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Abstract. We modify the probabilistic seismic hazard analysis (PSHA) formulation by replacing the Gutenberg-Richter power 

law with the SCP non-extensive model for earthquake size distribution and call it NEPSHA. SCP claimed to better model the 10 

regional seismicity than the classical models. The proposed method (NEPSHA) is implemented in the Tehran region, and the 

results are compared with the classic PSHA method. The hazard curves show that NEPSHA gives a higher hazard, especially 

in the range of practical return periods. The uniform hazard spectra of NEPSHA provide more spectral accelerations, especially 

for the medium height buildings, which are the most common urban structures.  

1 Introduction 15 

PSHA is the most widely used approach to estimate the seismic load for use in engineering design processes. The main 

objective of PSHA computations is to calculate ground motions with different exceedance probabilities during a specific time 

interval (Anbazhagan, 2019). This information is the gateway to defining the possible scenario earthquakes and is used to 

develop instructions for seismic codes and standard regulations (Nath, 2022; Iervolino, 2022). 

In the PSHA procedure, the average annual rate of exceeding a particular threshold value, x, of a ground motion intensity 20 

measure (IM), is computed as (Cornell, 1968): 

𝜆𝐼𝑀(𝑥) = ∑ 𝜐 ∫ ∫ 𝐺𝐼𝑀|𝑀,𝑅(𝐼𝑀 ≥ 𝑥|𝑚, 𝑟)𝑓𝑀(𝑚)𝑓𝑅|𝑀(𝑟|𝑚)𝑑𝑚𝑑𝑟
𝑟𝑚

𝑛𝑓𝑙𝑡

𝑖=1
    (1) 

where, nflt is the number of causative faults, and 𝜐 is the mean annual frequency of occurrence of earthquakes with magnitudes 

between a lower-bound threshold value, mmin, and an upper-bound threshold value, mmax. Also, M and R denote the moment 

magnitude and the source-to-site distance, respectively. The term GIM|M,R provides the probability that an IM exceeds a value 25 

of x given the occurrence of an earthquake of magnitude m at distance r. This term can be calculated using ground motion 

prediction equations. The term fM represents the probability density function (PDF) of the earthquake magnitude and 
MR

f

denotes PDF of distance r conditional on m. 

http://bkatu.ac.ir/HomePage.aspx?TabID=5388&Site=DouranPortal&Lang=en-US
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Determining the function of fM is a challenging task in PSHA computations. This function should be calculated using the 

frequency-magnitude relationship, which represents the background seismicity of the study region. Previous studies showed 30 

that the characteristics of such a relationship significantly affect the results of PSHA (Yazdani et al., 2015, Motaghed et al., 

2021). Thus, there has been a continued interest in selecting the best representative expression for the frequency-magnitude 

relation.  

Currently, the most commonly used model to reflect the frequency-magnitude distribution in the PSHA procedure is based on 

the Gutenberg-Richter (GR) law (Gutenberg and Richter, 1956). This model represents a linear relationship between the 35 

logarithm of the frequency and magnitude as log10N(m)=a-bM, where N is the number of events with a magnitude greater than 

or equal to m in a given region and specified time period, and a and b are constants. So magnitudes obey power law distribution. 

10a represents the total number of earthquakes with magnitudes greater than mmin, and b (commonly referred to as b-value) is 

the slope of the fitted line. The b-value describes the specific relationship between the magnitude and the total number of 

earthquakes commonly close to 1.0 in seismically-active regions. This simple linear relation can also be written in the form 40 

of N(m)=exp(α-βM), in which α=aln(10) and β=bln(10). The PDF of N(m) is then given by: 

𝑓𝑚(m) =
βe−β(m−mmin)

1−e−β(mmax−mmin)
        ; 𝑚𝑚𝑖𝑛 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥 ,                                                       (2) 

This function is a double truncated form of GR law (Žalohar, 2018).  

