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Abstract 6 

In urban areas, topography data without above ground objects are typically preferred in 7 

wide-area flood simulation, but are not yet available for many locations globally. High-8 

resolution satellite photogrammetry DEMs, like ArcticDEM, are now emerging and could 9 

prove extremely useful for global urban flood modelling, however, approaches to generate 10 

bare-earth DEMs from them have not yet been fully investigated. In this paper, we test the use 11 

of two morphological filters (Simple Morphological Filter-SMRF and Progressive 12 

Morphological Filter-PMF) to remove surface artefacts from ArcticDEM using the city of 13 

Helsinki (192 km2) as a case study. The optimal filter is selected and used to generate a bare-14 

earth version of ArcticDEM. Using a LIDAR DTM as a benchmark, the elevation error and 15 

flooding simulation performance for a pluvial event were then evaluated at 2 m and 10 m spatial 16 

resolution, respectively. The SMRF was found to be more effective at removing artefacts than 17 

PMF over a broad parameter range. For the optimal ArcticDEM-SMRF the elevation RMSE 18 

was reduced by up to 70% over the uncorrected DEM, achieving a final value of 1.02 m. The 19 

simulated water depth error was reduced to 0.3 m, which is comparable to typical model errors 20 

using LIDAR DTM data. This paper indicates that the SMRF can be directly applied to generate 21 

a bare-earth version of ArcticDEM in urban environments, although caution should be 22 

exercised for areas with densely packed buildings or vegetation. The results imply that where 23 

LIDAR DTMs do not exist, widely available high-resolution satellite photogrammetry DEMs 24 

could be used instead. 25 

1 Introduction 26 

The availability of an accurate bare-earth Digital Elevation Model (DEM) is important 27 

to many research fields, including identifying drainage related features and modelling flood 28 

inundation (Garbrecht and Martz, 2000; Yamazaki et al., 2014), deriving topography indices 29 

such as slope, orientation, and rugosity (Moudrý et al., 2018), estimating forest biomass and 30 

carbon (Jensen et al., 2016), and constructing 3D building heights (Marconcini et al., 2014). 31 
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For wide-area flood simulexpoationsimulation in urban areas, a bare-earth DEM (i.e., a terrain 32 

model without surface artefacts) is preferable in most circumstances to a Digital Surface Model 33 

(DSM) which includes them. This is because the decision to include above terrain artefacts or 34 

not is a consequence of the selected simulation resolution. Only when the simulation is 35 

conducted at grid sizes allowing the resolution of building shapes and the street layout 36 

(typically < 5 m in most urban topologies worldwide) does a DSM become useful. When 37 

aggregated to coarser resolutions, the height of the surface artefacts contained in the DSM can 38 

block or alter flow pathways in ways that lead to anomalous results when these data are used 39 

in hydrodynamic modelling (Neal et al., 2009). Inundation simulations over regional and 40 

national scales usually only become feasible with non-building resolving grid resolutions 41 

because of the exponentiallydisproportionally increased computational cost of running fine 42 

grid models (roughly a factor of three to the grid change) and the limited availability of national 43 

DEMs with resolutions finer than 5 m. Even at city and sub-city scales, non-building resolving 44 

models may be preferable for ensemble and event set simulations (Mason et al., 2007; Schubert 45 

and Sanders, 2012). As a result, bare-earth DEMs (also known as Digital Terrain Models or 46 

DTMs) are essential for flood inundation simulations in urban areas and can also be beneficial 47 

to a broad range of other research fields. 48 

Unlike traditional, ground-based field survey, modern wide-area DEM collection 49 

techniques rely on remote sensing from ground vehicle, airborne and satellite platforms. All 50 

DEMs derived in this way include the heights of built-up area artefacts and vegetation to some 51 

extent and require significant post-processing to obtain a bare-earth DEM. Commonly used 52 

DEMs are collected using techniques including Interferometric Synthetic Aperture Radar (i.e., 53 

InSAR), optical stereo mapping and LIDAR. These different techniques, combined with the 54 

platforms and the specific instrument characteristics, offer DEMs with varied coverage, 55 

resolution, and accuracy (Lakshmi and Yarrakula, 2018; Zaidi et al., 2018). For example, 56 

spaceborne and globally available InSAR DEMs offer wide coverage, but they are constrained 57 

by the geometry of the interferometric baseline and the temporal sampling of the spaceborne 58 

platform and InSAR technique. The derived DEMs therefore have limited horizontal resolution 59 

and accuracy (SRTM at ~30 m spatial resolution has reported mean absolute vertical error of 60 

6 m, TanDEM-X at ~12 m spatial resolution has 90% linear error (i.e., LE90) in the vertical of 61 

around 2 m) (Rodriguez et al., 2006; Wessel et al., 2018). Such vertical errors are significant 62 

compared to the amplitude of most river flood waves, which typically range from 1-2 m up to 63 

~12 m for the Amazon River at Manaus in Brazil (Trigg et al., 2009; Bates et al., 2013). Whilst 64 
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global InSAR DEM errors can be reduced by intelligent processing (O'Loughlin et al., 2016; 65 

Yamazaki et al, 2017; Archer et al., 2018; Liu et al., 2021; Hawker et al., 2022) and by 66 

aggregating to coarser grid resolutions to mitigate random errors, they remain distinctly sub-67 

optimal for much flood inundation modelling (Schumann and Bates, 2018). Instead, inundation 68 

modelling is best conducted with DEMs generated using airborne LIDARs for most 69 

applications. These have high accuracy, with a typical vertical RMSE of 0.05–0.2 m (Faherty 70 

et al., 2020), and spatial resolution of 1-2 m such that they can identify the detailed structure 71 

of floodplain geomorphology, buildings, vegetation, and important linear features such as flood 72 

defenses and their crest elevations. However, due to their (relatively) high cost of collection, 73 

freely available LIDAR data only cover ~0.005% of the global land surface (Hawker et al., 74 

2018). DEMs derived from high-resolution stereo images, such as WorldView, have the 75 

potential to cover the land surface globally with spatial resolution (and also perhaps accuracy) 76 

comparable to LIDAR (Noh and Howat, 2015; Hu et al., 2016; Shean et al., 2016; DeWitt et 77 

al., 2017). Whilst stereo photogrammetry was previously used to develop the (now superseded) 78 

publicly available ASTERAW3D30 DEM (HiranoTakaku et al., 2003), more recent2016), the 79 

DEM developed at the original resolution of 5 m (AW3D30) has been kept as a commercial 80 

product. DEMs derived from other high-resolution photogrammetry satellites such as 81 

WorldView, GeoEye, IKONOS and Pleiades images have been kept as commercial productsare 82 

also only available with a cost that is prohibitive for most academic studies. However, the 83 

recent public release of an unprecedented resolution (2 m) satellite photogrammetry DEM, 84 

ArcticDEM (Porter et al., 2018, https://www.pgc.umn.edu/data/arcticdem/), has brought 85 

opportunities to explore the potential of such a product in flood inundation modelling. 86 

