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Abstract. We modify the probabilistic seismic hazard analysis (PSHA) formulation by replacing the Gutenberg-Richter power
law with the SCP non-extensive model for earthquake size distribution and call it NEPSHA. SCP claimed to better model the
regional seismicity than the classical models. The proposed method (NEPSHA) is implemented in the Tehran region, and the
results are compared with the classic PSHA method. The hazard curves show that NEPSHA gives a higher hazard, especially
in the range of practical return periods. The uniform hazard spectra of NEPSHA provide more spectral accelerations, especially

for the medium height buildings, which are the most common urban structures.

1 Introduction

PSHA is the most widely used approach to estimate the seismic load for use in engineering design processes. The main
objective of PSHA computations is to calculate ground motions with different exceedance probabilities during a specific time
interval (Anbazhagan, 2019). This information is the gateway to defining the possible scenario earthquakes and is used to

develop instructions for seismic codes and standard regulations (Nath, 2022; lervolino, 2022).

In the PSHA procedure, the average annual rate of exceeding a particular threshold value, x, of a ground motion intensity

measure (IM), is computed as (Cornell, 1968):

A () = 2750 [ S, G r UM = XIm, 1) fog (1) frgaa (r|m) dmdr )

where, ng:is the number of causative faults, and v is the mean annual frequency of occurrence of earthquakes with magnitudes
between a lower-bound threshold value, mmin, and an upper-bound threshold value, mmax. Also, M and R denote the moment
magnitude and the source-to-site distance, respectively. The term Giwwm,r provides the probability that an IM exceeds a value

of x given the occurrence of an earthquake of magnitude m at distance r. This term can be calculated using ground motion

prediction equations. The term fy represents the probability density function (PDF) of the earthquake magnitude and fR‘M

denotes PDF of distance r conditional on m.
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Determining the function of fu is a challenging task in PSHA computations. This function should be calculated using the
frequency-magnitude relationship, which represents the background seismicity of the study region. Previous studies showed
that the characteristics of such a relationship significantly affect the results of PSHA (Yazdani et al., 2015, Motaghed et al.,
2021). Thus, there has been a continued interest in selecting the best representative expression for the frequency-magnitude

relation.

Currently, the most commonly used model to reflect the frequency-magnitude distribution in the PSHA procedure is based on
the Gutenberg-Richter (GR) law (Gutenberg and Richter, 1956). This model represents a linear relationship between the
logarithm of the frequency and magnitude as logioN(m)=a-bM, where N is the number of events with a magnitude greater than
or equal to min a given region and specified time period, and a and b are constants. So magnitudes obey power law distribution.
102 represents the total number of earthquakes with magnitudes greater than mmin, and b (commonly referred to as b-value) is
the slope of the fitted line. The b-value describes the specific relationship between the magnitude and the total number of
earthquakes commonly close to 1.0 in seismically-active regions. This simple linear relation can also be written in the form
of N(m)=exp(a-£M), in which a=aln(10) and f=bIn(10). The PDF of N(m) is then given by:

Be_ﬁ(m_mmin)

(M) = e mm)

» Min =m< Mmax (2)

This function is a double truncated form of GR law (Zalohar, 2018).

Contrary to the widespread use of the GR model in the PSHA studies, some researchers reported that earthquake magnitudes
do not always follow this distribution (Schwartz and Coppersmith, 1984; Youngs and Coppersmith, 1985; Wesnousky, 1994,
Ishibe and Shimazaki, 2008). This is especially the case in situations where the seismic region consists of individual faults or
fault segments with regular geometries (Ishibe and Shimazaki, 2008). In these situations, the GR model may not represent the
seismicity over the entire magnitudes range. Also, while the GR recurrence model may well represent the distribution of small
earthquake magnitudes, it underestimates the frequency of large earthquakes (Kramer, 1996; Youngs and Coppersmith, 1985;
Parsons and Geist, 2009).

