βs/(Hs0/L0)

0.5), as presented by Guza and Thornton (1981)

::::::::::::::::::
ξ0 = βf/(Hs0/L0)

0.5,
::::::
where

::
βf::

is
:::
the

::::::::
foreshore

:::::
slope,

:::::::
Hs0/L0::

is
:::
the

:::::
wave

::::::::
steepness

:::
and

:::
L0:::

the
:::::::
offshore

::::::::::
wavelength). How-

ever, when isolating low tide data, no significant trend was found with ξ
:
ξ0, indicating the probable setup dependency on the

entire surf zone’s bathymetry and not only on the foreshore slope. The same linear relationship between setup and offshore

wave height, influenced by tidal fluctuations and the local bathymetry, was also found by Raubenheimer et al. (2001).70

Considering the difficulty of defining the parameters used in the predictors above for natural beaches (instead of
:::::::
opposite

::
to laboratory environments), Stockdon et al. (2006) proposed a simple empirical parameterization for setup. The equation

(Eq. (6))
:
:

η̄M = 0.35βf (Hs0L0)
0.5

::::::::::::::::::::
(3)

::::
This

:::::::
equation was based on an extensive dataset, 10

:::
ten experiments from the USA and the Netherlands, comprising a variety75

of beach characteristics and wave conditions. The predictor proposed was:

η̄M = 0.35βf (Hs0L0)
0.5

where βf is the foreshore slope and L0 the offshore wavelength obtained using the peak period (Tp).
::
As

:
a
::::::
result, Stockdon

et al. (2006) found setup is best parameterized when considering offshore over onshore wave hydrodynamics and using the

foreshore slope instead of the surf zone slope. Moreover, for fully dissipative conditions, the inclusion of βf in the parameter-80

ization is not even necessary
::::::
appears

::
to

:::
be

::::::::::
unnecessary. The role of deep water waves and the inclusion of foreshore slope at

steeper beaches was also
:::
had

::::
also

::::
been

:
previously recognized by Hanslow and Nielsen (1993).

Recently, Ji et al. (2018) proposed an empirical formula for maximum setup based on different beach slopes and wave

parameters through the use of a coupled wave-current model over a linear bathymetry. Besides beach slope, their results

showed that setup is also related to wave steepness(Hs0/L0):85

η̄M = 0.220(βs)
0.538Hs0

(
Hs0

L0

)−0.371

(4)
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:::::
where

:::
βs ::

is
:::::
beach

:::::
slope.

:
Similar results confirming the role of wave height, beach slope, and wave steepness on maximum

setups were found by Yanagishima and Katoh (1990) and by O’Grady et al. (2019). O’Grady et al. (2019) tested different

empirical equations and identified that deep water wave height explains 30% of setup variance, followed by an improvement

of up to 12% if beach slope is added to the relationship and a further 12% when including wave steepness. Presently, among90

all studies providing empirical predictors of setup, the most widely used formulation is the one from Stockdon et al. (2006).

Despite an approximately linear relationship between setup at the shoreline and wave height, traditional setup estimates

usually do not account for all the complex processes involved in the environment, often translating into significant scatter in

predictions (Stephens et al., 2011; Stockdon et al., 2006; Gomes da Silva et al., 2020). Additional factors that may affect the

accuracy of setup predictors include: possible errors in the measurements (Guza and Thornton, 1981; King et al., 1990; Lentz95

and Raubenheimer, 1999), misinterpreted average position of the waterline and difficulty in detecting the maximum setup

(Guza and Thornton, 1981; Holman and Sallenger Jr, 1985; King et al., 1990; Lentz and Raubenheimer, 1999), simplifications,

::
as

::::
well

::
as

::::::::::::
simplifications

::::
and uncertain or unaccounted for terms such as bottom stress, alongshore bathymetric features and

infragravity waves (Lentz and Raubenheimer, 1999; Ji et al., 2018; O’Grady et al., 2019). In an attempt to overcome these

problems and reduce scatter, innovative data-driven approaches, such as machine learning, are becoming increasingly popular100

since they can provide rapid and accurate predictions (Goldstein et al., 2019; Beuzen and Splinter, 2020).

Machine Learning (ML) is a field of computer science focused on developing algorithms that discover relationships between

variables by self-learning from
::::::::::::
self-improving

:::::::::
predictive

::::::::::
performance

::::::
based

::
on

:
a given dataset, without being explicitly pro-

grammed to solve that particular problem. Over the past few years, published works have explored the range of applicability of

ML approaches, resulting in higher performance and more cost-effective predictors (Goldstein et al., 2019). In coastal sciences,105

some of the most widely used techniques are k-Nearest Neighbors, Decision Trees, Random Forests, Bayesian Networks, Ar-

tificial Neural Networks, and Support Vector Machines (Beuzen and Splinter, 2020). Less known, yet powerful, an algorithm

that can provide further insights on
:::
into the impacts of the underlying processes is Genetic Programming (GP). One of the

main advantages of this approach is the ability to develop reliable, robust, and reproducible predictors. Moreover, it is proven

to be a powerful technique capable not only of improving predicting capability but also of providing physical insights
:::::
being110

::::::::::
interpretable

:::
and

::::::::::
potentially

::::::::
providing

::::::
insight into coastal processes (i.e., being interpretable) (Passarella et al., 2018). Studies

using GP have focused on developing predictors for wave (Karla et al., 2008; Kambekar and Deo, 2012) and wave ripple

(Goldstein et al., 2013) characteristics, sea level (Ghorbani et al., 2010), particle settling velocity (Goldstein and Coco, 2014),

open-channel flow mean velocity (Tinoco et al., 2015), swash (Passarella et al., 2018), water turbidity (Wang et al., 2021) and

runup (Franklin and Torres-Freyermuth, 2022). GP results usually performed better (in terms of minimizing prediction errors)115

than those from other commonly used algorithms. Overall, machine learning has shown great promise for modelling coastal

processes
:::::
coastal

::::::::::
applications, and to the authors’ knowledge, it has never been applied to predict wave setup. The amount of

available data provides a unique opportunity to develop a novel and more accurate predictor.