Contrary to the widespread use of the GR model in the PSHA studies, some researchers reported that earthquake magnitudes 

do not always follow this distribution (Schwartz and Coppersmith, 1984; Youngs and Coppersmith, 1985; Wesnousky, 1994, 45 

Ishibe and Shimazaki, 2008). This is especially the case in situations where the seismic region consists of individual faults or 

fault segments with regular geometries (Ishibe and Shimazaki, 2008). In these situations, the GR model may not represent the 

seismicity over the entire magnitudes range. Also, while the GR recurrence model may well represent the distribution of small 

earthquake magnitudes, it underestimates the frequency of large earthquakes (Kramer, 1996; Youngs and Coppersmith, 1985; 

Parsons and Geist, 2009).  50 

To cope with these problems, some alternative models to the power-law have been developed by researchers, such as bilinear 

(Staudenmaier et al., 2018), quadratic law (Merz & Cornell, 1973), generalized Pareto distribution-based model, and random 

GR model (Dutfoy & Senfaute, 2021). Nevertheless, one of the most exciting models for earthquake recurrence has been 

proposed by Sotolongo-Costa and Posadas (2004), which is named SCP Model. The framework of this model has been 

developed based on the Tsallis non-extensive approach (Tsallis, 1988). Generally, the non-extensive Tsallis entropy has been 55 

the focus of much attention over the last four decades (Vallianatos et al., 2016). It is thought that this non-extensive formulation 

presents an appropriate tool for investigating complex systems, especially in their nonequilibrium stationary states (Silva et 

al., 2006, Vallianatos et al., 2016, Vallianatos et al., 2018). Vallianatos et al. (2014) use the Tsallis entropy approach to identify 

precursors in the earthquake generation process. The SCP model characterizes  two profiles interacting via fragments filling 

the gap between them. This model has the advantage of representing the size distribution of fragments on the energy 60 
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distribution of earthquakes. Also, the SCP model deduced an energy distribution function, which gives the GR law as a 

particular case (Telesca, 2012).  

Despite its unique features, the SCP model has not yet been included directly in PSHA computations. This study aims to 

address this gap by providing a practical framework. To this end, the PDF form of the SCP model should be calculated and 

substituted in the classical PSHA integral. The details of this approach will be described in the following sections. This PSHA 65 

procedure that considers the seismicity model based on the non-extensive statistical physics is called here a non-extensive 

PSHA (NEPSHA). Finally, to investigate the differences between the results of NEPSHA and the classical framework of 

PSHA, we compare these approaches via a practical example. 

2 On the SCP model 

This section describes the non-extensive theoretical basis of the SCP model. Generally, statistical mechanics uses statistical 70 

methods to describe systems with high degrees of freedom. In this way, the randomness and chaos resulting from internal 

imperfections can be processed (Englman et al., 1988). To use this concept in the representation of fault rupture, the 

Boltzmann-Gibbs statistics can be used. The Boltzmann-Gibbs entropy, S, is given by 

𝑆 = −𝑘 ∑ 𝑝𝑖𝑙𝑛𝑝𝑖
𝑊
𝑖=1  ,                                                                                                                      (3) 

where pi is the probability of the microscopic state i, k is Boltzmann's constant, and W is the total number of small-scale states 75 

(Sotolongo-Costa et al., 2000). Tsallis’ statistics generalizes the Boltzmann-Gibbs statistics in what concerns the concept of 

entropy. It should be noted that fractioning is a paradigm of non-extensivity, since the fractured object can be regarded as a 

collection of divided parts with larger entropy than their union. So, if the parts or fragments in which the object is denoted by 

Ai (s), its entropy, S, is S(UAi) <∑i S(Ai), where U is the “Union” symbol. This inequality defines a "superextensivity" (Tsallis 

et al., 1998) in the system. So, it is necessary to use non-extensive statistics instead of Boltzmann-Gibbs statistics (Sotolongo-80 

Costa et al., 2000). Such formalism has been proposed by Tsallis (Tsallis, 1988), as: 

𝑆𝑞≠1 = −𝑘𝐵 ∫ 𝑝𝑞(𝜎)𝑙𝑛𝑞𝑝(𝜎)𝑑𝜎,                                                                                            (4) 

where kB is the Boltzmann constant; p denotes the probability of finding a fragment of surface σ (defined as a characteristic 

surface of the system), and q is the non-extensive parameter. Accordingly, the q-logarithmic function is defined as: 

𝑙𝑛𝑞𝑝 = (1 − 𝑞)−1(𝑝1−𝑞 − 1)           𝑝 > 0,                                                                                           (5) 85 

The mechanism of triggering earthquakes is established through the combination of the irregularities of the fault planes and 

the distribution of fragments between them. The basic idea in the SCP model is the fact that the surfaces of the fault planes 

