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Abstract 17 

The accessibility of emergency medical services (EMSs) is not only determined by 18 

the distribution of emergency medical facilities but is also very vulnerable to weather 19 

conditions. Inclement weather could affect the efficiency of the city's traffic network 20 

and further affect the response time of EMSs, which could therefore be an essential 21 

impact factor on the safety of human lives. This study proposes an EMS-accessibility 22 

quantification method based on selected indicators, explores the influence of inclement 23 

weather on EMSs accessibility, and identifies the hotspots that have difficulty in 24 
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accessing timely EMSs. A case study was implemented in Beijing, which is a typical 25 

megacity in China, based on the ground-truth traffic data of the whole city in 2019. The 26 

results show that inclement weather has a general negative impact on EMSs 27 

accessibility. Under inclement weather scenario, the area in the city that could get EMSs 28 

within 15 minutes would decrease by 13% compared to normal scenario (the average 29 

state of weekdays without precipitation), while in some suburban townships, the 30 

population that could get 15-min EMSs would decrease by 40%. We found that snowfall 31 

has a greater impact on the accessibility of EMSs than rainfall. Although on the whole, 32 

the urban area would have more traffic speed reduction, towns in suburban with lower 33 

baseline EMSs accessibility are more vulnerable to inclement weather. Under the worst 34 

scenario in 2019, 12.6% of population (about 3.5 million) could not get EMSs within 35 

15 minutes, compared to 7.5% with the normal condition. This study could provide a 36 

scientific reference for city planning departments to optimize traffic under inclement 37 

weather and the site selection of emergency medical facilities. 38 
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1 Introduction 43 

Emergency medical services (EMSs) are a pivotal part of the public health system, 44 

and the response time of EMSs is a vital factor in decreasing morbidity and improving 45 

survival (Blackwell and Kaufman, 2002). In China, the EMS system is mainly 46 

composed of prehospital emergency services and in-hospital emergency services. 47 

Prehospital emergency service refers to on-site emergency treatment, guardianship in 48 

transit, and handover with in-hospital emergency institutions. The efficiency of 49 

emergency services is highly vulnerable to inclement weather conditions such as rain, 50 

snow, frog, etc. The reason why inclement weather conditions would reduce the 51 

efficiency of emergency services is that inclement weather conditions would reduce 52 

road capacity, increase transfer time, and sometimes block roads completely (Agarwal 53 

et al., 2006; Chang et al., 2013; Cools et al., 2010; Suarez et al., 2005; Zhang and Chen, 54 

2019), which leads to the reduction of spatial accessibility and delay of response time.  55 

In addition, accidents such as traffic accidents and lightning accidents are more prone 56 

to occur in inclement weather, which increases the demand for EMSs (Edwards, 1996; 57 

Ramgopal et al., 2021). For example, on July 21, 2012, Beijing was hit by a rainstorm, 58 

with the average cumulative rainfall reaching 170.0 mm, caused 63 roads to be seriously 59 

flooded. This rainfall event led to a one-third increase in the number of calls to the 60 

emergency center, and the transfer time of ambulances was significantly prolonged, 61 

taking approximately 1.5~2 hours for each evacuation during the rainstorm. Usually, 62 

the transfer time would not be more than 1 hour. (Wang et al., 2013; Beijing 63 

Evening,2012) On February 6, 2022, in Cleveland, US, an ambulance got stuck in the 64 

snow causing a long delay getting the patient to the hospital (Fox 8 News, 2022). On 65 

August 3, 2021, in Chattogram, Bangladesh, a daily rainfall of 190.6 mm caused many 66 
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ambulances with patients stuck in different areas of the city (Business Standard, 2021). 67 

In the context of global climate change and rapid urbanization, extreme inclement 68 

weather events strike cities more frequently (Huber and Gulledge, 2011; Stott, 2016; 69 

Stott et al., 2016), the problem of urban rainstorms and waterlogging (the phenomenon 70 

of a stagnant water disaster in an urban area due to heavy rainfall or continuous 71 

precipitation) has become increasingly prominent. It is therefore of great importance to 72 

investigate the influence of inclement weather on the spatial accessibility of EMSs. 73 

The spatial accessibility of EMSs is defined by the travel impedance (distance or 74 

time) between service locations and the scene (Guagliardo, 2004). A large body of 75 

research on spatial accessibility is concerned with access to hospitals (Luo and Wang, 76 