In this paper, we propose improving the predictability of wave setup using an evolutionary-based genetic programming

model. The paper is organized as follows: Section 2 describes the data, model setup, and model evaluation methods. In Sect. 3,120

we present the model results and the evaluation of the wave setup equation and compare the newly developed empirical
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formulae
:::::::
formulas

:
with several other existing formulations. Section 4 discusses the results obtained and limitations of this

approach. Finally, we present the conclusions in Sect. 5.

2 Methodology

The increase in spatial and temporal extents, higher resolution, and faster turnaround from acquisition to availability of data125

related to coastal systems has open up endless possibilities for data-driven algorithms like genetic programming. In this section
:
,

we present the data used in this work and the preprocessing methodology followed (2.1); the evolutionary genetic programming

model (2.2); and the methods used to evaluate the model predictions accuracy against the testing data and some of the most

widely known predictors in the literature (2.3).

2.1 Data130

::
To

:::::
make

:::::
setup

:::::::::
predictions

:::::
using

::
a
::::::::::
data-driven

::::::
model,

:
it
::

is
:::::::::

necessary
::
to

::::
have

:::
the

:::::
input

::::
and

:::::
output

::::
data

:::
to

::::
train

::
it.

::::
The

:::::
input

:::
data

::
is
:::::::

related
::
to

:::::::
physical

:::::::::
processes

:::
that

::::::
induce

:::
the

:::::::
output,

:::::
wave

:::::
setup.

:
In this work, a dataset

::
we

:::::
used

:
a
:::::::

dataset
:::::::
meeting

::::
these

::::::::::::
requirements, representing a large variety of beach and wave conditions compiled by Stockdon et al. (2006)has been

used to develop a predictor of wave setup. The data is freely available, and details on how to access it can be found in the

Code and data availability section. The dataset contains measurements of: maximum setup (η̄M ), foreshore beach slope (βf ) ,135

median sediment diameter (D50),
:
-
::::::
average

::::::::
foreshore

:::::
slope

::::
with

::::::
respect

::
to

:::
still

:::::
water

::::
level

::
±

:::::
twice

:::
the

:::::::
standard

::::::::
deviation

::
of

:::
the

:::::::::
continuous

:::::
water

::::
level,

:
and associated offshore wave characteristics (Hs0 – significant wave height, and Tp – peak period) from

10 field experiments on sandy beaches resulting in a total of 491 measurements.
:::::
Details

:::
of

::
the

:::::
field

::::::::::
experiments

:::
can

:::
be

:::::
found

::
in

::::::::::::::::::
Stockdon et al. (2006).

:
From these measurements, additional parameters such as the offshore wavelength (L0 = gTp

2/2π)

and the Iribarren number (ξ0) were calculated.
:::::::
Median

:::::::
sediment

::::::::
diameter

:::::
(D50)

::::
data

::::
was

::::::::
obtained

::::
from

::::::
reports

::::
and

::::::
papers140

::::::::
describing

:::
the

::::::::
beaches. Table 1 provides full details of the dataset used in this work, including the location and dates of the

experiments and the range and average conditions of the environmental parameters. Figure 1 shows the range for some of the

parameters available in the dataset. Beach types vary from highly dissipative (ξ̄0 = 0.11 in Terschelling) to fully reflective (ξ̄0

= 2.17 in San Onofre) mean conditions
::::::
average

::::::::::
conditions, with η̄M ranging from 0.00 (Terschelling) to 1.55 m (Duck 94).

2.1.1 Training and testing sets145

The target of ML is to use observed data to develop a model able to predict future (unseen) instances. In that sense, the first

step is to preprocess the data by normalizing all variables and splitting the dataset into training and testing sets. The training

set is used to build and optimize the model, while the testing set is used to quantify the model’s performance (i.e., its ability to

generalize).

There is no general consensus on which method should be used to split the dataset. In our case, we sought to include the most150

representative cases from the entire dataset, guaranteeing that the most diverse environmental conditions were well represented

in our training set. In addition, the model’s aim was not to learn on the largest dataset but to achieve data comprehensiveness
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Figure 1. Environmental parameters of the dataset: deep-water wave height (Hs0) versus peak period (Tp). The colors
:::::
colours represent the

Iribarren number (ξ0) where values <0.3 (green) characterize dissipative beaches, values >1.25 (blue) characterize reflective beaches, and

values between both (red) characterize intermediate beaches.

with a rather small sample, to later benchmark the model performance against a larger test set. Hence, for this work, we chose

the maximum dissimilarity algorithm (MDA) (Camus et al., 2011)
::::::::::::::::::::::
(MDA; Camus et al., 2011) as the selection routine.

The MDA aims to select points within the series that are the most dissimilar, ensuring the environment’s most diverse repre-155

sentation from the original 491 data measurements (Camus et al., 2011). Each data point is a seven dimensional
::::::::::::
7-dimensional

vector consisting of all the variables in the dataset (η̄M , Hs0, Tp, βf , D50, L0, and ξ0 :::
and

::::
D50). During the selection phase,

the parameters are normalized between 0 and 1 to receive the same weight in the similarity criteria. The calculation starts by

selecting an extreme case. We used the largest wave setup value (η̄M = 1.55 m) and its related variables as the initial data

point. Subsequent points are picked based on the maximum dissimilarity (i.e., largest distance) with respect to the previously160

selected cases, which no longer participate in the selection. The selection of cases ends when the algorithm reaches the number

of points determined by the user, after which the denormalized (i.e., original data) training and test sets are reported.