To cope with these problems, some alternative models to the power-law have been developed by researchers, such as bilinear
(Staudenmaier et al., 2018), quadratic law (Merz & Cornell, 1973), generalized Pareto distribution-based model, and random
GR model (Dutfoy & Senfaute, 2021). Nevertheless, one of the most exciting models for earthquake recurrence has been
proposed by Sotolongo-Costa and Posadas (2004), which is named SCP Model. The framework of this model has been
developed based on the Tsallis non-extensive approach (Tsallis, 1988). Generally, the non-extensive Tsallis entropy has been
the focus of much attention over the last four decades (Vallianatos et al., 2016). It is thought that this non-extensive formulation
presents an appropriate tool for investigating complex systems, especially in their nonequilibrium stationary states (Silva et
al., 2006, Vallianatos et al., 2016, Vallianatos et al., 2018). Vallianatos et al. (2014) use the Tsallis entropy approach to identify
precursors in the earthquake generation process. The SCP model characterizes two profiles interacting via fragments filling
the gap between them. This model has the advantage of representing the size distribution of fragments on the energy
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distribution of earthquakes. Also, the SCP model deduced an energy distribution function, which gives the GR law as a
particular case (Telesca, 2012).

Despite its unique features, the SCP model has not yet been included directly in PSHA computations. This study aims to
address this gap by providing a practical framework. To this end, the PDF form of the SCP model should be calculated and
substituted in the classical PSHA integral. The details of this approach will be described in the following sections. This PSHA
procedure that considers the seismicity model based on the non-extensive statistical physics is called here a non-extensive
PSHA (NEPSHA). Finally, to investigate the differences between the results of NEPSHA and the classical framework of
PSHA, we compare these approaches via a practical example.

2 On the SCP model

This section describes the non-extensive theoretical basis of the SCP model. Generally, statistical mechanics uses statistical
methods to describe systems with high degrees of freedom. In this way, the randomness and chaos resulting from internal
imperfections can be processed (Englman et al., 1988). To use this concept in the representation of fault rupture, the

Boltzmann-Gibbs statistics can be used. The Boltzmann-Gibbs entropy, S, is given by

S =—k X pilnp; 3)

where pi is the probability of the microscopic state i, k is Boltzmann's constant, and W is the total number of small-scale states
(Sotolongo-Costa et al., 2000). Tsallis’ statistics generalizes the Boltzmann-Gibbs statistics in what concerns the concept of
entropy. It should be noted that fractioning is a paradigm of non-extensivity, since the fractured object can be regarded as a
collection of divided parts with larger entropy than their union. So, if the parts or fragments in which the object is denoted by
A (s), its entropy, S, is S(Uai) <X i S(Aj), where U is the “Union” symbol. This inequality defines a "superextensivity" (Tsallis
etal., 1998) in the system. So, it is necessary to use non-extensive statistics instead of Boltzmann-Gibbs statistics (Sotolongo-

Costa et al., 2000). Such formalism has been proposed by Tsallis (Tsallis, 1988), as:
Sqz1 = —kg [ p?(0)Ingp(0)do, 4)

where kg is the Boltzmann constant; p denotes the probability of finding a fragment of surface o (defined as a characteristic

surface of the system), and q is the non-extensive parameter. Accordingly, the g-logarithmic function is defined as:
ngp=0-7 '@ -1  p>0, (5)

The mechanism of triggering earthquakes is established through the combination of the irregularities of the fault planes and
the distribution of fragments between them. The basic idea in the SCP model is the fact that the surfaces of the fault planes
(interface) are irregular, and the fragments filling the space between them have diverse irregular shapes. Previous studies

reveal that the Boltzmann-Gibbs statistics cannot account for the presence of scaling in the size distribution of fragments
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(Englman et al., 1988). So, violent fractioning is a nonextensive phenomenon, and a nonextensive representation is
necessary for its explanation. In the SCP model, the fragment-distribution function (EDF) emerges naturally from a non-

extensive framework. So, the energy-distribution function is given by (Sotolongo-Costa and Posadas, 2004):
log(Nsp,) = logN + (g) x log[1 + ascp(q — 1)(2 — q)1~P/@=2) x 10?m]|, (6)

where ascp is the constant of proportionality between released energy and fault rupture length. This expression describes the
energy distribution in all detectable ranges of magnitudes very well, unlike the empirical formula of GR (Sotolongo-Costa and
Posadas, 2004).