ArcticDEM covers areas above 60°N and was produced using the Surface Extraction with TIN-87 

based Search-space Minimization (SETSM) method from in-track and cross-track high-88 

resolution (~0.5 m) imagery acquired by the WorldView and GeoEye satellites. Using similar 89 

stereo-photogrammetry techniques, Google is also developing a very high-resolution DEM 90 

using multiple satellite sources (Ben-Haim et al., 2019). However, both products are DSMs 91 

and therefore contain surface artefacts which need to be removed to enable their use in a range 92 

of geophysics applications including wide-area flood inundation modelling. Previous research 93 

efforts to generate bare-earth terrain data from previously released global DEMs such as SRTM 94 

and TanDEM-X have relied heavily on auxiliary data to remove artefacts. For these next 95 

generation of high-resolution photogrammetry DEMs, auxiliary data at comparable resolution 96 

to the DEM does not yet exist and different approaches must be proposed.  97 

https://www.pgc.umn.edu/data/arcticdem/
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Considering the high resolution of these photogrammetry DEMs, the algorithms 98 

already developed to create bare-earth DEMs from LIDAR are likely to be applicable to this 99 

task. For example, DeWitt et al. (2017) have shown that applying LIDAR filtering procedures 100 

to a WorldView-generated DEM in densely vegetated areas can remove vegetation artefacts 101 

and achieve a bare-earth terrain representation with accuracy comparable to LIDAR. Numerous 102 

research studies have been conducted in the past decade to generate bare-earth DEMs (i.e., 103 

DTMs) from LIDAR point clouds (Sithole and Vosselman, 2004; Chen et al., 2007; Meng et 104 

al., 2009; Zhang et al., 2016). Filtering strategies were reviewed by Chen et al. (2017), and 105 

morphology-based filters were reported as robust and capable of removing non-ground objects. 106 

Notably, Zhang et al (2003) proposed a progressive morphological filter (PMF) for removing 107 

non-ground measurements from airborne LIDAR. The PMF method has subsequently 108 

advanced by enabling automatic extraction of ground points from LIDAR measurements with 109 

minimal human interaction and is now widely used as a base filter to classify ground and non-110 

ground points (Cui et al., 2013; Hui et al., 2016; Tan et al., 2018). Evolved from the 111 

morphological filter idea, Pingel et al (2013) developed the Simple Morphological Filter 112 

(SMRF) by designating the window size increasement strategy of the filter and employing a 113 

computationally inexpensive technique to interpolate the non-ground pixels. The SMRF was 114 

reportedly able to achieve low misclassification errors (2.97%) among 11 filter algorithms for 115 

LIDAR DEM samples with various configuration of slope and artefacts and to be robust to the 116 

algorithm parameterization (Zhang et al., 2016). However, despite previous research applying 117 

LIDAR filtering strategies to WorldView photogrammetric DEMs (Rokhmana and Sastra, 118 

2020), none of these filters has been tested on ArcticDEM and research about the performance 119 

of different filters for removing surface artefacts from high-resolution photogrammetric DSMs 120 

is also lacking, especially in urban areas. 121 

Given their unprecedented resolution and potential wide-area coverage, bare-earth 122 

photogrammetric DEMs can possibly be used to advance flood inundation simulation at 123 

regional scales and beyond. Although at this stage the access to these DEMs is restricted, they 124 

are very promising and could become an alternative to LIDAR data in the future as a result of 125 

their much lower cost. This could especially benefit developing countries where wide coverage 126 

of LIDAR data is likely to prove unaffordable for the foreseeable future. This research therefore 127 

aims to develop an approach to generate bare-earth DEMs from ArcticDEM and to examine 128 

the use of the data in flood inundation simulation. The proposed approach is expected to be 129 

generally applicable to other high-resolution (~m scale) photogrammetry DEMs as well as 130 
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ArcticDEM. We first compare the ability of progressive and simple morphological filters (PMF 131 

and SMRF) to generate a bare-earth DEM from ArcticDEM in the city of Helsinki, Finland by 132 

evaluating the filtered ArcticDEMs against a reference bare-earth LIDAR data set. Next, for 133 

the best performing filter a set of parameter combinations was applied to generate a realization 134 

ensemble of filtered ArcticDEM, whose error metrics were then analyzed against the parameter 135 

settings. We then use both the original ArcticDEM and filtered ArcticDEM realizations to 136 

simulate a pluvial flooding scenario for Helsinki and compare these results to an identical 137 

simulation using the LIDAR DTM. Pluvial flood simulation is a difficult for hydrodynamic 138 

models even with excellent terrain data and therefore poses a rigorous and diagnostic test.  139 

Lastly, limitations of the current research and future work that could further facilitate the use 140 

of a bare-earth version of ArcticDEM in flood inundation simulation is discussed. 141 

2 Data source and study site  142 

ArcticDEM is stereo-photogrammetry DSM generated from in-track and cross-track 143 

high-resolution (~0.5 m) imagery acquired by the DigitalGlobe constellation of optical imaging 144 

satellites. The majority of ArcticDEM data was generated from the panchromatic bands of the 145 

WorldView-1, WorldView-2, and WorldView-3 satellites. A small percentage of data was also 146 

sourced from the GeoEye-1 satellite sensor. ArcticDEM is available in two formats: strip and 147 

mosaic. Strip data is the output extracted by the TIN based Search-space Minimization 148 

algorithm (Noh and Howat, 2015) and preserves the original source material temporal 149 

resolution. Mosaic data is compiled from multiple strips that have been co-registered, blended, 150 

and feathered to reduce edge-matching artifacts. Due to the errors in the sensor model, the 151 

geolocation of the generated ArcticDEM has systematic offsets in the vertical and horizontal 152 

directions which are reported in the product’s meta-data.  Offsets for the mosaic data are 153 

unknown so therefore the strip data set with the original horizontal resolution at 2 m (version 154 

3.0) was used as the baseline DEM in this paper. The offset values of each strip data were 155 

applied before generating the bare-earth ArcticDEM. 156 

The city of Helsinki was selected as a study site for the following reasons: 1) both 157 

ArcticDEM and a high accuracy LIDAR DTM are available at this site, with the vertical error 158 

of the LIDAR DTM reported as 0.3 m; and 2) it is a typical urban environment with sparse to 159 

medium density buildings mixed with large patches of vegetation; 3) as the most populated city 160 

above 60ºN, the Helsinki metropolitan areas is very vulnerable to flooding. The LIDAR DTM 161 

has a spatial resolution of 2 m and a reported vertical error of 0.3 m. To standardize the vertical 162 
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reference system, the quasigeoid height was subtracted from ArcticDEM, converting its 163 

reference system from WGS84 ellipsoid height to the Finland National Vertical Reference-164 

N2000 that is used for the LIDAR data. This conversion has an accuracy of 0.02 m. 165 

Within the city of Helsinki two building-dominated samples (S1 and S2, both covering 166 

areas of ~0.7 km2) were chosen to compare the effectiveness of two selected morphological 167 

filters: the PMF and the SMRF. Sample 1 is characterized by buildings with floor areas up to 168 