2003; Mao and Nekorchuk, 2013; Pan et al., 2018; Yang et al., 2020; Yin et al., 2021) 77 

and first-aid stations (Hashtarkhani et al., 2020; Jones and Bentham, 1995; Shin and 78 

Lee, 2018). To measure the EMSs accessibility, the two-step floating catchment area 79 

(2SFCA) method is one of the common methods (Chen and Jia, 2019; Kanuganti et al., 80 

2016; Li et al., 2021; Luo and Qi, 2009). The 2SFCA method considers accessibility to 81 

be mediated by not only the distance decay but also the interactions between supply 82 

and demand (Chen and Jia, 2019), which is more suitable for normal scenarios. While 83 

in the studies focusing on the influence of inclement weather on EMSs, people are more 84 

concerned about the transportation situation, instead of the interaction between supply 85 

and demand. The coverage analysis method (Coles et al., 2017; Green et al., 2017; Yu 86 

et al., 2020) or shortest path analysis method (Albano et al., 2014; Andersson and 87 

Stålhult, 2014) are more widely used. These methods could better characterize the 88 

reduction of accessibility caused by the road service degradation. For example, Yu et 89 

al. (2020) analyzed the accessibility of emergency service in England and identified 90 

vulnerability hotspots by quantifying the EMSs coverage of area and population within 91 
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different time radii under different flood scenarios; Coles et al. (2017) measured the 92 

travel time and service area coverage of EMSs in York, UK under flood scenarios by 93 

using FloodMap-HydroInundation2D to model flood inundation; Yin et al. (2021) 94 

assessed the vulnerability of EMSs to surface water flooding in Shanghai, China by 95 

quantifying accessibility in terms of service area, population coverage and response 96 

time, and the results show that EMS coverage could decrease up to 13% under 100-97 

year surface water flooding; Andersson and Stålhult (2014) used network analysis 98 

methods to generate the shortest paths from hospitals to various administrative areas in 99 

Manila, Philippines, and evaluated the impact of different flood events on these paths. 100 

Most of these studies assumed that roads are impassable or traffic speed has a certain 101 

degree of reduction when the flooded water depth reaches a specific depth, and further 102 

evaluated the impact of rainstorm on EMSs accessibility. Due to insufficient recorded 103 

traffic data, relatively few studies have been performed to analyze the impact of road 104 

access capacity on EMSs accessibility according to actual traffic speed variation.  105 

In this study, we explore the impact of inclement weather on traffic and EMS 106 

accessibility based on ground-truth traffic data. Beijing which is the capital of China is 107 

used as a case study. The reductions in EMSs accessibility of Beijing under inclement 108 

weathers in 2019 are quantified, and the urban-rural disparities in the distribution of 109 

emergency medical facilities are further analyzed. Our study provides an approach for 110 

evaluating the effectiveness and fairness of EMSs based on ground-truth traffic data, 111 

and the results can not only provide reference for the optimization of EMSs in Beijing, 112 

but also provide reference cases for other cities, which has a great practical significance. 113 

 114 
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2 Study area and dataset 115 

2.1 Study area 116 

Beijing, the capital of China, is located in the northern part of the North China Plain, 117 

with a total area of 16,410.54 square kilometers (Figure 1a). According to the seventh 118 

national census (National Bureau of Statistics, 2021), Beijing has a population of 21.89 119 

million. As one of the largest metropolises in the world, Beijing has a monsoon-driven 120 

humid continental climate, with an average annual precipitation of approximately 600 121 

mm, 80% of which is concentrated from June to September (Song et al., 2014). The 122 

terrain of Beijing is high in the northwest and low in the southeast, which is conducive 123 

to the formation of heavy rain and triggers strong convective weather. Beijing has a 124 

typical monocentric urban structure, and the area within the Six Ring Road is generally 125 

recognized as the urban core area. It is obvious that the density of transportation 126 

network and medical facilities in the urban area of Beijing are much higher than those 127 

in the suburbs (Figure 1b).  128 

 129 

(a) (b)  130 

Figure 1. (a) Administrative division of Beijing and (b) EMS facility locations in Beijing, produced 131 

in ArcGIS 10.8. 132 
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 133 

2.2 Dataset 134 

The data involved in this paper mainly include traffic data, meteorological data, 135 

