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Abstract 6 

In urban areas, topography data without above ground objects are typically preferred in 7 

wide-area flood simulation but are not yet available for many locations globally. High-8 

resolution satellite photogrammetry DEMs, like ArcticDEM, are now emerging and could 9 

prove extremely useful for global urban flood modelling, however, approaches to generate 10 

bare-earth DEMs from them have not yet been fully investigated. In this paper, we test the use 11 

of two morphological filters (Simple Morphological Filter-SMRF and Progressive 12 

Morphological Filter-PMF) to remove surface artefacts from ArcticDEM using the city of 13 

Helsinki (192 km2) as a case study. The optimal filter is selected and used to generate a bare-14 

earth version of ArcticDEM. Using a LIDAR DTM as a benchmark, the elevation error and 15 

flooding simulation performance for a pluvial event were then evaluated at 2 m and 10 m spatial 16 

resolution, respectively. The SMRF was found to be more effective at removing artefacts than 17 

PMF over a broad parameter range. For the optimal ArcticDEM-SMRF the elevation RMSE 18 

was reduced by up to 70% over the uncorrected DEM, achieving a final value of 1.02 m. The 19 

simulated water depth error was reduced to 0.3 m, which is comparable to typical model errors 20 

using LIDAR DTM data. This paper indicates that the SMRF can be directly applied to generate 21 

a bare-earth version of ArcticDEM in urban environments, although caution should be 22 

exercised for areas with densely packed buildings or vegetation. The results imply that where 23 

LIDAR DTMs do not exist, widely available high-resolution satellite photogrammetry DEMs 24 

could be used instead. 25 

1 Introduction 26 

The availability of an accurate bare-earth Digital Elevation Model (DEM) is important 27 

to many research fields, including identifying drainage related features and modelling flood 28 

inundation (Garbrecht and Martz, 2000; Yamazaki et al., 2014), deriving topography indices 29 

such as slope, orientation, and rugosity (Moudrý et al., 2018), estimating forest biomass and 30 

carbon (Jensen et al., 2016), and constructing 3D building heights (Marconcini et al., 2014). 31 

mailto:Yinxue.liu@bristol.ac.uk


 

2 
 

For wide-area flood simulation in urban areas, a bare-earth DEM (i.e., a terrain model without 32 

surface artefacts) is preferable in most circumstances to a Digital Surface Model (DSM) which 33 

includes them. This is because the decision to include above terrain artefacts or not is a 34 

consequence of the selected simulation resolution. Only when the simulation is conducted at 35 

grid sizes allowing the resolution of building shapes and the street layout (typically < 5 m in 36 

most urban topologies worldwide) does a DSM become useful. When aggregated to coarser 37 

resolutions, the height of the surface artefacts contained in the DSM can block or alter flow 38 

pathways in ways that lead to anomalous results when these data are used in hydrodynamic 39 

modelling (Neal et al., 2009). Inundation simulations over regional and national scales usually 40 

only become feasible with non-building resolving grid resolutions because of the 41 

disproportionally increased computational cost of running fine grid models (roughly a factor 42 

of three to the grid change) and the limited availability of national DEMs with resolutions finer 43 

than 5 m. Even at city and sub-city scales, non-building resolving models may be preferable 44 

for ensemble and event set simulations (Mason et al., 2007; Schubert and Sanders, 2012). As 45 

a result, bare-earth DEMs (also known as Digital Terrain Models or DTMs) are essential for 46 

flood inundation simulations in urban areas and can also be beneficial to a broad range of other 47 

research fields. 48 

Unlike traditional, ground-based field survey, modern wide-area DEM collection 49 

techniques rely on remote sensing from ground vehicle, airborne and satellite platforms. All 50 

DEMs derived in this way include the heights of built-up area artefacts and vegetation to some 51 

extent and require significant post-processing to obtain a bare-earth DEM. Commonly used 52 

DEMs are collected using techniques including Interferometric Synthetic Aperture Radar (i.e., 53 

InSAR), optical stereo mapping and LIDAR. These different techniques, combined with the 54 

platforms and the specific instrument characteristics, offer DEMs with varied coverage, 55 

resolution, and accuracy (Lakshmi and Yarrakula, 2018; Zaidi et al., 2018). For example, 56 

spaceborne and globally available InSAR DEMs offer wide coverage, but they are constrained 57 

by the geometry of the interferometric baseline and the temporal sampling of the spaceborne 58 

platform and InSAR technique. The derived DEMs therefore have limited horizontal resolution 59 

and accuracy (SRTM at ~30 m spatial resolution has reported mean absolute vertical error of 60 

6 m, TanDEM-X at ~12 m spatial resolution has 90% linear error (i.e., LE90) in the vertical of 61 

around 2 m) (Rodriguez et al., 2006; Wessel et al., 2018). Such vertical errors are significant 62 

compared to the amplitude of most river flood waves, which typically range from 1-2 m up to 63 

~12 m for the Amazon River at Manaus in Brazil (Trigg et al., 2009; Bates et al., 2013). Whilst 64 
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global InSAR DEM errors can be reduced by intelligent processing (O'Loughlin et al., 2016; 65 

Yamazaki et al, 2017; Archer et al., 2018; Liu et al., 2021; Hawker et al., 2022) and by 66 

aggregating to coarser grid resolutions to mitigate random errors, they remain distinctly sub-67 

optimal for much flood inundation modelling (Schumann and Bates, 2018). Instead, inundation 68 

modelling is best conducted with DEMs generated using airborne LIDARs for most 69 

applications. These have high accuracy, with a typical vertical RMSE of 0.05–0.2 m (Faherty 70 

et al., 2020), and spatial resolution of 1-2 m such that they can identify the detailed structure 71 

of floodplain geomorphology, buildings, vegetation, and important linear features such as flood 72 

defenses and their crest elevations. However, due to their (relatively) high cost of collection, 73 

freely available LIDAR data only cover ~0.005% of the global land surface (Hawker et al., 74 

2018). DEMs derived from high-resolution stereo images, such as WorldView, have the 75 

potential to cover the land surface globally with spatial resolution (and also perhaps accuracy) 76 

comparable to LIDAR (Noh and Howat, 2015; Hu et al., 2016; Shean et al., 2016; DeWitt et 77 

al., 2017). Whilst stereo photogrammetry was previously used to develop the publicly available 78 

AW3D30 DEM (Takaku et al., 2016), the DEM developed at the original resolution of 5 m 79 

(AW3D30) has been kept as a commercial product. DEMs derived from other high-resolution 80 

photogrammetry satellites such as WorldView, GeoEye, IKONOS and Pleiades images are also 81 

only available with a cost that is prohibitive for most academic studies. However, the recent 82 

public release of an unprecedented resolution (2 m) satellite photogrammetry DEM, 83 

ArcticDEM (Porter et al., 2018, https://www.pgc.umn.edu/data/arcticdem/), has brought 84 

opportunities to explore the potential of such a product in flood inundation modelling. 85 