10000 m2, whereas smaller buildings (floor areas of ~500 m2) are distributed throughout 169 

Sample 2. A larger third sample (S3, which includes both S1 and S2) was selected to conduct 170 

the bare-earth DEM generation and to assess the filter’s performance in a complex urban 171 

environment. Flood inundation modelling of the resulting DEM data was also performed over 172 

sample area S3 (Fig. 1). The ArcticDEM strips data derived from WorldView-1 images 173 

acquired on the 14th of March 2013 (WV01_20130314) and on the 16th of February 2015 174 

(WV01_20150216) were found to cover most areas of S3 (92% and 99%, respectively). 175 

Considering the possible bias caused by forest and snow, the ArcticDEM strips with source 176 

images acquired during leaf-off seasons and under snow-free conditions are preferable. The 177 

Finish forests are reported to be mostly evergreen with ~10% of deciduous trees (Majasalmi 178 

and Rautiainen, 2021). The source images of both strips were acquired during leaf-off 179 

conditions. The snow situation on the image acquisition dates was analyzed using the MODIS 180 

NDSI_Snow Cover data (Hall et al., 2016). The acquisition date of the strip WV01_20130314 181 

was found to be much less covered by snow compared to that of the WV01_20150216 strip. 182 

Therefore, the strip WV01_20130314 was used as the main data source and areas within S3 183 

which this strip does not cover or where voids were present were filled with data from the strip 184 

WV01_20150216. These mosaiced strip data are shown in Fig. 1, with the extent of the two 185 

strips displayed. The ArcticDEM for all samples in this paper refers to this mosaiced dataset. 186 

Land use and land cover (LULC) for Helsinki was acquired from the CORINE Urban Atlas 187 

2012 database (https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012). This LULC 188 

features 22 land cover types in Helsinki. In this paper, features were merged to four categories: 189 

urban, forest, open land, and water. Details of this reclassification of the LULC data can be 190 

found in Supplement Table S1.  191 

https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012
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Figure 1. Locations of the three studied samples (S1, S2 and S3) within the city of Helsinki are shown at a). 194 

Elevation values of the ArcticDEM at S1, S2 (overlain with transects crossing), and at S3 are shown in b), c), d) 195 

respectively. Locations of coastal areas, lakes and rivers are also labelled. The ArcticDEM strip data is acquired 196 

from the Polar Geospatial Center at https://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/2m/. The 197 

water body outlines were acquired from the Finnish Environment Institute at 198 

https://www.syke.fi/enUS/Open_information/Spatial_datasets/Downloadable_spatial_dataset. 199 

3 Methods 200 

3.1 Morphological filters 201 

The generation of bare-earth ArcticDEM (our version of ArcticDEM with artefacts 202 

removed) was conducted by employing two different morphological filters: PMF and SMRF 203 

separately. They are considered because of their reported effectiveness in filtering LIDAR 204 

point clouds, simple conceptualized parameters, and the fact that they are open access.  205 

The PMF was designed to remove non-ground measurements (buildings, vegetation, 206 

vehicles) from airborne LIDAR data (Zhang et al., 2003). It consists of an object detection and 207 

an interpolation process which employs non-object pixel elevations to generate the values of 208 

the object pixels. The PMF provides an advance on the morphological filter algorithm (Kilian 209 

et al., 1996) by enabling a gradually increasing window width to detect non-ground objects 210 

regardless of their size. In addition, an elevation difference threshold based on elevation 211 

variations of the terrain, buildings, and trees was introduced to preserve the terrain. The 212 

maximum window size and elevation variation threshold parameters control the filtering 213 

process (more details can be found at Zhang et al., 2003). 214 

More recently, a SMRF was proposed by Pingel et al (2013), also with the aim of 215 

removing non-ground measurements from airborne LIDAR data. While the SMRF follows a 216 

similar two-step process to the PMF, the approaches taken to detect objects and interpolate 217 

elevation values of objects are different. SMRF adopts a linearly increasing window (as 218 

opposed to the exponential increase of PMF) and simple slope thresholding, along with a novel 219 

image inpainting technique. Like the PMF, the maximum window size (Wmax) and slope 220 

threshold (S) (equivalent to the elevation variation threshold of PMF) parameters control the 221 

performance of the filter (Fig. 2). The core of the filter is the object detection where 222 

morphological opening is applied to the original surface based on the current window size (Wi) 223 

increasing from one pixel, by one pixel, to the maximum window size (in distance units, meters 224 

in this research). For each window size within the range, the difference between the original 225 

https://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/mosaic/v3.0/2m/
https://www.syke.fi/enUS/Open_information/Spatial_datasets/Downloadable_spatial_dataset
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surface (Wi=1) or the surface from the last step (Wi>1) and the morphologically opened surface 226 

is calculated and this difference (for example, d0, d1, d2 in Figure 2) is compared with the 227 

current difference threshold (Di) (defined as the slope threshold S multiplied by the current 228 

window size Wi) to determine whether the object flag of the pixel should be accepted or 229 

rejected. When the difference is smaller than the current difference threshold (Di), the object 230 

flag of these pixels is rejected (Fig.2 Ⅲ) and the elevated areas are retained. Otherwise, pixels 231 

are flagged as objects and then interpolated (Fig.2 Ⅰ, Ⅱ). When the maximum window size is 232 

smaller than the patch size of the elevated areas (for example, l3), the morphological opening 233 

will be unsuccessful, and elevations in that patch area remain almost identical to the original 234 

elevation (Fig.2 Ⅳ).  235 

 236 

Figure 2. Illustration of the SMRF filtering process in a simplified urban environment with artefacts (Ⅰ, Ⅳ) and 237 

hills (Ⅱ, Ⅲ). The symbols are W: window size, D: difference threshold, C: cell size (C equals 2 m in this case), 238 

S: slope threshold, l: patch size of the elevated areas. 239 

3.2 Optimal filter selection and error evaluation of the ArcticDEM-SMRF realizations 240 

At Sample S1 and S2, combinations of a range of window size (i.e., maximum window 241 

size) and slope threshold parameters were tested for both the PMF and SMRF filters (Table 1). 242 

The optimal filter was identified as the resultant DEMs with the smallest error (Root Mean 243 

Square Error, i.e., RMSE) filtered using PMF and SMRF respectively (details are presented in 244 

Sect. 4.1). Then, the best performing filter (SMRF) was applied to Sample S3 with a range of 245 

window size and slope threshold parameters (Table 1), which generated a total of 234 filtered 246 

ArcticDEM realizations, hereafter called ArcticDEM-SMRF. Using the LIDAR DTM as the 247 

reference, the RMSE and Mean error of the ArcticDEM-SMRF realizations as well as the 248 

reduction of RMSE over the original ArcticDEM-SMRF was calculated at pixel level (2 m) 249 