EMSs data, and demographic data. Based on traffic data and meteorological data, we 136 

could build a topology road network (using node and edge primitives to describe 137 

interconnected linear features (roads) and points (roads junctions) on a map) with 138 

transfer time as impendence under inclement weather conditions and corresponding 139 

normal weather conditions. Combining the topology road network with medical facility 140 

locations and the distribution of the population by ArcGIS 10.8, we could further 141 

analyze the spatial accessibility of EMSs. 142 

 143 

2.2.1 Traffic and road network data 144 

The traffic data of Beijing are obtained from the Beijing Municipal Commission of 145 

Transport. The data span is from January 1, 2019, to December 31, 2019, including the 146 

average traffic speed (m/s) of each road section, updated every 2 min. The road network 147 

data contain 71,188 nodes and 81,523 edges, which can basically cover all the main 148 

roads in the whole Beijing area. 149 

 150 

2.2.2 Meteorological data 151 

The meteorological data utilized in this paper are TRMM (Tropical Rainfall 152 

Measuring Mission) precipitation data obtained from NASA, with a spatial resolution 153 

of 0.1°×0.1° (approximately 10 km×10 km) and a temporal resolution of 30 minutes. 154 

The whole city of Beijing is covered by 175 grids. 155 

According to the classification of precipitation, moderate rain is defined as the 156 

rainfall is 5.0~14.9 mm per 12 hours (China Meteorological Administration, 2012). We 157 
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chose intermediate value of the interval and average it to each hour. In this study, we 158 

set a rule that if the precipitation of more than 10 grids (over 5% area of the city) in 159 

Beijing is greater than 1.5 mm in 2 hours, it is considered a precipitation event. The 160 

average precipitation of the whole city on each date is averaged by the precipitation of 161 

all grids. In 2019, 19 working days of rainfall and 3 working days of snowfall were 162 

selected. 163 

 164 

2.2.3 Medical facilities data 165 

The medical facilities mentioned in this paper mainly refer to two categories. One is 166 

the first-aid stations, and the other is hospitals, as shown in Figure 1b. The locations of 167 

these first-aid stations were obtained from the distribution map of first-aid stations 168 

(Beijing Emergency Medical Center, 2021), including 72 stations in the downtown area 169 

and 98 stations in the suburbs. The hospital point data were extracted from the online 170 

map point of interest (POI) data of Beijing in 2019 (Gaode Maps, 2021). After 171 

coordinate correction and deduplication, it contains a total of 630 general hospitals, 76 172 

of which are third-level grade-A hospitals (the highest level in the evaluation system of 173 

hospitals in mainland China). 174 

 175 

2.2.4 Demographic data 176 

The demographic data of 2019 were obtained from WorldPop (2018) with a spatial 177 

resolution of 100 m×100 m. The data records present the population size. 178 

 179 

3 Methodology 180 

 Figure 2 illustrates the methodology of this study. We first divide the weather 181 
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conditions into two categories, inclement weather conditions and normal weather 182 

conditions, according to precipitation data. Second, the time impedance of each road 183 

section is analyzed based on the road network and traffic speed for both inclement and 184 

normal weather conditions, and the respective coverage rate of first-aid stations and the 185 

shortest transfer time to hospitals are calculated. Finally, the spatial accessibility to the 186 

population is calculated, and hotspots are identified. Both the service area analysis and 187 

the OD Cost Matrix analysis are GIS-based, and were done in ArcGIS 10.8. In this 188 

study, we made the following assumptions: (1) The ambulances move at the average 189 

speed all the time and would always take the shortest path in space; (2) In network 190 

analysis, the location of facilities is approximately considered to be on the nearest road 191 

point vertically; (3) In OD analysis, we use the centroid as the origin point to represent 192 

the whole grid, and the shortest path to hospital of all points within the grid is the same; 193 

(4) The prehospital EMSs is divided into two parts: the ambulances depart from the 194 

first-aid station to the scene and from the scene to the nearest hospital; (5) According 195 

to the report by Beijing Municipal Health Commission, the average response time of 196 

pre-hospital emergency treatment in Beijing is about 15 minutes for the year of 2022. 197 

We therefore chose 15-min as the boundary of EMSs response time in our study. 198 

(Beijing Youth, 2022).  The case where patients transfer directly from the scene to an 199 

EMS facility via private transportation will not be considered in this study.   200 
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 201 