ArcticDEM covers areas above 60°N and was produced using the Surface Extraction with TIN-86 

based Search-space Minimization (SETSM) method from in-track and cross-track high-87 

resolution (~0.5 m) imagery acquired by the WorldView and GeoEye satellites. Using similar 88 

stereo-photogrammetry techniques, Google is also developing a very high-resolution DEM 89 

using multiple satellite sources (Ben-Haim et al., 2019). However, both products are DSMs 90 

and therefore contain surface artefacts which need to be removed to enable their use in a range 91 

of geophysics applications including wide-area flood inundation modelling. Previous research 92 

efforts to generate bare-earth terrain data from previously released global DEMs such as SRTM 93 

and TanDEM-X have relied heavily on auxiliary data to remove artefacts. For these next 94 

generation of high-resolution photogrammetry DEMs, auxiliary data at comparable resolution 95 

to the DEM does not yet exist and different approaches must be proposed.  96 

https://www.pgc.umn.edu/data/arcticdem/
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Considering the high resolution of these photogrammetry DEMs, the algorithms 97 

already developed to create bare-earth DEMs from LIDAR are likely to be applicable to this 98 

task. For example, DeWitt et al. (2017) have shown that applying LIDAR filtering procedures 99 

to a WorldView-generated DEM in densely vegetated areas can remove vegetation artefacts 100 

and achieve a bare-earth terrain representation with accuracy comparable to LIDAR. Numerous 101 

research studies have been conducted in the past decade to generate bare-earth DEMs (i.e., 102 

DTMs) from LIDAR point clouds (Sithole and Vosselman, 2004; Chen et al., 2007; Meng et 103 

al., 2009; Zhang et al., 2016). Filtering strategies were reviewed by Chen et al. (2017), and 104 

morphology-based filters were reported as robust and capable of removing non-ground objects. 105 

Notably, Zhang et al (2003) proposed a progressive morphological filter (PMF) for removing 106 

non-ground measurements from airborne LIDAR. The PMF method has subsequently 107 

advanced by enabling automatic extraction of ground points from LIDAR measurements with 108 

minimal human interaction and is now widely used as a base filter to classify ground and non-109 

ground points (Cui et al., 2013; Hui et al., 2016; Tan et al., 2018). Evolved from the 110 

morphological filter idea, Pingel et al (2013) developed the Simple Morphological Filter 111 

(SMRF) by designating the window size increasement strategy of the filter and employing a 112 

computationally inexpensive technique to interpolate the non-ground pixels. The SMRF was 113 

reportedly able to achieve low misclassification errors (2.97%) among 11 filter algorithms for 114 

LIDAR DEM samples with various configuration of slope and artefacts and to be robust to the 115 

algorithm parameterization (Zhang et al., 2016). However, despite previous research applying 116 

LIDAR filtering strategies to WorldView photogrammetric DEMs (Rokhmana and Sastra, 117 

2020), none of these filters has been tested on ArcticDEM and research about the performance 118 

of different filters for removing surface artefacts from high-resolution photogrammetric DSMs 119 

is also lacking, especially in urban areas. 120 

Given their unprecedented resolution and potential wide-area coverage, bare-earth 121 

photogrammetric DEMs can possibly be used to advance flood inundation simulation at 122 

regional scales and beyond. Although at this stage the access to these DEMs is restricted, they 123 

are very promising and could become an alternative to LIDAR data in the future as a result of 124 

their much lower cost. This could especially benefit developing countries where wide coverage 125 

of LIDAR data is likely to prove unaffordable for the foreseeable future. This research therefore 126 

aims to develop an approach to generate bare-earth DEMs from ArcticDEM and to examine 127 

the use of the data in flood inundation simulation. The proposed approach is expected to be 128 

generally applicable to other high-resolution (~m scale) photogrammetry DEMs as well as 129 
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ArcticDEM. We first compare the ability of progressive and simple morphological filters (PMF 130 

and SMRF) to generate a bare-earth DEM from ArcticDEM in the city of Helsinki, Finland by 131 

evaluating the filtered ArcticDEMs against a reference bare-earth LIDAR data set. Next, for 132 

the best performing filter a set of parameter combinations was applied to generate a realization 133 

ensemble of filtered ArcticDEM, whose error metrics were then analyzed against the parameter 134 

settings. We then use both the original ArcticDEM and filtered ArcticDEM realizations to 135 

simulate a pluvial flooding scenario for Helsinki and compare these results to an identical 136 

simulation using the LIDAR DTM. Pluvial flood simulation is a difficult for hydrodynamic 137 

models even with excellent terrain data and therefore poses a rigorous and diagnostic test.  138 

Lastly, limitations of the current research and future work that could further facilitate the use 139 

of a bare-earth version of ArcticDEM in flood inundation simulation is discussed. 140 

2 Data source and study site  141 

ArcticDEM is stereo-photogrammetry DSM generated from in-track and cross-track 142 

high-resolution (~0.5 m) imagery acquired by the DigitalGlobe constellation of optical imaging 143 

satellites. The majority of ArcticDEM data was generated from the panchromatic bands of the 144 

WorldView-1, WorldView-2, and WorldView-3 satellites. A small percentage of data was also 145 

sourced from the GeoEye-1 satellite sensor. ArcticDEM is available in two formats: strip and 146 

mosaic. Strip data is the output extracted by the TIN based Search-space Minimization 147 

algorithm (Noh and Howat, 2015) and preserves the original source material temporal 148 

resolution. Mosaic data is compiled from multiple strips that have been co-registered, blended, 149 

and feathered to reduce edge-matching artifacts. Due to the errors in the sensor model, the 150 

geolocation of the generated ArcticDEM has systematic offsets in the vertical and horizontal 151 

directions which are reported in the product’s meta-data. Offsets for the mosaic data are 152 

unknown so therefore the strip data set with the original horizontal resolution at 2 m (version 153 

3.0) was used as the baseline DEM in this paper. The offset values of each strip data were 154 

applied before generating the bare-earth ArcticDEM. 155 

The city of Helsinki was selected as a study site for the following reasons: 1) both 156 

ArcticDEM and a high accuracy LIDAR DTM are available at this site; and 2) it is a typical 157 

urban environment with sparse to medium density buildings mixed with large patches of 158 

vegetation; 3) as the most populated city above 60ºN, the Helsinki metropolitan areas is very 159 

vulnerable to flooding. The LIDAR DTM has a spatial resolution of 2 m and a reported vertical 160 

error of 0.3 m. To standardize the vertical reference system, the quasigeoid height was 161 
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subtracted from ArcticDEM, converting its reference system from WGS84 ellipsoid height to 162 

the Finland National Vertical Reference-N2000 that is used for the LIDAR data. This 163 

conversion has an accuracy of 0.02 m. 164 

Within the city of Helsinki two building-dominated samples (S1 and S2, both covering 165 

areas of ~0.7 km2) were chosen to compare the effectiveness of two selected morphological 166 

filters: the PMF and the SMRF. Sample 1 is characterized by buildings with floor areas up to 167 

10000 m2, whereas smaller buildings (floor areas of ~500 m2) are distributed throughout 168 