(Eq. (1)-(3) and Text S1 in the Supplement). Due to other possible error sources, like shadow 250 

effects in the photogrammetry DEM, the calculations excluded values outside the 2.5th and 251 
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97.5th percentile as outliers. The ArcticDEM-SMRF with the lowest RMSE for all land areas 252 

among the realizations is termed the optimal ArcticDEM-SMRF. The three error metrics of the 253 

ArcticDEM-SMRF realizations were analyzed against the window size and the slope threshold 254 

parameter to examine the effectiveness of the SMRF filter at removing artefacts. As the 255 

artefacts of S3 are a mixture of buildings and vegetation, the filter effectiveness to these 256 

parameters was analyzed separately for all land areas, only urban areas, and only forest areas.  257 

Table 1. Key parameter settings of the morphological filters tested in the three samples. 258 

Filter Sample 

Key Parameters 

Window size (m) Slope threshold 

range interval range interval 

PMF 
S1 10-66 4 0.1-0.3 0.2 

S2 10-66  4 0.1-0.3 - 

SMRF 

S1 10-50 2 0.01-0.1 0.005 

S2 10-50 2 0.01-0.1 0.005 

S3 10-180 10 0.03-0.15 0.01 

* The unit of the slope threshold values shown here is radian for PMF, percent of slope/100 for SMRF. 259 

3.3 Flood inundation evaluation of the ArcticDEM-SMRF realizations 260 

For the 192 km2 area covered by Sample 3 simple pluvial models were built at 10 m 261 

spatial resolution instead of the original 2 m of the ArcticDEM due to computational cost 262 

considerations. These models use DEM inputs from the LIDAR DTM, the original ArcticDEM, 263 

and the ArcticDEM-SMRF realizations which were filtered with various parameter 264 

combinations of the SMRF filter, respectively. The LIDAR DTM simulation was used as the 265 

benchmark. For this computation the hydrodynamic model LISFLOOD-FP was used (Bates et 266 

al., 2010). The model solves the local inertial form of the shallow water equations in two 267 

dimensions across the model domain. For pluvial flood modelling, the model takes the terrain 268 

elevation and rainfall data as inputs, and uses a raster-on-grid approach to calculates the 269 

velocity, water depth, and inundation (Bates et al., 2021). The input DEMs were aggregated to 270 

10 m by averaging before being used in the flood simulation. For the ArcticDEM and 271 

ArcticDEM-SMRF models, elevation values in coastal areas (covered by water) were replaced 272 

with the LIDAR DTM values. This was done to remove the impact of the DEM error in non-273 

land areas on the simulation. Rainfall data were acquired from the Climate Guide of Finland at 274 

https://www.klimatguiden.fi/articles/database-of-design-storms-in-finland. It provides the 275 

database of design storms with the real momentary variations in intensity for locations across 276 

Finland. This database was generated based on radar measurements and derivations. An 277 

https://www.klimatguiden.fi/articles/database-of-design-storms-in-finland
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extremeA designed rainfall scenario with a duration of 3 h and a return period of 500 years was 278 

used in the simulation. This was selected to To minimize the simulation time while ensuring 279 

thata short duration scenario is preferred, which led to our choice of the difference between3 h 280 

duration. The relatively low occurring frequency (500 years return period) was then decided to 281 

avoid flood inundation being overly sensitive to the simulations was distinguishabletopography 282 

which would happen when the inundation is extremely shallow. Under this duration and return 283 

period conditions, the precipitation data at the nearest station (60.04ºN, 102.54ºE) to the city 284 

of Helsinki was used. The precipitation is 102.54 mm in total with peak intensity at 182.4 285 

mm/h.  286 

The simulation results were compared to the LIDAR DTM benchmark in terms of the 287 

simulated flood extent using the Critical Success Index (CSI) score, the Hit Rate, and the False 288 

Alarm Ratio (FAR) defined by Eq. (1) - (3) (Wing at al., 2017), and the water depth errors 289 

using the RMSE and the Mean error, Eq. (4) and (5). A wet cell is defined as one with simulated 290 

water depth exceeding 0.1 m in this paper. As is typical in often the case in pluvial simulations, 291 

small isolated wet areas (where the number of connected wet cells was less than 15) were 292 

excluded from both the benchmark model (LIDAR) and the evaluation target models 293 

(ArcticDEM and ArcticDEM-SMRF) before calculating the metrics. First, all five metrics 294 

using the set of ArcticDEM-SMRF DEMs derived using different filter parameters were 295 

compared with the flooding performance of the original ArcticDEM. Then, the relationship 296 

between the five flooding metrics and the RMSE and Mean error of the DEM of the 297 

ArcticDEM-SMRF realizations (aggregated at 10 m) was depicted for all land areas, urban and 298 

forest areas individually. Furthermore, the flooding performance simulated by the optimal 299 

ArcticDEM-SMRF was evaluated spatially. 300 

𝐶𝑆𝐼 =
𝐴

𝐴+𝐵+𝐶
 (1) 301 

𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =  100% ×
𝐴

𝐴+𝐶
 (2) 302 

𝐹𝐴𝑅 =  100% ×
𝐵

𝐴+𝐵
 (3) 303 

𝑅𝑀𝑆𝐸𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑝𝑡ℎ = √∑ (𝑊𝐷𝑖,𝑐,𝐷𝐸𝑀−𝑊𝐷𝑖,𝑐,𝐿𝐼𝐷𝐴𝑅)2𝑖=𝑛
𝑖=1

𝑛
 (4) 304 

𝑀𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑝𝑡ℎ =
∑ (𝑊𝐷𝑖,𝑐,𝐷𝐸𝑀−𝑊𝐷𝑖,𝑐,𝐿𝐼𝐷𝐴𝑅)𝑖=𝑛

𝑖=1

𝑛
 (5) 305 

*A is the number of pixels which are wet in both the DEM and the LIDAR simulation, i.e., where the two models 306 

agree; B is the number of pixels which are wet in the DEM simulation but not the LIDAR simulation, i.e., 307 
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overestimation; C is the number of pixels which are wet in the LIDAR simulation but not the DEM simulation, 308 

i.e., underestimation.  309 

*𝑊𝐷𝑖,𝐷𝐸𝑀 is the water depth at pixel i simulated using the DEM (ArcticDEM-SMRFs or the original ArcticDEM 310 

depending on the calculation target), and n is the number of the wet cells (wet in either the LIDAR or the DEM 311 

simulation) within category C. Category C is defined by the land use and land cover, and they can be all land 312 

areas, urban, forest. For example, the water depth RMSE of ArcticDEM-SMRF in urban areas are calculated based 313 

on the ArcticDEM-SMRF pixels within urban areas.  314 

4 Results 315 

 4.1 Optimal filter selection 316 

The effect of using the PMF and SMRF filters to remove artefacts from the ArcticDEM 317 

in the two building-dominated samples S1 and S2 is evaluated by plotting the error distribution 318 

and transect profiles. The filtered ArcticDEM with the smallest RMSE using each filter’s 319 

optimum parameters is shown in Fig. 3. The optimal PMF parameters for S1 and S2 are window 320 

size = 42 m, 30 m, slope threshold = 0.3 (radian) for both, and the optimal SMRF parameters 321 

for S1 and S2 are window size = 32 m, 14 m, slope threshold = 0.08, 0.05 (%),(or 8%, 5% of 322 

slope), respectively. The calculation of error figures was conducted at 2 m pixel scale. 323 