MDA was applied to select 150 data points (∼ 30% of the original dataset), which form the training set. The remaining data

(∼ 70%) was used as the testing set to evaluate the model’s ability to generalize. Besides, having a more extensive testing set

ensures a more accurate estimation of model performance, and by avoiding a large training set, we prevent overfitting. The165

results of MDA selection are shown in Fig. 2.

2.2 Genetic Programming

Genetic Programming (GP) is an evolutionary computational method for which computers automatically solve a problem

without requiring a functional prediction form in advance (Koza and Poli, 2005; Poli et al., 2008). In GP, individuals of
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Table 1. Range and average (in brackets) environmental conditions for Stockdon’s compiled database (Stockdon et al., 2006). Notice that at

times only the average value is available.

Site

(Experiment)

Date

(Data Points)
η̄M (m) Hs0 (m) Tp (s) βf L0 (m) ξ0 D50 (mm)

Duck, NC

(Duck 82)

5-25 Oct 1982

(36)

0.07-1.50

(0.78)

0.48-4.08

(1.71)

6.30-16.50

(11.86)

0.09-0.16

(0.12)

61.92-424.71

(233.61)

0.68-2.38

(1.48)
(0.75)

Scripps Beach, CA

(Uswash)

26-29 Jun 1989

(41)

0.06-0.33

(0.18)

0.54-0.84

(0.69)
(10.00)

0.03-0.06

(0.04)
(156.00)

0.41-0.94

(0.58)
(0.20)

Duck, NC

(Delilah)

6-19 Oct 1990

(138)

0.11-1.01

(0.49)

0.52-2.51

(1.40)

4.68-14.79

(9.25)

0.03-0.14

(0.09)

34.17-341.24

(139.58)

0.40-1.77

(0.91)
(0.36)

San Onofre, CA
16-20 Oct 1993

(59)

0.23-0.81

(0.50)

0.51-1.07

(0.81)

13.00-17.00

(14.87)

0.07-0.13

(0.10)

263.64-450.84

(348.81)

1.51-2.72

(2.17)
(0.20)

Gleneden, OR
26-28 Feb 1994

(42)

0.30-0.87

(0.64)

1.83-2.25

(2.06)

10.45-16.00

(12.36)

0.03-0.11

(0.08)

170.36-399.36

(244.38)

0.26-1.23

(0.86)
(0.40)

Terschelling, NL
2-22 Apr 1994

(6)

0.05-0.51

(0.27)

1.41-3.93

(2.84)

6.50-10.60

(8.73)

0.02-0.03

(0.02)

65.91-175.28

(122.14)

0.13-0.21

(0.15)
(0.22)

Terschelling, NL
1-21 Oct 1994

(8)

0-0.10

(0.05)

0.51-1.97

(1.09)

4.80-10.40

(7.89)

0.01-0.02

(0.01)

35.94-168.73

(104.20)

0.07-0.25

(0.11)
(0.22)

Duck, NC

(Duck 94)

3-21 Oct 1994

(52)

0.27-1.55

(0.80)

0.73-4.06

(1.89)

3.82-14.77

(10.51)

0.06-0.10

(0.08)

22.76-340.32

(182.66)

0.36-1.39

(0.82)

0.25-2.00

(0.65)

Agate Beach, OR
11-17 Feb 1996

(14)

0.20-0.65

(0.38)

1.85-3.14

(2.48)

7.06-14.32

(11.85)

0.01-0.02

(0.02)

77.76-319.90

(228.53)

0.10-0.22

(0.16)
(0.20)

Duck, NC

(SandyDuck)

3-30 Oct 1997

(95)

0.01-0.91

(0.32)

0.35-3.57

(1.37)

3.70-15.39

(9.48)

0.05-0.14

(0.09)

21.36-369.49

(151.66)

0.32-3.25

(1.12)

0.90-1.65

(1.13)

a population are computer programs (i.e., equations) of varying size and shape that genetically “breed” (Koza, 1992). The170

separate elements forming the equations (variables and mathematical operators) represent each individual’s chromosomes.

Inspired by natural selection and the “survival of the fittest”, GP uses an initial population of equations where the fitter ones

(parents) are selected to breed a new generation of offspring (i.e., new equations). At each generation, a new population is

created through the application of genetic operations (evolutionary process): reproduction, crossover and mutation. In the end,

the final optimized predictor (within user-defined expression complexity limits) can be represented in
:
a
:
mathematical form.175

The step-by-step process involved in implementing the GP model is illustrated in Fig. 3 and further explained as follows:

[1] Initialization. An initial population of random equations is created by selecting a set of independent variables, math-

ematical operators, and constant values, which are introduced in agreement with the control parameters of the model set

by the user (see Table 2). It is important to highlight that GP does not require non-dimensional (normalized) inputs.
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Figure 2. Results of MDA selection and correlation between the variables of the dataset. In red is the training set (∼ 30% of the original

dataset), and in black is the testing set (∼ 70%). Environmental variables considered: maximum wave setup (η̄M ), deep-water significant

wave height (Hs0), peak period (Tp), foreshore beach slope (βf ), median sediment diameter (D50), deep-water wavelength (L0), and Iribar-

ren number (ξ0),
:::
and

::::::
median

:::::::
sediment

::::::
diameter

:::::
(D50).

[2] Selection. “Tournament” selections between equations are realized
::::::::
performed

:
in order to decide which equations will180

evolve in the next generation. Among the selected equations for each tournament, chosen at random from the population,

the GP model finds the one that best fits the training data (i.e., lowest fitness function). As the fitness function, we

selected the mean absolute error (MAE), which is formulated asfollows:

MAE=
1

n

n∑
i=1

|Mi −Pi| (5)

where n is the number of measured values; and Mi and Pi denote measured and predicted values, respectively.185

[3] Evolution. From the best solution
::::::::
solutions, a new solution

:::
set

::
of

:::::::
solutions

:
is created through an evolutionary process.