Sample 2. A larger third sample (S3, which includes both S1 and S2) was selected to conduct 169 

the bare-earth DEM generation and to assess the filter’s performance in a complex urban 170 

environment. Flood inundation modelling of the resulting DEM data was also performed over 171 

sample area S3 (Fig. 1). The ArcticDEM strips data derived from WorldView-1 images 172 

acquired on the 14th of March 2013 (WV01_20130314) and on the 16th of February 2015 173 

(WV01_20150216) were found to cover most areas of S3 (92% and 99%, respectively). 174 

Considering the possible bias caused by forest and snow, the ArcticDEM strips with source 175 

images acquired during leaf-off seasons and under snow-free conditions are preferable. The 176 

Finish forests are reported to be mostly evergreen with ~10% of deciduous trees (Majasalmi 177 

and Rautiainen, 2021). The source images of both strips were acquired during leaf-off 178 

conditions. The snow situation on the image acquisition dates was analyzed using the MODIS 179 

NDSI_Snow Cover data (Hall et al., 2016). The acquisition date of the strip WV01_20130314 180 

was found to be much less covered by snow compared to that of the WV01_20150216 strip. 181 

Therefore, the strip WV01_20130314 was used as the main data source and areas within S3 182 

which this strip does not cover or where voids were present were filled with data from the strip 183 

WV01_20150216. These mosaiced strip data are shown in Fig. 1, with the extent of the two 184 

strips displayed. The ArcticDEM for all samples in this paper refers to this mosaiced dataset. 185 

Land use and land cover (LULC) for Helsinki was acquired from the CORINE Urban Atlas 186 

2012 database (https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012). This LULC 187 

features 22 land cover types in Helsinki. In this paper, features were merged to four categories: 188 

urban, forest, open land, and water. Details of this reclassification of the LULC data can be 189 

found in Supplement Table S1.  190 

https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
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 191 

Figure 1. Locations of the three studied samples (S1, S2 and S3) within the city of Helsinki are shown at a). 192 

Elevation values of the ArcticDEM at S1, S2 (overlain with transects crossing), and at S3 are shown in b), c), d) 193 

respectively. Locations of coastal areas, lakes and rivers are also labelled. The ArcticDEM strip data is acquired 194 

from the Polar Geospatial Center at https://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/2m/. The 195 

water body outlines were acquired from the Finnish Environment Institute at 196 

https://www.syke.fi/enUS/Open_information/Spatial_datasets/Downloadable_spatial_dataset. 197 

3 Methods 198 

3.1 Morphological filters 199 

The generation of bare-earth ArcticDEM (our version of ArcticDEM with artefacts 200 

removed) was conducted by employing two different morphological filters: PMF and SMRF 201 

separately. They are considered because of their reported effectiveness in filtering LIDAR 202 

point clouds, simple conceptualized parameters, and the fact that they are open access.  203 

The PMF was designed to remove non-ground measurements (buildings, vegetation, 204 

vehicles) from airborne LIDAR data (Zhang et al., 2003). It consists of an object detection and 205 

an interpolation process which employs non-object pixel elevations to generate the values of 206 

the object pixels. The PMF provides an advance on the morphological filter algorithm (Kilian 207 

https://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/2m/
https://www.syke.fi/enUS/Open_information/Spatial_datasets/Downloadable_spatial_dataset
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et al., 1996) by enabling a gradually increasing window width to detect non-ground objects 208 

regardless of their size. In addition, an elevation difference threshold based on elevation 209 

variations of the terrain, buildings, and trees was introduced to preserve the terrain. The 210 

maximum window size and elevation variation threshold parameters control the filtering 211 

process (more details can be found at Zhang et al., 2003). 212 

More recently, a SMRF was proposed by Pingel et al (2013), also with the aim of 213 

removing non-ground measurements from airborne LIDAR data. While the SMRF follows a 214 

similar two-step process to the PMF, the approaches taken to detect objects and interpolate 215 

elevation values of objects are different. SMRF adopts a linearly increasing window (as 216 

opposed to the exponential increase of PMF) and simple slope thresholding, along with a novel 217 

image inpainting technique. Like the PMF, the maximum window size (Wmax) and slope 218 

threshold (S) (equivalent to the elevation variation threshold of PMF) parameters control the 219 

performance of the filter (Fig. 2). The core of the filter is the object detection where 220 

morphological opening is applied to the original surface based on the current window size (Wi) 221 

increasing from one pixel, by one pixel, to the maximum window size (in distance units, meters 222 

in this research). For each window size within the range, the difference between the original 223 

surface (Wi=1) or the surface from the last step (Wi>1) and the morphologically opened surface 224 

is calculated and this difference (for example, d0, d1, d2 in Figure 2) is compared with the 225 

current difference threshold (Di) (defined as the slope threshold S multiplied by the current 226 

window size Wi) to determine whether the object flag of the pixel should be accepted or 227 

rejected. When the difference is smaller than the current difference threshold (Di), the object 228 

flag of these pixels is rejected (Fig.2 Ⅲ) and the elevated areas are retained. Otherwise, pixels 229 

are flagged as objects and then interpolated (Fig.2 Ⅰ, Ⅱ). When the maximum window size is 230 

smaller than the patch size of the elevated areas (for example, l3), the morphological opening 231 

will be unsuccessful, and elevations in that patch area remain almost identical to the original 232 

elevation (Fig.2 Ⅳ).  233 
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 234 

Figure 2. Illustration of the SMRF filtering process in a simplified urban environment with artefacts (Ⅰ, Ⅳ) and 235 

hills (Ⅱ, Ⅲ). The symbols are W: window size, D: difference threshold, C: cell size (C equals 2 m in this case), 236 

S: slope threshold, l: patch size of the elevated areas. 237 

3.2 Optimal filter selection and error evaluation of the ArcticDEM-SMRF realizations 238 

At Sample S1 and S2, combinations of a range of window size (i.e., maximum window 239 

size) and slope threshold parameters were tested for both the PMF and SMRF filters (Table 1). 240 

The optimal filter was identified as the resultant DEMs with the smallest error (Root Mean 241 

Square Error, i.e., RMSE) filtered using PMF and SMRF respectively (details are presented in 242 

Sect. 4.1). Then, the best performing filter (SMRF) was applied to Sample S3 with a range of 243 

window size and slope threshold parameters (Table 1), which generated a total of 234 filtered 244 

ArcticDEM realizations, hereafter called ArcticDEM-SMRF. Using the LIDAR DTM as the 245 

reference, the RMSE and Mean error of the ArcticDEM-SMRF realizations as well as the 246 

reduction of RMSE over the original ArcticDEM-SMRF was calculated at pixel level (2 m) 247 

(Eq. (1)-(3) and Text S1 in the Supplement). Due to other possible error sources, like shadow 248 

effects in the photogrammetry DEM, the calculations excluded values outside the 2.5th and 249 

97.5th percentile as outliers. The ArcticDEM-SMRF with the lowest RMSE for all land areas 250 

among the realizations is termed the optimal ArcticDEM-SMRF. The three error metrics of the 251 