Non-extensive models have attracted the attention of researchers in various branches of earth sciences. Some researchers have
made modifications in the SCP model and tried to improve the seismicity description (Silva et al., 2006, Telesca, 2012). Due
to the advantage of the non-extensive methods, researchers have tried to fit them to the reginal data, calculate the parameters
of the models and describe the seismicity (Sarlis et al., 2010, Matcharashvili et al., 2011, Valverde-Esparza et al., 2012,
Vallianatos and Michas, 2020). Also, models based on Tsallis entropy have been used to determine the precursors (Eftaxias,
2010). Interestingly, these models have also been used to describe marsquakes (da Silva and Corso, 2021). Vallianatos et al.
(2016, 2018) have provided two comprehensive reviews of these methods. In this way, trying to rewrite the well-known PSHA

method based on the non-extensive approach can be helpful.

3 PSHA based on the SCP model

Equation 6 indicates the number of earthquakes in magnitude bins. In order to include this relationship in the PSHA

calculations, it must be written as a distribution function, which is the core of this research and will be described in this section.

Tectonic faults produce earthquakes of various sizes (i.e., magnitudes). Regarding equation 6, the SCP model describes the

size distribution of earthquakes as

2—q
1-q 1-g
M/ = [1+ asenla = D@ = g x 107 7 )
If m = m,,;,,, this equation yields:
N,, . 229
mmm/N — [1 + agcp (q — 1)(2 — q)(l_‘Z)/(q_Z) X 102mmin](1—q), (8)

Therefore, the cumulative distribution function (CDF) of the magnitudes of earthquakes, Fm(m), larger than mmin can be written
as:

Rate of earthquakes with m,j, <M<m

Fy(m) = P(M < m|M > my,;) =

Rate of earthquakes with m,;, <M
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N, N,
115 where A, = —2— and 1 _ N

, and A, . = . This equation is similar to the non-extensive expression of Telesca (Telesca,
timexspace min timexspace

2012), except that it uses the minimum magnitude, m,,,;,, instead of the completeness magnitude. We can compute the PDF
of M by taking the derivative of the CDF, as
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where f,,(mm) denotes the PDF of M. Note that the PDF given in equation 10 relies on the SCP formulation of equation 8

which represents magnitudes without an upper limit. Earthquake magnitude essentially has an upper limit (Mmax). Rewritten
120 equation 8 with the mmay is:

Rate of earthquakes with my,;, <Ms<m A
FM(m) = P(M < mlmmin <M< mmax) = q9 min

Mmin

_Am

Rate of earthquakes with my, i, <M <M )”mmin - Mmax

2—
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s Mmin <M < Mgy,
and equation 10 becomes:
1
1=q 1- -1
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This doubly truncated magnitude distribution can be termed a bounded SCP recurrence law.
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The appropriateness of this relationship can be evaluated by its compliance with regional data. This issue is later examined in
the practical example.

For our later PSHA equations, we will convert the continuous distribution of magnitudes into a discrete set of magnitudes.
Probabilities of occurrence of these discrete sets of magnitudes, assuming that they are the only possible magnitudes, are
computed as follows

P(M =my) = Fy(mjyq1) — Fu(m)), (13)

where m; is the discrete set of magnitudes, ordered so that m; < m;,,. This calculation assigns the probabilities associated
with all magnitudes between m; and m;_, to the discrete value m;. As long as the discrete magnitudes are closely spaced, the

approximation will not affect numerical results. In practice, magnitude spacing of 0.1 or less is appropriate.

Now, by substituting equation 12 instead of equation 2 in the classical PSHA (i.e., Equation 1), we present a non-extensive
entropy-based approach to PSHA. We call the new approach non-extensive probabilistic seismic hazard analysis (NEPSHA).
In this way, the physics-based recurrence law of the non-extensive SCP method will be entered into the hazard calculations.
As mentioned before, if the bounded SCP recurrence law shows a better match with regional data, the use of NEPSHA will be
on a more correct basis than the classical PSHA. It therefore may lead to more correct results of regional hazard. Thus, this

approach provides a new possibility for modeling regional seismic conditions and hazard calculation.

As mentioned in the previous section, some modifications have been suggested for the SCP model (Silva et al., 2006, Telesca,
2012, Vallianatos et al., 2016, da Silva and Corso, 2021). Although these modifications are very helpful in improving the
method, the purpose of this paper is to provide a framework for incorporating the non-extensive models into the seismic hazard
analysis process. Therefore, the basic approach of the SCP method is used as the basis of the work in this article. Obviously,
by providing such a framework, it will be also possible to use modified SCP methods.