Figure 2. Methodology of this study, produced in CorelDraw 2019. 202 

3.1 Fluctuation of traffic speed under inclement weather 203 

For each weekday with precipitation, the traffic speed data of the selected period are 204 

extracted and averaged. To avoid the inherent temporal variations of traffic speed 205 

resulting from the day-of-week effects, holiday effects (Cools et al., 2007), season, and 206 

other non-meteorological related factors, we introduce baseline days for inclement 207 

weather days in this study to calculate the traffic speed fluctuation. For a given 208 

precipitation day, we search for the same day of week in the two weeks forward and 209 

backward to obtain the corresponding baseline days without precipitation. Only 210 

nonholidays without precipitation events are selected as baseline days; otherwise, we 211 

would continue to look forward or backward until four baseline days are found. The 212 

average speed data of the four baseline days in the selected period were then averaged 213 

as the baseline speed for the given precipitation day, and the traffic speed reduction rate 214 

was calculated by eq. (1): 215 
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𝑟𝑐 =
𝑣𝑝−

∑ 𝑣𝑑𝑗
𝑚
𝑗=0

𝑚
∑ 𝑣𝑑𝑗
𝑚
𝑗=0

𝑚

 (1) 216 

where 𝑟𝑐 is the traffic speed reduction rate in the selected period of the precipitation 217 

day to its corresponding baseline days; 𝑣𝑝 is the traffic speed in the selected period of 218 

the given precipitation day; 𝑣𝑑𝑗  is the traffic speed in the selected period of a baseline 219 

day, and m is the number of baseline days. In this case, m equals 4. The average traffic 220 

speed reduction rate is obtained by averaging the reduction rates of all roads with 221 

reduced speed in the city.  222 

3.2 Analysis of coverage rate 223 

3.2.1 The coverage rate of area 224 

A service area is a region that encompasses all roads that are accessible within a 225 

specified impedance. Either distance or time can be used as impedance. In this study, 226 

the time needed to pass through the road is calculated by the length of each road divided 227 

by its corresponding traffic speed, and the service area analysis is carried out with time 228 

as the impedance. The core idea of the service area analysis function is to generate 229 

service area polygons by setting each first-aid station as the starting point and the 230 

traveling time as the driving radius. Under the inclement weather conditions and their 231 

corresponding baseline conditions, the service area analysis of the 15-minute arrival 232 

time was carried out. The total area of the obtained service area polygon is calculated 233 

to obtain the EMS coverage. The coverage rate of area is calculated by eq. (2): 234 

𝑟𝑎 =
∑𝐴𝑠

𝐴
× 100%  (2) 235 

In eq. (2), ra is the coverage rate of the area; A is the total area of the city, and As is 236 

the area of the service area. 237 
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3.2.2 The coverage rate of population 238 

To analyze the matching degree between the EMS coverage and the population 239 

distribution and identify the hotspots whose EMS coverage of the population is most 240 

affected in inclement weather, we downscaled the calculation to the township scale. 241 

Based on the grid population data of WorldPop and the coverage areas of EMSs under 242 

different scenarios analyzed by service areas, we calculated the coverage rates of EMSs 243 

of the population for each township. In each scenario, the polygon of service area 244 

obtained from the result of service area analysis is used to mask the population grid, 245 

and the covered population divided by the total population is the population coverage 246 

of the township (eq. (3)). 247 

𝑟𝑝 =
∑𝑃𝑠

𝑃
× 100%  (3) 248 

In eq. (3), rp is the coverage rate of the population; P is the total population of the 249 

township, and Ps is the population that is covered by the service area. 250 

 251 

3.3 The spatial accessibility to hospitals 252 

The spatial accessibility to hospitals is quantified by two indicators: the shortest 253 

transfer time and the total transfer time. The shortest transfer time is calculated by the 254 

OD (Origin-destination) cost matrix analysis method, which can find and measure the 255 

minimum cost path from multiple starting points to single or multiple destinations in 256 

the network. In this study, we calculate the minimum transfer time 𝑜𝑑𝑖 required for 257 

each population grid centroid to reach the nearest hospital. To reduce the calculation 258 

cost, the population grid data with 100 m resolution are aggregated and converted into 259 

1000 m resolution. This could be interpreted as a sampling method, because we use the 260 

centroid point of the grid to represent the other possible starting points in the grid, and 261 
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we ignored the tolerance caused by the travel time inside the grids. 262 

The total transfer time is introduced to quantify the cumulative transfer time for each 263 

population grid based on its population size, which is the number of potential users of 264 