ArcticDEM-SMRF realizations were analyzed against the window size and the slope threshold 252 

parameter to examine the effectiveness of the SMRF filter at removing artefacts. As the 253 

artefacts of S3 are a mixture of buildings and vegetation, the filter effectiveness to these 254 

parameters was analyzed separately for all land areas, only urban areas, and only forest areas.  255 

 256 

 257 

 258 
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Table 1. Key parameter settings of the morphological filters tested in the three samples. 259 

Filter Sample 

Key Parameters 

Window size (m) Slope threshold 

range interval range interval 

PMF 
S1 10-66 4 0.1-0.3 0.2 

S2 10-66  4 0.1-0.3 - 

SMRF 

S1 10-50 2 0.01-0.1 0.005 

S2 10-50 2 0.01-0.1 0.005 

S3 10-180 10 0.03-0.15 0.01 

* The unit of the slope threshold values shown here is radian for PMF, percent of slope/100 for SMRF. 260 

3.3 Flood inundation evaluation of the ArcticDEM-SMRF realizations 261 

For the 192 km2 area covered by Sample 3 simple pluvial models were built at 10 m 262 

spatial resolution instead of the original 2 m of the ArcticDEM due to computational cost 263 

considerations. These models use DEM inputs from the LIDAR DTM, the original ArcticDEM, 264 

and the ArcticDEM-SMRF realizations which were filtered with various parameter 265 

combinations of the SMRF filter, respectively. The LIDAR DTM simulation was used as the 266 

benchmark. For this computation the hydrodynamic model LISFLOOD-FP was used (Bates et 267 

al., 2010). The model solves the local inertial form of the shallow water equations in two 268 

dimensions across the model domain. For pluvial flood modelling, the model takes the terrain 269 

elevation and rainfall data as inputs, and uses a raster-on-grid approach to calculates the 270 

velocity, water depth, and inundation (Bates et al., 2021). The input DEMs were aggregated to 271 

10 m by averaging before being used in the flood simulation. For the ArcticDEM and 272 

ArcticDEM-SMRF models, elevation values in coastal areas (covered by water) were replaced 273 

with the LIDAR DTM values. This was done to remove the impact of the DEM error in non-274 

land areas on the simulation. Rainfall data were acquired from the Climate Guide of Finland at 275 

https://www.klimatguiden.fi/articles/database-of-design-storms-in-finland. It provides the 276 

database of design storms with the real momentary variations in intensity for locations across 277 

Finland. This database was generated based on radar measurements and derivations. A 278 

designed rainfall scenario with duration of 3 h and return period of 500 years was used in the 279 

simulation. To minimize the simulation time a short duration scenario is preferred, which led 280 

to our choice of the 3 h duration. The relatively low occurring frequency (500 years return 281 

period) was then decided to avoid flood inundation being overly sensitive to the topography 282 

which would happen when the inundation is extremely shallow. Under this duration and return 283 

period conditions, the precipitation data at the nearest station (60.04ºN, 102.54ºE) to the city 284 

https://www.klimatguiden.fi/articles/database-of-design-storms-in-finland
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of Helsinki was used. The precipitation is 102.54 mm in total with peak intensity at 182.4 285 

mm/h.  286 

The simulation results were compared to the LIDAR DTM benchmark in terms of the 287 

simulated flood extent using the Critical Success Index (CSI) score, the Hit Rate, and the False 288 

Alarm Ratio (FAR) defined by Eq. (1) - (3) (Wing at al., 2017), and the water depth errors 289 

using the RMSE and the Mean error, Eq. (4) and (5). A wet cell is defined as one with simulated 290 

water depth exceeding 0.1 m in this paper. As is typical in often the case in pluvial simulations, 291 

small isolated wet areas (where the number of connected wet cells was less than 15) were 292 

excluded from both the benchmark model (LIDAR) and the evaluation target models 293 

(ArcticDEM and ArcticDEM-SMRF) before calculating the metrics. First, all five metrics 294 

using the set of ArcticDEM-SMRF DEMs derived using different filter parameters were 295 

compared with the flooding performance of the original ArcticDEM. Then, the relationship 296 

between the five flooding metrics and the RMSE and Mean error of the DEM of the 297 

ArcticDEM-SMRF realizations (aggregated at 10 m) was depicted for all land areas, urban and 298 

forest areas individually. Furthermore, the flooding performance simulated by the optimal 299 

ArcticDEM-SMRF was evaluated spatially. 300 

𝐶𝑆𝐼 =
𝐴

𝐴+𝐵+𝐶
 (1) 301 

𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =  100% ×
𝐴

𝐴+𝐶
 (2) 302 

𝐹𝐴𝑅 =  100% ×
𝐵

𝐴+𝐵
 (3) 303 

𝑅𝑀𝑆𝐸𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑝𝑡ℎ = √∑ (𝑊𝐷𝑖,𝑐,𝐷𝐸𝑀−𝑊𝐷𝑖,𝑐,𝐿𝐼𝐷𝐴𝑅)2𝑖=𝑛
𝑖=1

𝑛
 (4) 304 

𝑀𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑝𝑡ℎ =
∑ (𝑊𝐷𝑖,𝑐,𝐷𝐸𝑀−𝑊𝐷𝑖,𝑐,𝐿𝐼𝐷𝐴𝑅)𝑖=𝑛

𝑖=1

𝑛
 (5) 305 

*A is the number of pixels which are wet in both the DEM and the LIDAR simulation, i.e., where the two models 306 

agree; B is the number of pixels which are wet in the DEM simulation but not the LIDAR simulation, i.e., 307 

overestimation; C is the number of pixels which are wet in the LIDAR simulation but not the DEM simulation, 308 

i.e., underestimation.  309 

*𝑊𝐷𝑖,𝐷𝐸𝑀 is the water depth at pixel i simulated using the DEM (ArcticDEM-SMRFs or the original ArcticDEM 310 

depending on the calculation target), and n is the number of the wet cells (wet in either the LIDAR or the DEM 311 

simulation) within category C. Category C is defined by the land use and land cover, and they can be all land 312 

areas, urban, forest. For example, the water depth RMSE of ArcticDEM-SMRF in urban areas are calculated based 313 

on the ArcticDEM-SMRF pixels within urban areas.  314 
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4 Results 315 

 4.1 Optimal filter selection 316 

The effect of using the PMF and SMRF filters to remove artefacts from the ArcticDEM 317 

in the two building-dominated samples S1 and S2 is evaluated by plotting the error distribution 318 

and transect profiles. The filtered ArcticDEM with the smallest RMSE using each filter’s 319 

optimum parameters is shown in Fig. 3. The optimal PMF parameters for S1 and S2 are window 320 

size = 42 m, 30 m, slope threshold = 0.3 (radian) for both, and the optimal SMRF parameters 321 

for S1 and S2 are window size = 32 m, 14 m, slope threshold = 0.08, 0.05 (or 8%, 5% of slope), 322 

respectively. The calculation of error figures was conducted at 2 m pixel scale. 323 