4 Application example

To highlight the effect of the proposed method on the hazard results, we implement the proposed method as a case study in
Tehran metropolitan. This city is located in one of the most active zones in the south of the Alborz seismic zone (Berberian
and Yeats, 1999). For simplicity, in this study, the hazard of a single site from a single seismic fault was considered. Therefore,
only one of the major active faults near Tehran, i.e., the North Tehran fault, was considered. Figure 1 shows the location of
the North Tehran fault seismic source. The selected site for PSHA was located at latitude and longitude coordinates of [35.59°
N, 51.41° E].

In order to have a reliable estimate of the seismicity parameters, a homogeneous and complete earthquake catalog is required.
In this study, the data were elicited from the USGS catalog (USGS, 2022), that covers the earthquake events from the fourth
century BC to 2022. However, since, there is no clear approach to include historical earthquakes in the estimation of seismicity

parameters using the SCP method; it was decided to neglect the historical earthquakes in this study. So only instrumental
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earthquakes (i.e., those earthquakes recorded after 1900AD) are considered here. After unifying magnitude units using the
Mousavi-Bafrouei et al. (2014) relationships, the dependent shocks have been removed from the earthquake catalog, using the
time and distance windows methods proposed by Gardner and Knopof (1974) and Uhrhammer (1986).

The GR seismicity parameters (i.e., the rate of seismicity and b-value) are computed using the Kijko's maximum likelihood
method (Kijko and Sellevoll 1989;Kijko, 2004). For this end, a MATLAB program (HA3) written by Kijko et al. (2016) has
been utilized. Also, the SCP seismicity parameters have been calculated using a code written in the R language (R Core Team,
2021) based on the maximum likelihood method (Telesca, 2012). In this study, the parameters of both GR and SCP methods
have been calculated based on the same data and assumptions. Table 1 demonstrates the seismicity parameters of the GR and
SCP methods. Figure 2 shows the fitted curves of GR and SCP. In this figure, the Empirical Cumulative Distribution Function
(ECDF) of Observed data and declustered data are also shown. Note the initial curvature of the SCP model which differs from
the GR model. Visually, the SCP has a better fit for the data. The residual sum of squares of SCP and GR models are 0.01453
and 0.03563 respectively, that support the previous conclusion.

Other required information for seismic hazard analysis, including the fault geometry and location, the earthquake magnitude
limits in the given region, Mmin, and Mmax, and local site characteristics, were considered identical in both PSHA and NEPSHA
and extracted from eligible studies (Gholipour et al., 2008; Yazdani et al., 2017). In this study, the ground motion prediction
equation of Yazdani and Kowsari (2013) is used in hazard calculation. This relationship provides spectral acceleration
at different spectral periods.

Figure 3 shows the results of PSHA and NEPSHA for the selected site in the Tehran metropolitan area in terms of hazard
curves for the selected site in the Tehran. As shown in Figure 3, the annual probability of exceedance (APE) is identical for
both approaches (PGA = 0.01g). As the PGA increases, the difference between the two approaches hazard also increases. The
APE obtained from the NEPSHA is greater than the value obtained from the PSHA. For PGAs greater than 0.1g, the difference
is approximately constant. Therefore, it can be concluded that the NEPSHA approach gives higher results, especially in higher
PGAs. The 95% confidence intervals for PSHA and NEPSHA are also shown in this figure.

Also, the uniform hazard spectra (UHS) with 5% damping, based on the classic PSHA and NEPSHA with a probability of
exceedance of 10% and 2% in 50 years, are shown in Figure 4. These spectra are essentially derived from hazard curves, and
cover a broad range of spectral periods. To construct UHS from a set of hazard curves, one can conceptualize this process as
simply extracting from multiple hazard curves all of the intensity measure levels for a given APE. In the hazard spectrum
curves for 2% exceedance probability in 50 years (figure 4a), the values obtained based on NEPHSA are higher than those
obtained from classic PHSA. The difference is considerable in the period range of 0.2 to 1 s, corresponded to the height range
of usual urban buildings. The difference gets smaller for tall buildings. In the uniform hazard spectra for 10% exceedance in
50 years (figure 4b), the same behavior is observed, but in the high periods, the two curves are closer to each other than in the

previous case. The 95% confidence intervals for PSHA and NEPSHA are also shown in this figure.
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5 Conclusion