EMSs. It is defined in this study by the shortest transfer time of each population grid to 265 

the nearest hospital multiplied by its population. For each population grid centroid i, its 266 

total transfer time (T) is calculated by eq.(4): 267 

𝑇 = 𝑜𝑑𝑖 × 𝑃𝑖  (4) 268 

In eq. (4), 𝑜𝑑𝑖 is the minimum transfer time, 𝑃𝑖 is the population of the grid. 269 

 270 

4 Results 271 

Based on the characteristics of morning and evening rush traffic flow on weekdays, 272 

the diurnal variation in traffic can be divided into four periods: morning rush hours 273 

(7:00-9:00), daily regular hours (9:00-17:00), evening rush hours (17:00-19:00), and 274 

evening regular hours (19:00-22:00). We compared EMS coverage at different periods 275 

of the day, and the results show that the period of morning rush hours has the most 276 

significant negative impact on the accessibility of EMSs. We divided the city into the 277 

inner city and suburban areas along the Sixth Ring Road. Taking the average 15-minute 278 

coverage of the area of all Mondays in November as an example: (1) in the whole city 279 

(both inner city and suburban), the coverage rate of EMSs is 38.72% in morning rush 280 

hours, compared with 40% (±0.3%) in the remaining periods; (2) in the inner city, the 281 

coverage rate is 77.37% in morning rush hours, compared with 83% (±0.6%) in the 282 

remaining periods. Therefore, the accessibility of EMSs during the morning rush period 283 

deserves more attention. Hence, our subsequent analysis is mainly concentrated on the 284 

morning rush period. 285 
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 286 

4.1 Impact of inclement weather on the traffic and EMSs coverage 287 

4.1.1 The correlation between precipitation and traffic speed 288 

Figure 3 shows the relationship between average precipitation during morning rush 289 

hours in the city and the average traffic speed reduction rate of all roads that have speed 290 

loss in the city on weekdays. The unit of precipitation data is mm/2h, which indicates 291 

the total precipitation in the 2 hours of morning rush hours. The negative values indicate 292 

that the traffic speed decreases in inclement weather conditions. We could see that the 293 

average traffic speed would decrease 10%~15% on most precipitation days. The 294 

average speed decreases most on July 1st, July 9th, September 10th and December 16th, 295 

reached 18%~25%. July 1st (Party's Day) and September 10th (Teachers Day) are special 296 

days in China and the traffic speed is affected by both the inclement weather and traffic 297 

control. December 16th was a snowy day with a precipitation of 0.13 mm/2h, and 298 

snowfall has a greater impact on traffic than a rainfall with the same precipitation 299 

(Agarwal et al., 2005). Figure 4 illustrates the spatial difference of traffic speed 300 

reduction and distribution of precipitation on precipitation days. A large number of red 301 

roads (with traffic speed reduction over 10 km/h) can be observed in the 4 days 302 

mentioned above. By comparing the distribution of precipitation and traffic speed 303 

reduction on different dates in Figure 4, it can be found that the precipitation in the four 304 

days with the most severe speed reduction was moderate, and the precipitation 305 

distribution of the whole city was relatively uniform. Compared with other rain days, 306 

although the precipitation on July 5, August 9 and September 19 was larger and 307 

concentrated in the inner city, the traffic speed reduction of the whole city was not as 308 

serious as the four days mentioned above, which may be caused by the decrease of 309 

people's willingness to travel with the increase of rain. 310 
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 311 

Figure 3. The correlation between average precipitation and average traffic speed reduction rate, 312 

produced in Excel 2016. 313 

 314 

Figure 4. Variation in drive speed and distribution of precipitation on selected precipitation days 315 

(the 4 subfigures with black borders shows the 4 most affected scenarios), produced in ArcGIS 10.8 316 

and CorelDraw 2019. 317 

4.1.2 The correlation between precipitation and EMSs coverage rate 318 

The change in the coverage rate of EMSs was calculated by subtracting the coverage 319 
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rate under the inclement weather condition from that under the corresponding baseline 320 

condition. Figure 5 shows the correlation between the average precipitation during 321 

morning rush hours and the relative change values of the EMS coverage rate of the area. 322 

The negative values indicate that the coverage of EMSs decreases in inclement weather 323 

conditions. Consistent with the pattern of the traffic speed reduction, the worst loss of 324 

coverage rate also occurred on three rainy days: 1st July (Mon), 9th July (Tue), and 10th 325 

September (Tue), and one snowy day: 16th December (Mon), in which the 15-minute 326 