Genetic operations are applied to the winner of each tournament at random. Therefore, fitter individuals are more likely

to produce new equations than inferior individuals. New equations for the next generation are created by: (a) Crossover:

Merging random chromosomes/parts from two tournament winners; (b) Mutation: Selecting random chromosomes/parts

of the tournament winner to change, and; (c) Reproduction: Copy of the tournament winner. A parsimony coefficient is190

used to penalize large
:::
long

:
equations, avoiding bloat (larger

:::::
longer equations with no significant improvement in fitness).

:
It
::
is

::::
used

::::::
during

:
a
::::::::::
tournament

::
to

:::::
deduct

:::::
from

:::
the

:::::
fitness

:::::
result

::
of

:::
the

::::::
longer

:::::::
equation

::::::
among

:::
two

::::::::::
competitors

::::
that

::::::
present

:::::::
identical

::::::
results,

:::
the

::::::
longer

:::
one

:::::
being

:::::::::
discarded.

8



Figure 3. Main loop of the GP model (inspired by Poli et al. (2008)). The equations encoded as a tree with variables, operators, and

coefficients shown in the evolution framework are examples of genetic operations for the reader’s easy visualization. The solution shown in

the termination framework is the same one presented later in the Results section.

Table 2. Hyperparameters setup of the GPLearn model.

Parameter Value

Independent Variables Hs0 (m), Tp (s), βf , D50 ::
L0:

(m), L0 ::
ξ0,

:::
D50:

(m) , ξ0

Mathematical Operators +, −, ×, ÷, xx, √

Constant Range [-5, 5]

Population Size 5000

Generations 1000

Tournament Size 20

Fitness Function Mean Absolute Error (MAE)

Genetic Operations Crossover (70%), Mutation (25%) and Reproduction (5%)

Parsimony Coefficient 0.0005

Stopping Criteria 0.01

The choice of the values above was driven by extensive testing and sensitivity analyses performed as part of this

work. The final model setup for each equation varies slightly. Details of both final codes are available and can be

accessed through the Code and data availability section.

[4] Termination. The execution of the model stops when the termination criteria is reached. The final solution (i.e.,

equation – encoded as a tree with variables, operators, and coefficients) is the one that reaches the established minimal195

error (stopping criteria) or the best one at the specific number of generations predetermined by the user.
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In this work, the GP model was built using the GPLearn Python module (Stephens, 2015), a machine learning library ex-

tended from Scikit-Learn (Pedregosa et al., 2011). We have run the model with different setups such as different
:::::::::::
mathematical

:::::::
operators

:::::::::
(addition,

::::::::::
subtraction,

::::::::::::
multiplication,

:::::::
division,

::::::
square

::::
root,

::::::
power,

:::
log,

::::::::
absolute,

:::::::
inverse,

::::
sine,

::::::
cosine,

::::::::
tangent), pop-

ulation sizes (2,000 - 500,000), generations (20 - 10,000), tournament sizes (10 - 1,000), parsimony coefficients (0.001
::::::
0.0005200

- 0.01) and genetic operations proportions. Although it is not strictly necessary, we have also run the model using a normalized

input. All the runs stopped by reaching the number of chosen generations since we set a very low stopping criteria error
::::
error

::::::
criteria. In the end, the best predictor was found through

::::::::
predictors

:::::
were

:::::
found

:::::::
through

:::
the

::::::
general

::::::
model

::::
setup

:::::::::
presented

::
in

Table 2model setup, and a
:
,
:::
and

:
minimal or no improvement was achieved with more complicated equations. To select the

best predictor, we focused on finding the balance between achieving a low error reduction and high predicting capabilities, and205

obtaining simpler, physically meaningful equations. The code is available, and details on how to access it can be found in Code

and data availability
:::::
section.

2.3 Model Evaluation

The testing dataset was used to evaluate the GP predictor’s performance through several statistical parameters, including the

square of the Correlation Coefficient (the square of Pearson’s Correlation - r2 - Eq. (9
:
6)), Coefficient of Determination (R2210

- Eq. (10
:
7)), modified Index of Agreement (d1

:
d1:- Eq. (11

:
8)), Mean Absolute Error (MAE - see Eq. (8

:
5)), and Root Mean

Square Error (RMSE - Eq. (??)).
:::
9)),

:::::
which

:::
are

:::::::
defined

::
as

:::::::
follows:

r2 =

(∑n
i=1(Mi − M̄)(Pi − P̄ )

)2∑n
i=1(Mi − M̄)2

∑n
i=1(Pi − P̄ )2

(6)

R2 = 1−
∑n

i=1(Mi −Pi)
2∑n

i=1(Mi − M̄)2
(7)

d1 = 1−
∑n

i=1 |Mi −Pi|∑n
i=1(|Mi − M̄ |+ |Pi − M̄ |)

(8)215

RMSE =

√√√√ 1

n

n∑
i=1

(Mi −Pi)2 (9)

where M̄ and P̄ are the corresponding average values of measured and predicted parameters, respectively.

The values of r2 and R2 are measures of linear correlation, where r2 explain the proportion of variance between two sets of

data, and R2 is used to evaluate how well the model predicts in comparison to actual measurements (the model’s performance).

Alternatively, d1 is also used to evaluate the agreement between predicted and measured values. For further details about d1220

the reader is referred to Willmott (1981) and Willmott et al. (1985). r2, R2, and d1 are dimensionless, and values closer to 1

represent better agreements. In contrast, MAE and RMSE measure the errors given by the difference between predicted and

10



measured values; in addition, the second penalizes large errors (bad predictions). Both MAE and RMSE are expressed in the

same units of η̄M (m), which means that lower values (closer to 0) indicate more accurate predictions.