(interface) are irregular, and the fragments filling the space between them have diverse irregular shapes. Previous studies 

reveal that the Boltzmann-Gibbs statistics cannot account for the presence of scaling in the size distribution of fragments 
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(Englman et al., 1988). So, violent fractioning is a nonextensive phenomenon, and a nonextensive representation is 90 

necessary for its explanation. In the SCP model, the fragment-distribution function (EDF) emerges naturally from a non-

extensive framework. So, the energy-distribution function is given by (Sotolongo-Costa and Posadas, 2004): 

log(𝑁>𝑚) = 𝑙𝑜𝑔𝑁 + (
2−𝑞

1−𝑞
) × 𝑙𝑜𝑔[1 + 𝑎𝑆𝐶𝑃(𝑞 − 1)(2 − 𝑞)(1−𝑞)/(𝑞−2) × 102𝑚],                                        (6) 

where aSCP is the constant of proportionality between released energy and fault rupture length. This expression describes the 

energy distribution in all detectable ranges of magnitudes very well, unlike the empirical formula of GR (Sotolongo-Costa and 95 

Posadas, 2004).  

Non-extensive models have attracted the attention of researchers in various branches of earth sciences. Some researchers have 

made modifications in the SCP model and tried to improve the seismicity description (Silva et al., 2006, Telesca, 2012). Due 

to the advantage of the non-extensive methods, researchers have tried to fit them to the reginal data, calculate the parameters 

of the models and describe the seismicity (Sarlis et al., 2010, Matcharashvili et al., 2011, Valverde-Esparza et al., 2012, 100 

Vallianatos and Michas, 2020). Also, models based on Tsallis entropy have been used to determine the precursors (Eftaxias, 

2010). Interestingly, these models have also been used to describe marsquakes (da Silva and Corso, 2021). Vallianatos et al. 

(2016, 2018) have provided two comprehensive reviews of these methods. In this way, trying to rewrite the well-known PSHA 

method based on the non-extensive approach can be helpful. 

3 PSHA based on the SCP model 105 

Equation 6 indicates the number of earthquakes in magnitude bins. In order to include this relationship in the PSHA 

calculations, it must be written as a distribution function, which is the core of this research and will be described in this section. 

Tectonic faults produce earthquakes of various sizes (i.e., magnitudes). Regarding equation 6, the SCP model describes the 

size distribution of earthquakes as  

𝑁𝑚
𝑁⁄ = [1 + 𝑎𝑆𝐶𝑃(𝑞 − 1)(2 − 𝑞)

1−𝑞

𝑞−2 × 102𝑚]
(
2−𝑞

1−𝑞
)

,                                                  (7) 110 

If 𝑚 = 𝑚𝑚𝑖𝑛, this equation yields: 

𝑁𝑚𝑚𝑖𝑛
𝑁

⁄ = [1 + 𝑎𝑆𝐶𝑃(𝑞 − 1)(2 − 𝑞)(1−𝑞)/(𝑞−2) × 102𝑚𝑚𝑖𝑛]
(
2−𝑞

1−𝑞
)
,                                      (8) 

Therefore, the cumulative distribution function (CDF) of the magnitudes of earthquakes, FM(m), larger than mmin can be written 

as: 

 𝐹𝑀(𝑚) = 𝑃(𝑀 ≤ 𝑚|𝑀 > 𝑚𝑚𝑖𝑛) =
 Rate of earthquakes with 𝑚𝑚𝑖𝑛<𝑀≤𝑚 

Rate of earthquakes with 𝑚𝑚𝑖𝑛<𝑀
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                                                         = 
 𝜆𝑚𝑚𝑖𝑛

−𝜆𝑚 

𝜆𝑚𝑚𝑖𝑛

= 1 − 
𝜆𝑚 

𝜆𝑚𝑚𝑖𝑛

 

                                                          =  1 − 
[1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)

1−𝑞
𝑞−2×102𝑚]

2−𝑞
1−𝑞

 [1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)
1−𝑞
𝑞−2×102𝑚𝑚𝑖𝑛]

2−𝑞
1−𝑞

 

          ; 𝑚 > 𝑚𝑚𝑖𝑛, 

 

 

 