Magnitude-frequency or recurrence relationship is an essential component of PSHA, which provides the cumulative rate of
occurrence of earthquakes within a seismic source zone as a function of magnitude. For many years, the Gutenberg-Richter
relationship has been the governing paradigm in the energy distribution of earthquakes. However, the Gutenberg-Richter
relationship still fits well with medium-sized earthquakes, but in small and large magnitude earthquakes, it deviates
significantly. The core idea of this paper is that replacing the statistics-based equation of Gutenberg Richter's with an equation
based on the physics of events can improve the hazard results. Here, the model presented by Sotolongo Costa and Posadas
(2000) on the interaction of barrier and asperity (SCP model) was developed and included in the PSHA process. The irregular
geometry of the interacting plates and the fragments filling the space between them is the main factor considered in the
numerical modeling of the SCP model. To this end, first, we derived the bounded SCP recurrence law. Then, by fitting this
curve to the regional seismicity data, regional seismicity parameters are extracted. The better fit of this curve can be measured
compared to Gutenberg Richter law. We founded the NEPSHA approach by rewriting the PSHA equation with a bounded SCP
recurrence law. The numerical example in the Tehran region shows the significant increase in the hazard of NEPSHA compared
to PSHA. The difference is more considerable in the range of ordinary building height.

Code availability
Code used in this research can be obtained from the first author upon reasonable request.

Data availability
The resulting data can be obtained from the first author upon reasonable request.

Supplement
This article has no supplement.

Author contributions
SM, MK and MM conceptualized this study. MM and NE developed the software and carried out the formal analysis; NE and
SM prepared the manuscript.

Competing interests
The contact author has declared that none of the authors has any competing interests.

Financial support
This research has no funding.

References

Anbazhagan, P., Bajaj, K., Matharu, K., Moustafa, S. S. R., and Al-Arifi, N. S. N.: Probabilistic seismic hazard analysis using
the logic tree approach — Patna district (India), Nat. Hazards Earth Syst. Sci., 19, 2097-2115, https://doi.org/10.5194/nhess-
19-2097-2019, 2019.



220

225

230

235

240

245

Berberian, M. and Yeats, R. S: Patterns of historical earthquake rupture in the Iranian Plateau. Bull. Seismol. Soc. Am., 89(1),
120-139, doi: 10.1016/b978-0-444-63292-0.00016-8, 1999.

Cornell, C. A.: Engineering seismic risk analysis. Bull. Seismol. Soc. Am., 58(5), 1583-1606, doi: 10.1785/BSSA0580051583,
1968.

da Silva, S. L. E. and Corso, G.: Nonextensive Gutenberg—Richter law and the connection between earthquakes and
marsquakes. Eur Phys J B, 94(1), 1-5, doi:10.1140/epjb/s10051-020-00015-5, 2021.

Dutfoy, A. and Senfaute, G.: A New Generation of Earthquake Recurrence Models Based on The Extreme Value Theory and
Impact on Probabilistic Seismic Hazard Assessments, doi:10.21203/rs.3.rs-293705/v1, 2021.

Eftaxias, K.: Footprints of nonextensive Tsallis statistics, selfaffinity and universality in the preparation of the L’Aquila
earthquake hidden in a pre-seismic EM emission. Phys. A Stat. Mech. App., 389(1), 133-140, doi:
10.1016/j.physa.2009.08.034, 2010.

Englman, R., Rivier, N. and Jaeger, Z.: The problem of priors in the maximum entropy derivation of fragment-size
distributions, Nucl. Phys. B (Proc. Suppl.), 5(1), 345-349, doi: 10.1016/0920-5632(88)90067-9, 1988.

Kijko, A., and Sellevoll, M. A.: Estimation of earthquake hazard parameters from incomplete data Bles. Part 1. Utilization of
extreme and complete catalogs with different threshold magnitudes, Bull. Seismol. Soc. Am., 79(3), 645-654, doi:
10.1785/BSSA0790030645, 1989.

Kijko, A.. Estimation of the maximum earthquake magnitude, mmax, Pure Appl. Geophys. 161(8), 1655-1681, doi:
10.1007/s00024-004-2531-4, 2004.