Because each metric has its own strengths and limitations, the combination of these five different criteria allowed for a more225

comprehensive comparison between the model results. Moreover, these same statistical parameters were used to compare the

present model with other existing predictors, namely the widely used Stockdon et al. (2006) and Guza and Thornton (1981),

Holman and Sallenger Jr (1985), Yanagishima and Katoh (1990), Hanslow and Nielsen (1993),
::::::::::::::::::
Stockdon et al. (2006)

:
, Ji et al.

(2018) and O’Grady et al. (2019).

3 Results230

From the multiple equations obtained as an output from the GP model, we selected two predictors of wave setup. A simple

predictor is presented in Eq. (??
::
10). Alternatively, a more complex but also more accurate predictor

:
, which maintains physical

interpretability,
:
is presented in Eq. (??

::
11).

η̄M = 0.355Hs0ξ0
0.5 (10)

η̄M =
Hs0

4.08

(
ξ0
3.25

+
ξ0

ξ0 +0.64
+

ξ0
1625D50 + ξ0

)
(11)235

Here, it is important to highlight that the coefficient 1625 in Eq. (??
::
11) is dimensional, with units of m−1.

::::
Also,

:::
we

:::
did

:::::::
simplify

::
the

::::
Eq.

:::
(11)

:::::
from

:::
the

:::::::
original

:::
one,

:::::::::
presenting

:::::
fewer

::::::::::
coefficients

:::
but

::::
with

:::
the

:::::
same

::::::
output.

Equation (??
::
10) stands out for its simplicity. This equation

:
It
:

is also very similar to previous predictors found in the lit-

erature (e.g. Holman and Sallenger Jr, 1985; Stockdon et al., 2006; Ji et al., 2018; O’Grady et al., 2019). However, the new

models presented here differ from previous equations (except Holman and Sallenger Jr, 1985) by considering wave height,240

wavelength, and foreshore beach slope combined, in terms of the non-dimensional Iribarren number. Furthermore, the com-

plexity of Eq. (??
::
11) is slightly larger

:::::
higher

:
because of the additional terms it includes. Similarly to Eq. (??

::
10), the first two

terms depend only on the wave height and Iribarren number (i.e., they are informed by wave dynamics and beach slope). The

third term in Eq. (??
::
11) includes D50, measured in m. Therefore, it requires a dimensional coefficient for the predictor to be

dimensionally consistent. As a result, this term contains information on the wave dynamics and beach slope, but also on the245

sediment size. We remark that this is the first time that grain size is introduced in a wave setup equation.

Figure 4 presents the scatter plots between measured and predicted η̄M obtained from Eqs. (??
::
10) and (??

::
11). The data

shown in the figures are the testing data and the metrics used to evaluate the GP predictors’ performance. Although more

complex, Eq. (??
::
11) represents the best equation in terms of the lowest error when considering the RMSE = 0.14 m, in

comparison with a RMSE = 0.16 m from Eq. (??
::
10) (a 12.5% difference). Nevertheless, note that both equations have the250

same MAE = 0.11 m. Equation (??
::
11) also yields higher values of r2 = 0.70, R2 = 0.70, and d1 = 0.72 as compared to

Eq. (??
::
10) (r2 = 0.65, R2 = 0.64, and d1 = 0.71), indicating a better fit of the Eq. (??

::
11) with the testing data. Furthermore,

11



Figure 4. Measured versus predicted maximum wave setup (η̄M ) using the testing data for Eq. (??
::
10) (left panel) and Eq. (??

::
11) (right

panel). The metrics used to evaluate the GP predictors’ performance are also presented. r2 = the square of the Correlation Coefficient, R2 =

Coefficient of Determination, d1
::
d1 = modified Index of Agreement, MAE = Mean Absolute Error, and RMSE = Root Mean Square Error.

Different markers/colors
:::::
colours

:
refer to different field experiments, as referenced in the legend.

Eq. (??
::
10) and Eq. (??

::
11) performed well on beaches with dissipative (Agate 96and Terschelling) and reflective (San Onofre)

conditions. Among all field experiments, Duck 94 (intermediate to reflective with large wave conditions) was the beach that

showed less correlation with our models.255

A successful predictor should present physical interpretability, but it also must be coherent with the real environment.

Therefore, Fig. 5 presents a sensitivity analysis with data in the range measured (in red) and outside (extrapolated ,
::::::::::
extrapolated

:
(in black) to evaluate the influence of the input variables on η̄M . In both models we observe a positive correlation between

η̄M and Hs0, and between η̄M and ξ0. As expected, the linear relationship between η̄M and Hs0 means that larger waves

produce greater setups. Regarding Iribarren number, η̄M is proportional to the square root of ξ0 in Eq. (??
::
10), and a similar260

non-linear relationship appears in Eq. (??
::
11). In this case, greater setups are likely to occur for reflective beach conditions

(higher ξ0). However, the rate of increase in setup decreases with higher Iribarren numbers in both cases. On the other hand,

D50 (which only appears in Eq. (??
::
11)) is negatively correlated with η̄M , meaning that greater setups are expected to occur

on beaches with smaller sediment diameters. The variation in setup with D50 appears to be of lower magnitude in comparison

with Hs0 and ξ0. Although, with increasing Hs0, the sensitivity of η̄M to the median grain size (D50) increases. The same is265

not valid with
:::
This

::
is
::::
not

:::
the

::::
case

:::
for ξ0. On the contrary, there is a slight decrease in the sensitivity of η̄M as a function of

D50 with larger ξ0 values. Here, we have expanded the predictor’s use beyond the range of the measurements that comprise

the dataset, to test its general behaviour and stability, showing that the predictors work sensibly also beyond the range of the

available measurements. Smaller values of Hs0 and ξ0 never result in negative η̄M values, and the observed trends continue in

the unobserved data
::::::
beyond

:::
the

:::::::
training range.270

Using the entire dataset (training + testing)
:
, we also compared the results of Eq. (??