 324 

 325 

Figure 3. Error histograms of ArcticDEM, ArcticDEM with PMF applied (ArcticDEM-PMF) and ArcticDEM 326 

with SMRF applied (ArcticDEM-SMRF) for sample S1, a) and S2, b). Profile of ArcticDEM, ArcticDEM-PMF, 327 
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ArcticDEM-SMRF, and LIDAR DTM for transects through S1, c) and S2, d). The location of transects is shown 328 

in Fig. 1b and c.  329 

The error histograms show that both PMF and SMRF can effectively remove much of 330 

the bias caused by artefacts in ArcticDEM, with the resulting RMSE falling below 1 m in all 331 

cases. The count of pixels with error <1 m increased to 91% in both samples. The SMRF filter 332 

achieved a lower RMSE (0.48 m and 0.43 m for S1 and S2, respectively) compared to PMF 333 

(0.92 m and 0.48 m) (Fig. 3a and b). The Mean error of the filtered DEMs for S1 and S2 also 334 

evidences that SMRF has an advantage over PMF.  335 

The DEM profile through S2 shows that SMRF and PMF work similarly well, while 336 

the profile through S1 shows that SMRF can preserve more terrain details than PMF in 337 

moderate hillslope areas (Fig. 3c, e.g., distance 0.75-1.0 km). However, both filters incorrectly 338 

identified the steepest areas of S1 as artefacts, especially PMF (Fig. 3c distance 1.0-1.25 km). 339 

Considering both the histogram and profile results, SMRF was selected as the optimal filter to 340 

remove the artefacts from ArcticDEM for this site. 341 

The sensitivity of the slope threshold and the window size parameter to the error metrics 342 

for ArcticDEM-SMRF at sample S1 and S2 can be found in the Supplement Figure S1 and 343 

Text S2. 344 

4.2 Bare-earth DEM generation and its error evaluation 345 

In order to understand the effectiveness of the SMRF in a more complex urban 346 

environment the error metrics RMSE, RMSE reduction percentage and Mean error of the 347 

ArcticDEM-SMRF realizations were computed for the larger sample S3. These metrics were 348 

analyzed against the window size and slope threshold parameter of the SMRF filter to evaluate 349 

the sensitivity of ArcticDEM-SMRF error to changes in these values. As the surface artefact 350 

bias in S3 is mainly caused by buildings and forests, the analysis was conducted for all land 351 

areas as well as for urban areas and forest areas separately (Fig. 4). 352 
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 354 

Figure 4. Surface plots of the slope threshold and the window size parameters of the SMRF filter against the 355 

RMSE, the RMSE reduction percentage and Mean error of the filtered DEM-ArcticDEM-SMRF for sample S3. 356 

The location of the smallest values of the RMSE, (which is the same as the location of the greatest values of the 357 

RMSE reduction and the smallest absolute values of the Mean error ) are marked as red crosses,×, with the 358 

values displayed. The values of the Mean error at the above location are displayed and marked as +. Parameter 359 

details can be found in Table 1. 360 

For area S3, the smallest RMSE of the ArcticDEM-SMRF realization is 1.02 m (i.e., 361 

the optimal ArcticDEM-SMRF) within all land areas, 0.84 m in urban areas and 2.1 m in forest 362 

areas. These values represent 70%, 76% and 59% reductions of the ArcticDEM error 363 

respectively. The greatest reduction was achieved with a slope threshold of 0.07 combined with 364 
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a window size of 30 m for all land areas or 40 m for forest areas, and a slope threshold of 0.06 365 

with a window size of 20 m for urban areas. Although the RMSE of the optimal ArcticDEM-366 

SMRF is greater than that computed for samples S1 and S2 (Fig. 3a, b), the magnitude of the 367 

error reduction indicates that the SMRF is still very effective at removing surface artefacts from 368 

ArcticDEM for this larger sample. The greatest reduction was achieved with a slope threshold 369 

of 0.07 combined with a window size of 30 m for all land areas or 40 m for forest areas, and a 370 

slope threshold of 0.06 with a window size of 20 m for urban areas. More than 40% of the 234 371 

parameter combinations can reduce the RMSE by greater than a half. Thus, the SMRF filter is 372 

considered as a robust filter given that the tested parameters range are set generally broad. 373 

These optimum parameters are almost the same for different land covers, suggesting that the 374 

parameter choice is robust for various land-surface characteristics. Moreover, the error removal 375 

effectiveness does not significantly drop when parameters slightly deviate from the optimum 376 

location that more than 40% of the 234 parameter combinations can reduce the RMSE by 377 

greater than a half, suggesting the robustness of parameters. The robustness of the filter across 378 

different land covers and a range of parameters is desirable for application across large domains 379 

as this reduces the need for prior knowledge of the study site and simplifies the parameter 380 

setting. 381 

This robustness also means that different combinations of window size and slope 382 

threshold can achieve similar resultant RMSE (for example, for urban areas window size = 20 383 

m with slope threshold between 0.03 and 0.12, or window size = 40 m with slope threshold 384 

between 0.05 and 0.1). For sample S3, the most effective window size rangesAt this site, the 385 

most effective range of slope threshold is 0.04-0.1, while the window size is from 20 m to 30 386 

m for all land areas, from 20 m to 40 m for urban areas, and from 30 m to 60 m for forest areas 387 

with slope threshold between 0.04-0.1.. From the parameter selection perspective within the 388 

effective range, a smaller window size is more robust and is therefore preferred because the 389 

choice of the corresponding slope threshold is broader compared with a larger window size. 390 

When the window size is smaller than 20 m, the error of the filtered DEM becomes almost 391 

independent from the slope threshold parameter choice. With some parameter combinations 392 

the SMRF becomes less effective at removing artefacts or introduces negative errors, which is 393 

a combination of large slope threshold (> 0.1) and large window size (> 60 m) or when the 394 

slope threshold is smaller than 0.04 with window size larger than 20 m. Additionally, when the 395 

window size parameter is above 60 m, the Mean error of the filtered DEM becomes more 396 

sensitive to the slope threshold, especially with slope threshold smaller than 0.06.  397 
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 398 

The error distribution of the optimal ArcticDEM-SMRF was also analyzed spatially 399 

and statistically (Fig. 5).  400 

 401 

Figure 5. a) Difference maps between the original ArcticDEM, the optimal ArcticDEM-SMRF (with slope 402 

threshold = 0.07, window size = 30 m as the SMRF parameters) and the LIDAR DTM at 2 m. b) The error 403 

histograms of the original ArcticDEM, the optimal ArcticDEM-SMRF, where the calculation was conducted at 404 