(9) 

where 𝜆𝑚 =
𝑁𝑚

𝑡𝑖𝑚𝑒×𝑠𝑝𝑎𝑐𝑒
  and 𝜆𝑚𝑚𝑖𝑛

=
𝑁𝑚𝑚𝑖𝑛

𝑡𝑖𝑚𝑒×𝑠𝑝𝑎𝑐𝑒
 . This equation is similar to the non-extensive expression of Telesca (Telesca, 115 

2012), except that it uses the minimum magnitude, 𝑚𝑚𝑖𝑛 , instead of the completeness magnitude. We can compute the PDF 

of M by taking the derivative of the CDF, as 

 𝑓𝑀(𝑚) =
𝑑

 𝑑𝑚 
𝐹𝑀(𝑚) =

𝑑

 𝑑𝑚 

[
 
 
 
 

1 − 
[1+𝑎𝑆𝐶𝑃(𝑞−1)(𝑞−2)

1−𝑞
𝑞−2×102𝑚]

2−𝑞
1−𝑞

 [1+𝑎𝑆𝐶𝑃(𝑞−1)(𝑞−2)
1−𝑞
𝑞−2×102𝑚𝑚𝑖𝑛]

2−𝑞
1−𝑞

 ]
 
 
 
 

 

                                       =
[1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)

1−𝑞
𝑞−2×102𝑚]

1
1−𝑞

×𝑎𝑆𝐶𝑃(2−𝑞)
−1
𝑞−2 ×2×102𝑚 ln 10

[1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)
1−𝑞
𝑞−2×102𝑚𝑚𝑖𝑛]

2−𝑞
1−𝑞

     ;𝑚 > 𝑚𝑚𝑖𝑛, 

 

 

 

 

 

(10) 

where 𝑓𝑀(𝑚) denotes the PDF of M. Note that the PDF given in equation 10 relies on the SCP formulation of equation 8, 

which represents magnitudes without an upper limit. Earthquake magnitude essentially has an upper limit (mmax). Rewritten 

equation 8 with the mmax is:  120 

  

 𝐹𝑀(𝑚) =  𝑃(𝑀 ≤ 𝑚|𝑚𝑚𝑖𝑛 < 𝑀 < 𝑚𝑚𝑎𝑥) =
 Rate of earthquakes with 𝑚𝑚𝑖𝑛<𝑀≤𝑚 

Rate of earthquakes with 𝑚𝑚𝑖𝑛<𝑀<𝑚𝑚𝑎𝑥
= 

 𝜆𝑚𝑚𝑖𝑛  
− 𝜆𝑚 

𝜆𝑚𝑚𝑖𝑛
 − 𝑚𝑚𝑎𝑥

 

                                                          

                                                       =

[1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)
1−𝑞
𝑞−2×102𝑚𝑚𝑖𝑛]

2−𝑞
1−𝑞

−[1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)
1−𝑞
𝑞−2×102𝑚]

2−𝑞
1−𝑞

[1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)
1−𝑞
𝑞−2×102𝑚𝑚𝑖𝑛]

2−𝑞
1−𝑞

−[1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)
1−𝑞
𝑞−2×102𝑚𝑚𝑎𝑥]

2−𝑞
1−𝑞

 

                                                                                                                         ; 𝑚𝑚𝑖𝑛 < 𝑚 < 𝑚𝑚𝑎𝑥,                                                          

 

 

 

 

 

 

(11) 

and equation 10 becomes: 

 𝑓𝑀(𝑚) =
[1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)

1−𝑞
𝑞−2×102𝑚]

1
1−𝑞

×𝑎𝑆𝐶𝑃(2−𝑞)
−1
𝑞−2 ×2×102𝑚 ln 10

[1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)
1−𝑞
𝑞−2×102𝑚𝑚𝑖𝑛]

2−𝑞
1−𝑞

−[1+𝑎𝑆𝐶𝑃(𝑞−1)(2−𝑞)
1−𝑞
𝑞−2×102𝑚𝑚𝑎𝑥]

2−𝑞
1−𝑞

         ; 𝑚𝑚𝑖𝑛 < 𝑚 < 𝑚𝑚𝑎𝑥, 

 

(12) 

This doubly truncated magnitude distribution can be termed a bounded SCP recurrence law.  
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The appropriateness of this relationship can be evaluated by its compliance with regional data. This issue is later examined in 

the practical example. 