 324 

 325 

Figure 3. Error histograms of ArcticDEM, ArcticDEM with PMF applied (ArcticDEM-PMF) and ArcticDEM 326 

with SMRF applied (ArcticDEM-SMRF) for sample S1, a) and S2, b). Profile of ArcticDEM, ArcticDEM-PMF, 327 

ArcticDEM-SMRF, and LIDAR DTM for transects through S1, c) and S2, d). The location of transects is shown 328 

in Fig. 1b and c.  329 

The error histograms show that both PMF and SMRF can effectively remove much of 330 

the bias caused by artefacts in ArcticDEM, with the resulting RMSE falling below 1 m in all 331 

cases. The count of pixels with error <1 m increased to 91% in both samples. The SMRF filter 332 

achieved a lower RMSE (0.48 m and 0.43 m for S1 and S2, respectively) compared to PMF 333 
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(0.92 m and 0.48 m) (Fig. 3a and b). The Mean error of the filtered DEMs for S1 and S2 also 334 

evidences that SMRF has an advantage over PMF.  335 

The DEM profile through S2 shows that SMRF and PMF work similarly well, while 336 

the profile through S1 shows that SMRF can preserve more terrain details than PMF in 337 

moderate hillslope areas (Fig. 3c, e.g., distance 0.75-1.0 km). However, both filters incorrectly 338 

identified the steepest areas of S1 as artefacts, especially PMF (Fig. 3c distance 1.0-1.25 km). 339 

Considering both the histogram and profile results, SMRF was selected as the optimal filter to 340 

remove the artefacts from ArcticDEM for this site. 341 

The sensitivity of the slope threshold and the window size parameter to the error metrics 342 

for ArcticDEM-SMRF at sample S1 and S2 can be found in the Supplement Figure S1 and 343 

Text S2. 344 

4.2 Bare-earth DEM generation and its error evaluation 345 

In order to understand the effectiveness of the SMRF in a more complex urban 346 

environment the error metrics RMSE, RMSE reduction percentage and Mean error of the 347 

ArcticDEM-SMRF realizations were computed for the larger sample S3. These metrics were 348 

analyzed against the window size and slope threshold parameter of the SMRF filter to evaluate 349 

the sensitivity of ArcticDEM-SMRF error to changes in these values. As the surface artefact 350 

bias in S3 is mainly caused by buildings and forests, the analysis was conducted for all land 351 

areas as well as for urban areas and forest areas separately (Fig. 4). 352 
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 353 

Figure 4. Surface plots of the slope threshold and the window size parameters of the SMRF filter against the 354 

RMSE, the RMSE reduction percentage and Mean error of the filtered DEM-ArcticDEM-SMRF for sample S3. 355 

The location of the smallest values of the RMSE (which is the same as the location of the greatest values of the 356 

RMSE reduction) are marked as ×, with the values displayed. The values of the Mean error at the above location 357 

are displayed and marked as +. Parameter details can be found in Table 1. 358 

For area S3, the smallest RMSE of the ArcticDEM-SMRF realization is 1.02 m (i.e., 359 

the optimal ArcticDEM-SMRF) within all land areas, 0.84 m in urban areas and 2.1 m in forest 360 

areas. These values represent 70%, 76% and 59% reductions of the ArcticDEM error 361 

respectively. Although the RMSE of the optimal ArcticDEM-SMRF is greater than that 362 

computed for samples S1 and S2 (Fig. 3a, b), the magnitude of the error reduction indicates 363 
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that the SMRF is still very effective at removing surface artefacts from ArcticDEM for this 364 

larger sample. The greatest reduction was achieved with a slope threshold of 0.07 combined 365 

with a window size of 30 m for all land areas or 40 m for forest areas, and a slope threshold of 366 

0.06 with a window size of 20 m for urban areas. These optimum parameters are almost the 367 

same for different land covers, suggesting that the parameter choice is robust for various land-368 

surface characteristics. Moreover, the error removal effectiveness does not significantly drop 369 

when parameters slightly deviate from the optimum location that more than 40% of the 234 370 

parameter combinations can reduce the RMSE by greater than a half, suggesting the robustness 371 

of parameters. The robustness of the filter across different land covers and a range of 372 

parameters is desirable for application across large domains as this reduces the need for prior 373 

knowledge of the study site and simplifies the parameter setting. 374 

At this site, the most effective range of slope threshold is 0.04-0.1, while the window 375 

size is from 20 m to 30 m for all land areas, from 20 m to 40 m for urban areas, and from 30 m 376 

to 60 m for forest areas. From the parameter selection perspective within the effective range, a 377 

smaller window size is more robust and is therefore preferred because the choice of the 378 

corresponding slope threshold is broader compared with a larger window size. When the 379 

window size is smaller than 20 m, the error of the filtered DEM becomes almost independent 380 

from the slope threshold parameter choice. With some parameter combinations the SMRF 381 

becomes less effective at removing artefacts or introduces negative errors, which is a 382 

combination of large slope threshold (> 0.1) and large window size (> 60 m) or when the slope 383 

threshold is smaller than 0.04 with window size larger than 20 m. Additionally, when the 384 

window size parameter is above 60 m, the Mean error of the filtered DEM becomes more 385 

sensitive to the slope threshold, especially with slope threshold smaller than 0.06.  386 
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 387 

Figure 5. a) Difference maps between the original ArcticDEM, the optimal ArcticDEM-SMRF (with slope 388 

threshold = 0.07, window size = 30 m as the SMRF parameters) and the LIDAR DTM at 2 m. b) The error 389 

histograms of the original ArcticDEM, the optimal ArcticDEM-SMRF, where the calculation was conducted at 390 

2 m pixel level. In the bottom map of a), example locations of four features that relate to the residual errors of 391 

the ArcticDEM-SMRF are labelled. The aerial image of these locations is shown in c) where areas with errors 392 

exceeding 4 m were marked (> +4 m as red polygons and < -4 m as green polygons, polygons are in 50% 393 

transparency). The aerial image is orthophotograph of Helsinki with a horizontal resolution at 8 cm, acquired 394 

during growing season of 2017, which was accessed from Helsinki Region Infoshare at 395 

https://hri.fi/data/en_GB/dataset/helsingin-ortoilmakuvat. 396 

The error distribution of the optimal ArcticDEM-SMRF was also analyzed spatially 397 

and statistically (Fig. 5). The error maps before and after applying the filter show that the SMRF 398 

method largely reduces the errors in ArcticDEM, especially in urban areas (Fig. 5a, b). 399 

Although some residual errors (> 4 m) are present in the optimal ArcticDEM-SMRF, they 400 

comprise a very small percentage (~5%) of the whole area (Fig. 5b). Errors in dense forest 401 

areas and for closely spaced buildings with large floor areas typically present as the largest 402 

positive residual errors as shown in Fig. 5c. Large negative errors occur in hillslope areas 403 