Kijko, A., Smit, A. and Sellevoll, M. A.: Estimation of earthquake hazard parameters from incomplete data Bles. Part Il1.
Incorporation of uncertainty of earthquake-occurrence model, Bull. Seismol. Soc. Am., 106(3), 1210-1222, doi:
10.1785/0120150252, 2016.

Gardner, J. K., and Knopof, L.: Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?,
Bull. Seismol. Soc. Am., 64(5), 1363-1367, doi:10.1785/bssa0640051363 ,1974.

Gholipour, Y., Bozorgnia, Y., Rahnama, M., Berberian, M., and Shojataheri, J: Probabilistic seismic hazard analysis, phase |-
greater Tehran regions, Final report, 2008.

Gutenberg, B. and Richter, C.: Magnitude and energy of earthquakes, Annali de Geofisica, v. 9, doi: 10.4401/ag-5590, 1956.
Iervolino, I.: Ground-Motion Observations and Probabilistic Seismic Hazard: Frequently Asked Questions, Seis. Res. Lett.,
93 (4): 2360-2366, doi: 10.1785/0220210321, 2022.

Ishibe, T. and Shimazaki, K.: The Gutenberg-Richter relationship vs. the Characteristic Earthquake model: effects of different
sampling methods, Bull. Earth. Res. Insti, 83(1), 131-151, doi: 10.1002/essoar.10505896.1, 2008.

Kramer, S. L.: Geotechnical earthquake engineering. Pearson Education India, 1996.

Matcharashvili, T., Chelidze, T., Javakhishvili, Z., Jorjiashvili, N. and Paleo, U. F.: Non-extensive statistical analysis of
seismicity in the area of Javakheti, Georgia. Comp. & Geos., 37(10), 1627-1632, doi: 10.1016/j.cage0.2010.12.008, 2011.


https://doi.org/10.1016/b978-0-444-63292-0.00016-8
https://doi.org/10.1016/b978-0-444-63292-0.00016-8
https://doi.org/10.1785/BSSA0580051583
https://doi.org/10.1785/BSSA0580051583
https://doi.org/10.1016/j.physa.2009.08.034
https://doi.org/10.1016/0920-5632(88)90067-9
https://doi.org/10.1016/0920-5632(88)90067-9
https://doi.org/10.1785/BSSA0790030645
https://doi.org/10.1785/bssa0640051363
https://doi.org/10.1785/bssa0640051363
https://doi.org/10.4401/ag-5590
https://doi.org/10.1785/0220210321
https://doi.org/10.1785/0220210321
https://doi.org/10.1002/essoar.10505896.1
https://doi.org/10.1002/essoar.10505896.1
https://doi.org/10.1016/j.cageo.2010.12.008

250

255

260

265

270

275

280

Merz, H. A., and Cornell, C. A.: Seismic risk analysis based on a quadratic magnitude-frequency law. Bull. Seismol. Soc. Am.,
63(6-1), 1999-2006, d0i:10.1016/0148-9062(74)90731-1, 1973.

Motaghed, S., Khazaee, M. and Mohammadi, M.: The b-value estimation based on the artificial statistical method for Iran
Kope-Dagh seismic province, Arab J of Geo, 14(15), 1-9., doi: 10.1007/s12517-021-07970-y, 2021.

Mousavi-Bafrouei, S. H., Mirzaei, N. and Shabani, E.: A declustered earthquake catalog for the Iranian Plateau. Anna. Geoph.,
57(6), doi:10.4401/ag-6395, 2014.

Nath, S. K., Srivastava, A., Biswas, A., Madan, J., Ghatak, C., Sengupta, A., ... & Bhaumick, S.: Site Characterization vis-a-
vis Probabilistic Seismic Hazard and Disaster Potential Modelling in the Himalayan and Sub-Himalayan Tectonic Ensemble
from Kashmir Himalaya to Northeast India at the backdrop of the updated Seismic Hazard of the Indian Subcontinent. Nat.
Hazards Earth Syst. Sci. Discuss., 1-43, doi: 10.5194/nhess-2022-66, 2022.

Parsons, T. and Geist, E. L.: Is there a basis for preferring characteristic earthquakes over a Gutenberg—Richter distribution in
probabilistic earthquake forecasting?, Bull. Seismol. Soc. Am., 99(3), 2012-2019, doi: 10.1785/0120080069, 2009.

RCore Team: R— A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna,
Austria, available at: https://www.R-project.org/ (last access: 25 January 2022), 2021.