EMS coverage rate reduced by 4.6%, 5.6%, 4.2% and 13.3%. Combined with the spatial 327 

distribution of precipitation and traffic variation (Figure 4), the snowfall on December 328 

16th caused a large traffic speed reduction of the suburban roads, which led to a 329 

significant reduction in overall EMS coverage. In previous studies, Yin et al. (2021) 330 

found that 5- and 20-year pluvial flooding both exerted less than 1% reduction in EMSs 331 

coverage rate of Shanghai, China; Coles et al. (2017) found that the coverage of Fire 332 

and Rescue Stations services showed a 6% reduction overall under their modelled 333 

floods events in York, UK. In our study, the precipitation was less than 3mm/2h, and 334 

the corresponding coverage reduction was less than 3%, except for the special four days. 335 

The results are comparable to previous findings. In the following, we chose these four 336 

days as the worst weather scenario of the year and analyzed the spatial differences of 337 

medical accessibility in the whole city. 338 
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 339 

Figure 5. The correlation between the average precipitation and the relative change of the EMS 340 

coverage rate of the area, produced in Excel 2016. 341 

 342 

4.2 The spatial distribution of EMS accessibility under the worst scenario 343 

4.2.1 EMSs coverage rate of population 344 

We calculated the 15-minute EMS coverage rate of the population under the four 345 

most severely affected inclement weather conditions of 1st July, 9th July, 10th September, 346 

and 16th December and their corresponding baseline conditions at the township scale in 347 

Beijing. Figure 6 shows the 15-minute EMSs coverage rate of population under four 348 

most severely affected inclement weather conditions of 1st July, 9th July, 10th 349 

September and 16th December and their corresponding baseline conditions at the 350 

township scale in Beijing. The results demonstrate that most parts of downtown areas, 351 

including Dongcheng District, Xicheng District, Haidian District, and Chaoyang 352 

District, could have 90%–100% population coverage of EMSs, regardless of the 353 

weather conditions. In the large area of suburbs, the coverage rate of the population 354 

varied from lower than 30% to 90%. Under inclement weather conditions, the coverage 355 

rate in some towns in the suburbs would drop sharply, with the worst townships having 356 



18 

 

a 40% reduction. The reason behind this difference is that the distribution of first-aid 357 

stations in Beijing is similar to the distribution of the road network, which is dense in 358 

the central urban area and sparse in the suburbs.  359 

 360 

Figure 6. The EMSs coverage rate of population in townships under the inclement weather condition 361 

and normal weather condition on 1st July, 9th July, 10th September and 16th December, produced in 362 

ArcGIS 10.8 and CorelDraw 2019. 363 

 364 

 To illustrate the impact of inclement weather on the EMS coverage rate of the 365 

population more clearly, Figure 7 shows the change in the EMS coverage rate of the 366 

population in townships in inclement weather relative to normal weather on the four 367 

days. The results identify several townships in the outer suburbs (Miyun, Huairou, 368 

Pinggu and Yanqing districts) that would experience the most severe decrease in 369 

population coverage under inclement weather conditions, with a maximum reduction 370 

of more than 40%. These areas are hotspots that need to draw attention in EMS 371 

construction planning. The suburb areas, such as Shunyi, Daxing, and Tongzhou, are 372 

more vulnerable to inclement weather as they have less distribution of medical facilities 373 

and sparser road networks, as well have a relatively higher proportion of the elderly 374 
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population over the age of 80. The average proportion of the elderly is 1.88% in the 375 

whole city, 1.37% in the inner suburbs and 2.04% in the outer suburbs. On December 376 

16th, 12.6% of population (3.5 million) could not get EMS within 15 minutes, compared 377 

to 7.5% with the baseline condition. 378 

 379 

Figure 7. The change in EMS coverage rate of the population in townships in inclement weather 380 

relative to normal weather on 1st July, 9th July, 10th September, and 16th December, produced in ArcGIS 381 

10.8 and CorelDraw 2019. 382 

 Figure S1 shows the correlation between the baseline EMS coverage rate of the 383 

population of each township and its reduction under inclement weather. The results 384 

reveal that the population of the towns with low baseline EMS coverage rate would lose 385 

more EMS coverage under inclement weather, especially on snowy day. The average 386 

traffic speed reduction in the urban area (within the Sixth Ring road) was -26.64%, -387 
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23.27%, -25.20% and -15.77% on 1st July, 9th July, 10th September, and 16th 388 