2 m pixel level. In the bottom map of a), example locations of four features that relate to the residual errors of 405 

the ArcticDEM-SMRF are labelled. The aerial image of these locations is shown in c) where areas with errors 406 

exceeding 4 m were marked (> +4 m as red polygons and < -4 m as bluegreen polygons, polygons are in 50% 407 

transparency). The aerial image is orthophotograph of Helsinki with a horizontal resolution at 8 cm, acquired 408 
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during growing season of 2017, which was accessed from Helsinki Region Infoshare at 409 

https://hri.fi/data/en_GB/dataset/helsingin-ortoilmakuvat. 410 

The error distribution of the optimal ArcticDEM-SMRF was also analyzed spatially 411 

and statistically (Fig. 5). The error maps before and after applying the filter show that the SMRF 412 

method largely reduces the errors in ArcticDEM, especially in urban areas (Fig. 5a, b). 413 

Although some residual errors (> 4 m) are present in the optimal ArcticDEM-SMRF, they 414 

comprise a very small percentage (~5%) of the whole area (Fig. 5b). Errors in dense forest 415 

areas and for closely spaced buildings with large floor areas typically present as the largest 416 

positive residual errors as shown in Fig. 5c. Large negative errors occur in hillslope areas 417 

(usually slope >10º) and in some areas where above-ground traffic links such as junctions, 418 

viaducts, or overpasses are present (Fig. 5c).  419 

4.3 Flood inundation evaluation of the ArcticDEM-SMRF realizations 420 

The flooding evaluation metrics simulated using the original ArcticDEM and the 421 

ArcticDEM-SMRF realizations for all the 234 parameter combinations are plotted against the 422 

DEM error metrics (RMSE, Mean error calculated at 10 m grid which is the same as the flood 423 

models) for each DEM realization in Fig. 6. This analysis was conducted for all land areas, 424 

urban and forest areas separately. 425 

https://hri.fi/data/en_GB/dataset/helsingin-ortoilmakuvat
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 427 

Figure 6. Surface plot of the CSI score, Hit Rate, FAR, the water depth RMSE and Mean error (ME) simulated 428 

using the ArcticDEM-SMRF realizations (ArcticDEM filtered using the 234 SMRF parameter combinations) at 429 

sample S3 plotted against the RMSE and the Mean error of each realization member. The location of the highest 430 

CSI and Hit Rate, the smallest FAR, RMSE and the smallest absolute value of mean water depth error are 431 

marked as red crosses, with the values displayed. The location of the lowest RMSE of the ArcticDEM-SMRF 432 
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are marked as triangle, with values displayed (values are not shown if both the location and value are close 433 

enough as the best flood inundation metric value). In addition, the RMSE, Mean error of the original 434 

ArcticDEM are located and marked as blue crosses in each panel with the five metrics value of the original 435 

ArcticDEM simulation displayed. The locations of ArcticDEM-SMRF filtered with window size = 10 m are 436 

marked with symbols in cyan color. 437 

As a result of the reduced RMSE and Mean error over the original ArcticDEM, the 438 

flooding performance of ArcticDEM-SMRF improved for almost all the parameter 439 

combinations. For the whole S3 area, the CSI score increased by 0.19, achieving a maximum 440 

value of 0.56 against the benchmark LIDAR simulation. CSI increased by 0.17 in urban areas 441 

(to 0.49), and by a slightly smaller amount of 0.13 in forest areas (to 0.49). It should be noted 442 

that although residual errors of ArcticDEM-SMRF in the defined urban areas are not as large 443 

assmaller than in other areasland covers, the flooding extent prediction skill doesn’tdoes not 444 

exceed a CSI of 0.5. This is likely because the flooding extent for a pluvial simulation becomes 445 

very sensitive to the small-scale errors of the DEM in flat areas where water depths are typically 446 

extremelyquite shallow. In this sense, simulation of pluvial flooding is a rigorous test of DEM 447 

quality and the results achieved here using ArcticDEM-SMRF should be interpreted with this 448 

in mind. It is also important to remember that the LIDAR data, whilst good, is not truth, and 449 

has a reported vertical error of 0.3 m.  LIDAR noise and systematic error also contribute to 450 

some of the difference between the flooding performance of models using the LIDAR and 451 

ArcticDEM-SMRF data.  Simulations of fluvial flooding, where depths are typically greater, 452 

would likely score higher on the spatial extent performance metrics. The Hit Rate was 453 

improved by an even larger amount: 24, 24 and 18 percentage points in all land areas, urban 454 

areas, and forest areas, respectively. The FAR was reduced by 5 percentage points in all land 455 

and urban areas, 3 percentage points in forest areas. The greater improvement in urban areas 456 

provides evidence that the filter is especially effective at improving the flood simulation in 457 

urban areas, considering that flooding in urban areas is usually more fragmented and thus is 458 

more difficult to predict than in forest areas. With the ArcticDEM-SMRF, the simulated water 459 

depth error (RMSE) was reduced by up to 0.11 m (to 0.3 m) for all land areas and urban areas 460 

compared to the original ArcticDEM, and this reduction was slightly smaller (0.06 m) in forest 461 

areas. Although the water depth is still underestimated, the ArcticDEM-SMRF simulation 462 

reduced the average error by 0.12 - 0.17 m compared to that of the original ArcticDEM. Unlike 463 

the flooding extent performance comparison between urban and forest areas, the water depth 464 

error in urban areas is always smaller than in forest areas in both the simulation with the original 465 

ArcticDEM and the ArcticDEM-SMRF realizations. This is a result of the smaller DEM error 466 
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in urban areas. Thus, it can be inferred that the water depth error is more sensitively impacted 467 

by the error of the DEM than the flood extent, at least in the case of these pluvial flooding 468 

simulations.  469 

Unsurprisingly, the ArcticDEM-SMRF with the smallest vertical elevation error 470 

(optimum ArcticDEM-SMRF) achieved the best flooding performance scores for all land areas. 471 

(marked as triangle in Fig. 6).  However, there are two other cases where equally good flooding 472 

performance can be simulated using ArcticDEM-SMRF with larger error. than the optimum 473 

ArcticDEM-SMRF. The first case occurs when the DEM is over-corrected by the filter, i.e., 474 

where negative errors are present in the filtered DEM. (appears as stripe moving from the 475 

optimal location downwards with increased RMSE and negative mean error). In this case, some 476 

steep areas are identified as objects and are flattened incorrectly. As these are not prone to be 477 

flooded, the flooding performance is barely impacted. The second case occurs when the DEM 478 

preserves the most terrain details, shown at the spike areas in Fig. 6 (ArcticDEM-SMRF mean 479 

error of >-0.5 m and CSI between 0.54 and 0.59 for land areas).. For all land and urban areas, 480 

these areas appear below the upper center of surface plots and are capped by the ArcticDEM-481 

SMRF filtered with the window size of 10 m (symbols marked in cyan color Fig. 6). This 482 

implies that for flood simulation the filtering strategy can perform equally well by aiming to 483 

achieve the lowest DEM error, or by removing the artefacts as much as possible (over-484 

filtering), or by preserving the terrain details (under-filtering) as much as possible (filtering 485 

with a small window size of 10 m in this case study)..  486 

The spatial distribution of the flooding extent and water depth error simulated using the 487 

optimal ArcticDEM-SMRF is shown in Fig. 7. 488 
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 489 