(usually slope >10º) and in some areas where above-ground traffic links such as junctions, 404 

viaducts, or overpasses are present (Fig. 5c).  405 

4.3 Flood inundation evaluation of the ArcticDEM-SMRF realizations 406 

The flooding evaluation metrics simulated using the original ArcticDEM and the 407 

ArcticDEM-SMRF realizations for all the 234 parameter combinations are plotted against the 408 

https://hri.fi/data/en_GB/dataset/helsingin-ortoilmakuvat
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DEM error metrics (RMSE, Mean error calculated at 10 m grid which is the same as the flood 409 

models) for each DEM realization in Fig. 6. This analysis was conducted for all land areas, 410 

urban and forest areas separately. 411 

 412 

Figure 6. Surface plot of the CSI score, Hit Rate, FAR, the water depth RMSE and Mean error (ME) simulated 413 

using the ArcticDEM-SMRF realizations (ArcticDEM filtered using the 234 SMRF parameter combinations) at 414 
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sample S3 plotted against the RMSE and the Mean error of each realization member. The location of the highest 415 

CSI and Hit Rate, the smallest FAR, RMSE and the smallest absolute value of mean water depth error are 416 

marked as red crosses, with the values displayed. The location of the lowest RMSE of the ArcticDEM-SMRF 417 

are marked as triangle, with values displayed (values are not shown if both the location and value are close 418 

enough as the best flood inundation metric value). In addition, the RMSE, Mean error of the original 419 

ArcticDEM are located and marked as blue crosses in each panel with the five metrics value of the original 420 

ArcticDEM simulation displayed. The locations of ArcticDEM-SMRF filtered with window size = 10 m are 421 

marked with symbols in cyan color. 422 

As a result of the reduced RMSE and Mean error over the original ArcticDEM, the 423 

flooding performance of ArcticDEM-SMRF improved for almost all the parameter 424 

combinations. For the whole S3 area, the CSI score increased by 0.19, achieving a maximum 425 

value of 0.56 against the benchmark LIDAR simulation. CSI increased by 0.17 in urban areas 426 

(to 0.49), and by a slightly smaller amount of 0.13 in forest areas (to 0.49). It should be noted 427 

that although residual errors of ArcticDEM-SMRF in the defined urban areas are smaller than 428 

in other land covers, the flooding extent prediction skill does not exceed a CSI of 0.5. This is 429 

likely because the flooding extent for a pluvial simulation becomes very sensitive to the small-430 

scale errors of the DEM in flat areas where water depths are typically quite shallow. In this 431 

sense, simulation of pluvial flooding is a rigorous test of DEM quality and the results achieved 432 

here using ArcticDEM-SMRF should be interpreted with this in mind. It is also important to 433 

remember that the LIDAR data, whilst good, is not truth, and has a reported vertical error of 434 

0.3 m.  LIDAR noise and systematic error also contribute to some of the difference between 435 

the flooding performance of models using the LIDAR and ArcticDEM-SMRF data.  436 

Simulations of fluvial flooding, where depths are typically greater, would likely score higher 437 

on the spatial extent performance metrics. The Hit Rate was improved by an even larger 438 

amount: 24, 24 and 18 percentage points in all land areas, urban areas, and forest areas, 439 

respectively. The FAR was reduced by 5 percentage points in all land and urban areas, 3 440 

percentage points in forest areas. The greater improvement in urban areas provides evidence 441 

that the filter is especially effective at improving the flood simulation in urban areas, 442 

considering that flooding in urban areas is usually more fragmented and thus is more difficult 443 

to predict than in forest areas. With the ArcticDEM-SMRF, the simulated water depth error 444 

(RMSE) was reduced by up to 0.11 m (to 0.3 m) for all land areas and urban areas compared 445 

to the original ArcticDEM, and this reduction was slightly smaller (0.06 m) in forest areas. 446 

Although the water depth is still underestimated, the ArcticDEM-SMRF simulation reduced 447 

the average error by 0.12 - 0.17 m compared to that of the original ArcticDEM. Unlike the 448 

flooding extent performance comparison between urban and forest areas, the water depth error 449 
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in urban areas is always smaller than in forest areas in both the simulation with the original 450 

ArcticDEM and the ArcticDEM-SMRF realizations. This is a result of the smaller DEM error 451 

in urban areas. Thus, it can be inferred that the water depth error is more sensitively impacted 452 

by the error of the DEM than the flood extent, at least in the case of these pluvial flooding 453 

simulations.  454 

Unsurprisingly, the ArcticDEM-SMRF with the smallest vertical elevation error 455 

(optimum ArcticDEM-SMRF) achieved the best flooding performance scores for all land areas 456 

(marked as triangle in Fig. 6).  However, there are two other cases where equally good flooding 457 

performance can be simulated using ArcticDEM-SMRF with larger error than the optimum 458 

ArcticDEM-SMRF. The first case occurs when the DEM is over-corrected by the filter, i.e., 459 

where negative errors are present in the filtered DEM (appears as stripe moving from the 460 

optimal location downwards with increased RMSE and negative mean error). In this case, some 461 

steep areas are identified as objects and are flattened incorrectly. As these are not prone to be 462 

flooded, the flooding performance is barely impacted. The second case occurs when the DEM 463 

preserves the most terrain details. For all land and urban areas, these areas appear below the 464 

upper center of surface plots and are capped by the ArcticDEM-SMRF filtered with the window 465 

size of 10 m (symbols marked in cyan color Fig. 6). This implies that for flood simulation the 466 

filtering strategy can perform equally well by aiming to achieve the lowest DEM error, or by 467 

removing the artefacts as much as possible (over-filtering), or by preserving the terrain details 468 

(under-filtering) as much as possible.  469 

The spatial distribution of the flooding extent and water depth error simulated using the 470 

optimal ArcticDEM-SMRF is shown in Fig. 7. 471 
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 472 

Figure 7. Inundation extent simulated using the optimal ArcticDEM-SMRF parameters (slope threshold = 0.07, 473 

window size = 30 m) at 10 m, where inundation areas that agree with, overpredict and underpredict the extent of 474 

the LIDAR DTM 10 m simulation are shown at a). The water depth difference between the ArcticDEM-SMRF 475 

and LIDAR DTM simulations for all wet cells is shown at c). Areas with significant disagreement are marked 476 

by rectangles denoted A, B, C, D with the zoomed in maps displayed at b) and d). The land cover of A and C is 477 

building-dominated, and forest-dominated at B and D. 478 

For a 10 m spatial resolution simulation, ArcticDEM-SMRF can capture the major 479 

flooded areas correctly with underestimation mainly around the edge of the agreed wet cells 480 

and with overestimation presenting as scattered, small patches. Total underestimated area was 481 

about 1.8 times greater than that of overestimated areas. Underestimation disproportionately 482 

occurred along traffic links and along the edge of streams, in lake areas as well as in some of 483 

the forest areas with significant residual errors (Fig. 7a).  484 

Unlike the general underestimation for the domain as a whole, both underestimation 485 

and overestimation were present in urban areas and the number of pixels that are under- and 486 

over-estimated is similar. These errors appear as disconnected patches with smaller size and 487 

their spatial distribution is more even compared to errors in forest areas (Fig. 7b-A, C in 488 

contrast to Fig. 7b-B, D).  489 
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The greatest water depth error is present in forest areas (Fig. 7d-B, D) where the 490 