::
10) and Eq. (??

::
11) with the most widely

known predictors in the literature. Table 3 and Fig. 6 show the performance of nine distinct empirical equations, including
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Figure 5. General behavior
:::::::
behaviour

:
of the maximum wave setup (η̄M ) predictors presented in Eq. (??

::
10) (left panels) and Eq. (??

::
11)

(right panels), as a function of deep-water significant wave height (Hs0), Iribarren number (ξ0) and median sediment diameter (D50). D50

is represented by its minimum (0.2 mm), mean (0.5 mm) and maximum (2.0 mm) values in the dataset. Data within the measured range are

depicted with
::
in redpoints. Black points represent

:::::::
represents an extrapolated range for Hs0 and ξ0. Note the different Y and X-axis ranges

for each graph.

the ones presented in this work, in determining maximum wave setup. Eqs. (??
::
10) and (??

::
11) show a good agreement with

the measured dataset, with less scatter (especially Eq. (??
::
11)) if compared with the others. Overall, our ML-driven approach

achieved better results with Eq. (??
::
11) outperforming all other predictors(r2 = 0.64, R2 = 0.64, d1 = 0.70, MAE =0.12 and275

RMSE = 0.17 ). Similarly, Eq. (??
::
10) exhibits good resultsas well (r2 = 0.58, R2 = 0.57, and d1 = 0.68, MAE = 0.13

and RMSE = 0.19), the same ones as Ji et al. (2018)’s equation(although our predictor contains one coefficient less),
::::::
which

:::
also

::::::::
performs

::::
well

:::
on

:::::::::
dissipative

:::
and

::::::::
reflective

:::::
beach

:::::::::
conditions. In comparison, Stockdon et al. (2006) formulation presents

lower metrics results(r2 = 0.49, R2 = 0.44, and d1 = 0.66). Correlation (r2 = 0.55) and agreement (d1 = 0.68)
:
.
::::::::::
Correlation

:::
and

:::::::::
agreement

:
results showed by O’Grady et al. (2019)’s equation are also close to Eqs. (??

::
10) and (7

:
4) (Ji et al., 2018).280

In contrast, their model prediction is worse(R2 = 0.51 as compared to R2 = 0.57). In relation to the error metrics, both

O’Grady et al. (2019) and Stockdon et al. (2006) predictors show good results, with MAE = 0.14 and 0.15 and RMSE = 0.20

and 0.21 m, respectively.
:
. Finally, the predictors of Holman and Sallenger Jr (1985) and Hanslow and Nielsen (1993) produce

more scatter and tend to overestimate the results, while Guza and Thornton (1981) and Yanagishima and Katoh (1990)’s

predictors largely underestimate the setup values. This results in very low coefficients of determination(R2 = 0.08, 0.12, -0.45,285

and -0.83, respectively), meaning that their predictions match poorly with observations. Here, it is worth pointing out that

models with the same correlation coefficient, e.g. Holman and Sallenger Jr (1985) and Stockdon et al. (2006)(r2 = 0.49), present
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Table 3. Statistical metrics of predictors’ performance using measured data from Stockdon et al. (2006). We assumed Hrms0 =Hs0/2
0.5,

following Rayleigh distribution in deep water. η̄M = maximum wave setup; r2 = the square of the Correlation Coefficient, R2 = Coefficient

of Determination, d1
:
d1:= modified Index of Agreement, MAE = Mean Absolute Error, and RMSE = Root Mean Square Error.

Author η̄M predictor r2 R2 d1 MAE (m) RMSE (m)

Present work - Eq. (??
:
10) 0.355Hs0ξ0

0.5 0.58 0.57 0.68 0.13 0.19

Present work - Eq. (??
:
11) Hs0

4.08

(
ξ0
3.25

+ ξ0
ξ0+0.64

+ ξ0
1625D50+ξ0

)
0.64 0.64 0.70 0.12 0.17

Guza and Thornton (1981) 0.17Hs0 0.30 -0.45 0.43 0.27 0.34

Holman and Sallenger Jr (1985) 0.46ξ0Hs0 0.49 0.08 0.60 0.20 0.27

Yanagishima and Katoh (1990) 0.052Hs0

(
Hs0
L0

)−0.2 0.39 -0.83 0.41 0.31 0.38

Hanslow and Nielsen (1993) 0.048Hrms0L0
0.5 0.38 0.12 0.50 0.22 0.27

Stockdon et al. (2006) 0.35βf (Hs0L0)
0.5 0.49 0.44 0.66 0.15 0.21

Ji et al. (2018) 0.220βs
0.538Hs0

(
Hs0
L0

)−0.371 0.58 0.57 0.68 0.13 0.19

O’Grady et al. (2019) 0.92βfHs0

(
Hs0
L0

)−0.3 0.55 0.51 0.68 0.14 0.20

similar patterns. However, the coefficient of determination appears to better describe the accuracy of the model predictions. In

this case, using
:::::::::
Considering

:
the coefficient of determination, the Stockdon et al. (2006)’s equation (R2 = 0.44) performs better

than Holman and Sallenger Jr (1985)’s(R2 = 0.08).290

4 Discussion

In this work, we
:::
We have presented two predictors that demonstrate the predictive capability of genetic programming. The

results show that the novel GP predictors outperform
:::::::
predictor

::::
(Eq.

:::::
(11))

::::::::::
outperforms

:
existing formulas by presenting fitter

equations
:
a
::::
fitter

::::::::
equation for the entire dataset compiled by Stockdon et al. (2006).

:::::::
Likewise,

:::
Eq.