Figure 7. Inundation extent simulated using the optimal ArcticDEM-SMRF parameters (slope threshold = 0.07, 490 

window size = 30 m) at 10 m, where inundation areas that agree with, overpredict and underpredict the extent of 491 

the LIDAR DTM 10 m simulation are shown at a). The water depth difference between the ArcticDEM-SMRF 492 

and LIDAR DTM simulations for all wet cells is shown at c). Areas with significant disagreement are marked 493 

by rectangles denoted A, B, C, D with the zoomed in maps displayed at b) and d). The land cover of A and C is 494 

building-dominated, and forest-dominated at B and D. 495 

For a 10 m spatial resolution simulation, ArcticDEM-SMRF can capture the major 496 

flooded areas correctly with underestimation mainly around the edge of the agreed wet cells 497 

and with overestimation presenting as scattered, small patches. Total underestimated area was 498 

about 1.8 times greater than that of overestimated areas. Underestimation disproportionately 499 

occurred along traffic links and along the edge of streams, in lake areas as well as in some of 500 

the forest areas with significant residual errors (Fig. 7a).  501 

Unlike the general underestimation for the domain as a whole, both underestimation 502 

and overestimation were present in urban areas and the number of pixels that are under- and 503 

over-estimated is similar. These errors appear as disconnected patches with smaller size and 504 

their spatial distribution is more even compared to errors in forest areas (Fig. 7b-A, C in 505 

contrast to Fig. 7b-B, D).  506 
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The greatest water depth error is present in forest areas (Fig. 7d-B, D) where the 507 

ArcticDEM-SMRF simulation either fails to inundate these areas (underestimation) or 508 

generates much shallower water depths compared to that simulated using the LIDAR DTM. In 509 

urban areas, the water depth error simulated using the ArcticDEM-SMRF is relatively small, 510 

varying between -0.5 m and 0.5 m (Fig. 7d-A, C).  511 

5 Discussion 512 

5.1 The selection ArcticDEM strips 513 

The error of different ArcticDEM strips covering the same areas could vary 514 

significantly. In this study site, we found that the main difference in error occurs in forest areas. 515 

Within a selected 11 km2 forest area the error of the strip acquired on the 16th of February 2015 516 

is 12.2 m, while within the same area that of the strip acquired on the 14th of March 2013 was 517 

much smaller (6.66 m). From air photos, no noticeable forest coverage change was found 518 

within the selected areas between the acquisition years of the two strips. Therefore, the 519 

difference between strips could be caused by the leaf-on/off differences or the snow situation. 520 

In this case, since both acquisition dates are during leaf-off season it is likely a result of 521 

differences in snow cover. Even for the building dominated samples, the error at S1 and S2 of 522 

the former strip (acquired on the 16th of February 2015) is 0.31 m, and 0.88 m larger than the 523 

latter strip. Thus, we suggest that for general bare-earth generation from ArcticDEM, different 524 

strips should consider the forest characteristics (evergreen or deciduous) and the weather 525 

conditions (snow free or not) on the data acquisition date in overlapping areas. Strip data in 526 

leaf-off and snow-free conditions will represent more of the ground elevation compared to data 527 

collected in leaf-on or snow-covered conditions. Also, snow-free condition avoids the feature 528 

matching difficulty between stereo images in the DEM generation process, which happens 529 

often because the presence of snow results in low-contrast and repetitive image textures (Noh 530 

and Howat, 2015). The snow condition on the strip data acquisition date can be checked using 531 

the daily MODIS snow index product (Hall et al., 2016).  532 

5.2 SMRF filter parameters and transferability 533 

A direct application of the SMRF filter proved to be effective at removing most of the 534 

surface artefacts at this study site, especially for buildings. It means that this LIDAR processing 535 

tool can be employed without modification in generating a bare-earth ArcticDEM in urban 536 

areas with buildings spacing at medium density like Helsinki (0.22 floor area ratio on average 537 
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within a 250 m grid cell, https://hri.fi/data/en_GB/dataset/rakennustietoruudukko). The SMRF 538 

is generally. The SMRF is robust to its window size and slope threshold parameter choices 539 

with respect to the error reduction of the filtered ArcticDEM and the reduction could be 540 

optimized by narrowing the parameters to certain values. Although by the algorithm definition, 541 

the parameters should be set as the largest patch size and the greatest terrain variation, this 542 

research shows that in a large domain application the window size and the slope threshold 543 

parameter range should be gauged around the median value of the artefacts patch sizes and of 544 

the terrain variation values. At this study site, the range of the window size is 20 - 40 m and a 545 

range of 0.04 - 0.1 for the slope threshold performed best, with optimal values located at the 546 

median point of the distribution.. The robustness of the window size and slope threshold 547 

parameter in terms of error reduction was also demonstrated by Pingel et al (2013) who 548 

originally proposed the SMRF filter. In theory, to remove all objects in the target areas the 549 

window size should correspond to the size of the largest object. However, this is only true for 550 

a hypothesized entirely flat area. Because in a real topography over a large domain there are 551 

always hilly areas or terrain variations, applying such a window size will identify some hilly 552 

areas as objects incorrectly and flatten them, resulting in negative errors in these areas. 553 

Therefore, a smaller window size has to be chosen instead. This smaller window size will 554 

inevitably miss out some of the larger objects . Similarly, the choice of the slope threshold has 555 

to consider preserving hilly areas (using a large slope threshold) and removing artefacts (using 556 

a small slope threshold). This inherent feature of SMRF means the choice of the window size 557 

and slope threshold needs to be balanced, which also means adjusting the window size and 558 

slope threshold to different ends in order to achieve good results. The key to applying the filter 559 

is deciding the most effective range of the parameters. In this paper, we found a range of 0.04-560 

0.1 of the slope thresholds has overall good performance of filtering the ArcticDEM, with 0.07 561 

generating the bare-earth ArcticDEM with the lowest error. The optimal slope threshold of 0.07 562 

(or 7%) is roughly the mean slope in our study site (0.077 or 7.7%). The 30 m optimal window 563 

size corresponds to an average building density of 0.22 floor area ratio (within a 250 m grid 564 

cell) in the city of Helsinki (https://hri.fi/data/en_GB/dataset/rakennustietoruudukko). Because 565 

we lack spatially distributed footprint data for the artefacts, we could not further quantify this 566 

relationship. The different optimum window size between urban and forest areas shows that 567 

there is a positive relationship between the optimum window size and the size of the artefacts. 568 

We suggest a slope threshold around the mean slope of the study site and a window size of 20-569 