For our later PSHA equations, we will convert the continuous distribution of magnitudes into a discrete set of magnitudes. 125 

Probabilities of occurrence of these discrete sets of magnitudes, assuming that they are the only possible magnitudes, are 

computed as follows 

    𝑃(𝑀 = 𝑚𝑗) ≅ 𝐹𝑀(𝑚𝑗+1) − 𝐹𝑀(𝑚𝑗), (13) 

where 𝑚𝑗 is the discrete set of magnitudes, ordered so that 𝑚𝑗 < 𝑚𝑗+1. This calculation assigns the probabilities associated 

with all magnitudes between 𝑚𝑗 and 𝑚𝑗+1 to the discrete value 𝑚𝑗. As long as the discrete magnitudes are closely spaced, the 

approximation will not affect numerical results. In practice, magnitude spacing of 0.1 or less is appropriate. 130 

Now, by substituting equation 12 instead of equation 2 in the classical PSHA (i.e., Equation 1), we present a non-extensive 

entropy-based approach to PSHA. We call the new approach non-extensive probabilistic seismic hazard analysis (NEPSHA). 

In this way, the physics-based recurrence law of the non-extensive SCP method will be entered into the hazard calculations. 

As mentioned before, if the bounded SCP recurrence law shows a better match with regional data, the use of NEPSHA will be 

on a more correct basis than the classical PSHA. It therefore may lead to more correct results of regional hazard. Thus, this 135 

approach provides a new possibility for modeling regional seismic conditions and hazard calculation. 

As mentioned in the previous section, some modifications have been suggested for the SCP model (Silva et al., 2006, Telesca, 

2012, Vallianatos et al., 2016, da Silva and Corso, 2021). Although these modifications are very helpful in improving the 

method, the purpose of this paper is to provide a framework for incorporating the non-extensive models into the seismic hazard 

analysis process. Therefore, the basic approach of the SCP method is used as the basis of the work in this article. Obviously, 140 

by providing such a framework, it will be also possible to use modified SCP methods. 

4 Application example 

To highlight the effect of the proposed method on the hazard results, we implement the proposed method as a case study in 

Tehran metropolitan. This city is located in one of the most active zones in the south of the Alborz seismic zone (Berberian 

and Yeats, 1999). For simplicity, in this study, the hazard of a single site from a single seismic fault was considered. Therefore, 145 

only one of the major active faults near Tehran, i.e., the North Tehran fault, was considered. Figure 1 shows the location of 

the North Tehran fault seismic source. The selected site for PSHA was located at latitude and longitude coordinates of [35.59° 

N, 51.41° E].  

In order to have a reliable estimate of the seismicity parameters, a homogeneous and complete earthquake catalog is required. 

In this study, the data were elicited from the USGS catalog (USGS, 2022), that covers the earthquake events from the fourth 150 

century BC to 2022. However, since, there is no clear approach to include historical earthquakes in the estimation of seismicity 

parameters using the SCP method; it was decided to neglect the historical earthquakes in this study. So only instrumental 
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earthquakes (i.e., those earthquakes recorded after 1900AD) are considered here. After unifying magnitude units using the 

Mousavi-Bafrouei et al. (2014) relationships, the dependent shocks have been removed from the earthquake catalog, using the 

time and distance windows methods proposed by Gardner and Knopof (1974) and Uhrhammer (1986). 155 

The GR seismicity parameters (i.e., the rate of seismicity and b-value) are computed using the Kijko's maximum likelihood 

method (Kijko and Sellevoll 1989;Kijko, 2004). For this end, a MATLAB program (HA3) written by Kijko et al. (2016) has 

been utilized. Also, the SCP seismicity parameters have been calculated using a code written in the R language (R Core Team, 

2021) based on the maximum likelihood method (Telesca, 2012). In this study, the parameters of both GR and SCP methods 

have been calculated based on the same data and assumptions. Table 1 demonstrates the seismicity parameters of the GR and 160 

SCP methods. Figure 2 shows the fitted curves of GR and SCP. In this figure, the Empirical Cumulative Distribution Function 

(ECDF) of Observed data and declustered data are also shown. Note the initial curvature of the SCP model which differs from 

the GR model. Visually, the SCP has a better fit for the data. The residual sum of squares of SCP and GR models are 0.01453 

and 0.03563 respectively, that support the previous conclusion.    