December, while that in the suburban area (outside the Sixth Ring Road) was -19.59%, 389 

-19.08%, -17.27% and -23.21%. Based on the results, we analyzed the reasons why that 390 

suburban area would become more vulnerable under inclement weather. Combined 391 

with the traffic speed reduction and the EMS coverage reduction, on rainy days, 392 

although the urban area has more traffic speed loss, the suburban area still experiences 393 

more EMS coverage loss. Once the inclement weather affects the traffic on some road, 394 

the urban areas still have many other roads than can bypass, but not in suburbs. On 395 

snowy days, the suburban area has more traffic speed reduction, and with the sparser 396 

road network, the EMS coverage in the suburban area would shrink much more than 397 

rainy days.  398 

 399 

4.2.2 The accessibility to hospitals 400 

Figure 8 shows the increased transfer time from each population grid to the nearest 401 

hospital under the four inclement weather conditions of 1st July, 9th July, 10th September, 402 

and 16th December relative to the baseline condition. The value indicates the impact of 403 

inclement weather on accessibility to hospitals. The situation is slightly different on 404 

rainy days and snowy days. On rainy days, the shortest time to reach the nearest hospital 405 

generally could increase by 0–10 minutes in most parts of Beijing due to slower traffic 406 

speed on the roads caused by rain. Although in some small parts of suburban areas, the 407 

shortest time to the nearest hospital would be slightly shortened on indicating that the 408 

traffic will be smoother in some areas when it rains, which may be due to the reduction 409 

of traffic demand (Maze et al., 2006). While on 16th December, affected by snow, the 410 

whole city's road traffic generally slowed down, and the transfer time to the nearest 411 

hospital increased by 10–40 minutes. The western part of Mentougou District and a 412 
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small part of the northern Yanqing District were the most affected, with the time needed 413 

to reach the nearest hospital prolonged by more than 30 minutes, up to 45 minutes. In 414 

Huairou district, the eastern part of Yanqing district, and the northern part of Miyun 415 

district, the transfer time was also prolonged by 11–30 minutes. 416 

 417 

Figure 8. Increased transfer time to hospitals on 1st July, 9th July, 10th September, and 16th 418 

December, produced in ArcGIS 10.8 and CorelDraw 2019. 419 

 We did a zonal statistic of the average baseline transfer time to hospital and the 420 

average increased transfer time to hospitals to each town, and the correlation between 421 

the two indicators shown in Figure S2 indicate the similar pattern with the EMS 422 

coverage, which is the towns with low baseline accessibility to hospitals would also 423 

more affected by inclement weather.  424 

Overlaying the demographic grid data, the size of the population affected by a 425 
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delay of over 10 minutes would be 0.02 million on 1st July, 0.03 million on 9th July, 426 

0.05 million on 10th September, and 0.3 million on 16th December. 427 

Figure 9 shows the change in the total transfer time under inclement weather 428 

conditions on 1st July, 9th July, 10th September, and 16th December, relative to the 429 

baseline conditions. The results show that on three rainy days, 1st July, 9th July, and 10th 430 

September, within the Sixth Ring Road extent, the total transfer time increased 431 

significantly under inclement weather, which means that, although the transfer time 432 

would not increase much in urban areas, due to the high population density, the 433 

cumulative delay time for total potential demand would be significant. In the suburbs, 434 

the total transfer time would increase slightly or even decrease, especially in some areas 435 

of Huairou, Yanqing, and Miyun districts, which means that, although the transfer time 436 

would increase greatly, due to its low population density, the cumulative delay time for 437 

total potential demand would not be serious. However, due to the influence of snowfall 438 

on 16th December, the total transfer time in the whole city was slightly or moderately 439 

increased, and there were almost no regions where the total transfer time decreased, 440 

which means snowfall would cause an even cumulation of delay time for total potential 441 

demand across the whole city, both urban and suburban.  442 
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 443 

Figure 9. The change in the total transfer time on 1st July, 9th July, 10th September, and 16th 444 

December, produced in ArcGIS 10.8 and CorelDraw 2019. 445 

 446 

5 Conclusions and discussion 447 

Our study evaluates the spatial accessibility of EMSs in Beijing under different 448 

weather conditions in 2019 based on city-scale ground-truth traffic data updated every 449 