::::
(10)

::::
also

:::::::
provides

:::::::::
promising

::::::
results. Additionally, unlike most previous predictors, they also present a good fit for both dissipative (Agate 96and Terschelling)295

and reflective (San Onofre) beach conditions. Although the main advantage of the GP model is the possibility of fully exploring

multiple equation forms from different model parameters trying to find a more accurate variable combination during evolu-

tion, the final selection of the proposed solution remains subjective. This last step requires the user to have knowledge on
::
of

the specific topic, so that the expression chosen is dimensionally and physically correct. Generally, as the complexity of the

solutions increases, the error decreases. Therefore, more complex predictors usually fit the training dataset better than simpler300

ones. However, they may become too specific for the training dataset, thus, they may lose generalization power (due to overfit-

ting) when applied to different datasets (Tinoco et al., 2015; Passarella et al., 2018). As a result, the proposed solutions should

ideally be simple, easy-to-use and to interpret, and have a physical meaning.
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Figure 6. Measured versus predicted maximum wave setup (η̄M ) using the entire dataset (training + testing) for nine distinct empirical

equations, including the ones presented in this work. Different markers/colors
:::::
colours

:
denote different field experiments,

::
as

::::::::
referenced

::
in

:::
the

:::::
legend.

The variables (Hs0, βf , L0) presented in the equations
::
in

:::
the

:::
two

:::::::
obtained

:::::::::
predictors are the same

:
as
:::::
those

:
used in previous

published predictors
:::::
works (Holman and Sallenger Jr, 1985; Stockdon et al., 2006; Ji et al., 2018; O’Grady et al., 2019) but305

with a different arrangement. The result is in agreement with Longuet-Higgins and Stewart (1964), who stated the cross-shore

gradient of radiation stress is principally controlled by the wave height. Additionally, in line with O’Grady et al. (2019), we

found the wave setup predictor is best parameterized with the inclusion of wave steepness and beach slope (through the Iribarren

number) along with the wave height. Although playing a limited role, sediment diameter was also introduced
:::
also

:::::::
appears in

Eq. (??
::
11) improving the performance of the predictor by establishing a non-linear, inversely proportional relationship with310

the maximum wave setup.
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Most wave setup studies (e.g. Guza and Thornton, 1981; King et al., 1990) present the offshore wave height as the primary

contributing factor to wave setup, since it dictates the energy available for the production of setup. Nevertheless, the wave setup

is not simply a result of incident waves but
:
is

:
also induced by the shape of the beach profile. The recognition

::::::
Studies

::::
have

::::::
shown

:::
that

:::::::
detailed

:::::::::
knowledge

:
of the beach morphology ’s role ends up improving

:::
can

::::
help

:::::::
improve

:
the predictor (Stephens et al.,315

2011; O’Grady et al., 2019; Gomes da Silva et al., 2020). However, there is no consensus on which region to use to estimate

the beach slope. Some works include only the foreshore beach slope (Holman and Sallenger Jr, 1985; Hanslow and Nielsen,

1993; Stockdon et al., 2006; O’Grady et al., 2019) into the predictor, and some use the average surf zone beach slope (Bowen

et al., 1968; Raubenheimer et al., 2001; Stephens et al., 2011; Gomes da Silva et al., 2020). Despite being complex
:::::::
difficult to

quantify, the role of beach slope along with grain size is essential in incorporating the effect of the cross-shore beach profile320

in estimating wave setup. Although not leading to significant changes in current predictions, the
:::
The presence of sediment

diameter in Eq. (??) needs careful
:::
11)

::::
also

:::::
needs

::::::
careful

:::::
further

:
consideration. As in Poate et al. (2016)

:::
and

::::::::::::::::
Power et al. (2019)

, who stated the importance of grain size in gravel’s beach runup parameterization, here, its addition
:
its

::::::::
inclusion

:
also improves

wave setup prediction. This second order effect could tentatively be
:::::::::::
second-order

:::::
effect

:::::
could

::
be

:::::::::
tentatively

:
related to beach

permeability, which increases with sediment size and results in a lower setup. The
::::::::
However,

:::
the

::::::
limited

:::::::
amount

::
of

::::::::
sediment325

:::::::
diameter

::::
data

::::
may

:::
not

:::
be

::::::
entirely

::::::::::
appropriate

::
to

:::::
claim

::::
such

:::::::
finding.

:::
An

::::::
avenue

:::
for

:::::
future

::::::::
research

:::::::
includes

:::
the

::::::::
validation

:::
of

::
the

::::
GP

::::::::
predictors

:::::
(Eqs.

::::
(10)

:::
and

:::::
(11))

:::
by

:::::::
applying

:::::
them

::
to

:::::::
datasets

:::
not

::::::::
included

::
in

:::
the

:::::::
training.

::::
This

::::
will

::::::
further

::::::
assess

:::
the

::::::::
predictive

::::::::
capability

::
of
:::
the

::::
new

::::::::
formulas

:::
and

:::
the

::::::::::
importance

::
of

::::
each

::::
term

::
in

:::
the

:::::::::
equations.

::::
More

:::::::::::
importantly,

:::
the novel inclusion of D50 as a second-order effect may indicate that we still have very limited infor-

mation to describe an entire beach(e.g.,
:
.
:::::
Other

::::::::
examples

::
of

:::::::::::
second-order

::::::
effects

:::
are not considering the presence of multiple330

bar systems )
:
or

::::
even

::::::::::::
incorporating

::::
wave

::::::::
direction. After over 50 years of research, wave setup prediction still presents a num-

ber of issues to be solved to
:
in
::::::

future
:::::
works

::::::
which

:::
can

:
enhance parametric predictors based on environmental variables. It

includes
:::::
These

::::
also

::::::
include

:
the influence of beach permeability (Longuet-Higgins, 1983; Nielsen, 1988, 1989) and tide (Hol-

man and Sallenger Jr, 1985; Raubenheimer et al., 2001; Stockdon et al., 2006) as second order
:::::::::::
second-order processes subject to

discussion.
:::::
More

:::::::
recently,

:::::
works

:::::
from

:::::::::::::::::
Guérin et al. (2018)

::
and

::::::::::::::::::
Martins et al. (2022)

:::::::::
investigated

:::
the

::::
role

::
of

:::
the

::::::::::::
wave-induced335

::::::::
nearshore

:::::::::
circulation

::::::::
processes

:::::::
(bottom

:::::
stress,

::::::
vertical

:::::::
mixing,

:::
and

:::::::
vertical

:::
and

:::::::::
horizontal

:::::::::
advection),

:::::::
resulting

::
in
:::
an

::::::::
improved

::::
wave

:::::
setup

:::::::::
prediction

:::::
across

:::
the

::::
surf

:::::
zone.