ArcticDEM-SMRF simulation either fails to inundate these areas (underestimation) or 491 

generates much shallower water depths compared to that simulated using the LIDAR DTM. In 492 

urban areas, the water depth error simulated using the ArcticDEM-SMRF is relatively small, 493 

varying between -0.5 m and 0.5 m (Fig. 7d-A, C).  494 

5 Discussion 495 

5.1 The selection ArcticDEM strips 496 

The error of different ArcticDEM strips covering the same areas could vary 497 

significantly. In this study site, we found that the main difference in error occurs in forest areas. 498 

Within a selected 11 km2 forest area the error of the strip acquired on the 16th of February 2015 499 

is 12.2 m, while within the same area that of the strip acquired on the 14th of March 2013 was 500 

much smaller (6.66 m). From air photos, no noticeable forest coverage change was found 501 

within the selected areas between the acquisition years of the two strips. Therefore, the 502 

difference between strips could be caused by the leaf-on/off differences or the snow situation. 503 

In this case, since both acquisition dates are during leaf-off season it is likely a result of 504 

differences in snow cover. Even for the building dominated samples, the error at S1 and S2 of 505 

the former strip (acquired on the 16th of February 2015) is 0.31 m, and 0.88 m larger than the 506 

latter strip. Thus, we suggest that for general bare-earth generation from ArcticDEM, different 507 

strips should consider the forest characteristics (evergreen or deciduous) and the weather 508 

conditions (snow free or not) on the data acquisition date in overlapping areas. Strip data in 509 

leaf-off and snow-free conditions will represent more of the ground elevation compared to data 510 

collected in leaf-on or snow-covered conditions. Also, snow-free condition avoids the feature 511 

matching difficulty between stereo images in the DEM generation process, which happens 512 

often because the presence of snow results in low-contrast and repetitive image textures (Noh 513 

and Howat, 2015). The snow condition on the strip data acquisition date can be checked using 514 

the daily MODIS snow index product (Hall et al., 2016).  515 

5.2 SMRF filter parameters and transferability 516 

A direct application of the SMRF filter proved to be effective at removing most of the 517 

surface artefacts at this study site, especially for buildings. It means that this LIDAR processing 518 

tool can be employed without modification in generating a bare-earth ArcticDEM in urban 519 

areas. The SMRF is robust to its window size and slope threshold parameter choices with 520 
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respect to the error reduction of the filtered ArcticDEM. The robustness of the window size 521 

and slope threshold parameter in terms of error reduction was also demonstrated by Pingel et 522 

al (2013) who originally proposed the SMRF filter. In theory, to remove all objects in the target 523 

areas the window size should correspond to the size of the largest object. However, this is only 524 

true for a hypothesized entirely flat area. Because in a real topography over a large domain 525 

there are always hilly areas or terrain variations, applying such a window size will identify 526 

some hilly areas as objects incorrectly and flatten them, resulting in negative errors in these 527 

areas. Therefore, a smaller window size has to be chosen instead. This smaller window size 528 

will inevitably miss out some of the larger objects . Similarly, the choice of the slope threshold 529 

has to consider preserving hilly areas (using a large slope threshold) and removing artefacts 530 

(using a small slope threshold). This inherent feature of SMRF means the choice of the window 531 

size and slope threshold needs to be balanced, which also means adjusting the window size and 532 

slope threshold to different ends in order to achieve good results. The key to applying the filter 533 

is deciding the most effective range of the parameters. In this paper, we found a range of 0.04-534 

0.1 of the slope thresholds has overall good performance of filtering the ArcticDEM, with 0.07 535 

generating the bare-earth ArcticDEM with the lowest error. The optimal slope threshold of 0.07 536 

(or 7%) is roughly the mean slope in our study site (0.077 or 7.7%). The 30 m optimal window 537 

size corresponds to an average building density of 0.22 floor area ratio (within a 250 m grid 538 

cell) in the city of Helsinki (https://hri.fi/data/en_GB/dataset/rakennustietoruudukko). Because 539 

we lack spatially distributed footprint data for the artefacts, we could not further quantify this 540 

relationship. The different optimum window size between urban and forest areas shows that 541 

there is a positive relationship between the optimum window size and the size of the artefacts. 542 

We suggest a slope threshold around the mean slope of the study site and a window size of 20-543 

60 m for general application in typical urban areas and adjusting these values up and down 544 

within this range will likely find the optimum parameter quickly in most locations. Within the 545 

reasonable range, a smaller window size proved to be more robust in that it will be less sensitive 546 

to the choice of the slope threshold.  547 

When benchmarking to a LIDAR DTM simulation, similarly good flood simulation 548 

performance for the filtered DEMs is found to be achieved by the ArcticDEM-SMRF with 549 

smallest error, or negatively biased ArcticDEM-SMRF or positively biased ArcticDEM-SMRF 550 

preserving the most terrain details. Whilst the SMRF filter tends to produce negative errors on 551 

hillslopes, these areas are not flooding-prone so the flooding inundation is not significantly 552 

affected. The error sensitivity of the ArcticDEM-SMRF realizations to the SMRF parameters 553 

https://hri.fi/data/en_GB/dataset/rakennustietoruudukko
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at different slope areas is included in the Supplement as Figure S2 and Text S3. Applying the 554 

SMRF filter is a trade-off between the removal of artefact errors and the loss of terrain details. 555 

When the SMRF is applied with a small window size (such as 10 m), most of the terrain details 556 

can be maintained in the ArcticDEM-SMRF while the residual error of the DEM can be large 557 

as a result of the residual artefacts with large patch sizes. Since these preserved terrain details 558 

might be important in the inundation simulation, the flood performance could be better in some 559 

places than when more of the residual errors are removed at the cost of losing these details. 560 

However, we made a further comparison of the water surface elevation error and found that 561 

these positive biased ArcticDEM-SMRF do not simulate the water surface elevation as well as 562 

the other two cases. Therefore, when choosing the parameter of the SMRF, the mean slope of 563 

the target area as the slope threshold and window size around 30 m should be tested first and 564 

combinations towards the strict end (slope threshold smaller than the mean slope) of removing 565 

artefacts should take priority (as opposed to the loose end, i.e., slope threshold large than the 566 

mean slope with large window size) for generating bare-earth ArcticDEM for flood inundation 567 

modelling purposes. 568 

5.3 Limitations 569 

Although the SMRF filter successfully removed most of the ArcticDEM errors caused 570 

by artefacts, there is a small percentage of artefact errors (~5%) that remains in dense built-up 571 

areas and in large vegetation patches. Pixels in these areas are not entirely flagged as objects 572 

with a window size of 30 m and some pixels are instead wrongly designated as ‘ground’ values 573 

in the interpolation. Even though with an enlarged window size the remaining artefact errors 574 

could be removed by the SMRF, the interpolation over large patch areas would potentially be 575 

unsuccessful due to a lack of ground elevations within these zones. Additional data or a tailored 576 

approach is required to achieve the desired result in areas with large patch sizes. For building 577 

artefacts, the OpenStreetMap building footprint data could be helpful to predefine the areas of 578 

objects. The ICESat-2 terrain elevation might be useful to provide additional ground elevations 579 

in forest areas with large patch sizes (Neuenschwander et al., 2020; Tian and Shan, 2021). 580 