2 minutes. The spatial accessibility of EMSs was quantified by the coverage rate of the 450 

first-aid stations’ service area, the coverage rate of first-aid stations’ service population, 451 

and the shortest transfer time to the nearest hospital. Our study reveals the influence of 452 

precipitation on the accessibility and equity of EMSs, which could help guide EMS 453 

construction planning in cities, get prepared for extreme weather conditions, and finally 454 

assist the decision-making of the corresponding government departments. The main 455 
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conclusions are as follows:  456 

First, the results show that inclement weather, such as rainfall and snowfall, could 457 

have a negative impact on the accessibility of EMSs overall. Precipitation reduces the 458 

driving speed of vehicles on the road, thus reducing EMS coverage. In severe cases, the 459 

EMS coverage rate of the area can be reduced by more than 10%. Besides, snowfall has 460 

a greater impact on EMSs accessibility than rainfall. 461 

Second, the EMSs accessibility is more affected by inclement weather in places with 462 

low baseline accessibility to EMSs. And the results reveal a serious rural-urban 463 

disparity in emergency medical facilities distribution in Beijing: The EMSs 464 

accessibility of population in some townships of the outer suburbs is very low and 465 

would also greatly reduce under inclement weather. 466 

Third, some specific days may affect the traffic flow, which has an amplification 467 

effect on the traffic congestion caused by inclement weather. When they encounter the 468 

inclement weather, there are potential risks of decrease of traffic efficiency and EMSs 469 

accessibility, which should be given sufficient attention. 470 

To the best of the authors’ knowledge, this study provides a first attempt to analyze 471 

the spatial accessibility of EMSs under inclement weather based on city-scale ground-472 

truth traffic data and meteorological data, where the former is usually difficult to obtain. 473 

In previous literature, simulation methods were widely used on the research on EMSs 474 

accessibility or traffic capacity under inclement weather. The ground-truth traffic data 475 

that covers every road in the whole city, was hardly used in the previous studies of the 476 

impact of weather on traffic and accessibility. Our study could be a good empirical 477 

verification in this field of study. The reduction extent of EMSs accessibility was 478 

comparable to previous studies (Yin et al., 2021; Coles et al., 2017). We also found that 479 

snowfall may have a greater impact, which is hard to find out using flood simulation 480 
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methods. The results from this study provide a scientific reference for city planning 481 

departments in Beijing to optimize the site selection of emergency service facilities and 482 

get prepared for traffic dispersion on inclement weather. The relevant methods 483 

mentioned in this paper are also suitable for both holidays and workdays and can be 484 

easily applied to other cities once traffic data or empirical formulas regarding the impact 485 

of inclement weather on road traffic can be obtained. 486 

There are also some parts in our research that can be improved in future research. 487 

First, we averaged the traffic speed reduction rate of all the roads in the city, as well as 488 

the precipitation data, which could conceal congestion hotspots. In further studies, with 489 

higher resolution precipitation, along with corresponding traffic data, we could narrow 490 

the scale to blocks, pay more attention to local congestions, and analyze the correlation 491 

of precipitation and traffic speed on a finer scale. Second, due to the data limitation, we 492 

could only analyze the EMSs accessibility in 2019, and the precipitation intensity in 493 

this year was not quite high. If we had longer time series precipitation and traffic data, 494 

we could analyze the impact of precipitation magnitude to the traffic and accessibility, 495 

instead of simply dividing the days in a binary manner into inclement and non-496 

inclement weather days. Under such precipitation conditions, the EMSs accessibility 497 

has been affected to a certain extent, and it would be much more difficult to get timely 498 

EMSs under even more extreme inclement weather condition. Future studies should 499 

take extreme precipitation events into account. Third, due to the lack of high-resolution 500 

DSM (Digital Surface Model) data, we did not run a hydrological flood simulation in 501 

Beijing, which could reveal the relationship of precipitation and the actual amount of 502 

water on the streets. This could be improved in the future studies with more high-503 

resolution topographic data. Fourth, we used the “15-minutes arrival time” as a main 504 

boundary in this study, however, the proper response time would vary in different 505 
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countries or cities. The setting of response time boundary should be adjusted 506 

considering the actual situation of the city when the method in this paper is applied to 507 

other cities. Fifth, we aggregated the population grid evenly in the city. If a varying 508 

resolution could have been applied with a finer grid in the heavily populated center, and 509 

a coarser grid towards the outskirts, it may capture more of the dynamics in a metropolis 510 

with varying population and infrastructure densities. 511 
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