Sarlis, N. V., Skordas, E. S. and Varotsos, P. A.: Nonextensivity and natural time: The case of seismicity. Phys Rev E, 82(2),
021110, doi: 10.1103/PhysRevE.82.021110, 2010.

Schwartz, D. P., and Coppersmith, K. J.: Fault behavior and characteristic earthquakes: Examples from the Wasatch and San
Andreas fault zones. J Geo Res Solid Earth, 89(B7), 5681-5698, doi: 10.1029/JB089iB07p05681, 1984.

Silva, R., Franca, G. S., Vilar, C. S. and Alcaniz, J. S.: Non-extensive models for earthquakes, Phys. Rev. E, 73(2), 026102.,
d0i:10.2478/s11600-012-0010-3, 2006.

Sotolongo-Costa, O. and Posadas, A.: Fragment-asperity interaction model for earthquakes, Phys. Rev. Lett., 92(4), 048501,
doi: 10.1103/physrevlett.92.048501, 2004.

Sotolongo-Costa, O., Rodriguez, A. H. and Rodgers, G. J.: Tsallis entropy and the transition to scaling in fragmentation,
Entropy, 2(4), 172, doi: 10.3390/e2040172, 2000.

Staudenmaier, N., Tormann, T., Edwards, B., Deichmann, N., and Wiemer, S.: Bilinearity in the Gutenberg-Richter relation
based on ML for magnitudes above and below 2, from systematic magnitude assessments in Parkfield (California), Geop. Res.
Lett., 45(14), 6887-6897, doi:10.1029/2018gl078316, 2018.

Telesca, L.: Maximum likelihood estimation of the nonextensive parameters of the earthquake cumulative magnitude
distribution. Bull. Seis. Soc. Am., 102(2), 886-891, doi: 10.1785/0120110093 ,2012.

Tsallis, C., Mendes, R. and Plastino, A. R.: The role of constraints within generalized nonextensive statistics, Physica A Statist.
Mech. Its Appl., 261(3-4), 534-554, doi: 10.1016/s0378-4371(98)00437-3, 1998.

Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys., 52(1), 479-487, doi: 10.1007/bf01016429,
1988.

10


https://doi.org/10.1016/0148-9062(74)90731-1
https://doi.org/10.1016/0148-9062(74)90731-1
https://doi.org/10.1007/s12517-021-07970-y
https://doi.org/10.1007/s12517-021-07970-y
https://doi.org/10.4401/ag-6395
https://doi.org/10.5194/nhess-2022-66
https://doi.org/10.5194/nhess-2022-66
https://doi.org/10.5194/nhess-2022-66
https://doi.org/10.5194/nhess-2022-66
https://doi.org/10.1785/0120080069
https://doi.org/10.1785/0120080069
https://doi.org/10.1103/physreve.82.021110
https://doi.org/10.1029/JB089iB07p05681
https://doi.org/10.1029/JB089iB07p05681
https://doi.org/10.2478/s11600-012-0010-3
https://doi.org/10.2478/s11600-012-0010-3
https://doi.org/10.1103/physrevlett.92.048501
https://doi.org/10.1103/physrevlett.92.048501
https://doi.org/10.3390/e2040172
https://doi.org/10.3390/e2040172
https://doi.org/10.1029/2018gl078316
https://doi.org/10.1029/2018gl078316
https://doi.org/10.1029/2018gl078316
https://doi.org/10.1785/0120110093
https://doi.org/10.1016/s0378-4371(98)00437-3
https://doi.org/10.1016/s0378-4371(98)00437-3
https://doi.org/10.1007/bf01016429
https://doi.org/10.1007/bf01016429

285

290

295

300

305

310

315

Uhrhammer, R. A.: Characteristics of northern and central California seismicity, Earthquake Notes, 57(1), 21,doi:
10.1130/dnag-csms-neo0.99, 1986.

USGS (The United States Geological Survey), “Search Earthquake Catalog”, http://earthquake.usgs.gov/earthquakes/search,
2022.

Vallianatos, F., Michas, G. and Papadakis, G.: A description of seismicity based on non-extensive statistical physics: A review.
Earthquakes and their Impact on Society, 1-41, doi: 10.1007/978-3-319-21753-6_1, 2016.