::::
The

::::::::::
contribution

::
of

:::::
these

:::::::::
parameters

::::
can

::
be

:::::
even

:::::
larger

:::
on

::::::
steeper

:::::
beach

::::::
slopes

:::::::::::::::::
(Martins et al., 2022).

:

In the field, different methodologies have been used to measure wave setup. Equipments as
::::::
Applied

::::::::::
equipments

:::::::
include

resistance wire runup meters (Guza and Thornton, 1981), manometer tubes (Nielsen, 1988), pressure transducers/sensors (King340

et al., 1990; Lentz and Raubenheimer, 1999; Raubenheimer et al., 2001), sonar altimeters (Lentz and Raubenheimer, 1999;

Raubenheimer et al., 2001), and video cameras (Holman and Sallenger Jr, 1985). O’Grady et al. (2019) suggested that around

∼ 46% of the setup variance is possibly explained by measurement errors or related to critical processes that could not be

translated into simple predictors yet, as just highlighted. Since the surf and swash zones are a highly dynamic environment,

the bathymetry is rapidly evolving and changes are difficult to predict. In an attempt to overcome this problem, Ji et al. (2018)345

used a wave-current numerical model to generate setup data for idealized beach conditions. Although presenting extremely
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promising results
::::
Even

::::
with

::::
such

::::::::
approach, there is still

:
a
:
significant scatter around the wave setup predictor. Accounting for

::::::::::
Furthermore,

::::::::::::::::::
Martins et al. (2022)

::::::
suggest

::::
that

:
it
:::::
might

:::
be

:::::::
difficult

::
to

::::::::::
differentiate

:::::::
between

::::::
swash

:::
and

:::::
wave

:::::::
motions

::::
near

:::
the

:::::::
shoreline

::
in

:::
the

:::::
field,

:::::::::
particularly

:::
for

::::::
steeper

::::::::::
foreshores.

:::
The

:::::::::::
considerable

:::::::
influence

:::
of

::
the

::::::
swash

:::::::::
circulation

:::::
within

::
a

::::
cusp

::::
field

:::::
during

:::
the

:::::
Duck

:::
94

:::::::::
experiment

:::::::::
described

::
by

:::::::::::::::::::
Stockdon et al. (2006)

:::::
could

::
be

:::
an

:::::::::
explanation

:::
for

:::
the

::::::
lowest

:::::::::
correlation

:::
of

:::
the350

::::::::
measured

::::
data

::::
with

:::
the

:::
GP

::::::::
predictors

::::::
results.

:::
In

:::::::
essence,

:::::::::
measuring

:::
and

:::::::::
accounting

:::
for

:
all the effects and processes that may

be important for wave setup remains an arduous challenge.

5 Conclusions

In this work,
:
we proposed two new empirical equations for the maximum wave setup using data compiled by Stockdon et al.

(2006) to feed an evolutionary-based genetic programming model. A simple, yet accurate, predictor and a more complex but355

fitter predictor, which maintains physical interpretability, were tested and evaluated against other seven widely known empirical

equations for maximum wave setup. The results of both GP based
:::::::
GP-based

:
predictors emphasized similarities with previous

ones and incorporated new dependencies. Compared with previous predictors, the new ones
::::::::::
(particularly

:::
Eq.

:::::
(11)) demonstrate

an improvement in prediction performance and a goodness of fit for a wide range of environmental conditions, including both

dissipative and reflective beaches. The novel predictors are simple, can be easily used in practical applications, and open up360

new paths for future wave setup research.

So far, only a few studies have addressed wave setup predictions
:
,
:
and all past predictors present significant scatter around

the data. All predictors share similarities in their structure, possibly indicating that limits in predictability are related to the

use of oversimplified variables, Hs0, Tp, βf , and D50, that do not fully capture the complexity of surf zone processes. The

use of additional parameters (e.g., to better describe the surf zone seabed profile
:::
and

::::::::
nearshore

:::::::::
circulation

::::::::
processes) appears365

necessary to more accurately describe wave setup in a natural environment.

As additional data become available and better algorithms are developed, more accurate predictors will be generated.

Currently, innovative data-driven approaches , such as genetic programming,
:::::::::
Data-driven

::::::::::
approaches are able to extract pat-

terns from samples resulting in higher performance and more cost-effective predictors. Although we still need to deal with

data scarcity and measurement uncertainties, our results reveal that the genetic programming model has competence in data370

generalization and, being
::
is

::::::::
competent

::
in
::::
data

::::::::::::
generalisation.

:::::
Being

:
a data-driven technique, it will only get

::
be more accurate as

more
::::::::
additional

::::::::::
high-quality data becomes available. Through the use of a data-driven model, we were able to present reliable,

robust, and reproducible predictors, able to represent the physical processes behind the available datasets.

Understanding and predicting nearshore processes is vital to protect coastal resources and people living near the shore.

We expect that the
:::
The results of this work will

:::
can

:
contribute to improving the predictability of wave setup, a key factor in375

coastal flooding. Additionally, we also seek to stimulate further discussion about the use of machine learning as a powerful

data analysis tool and the possibility of its use to improve coastal sciences/management.
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