With this filter, artefacts with small size are usually identified before the window size 581 

reaches the maximum and the subsequent interpolation is also more successful. This makes the 582 

SMRF filter more effective at removing building artefacts than vegetation due to the general 583 

smaller size of building patches. However, some desired features that present similar elevated 584 

characters to building artefacts (such as traffic junctions or levees) might be removed by the 585 
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filter unfavorably, and negative errors are shown in these areas. It becomes very tricky to 586 

preserve these feature heights by any automatic filtering approaches without the location 587 

information of the features. With more sophisticated method, likely with some ancillary data, 588 

this could be possible (Wing et al., 2019). For hilly areas, some of the natural terrain might be 589 

identified as artefacts by the SMRF incorrectly and the subsequent interpolation can cause the 590 

loss of terrain details. The error histograms and analysis of the ArcticDEM-SMRF generated 591 

with different window size parameters at buildings and forest with large patch size, hillslope, 592 

and roads examples can be found in Figure S3 and Text S4 in the Supplement. Thus, in terms 593 

of the bare-earth DEM generation, the filter is likely to be less effective for areas with densely 594 

packed artefacts or hilly areas.  595 

For flood simulation the errors in ArcticDEM-SMRF along river channels and over 596 

floodplains is particularly critical, and further DEM processing here could lead to additional 597 

improvements. In the ArcticDEM-SMRF, the elevations of the river sections that run through 598 

large patches of forest are positively biased because of the reduced effectiveness of the SMRF 599 

filter in these areas. The water depth error along the river network is expected to be mitigated 600 

once these blockages are removed, such as by using quantile regression techniques 601 

(Schwanghart et al., 2017). Similarly, elevation values along the road network (acquired from 602 

OpenStreetMap) were particularly interesting and extracted for further analysis. It was found 603 

that the SMRF filter largely lowered the elevation of the road network where artefacts are 604 

present. But the resulting DEM from SMRF is interpolated based on all neighbouring pixels 605 

and not only along the road pixels on either side of the artefact removed. Thus, an unsmooth 606 

distribution of the along-road elevation was generated, which is not ideal for flood simulation 607 

and likely to be inaccurate. A linear interpolation along the central line of the road network 608 

with a buffering around that could be used to reduce these errors in the future. It should be 609 

noted that the buffering width of the central line of roads could be tricky to define when there 610 

is not accurate road width data available. 611 

Moreover, sinks can be present in ArcticDEM (areas with substantially lower elevation 612 

than neighbouring pixels), possibly because of the shadow effect which is a common issue for 613 

photogrammetry DEMs (Noh and Howat, 2015). These sinks should be identified and filled in 614 

future work.  615 
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6 Conclusions 616 

In this paper, we examine two morphological filters (PMF, SMRF) for removing 617 

surface artefacts from the ArcticDEM strip data in a complex urban environment using the city 618 

of Helsinki as a case study. We then assess the improvement in flood inundation simulation 619 

provided by the filtered ArcticDEM relative to a LIDAR DTM benchmark in a pluvial flooding 620 

scenario. To our knowledge, it is the first examination of the approach to generate bare-earth 621 

ArcticDEM data specifically for flood applications. It was found that the SMRF performs better 622 

at removing surface artefacts from ArcticDEM than the PMF filter, and the performance is 623 

robust to its parameter setting. The most effective window size and slope threshold range is 20-624 

40 m, 0.04-0.1 with the optimal window size achieved at 30 m and the optimal slope threshold 625 

achieved at 0.07 (or 7%). The optimal window size positively relates to the size of artefacts, 626 

and we suggested it is set accordingly but no larger than 60 m (the upper threshold of the 627 

effective range of forest areas) for typical urban areas. The optimal slope threshold is roughly 628 

the mean slope of the city of Helsinki and is thus suggested as the first guess and adjusting up 629 

and down for optimal filter performance. With SMRF, the overall error of the ArcticDEM can 630 

be reduced by up to 70% with the optimized parameters, achieving a final RMSE of 1.02 m. 631 

The flood inundation simulation performance of a standard two-dimensional 632 

hydrodynamic model was considerably improved when using the filtered ArcticDEM in that 633 

40% of the underestimated areas simulated by the ArcticDEM were eliminated. Although the 634 

flooding extent performance simulated by the ArcticDEM-SMRF is still not a strong match to 635 

the LIDAR DTM benchmark (CSI=0.56, although some of this difference will be caused by 636 

errors in LIDAR itself), the pluvial flood simulation should be seen as a rigorous test as the 637 

inundated areas usually vary within few pixels in urban areas and are easily impacted by small-638 

scale errors. The simulated water depth error of the optimal ArcticDEM-SMRF model is 639 

comparable to the likely error of the LIDAR DTM simulation, as a result of ~0.1 m 640 

improvement comparing to the original ArcticDEM.  641 

The residual errors of the filtered ArcticDEM are mainly composed of: 1) positive 642 

errors for artefacts with large patches sizes, which are not entirely removed by the filter; and 643 

2) negative errors in hilly areas which are incorrectly identified as artefacts. Thus, when using 644 

the SMRF filter in other study areas where the artefacts have a much higher density or artefacts 645 

with a large patch size comprise a significant proportion of the study area, the effectiveness of 646 

the SMRF filter could be less significant compared to the results of this study. Some 647 

modification of the SMRF filter might be able to remove the densely distributed artefacts and 648 
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auxiliary data are likely to be needed to guarantee satisfying interpolation results. Applying the 649 

SMRF filter to hilly areas is also likely to yield a less effective performance. From the 650 

perspective of flood inundation simulation, the SMRF parameters could be configured towards 651 

optimizing their range to generate the DEM with the lowest error or DEM with negative errors 652 

(over-filtered). 653 

This paper suggests that applying the SMRF without any algorithm modification is 654 

effective to generate bare-earth DEMs from ArcticDEM and are likely to be applicable to other 655 

high-resolution photogrammetry DEMs and other application areas. The generated bare-earth 656 

DEM shows largely reduced error comparing to the original ArcticDEM and comparable 657 

simulated water depth error to the LIDAR benchmark. Thus, it is a promising alternative to 658 

LIDAR data for locations where such data are either not available or would not be cost efficient. 659 

In the future, using ancillary data to address the residual errors of the filtered DEM should be 660 

integrated to the bare-earth ArcticDEM generation process. To facilitate the use of bare-earth 661 

ArcticDEM in flood simulation, the blockage of residual error within rivers and errors along 662 

road network should be carefully treated.  663 
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