Vallianatos, F., Michas, G., and Papadakis, G.: Non-extensive and natural time analysis of seismicity before the My, 6.4,
October 12, 2013 earthquake in the South West segment of the Hellenic Arc. Physica A: Statistical Mechanics and its
Applications, 414, 163-173, doi: 10.1016/j.physa.2014.07.038, 2014.

Vallianatos, F., Michas, G. and Papadakis, G.: Nonextensive statistical seismology: An overview. Complexity of seismic time
series, 25-59, doi: 10.1016/B978-0-12-813138-1.00002-X, 2018.

Vallianatos, F. and Michas, G.: Complexity of fracturing in terms of non-extensive statistical physics: from earthquake faults
to arctic sea ice fracturing. Entropy, 22(11), 1194, doi: 10.3390/e22111194, 2020.

Vallianatos, F., Papadakis, G., and Michas, G.: Generalized statistical mechanics approaches to earthquakes and
tectonics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2196), 20160497, doi:
10.1098/rspa.2016.0497, 2016.

Valverde-Esparza, S. M., Ramirez-Rojas, A., Flores-Méarquez, E. L. and Telesca, L.: Non-extensivity analysis of seismicity
within four subduction regions in Mexico. Acta Geoph., 60(3), 833-845, doi: 10.2478/s11600-012-0012-1, 2012.
Wesnousky, S. G.: The Gutenberg-Richter or characteristic earthquake distribution, which is it?, Bull. Seismol. Soc. Am.,
84(6), 1940-1959, doi: 10.1785/bssa0840061940, 1994.

Yazdani, A., and Kowsari, M.: Earthquake ground-motion prediction equations for northern Iran. Natural hazards, 69(3), 1877-
1894,doi: 10.1007/s11069-013-0778-8, 2013.

Yazdani, A., Nicknam, A., Dadras, E. Y. and Eftekhari, S. N.: Near-field probabilistic seismic hazard analysis of metropolitan
Tehran using region-specific directivity models, Pur. appl. Geop, 174(1), 117-132, doi: 10.1007/s00024-016-1389-6, 2017.
Youngs, R. R., and Coppersmith, K. J.: Implications of fault slip rates and earthquake recurrence models to probabilistic
seismic hazard estimates. Bull. Seismol. Soc. Am., 75(4), 939-964, doi: 10.1016/0148-9062(86)90651-0, 1985.

Zalohar, J.: Gutenberg-Richter’s law. In Developments in Structural Geology and Tectonics (Vol. 2, pp. 173-178). Elsevier,
doi: 10.1016/b978-0-12-814580-7.00014-9, 2018.

11


https://doi.org/10.1130/dnag-csms-neo.99
https://doi.org/10.1130/dnag-csms-neo.99
http://earthquake.usgs.gov/earthquakes/search
http://earthquake.usgs.gov/earthquakes/search
https://doi.org/10.1016/B978-0-12-813138-1.00002-X
https://doi.org/10.3390/e22111194
https://doi.org/10.1098/rspa.2016.0497
https://doi.org/10.1785/bssa0840061940
https://doi.org/10.1785/bssa0840061940
https://doi.org/10.1007/s00024-016-1389-6
https://doi.org/10.1007/s00024-016-1389-6
https://doi.org/10.1016/0148-9062(86)90651-0
https://doi.org/10.1016/0148-9062(86)90651-0
https://doi.org/10.1016/b978-0-12-814580-7.00014-9
https://doi.org/10.1016/b978-0-12-814580-7.00014-9

Table 1: Calculated seismicity parameters for the study area for GR and SCP

Approach GR SCP
Parameter acr b-value ascp g-value
Value 1.86 0.55 5.71e-9 1.67

Confidence interval

95% [1.73, 1.98] [0.51, 0.58] [2.42e-9, 7.92e-9] [1.65, 1.69]
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Figure 1: The location of the North Tehran fault, the border of the city, and selected sites for seismic-hazard analysis. The spatial
distribution of earthquakes used in the analysis (within a 100-km buffer around the site) is also shown in this figure
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Figure 3: Hazard curves and 95% confidence intervals based on PSHA and NE-PSHA approaches for PGA
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Figure 4: The uniform hazard spectra and 95% confidence intervals based on NEPSHA and PSHA for the probability of
exceedance of a) 10% in 50 years and b) 2% in 50 years

14