Other required information for seismic hazard analysis, including the fault geometry and location, the earthquake magnitude 165 

limits in the given region, Mmin, and Mmax, and local site characteristics, were considered identical in both PSHA and NEPSHA 

and extracted from eligible studies (Gholipour et al., 2008; Yazdani et al., 2017). In this study, the ground motion prediction 

equation of Yazdani and Kowsari (2013) is used in hazard calculation. This relationship provides spectral acceleration 

at different spectral periods.  

Figure 3 shows the results of PSHA and NEPSHA for the selected site in the Tehran metropolitan area in terms of hazard 170 

curves for the selected site in the Tehran. As shown in Figure 3, the annual probability of exceedance (APE) is identical for 

both approaches (PGA = 0.01g). As the PGA increases, the difference between the two approaches hazard also increases. The 

APE obtained from the NEPSHA is greater than the value obtained from the PSHA. For PGAs greater than 0.1g, the difference 

is approximately constant. Therefore, it can be concluded that the NEPSHA approach gives higher results, especially in higher 

PGAs. The 95% confidence intervals for PSHA and NEPSHA are also shown in this figure.  175 

 Also, the uniform hazard spectra (UHS) with 5% damping, based on the classic PSHA and NEPSHA with a probability of 

exceedance of 10% and 2% in 50 years, are shown in Figure 4. These spectra are essentially derived from hazard curves, and 

cover a broad range of spectral periods. To construct UHS from a set of hazard curves, one can conceptualize this process as 

simply extracting from multiple hazard curves all of the intensity measure levels for a given APE. In the hazard spectrum 

curves for 2% exceedance probability in 50 years (figure 4a), the values obtained based on NEPHSA are higher than those 180 

obtained from classic PHSA. The difference is considerable in the period range of 0.2 to 1 s, corresponded to the height range 

of usual urban buildings. The difference gets smaller for tall buildings. In the uniform hazard spectra for 10% exceedance in 

50 years (figure 4b), the same behavior is observed, but in the high periods, the two curves are closer to each other than in the 

previous case. The 95% confidence intervals for PSHA and NEPSHA are also shown in this figure. 
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5 Conclusion 185 

Magnitude-frequency or recurrence relationship is an essential component of PSHA, which provides the cumulative rate of 

occurrence of earthquakes within a seismic source zone as a function of magnitude. For many years, the Gutenberg-Richter 

relationship has been the governing paradigm in the energy distribution of earthquakes. However, the Gutenberg-Richter 

relationship still fits well with medium-sized earthquakes, but in small and large magnitude earthquakes, it deviates 

significantly. The core idea of this paper is that replacing the statistics-based equation of Gutenberg Richter's with an equation 190 

based on the physics of events can improve the hazard results. Here, the model presented by Sotolongo Costa and Posadas 

(2000) on the interaction of barrier and asperity (SCP model) was developed and included in the PSHA process. The irregular 

geometry of the interacting plates and the fragments filling the space between them is the main factor considered in the 

numerical modeling of the SCP model. To this end, first, we derived the bounded SCP recurrence law. Then, by fitting this 

curve to the regional seismicity data, regional seismicity parameters are extracted. The better fit of this curve can be measured 195 

compared to Gutenberg Richter law. We founded the NEPSHA approach by rewriting the PSHA equation with a bounded SCP 

recurrence law. The numerical example in the Tehran region shows the significant increase in the hazard of NEPSHA compared 

to PSHA. The difference is more considerable in the range of ordinary building height. 
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Table 1: Calculated seismicity parameters for the study area for GR and SCP 

Approach GR SCP 

Parameter aGR b-value aSCP q-value 

Value 1.86 0.55 5.71e-9 1.67 

Confidence interval 

95% 
[1.73, 1.98] [0.51, 0.58] [2.42e-9, 7.92e-9] [1.65, 1.69] 

 

 

 

 320 

 

Figure 1: The location of the North Tehran fault, the border of the city, and selected sites for seismic-hazard analysis. The spatial 

distribution of earthquakes used in the analysis (within a 100-km buffer around the site) is also shown in this figure 
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Figure 2: Comparison of ECDF of observed and declustered data with the GR and SCP models 325 

 

  

Figure 3: Hazard curves and 95% confidence intervals based on PSHA and NE-PSHA approaches for PGA 
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 330 

Figure 4: The uniform hazard spectra and 95% confidence intervals based on NEPSHA and PSHA for the probability of 

exceedance of a) 10% in 50 years and b) 2% in 50 years 

 