60 m for general application in typical urban areas and adjusting these values up and down 570 

within this range will likely find the optimum parameter quickly in most locations. Within the 571 

https://hri.fi/data/en_GB/dataset/rakennustietoruudukko
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reasonable range, a smaller window size proved to be more robust in that it will be less sensitive 572 

to the choice of the slope threshold.  573 

When benchmarking to a LIDAR DTM simulation, similarly good flood simulation 574 

performance for the filtered DEMs is found to be achieved by the ArcticDEM-SMRF with 575 

smallest error, or negatively biased ArcticDEM-SMRF or positively biased ArcticDEM-SMRF 576 

preserving the most terrain details. Whilst the SMRF filter tends to produce negative errors on 577 

hillslopes, these areas are not flooding-prone so the flooding inundation is not significantly 578 

affected. The error sensitivity of the ArcticDEM-SMRF realizations to the SMRF parameters 579 

at different slope areas is included in the Supplement as Figure S2 and Text S3. Applying the 580 

SMRF filter is a trade-off between the removal of artefact errors and the loss of terrain 581 

detaildetails. When the SMRF is applied with a small window size (such as 10 m), most of the 582 

terrain details can be maintained in the ArcticDEM-SMRF while the residual error of the DEM 583 

can be large as a result of the residual artefacts with large patch sizes. Since these preserved 584 

terrain details might be important in the inundation simulation, the flood performance could be 585 

better in some places than when more of the residual errors are removed at the cost of losing 586 

these details. However, we made a further comparison of the water surface elevation error and 587 

found that these positive biased ArcticDEM-SMRF do not simulate the water surface elevation 588 

as well as the other two cases. Therefore, when choosing the parameter of the SMRF, the mean 589 

slope of the target area as the slope threshold and window size around 30 m should be tested 590 

first and combinations towards the strict end (slope threshold smaller than the mean slope) of 591 

removing artefacts should take priority (as opposed to the loose end, i.e., slope threshold large 592 

than the mean slope with large window size) for generating bare-earth ArcticDEM for flood 593 

inundation modelling purposesWhilst the SMRF filter tends to produce negative errors on 594 

hillslopes, these areas are not flooding-prone so the flooding inundation is not significantly 595 

affected. The error sensitivity of the ArcticDEM-SMRF realizations to the SMRF parameters 596 

at different slope areas is included in the Supplement as Figure S2 and Text S3. Despite the 597 

above points, the filter parameters of the two latter cases are not easy to gauge and likely to 598 

varying from location to location, thus using the median values of the artefacts size and terrain 599 

variation is suggested. 600 

5.3 Limitations 601 

Although the SMRF filter successfully removed most of the ArcticDEM errors caused 602 

by artefacts, there is a small percentage of artefact errors (~5%) that remains in dense built-up 603 
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areas and in large vegetation patches. Pixels in these areas are not entirely flagged as objects 604 

with a window size of 30 m and some pixels are instead wrongly designated as ‘ground’ values 605 

in the interpolation. Even though with an enlarged window size the remaining artefact errors 606 

could be removed by the SMRF, the interpolation over large patch areas would potentially be 607 

unsuccessful due to a lack of ground elevations within these zones. Additional data or a tailored 608 

approach is required to achieve the desired result in areas with large patch sizes. For building 609 

artefacts, the OpenStreetMap building footprint data could be helpful to predefine the areas of 610 

objects. The ICESAT2ICESat-2 terrain elevation might be useful to provide additional ground 611 

elevations in forest areas with large patch sizes (Neuenschwander et al., 2020; Tian and Shan, 612 

2021). 613 

With this filter, artefacts with small size are usually identified before the window size 614 

reaches the maximum and the subsequent interpolation is also more successful. This makes the 615 

SMRF filter more effective at removing building artefacts than vegetation due to the general 616 

smaller size of building patches. However, some desired features that present similar elevated 617 

characters to building artefacts (such as traffic junctions or levees) might be removed by the 618 

filter unfavorably, and negative errors are shown in these areas. It becomes very tricky to 619 

preserve these feature heights by any automatic filtering approaches without the location 620 

information of the features. With more sophisticated method, likely with some ancillary data, 621 

this could be possible (Wing et al., 2019). For hilly areas, some of the natural terrain might be 622 

identified as artefacts by the SMRF incorrectly and the subsequent interpolation can cause the 623 

loss of terrain details. The error histograms and analysis of the ArcticDEM-SMRF generated 624 

with different window size parameters at buildings and forest with large patch size, hillslope, 625 

and roads examples can be found in Figure S3 and Text S4 in the Supplement. Thus, in terms 626 

of the bare-earth DEM generation, the filter is likely to be less effective for areas with densely 627 

packed artefacts or hilly areas.  628 

For flood simulation the errors in ArcticDEM-SMRF along river channels and over 629 

floodplains is particularly critical, and further DEM processing here could lead to additional 630 

improvements. In the ArcticDEM-SMRF, the elevations of the river sections that run through 631 

large patches of forest are positively biased because of the reduced effectiveness of the SMRF 632 

filter in these areas. The water depth error along the river network is expected to be mitigated 633 

once these blockages are removed, such as by using quantile regression techniques 634 

(Schwanghart et al., 2017). Similarly, elevation values along the road network (acquired from 635 

OpenStreetMap) were particularly interesting and extracted for further analysis. It was found 636 
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that the SMRF filter largely lowered the elevation of the road network where artefacts are 637 

present. But the resulting DEM from SMRF is interpolated based on all neighbouring pixels 638 

and not only along the road pixels on either side of the artefact removed. Thus, an unsmooth 639 

distribution of the along-road elevation was generated, which is not ideal for flood simulation 640 

and likely to be inaccurate. A linear interpolation along the central line of the road network 641 

with a buffering around that could be used to reduce these errors in the future. It should be 642 

noted that the buffering width of the central line of roads could be tricky to define when there 643 

is not accurate road width data available. 644 

Moreover, sinks can be present in ArcticDEM (areas with substantially lower elevation 645 

than neighbouring pixels), possibly because of the shadow effect which is a common issue for 646 

photogrammetry DEMs (Noh and Howat, 2015). These sinks should be identified and filled in 647 

future work.  648 

6 Conclusions 649 

In this paper, we examine two morphological filters (PMF, SMRF) for removing 650 

surface artefacts from the ArcticDEM strip data in a complex urban environment using the city 651 

of Helsinki as a case study. We then assess the improvement in flood inundation simulation 652 

provided by the filtered ArcticDEM relative to a LIDAR DTM benchmark in a pluvial flooding 653 

scenario. To our knowledge, it is the first examination of the approach to generate bare-earth 654 

ArcticDEM data specifically for flood applications. It was found that the SMRF performs better 655 

at removing surface artefacts from ArcticDEM than the PMF filter, and it is robust to its 656 

parameter setting. The optimal parameter combination is around the median value of the patch 657 

size distribution of the artefacts and of the terrain variation, which resulted in an optimal 658 

window size of 30 m and slope threshold of 0.07 in the city of Helsinki.the performance is 659 

robust to its parameter setting. The most effective window size and slope threshold range is 20-660 

40 m, 0.04-0.1 with the optimal window size achieved at 30 m and the optimal slope threshold 661 

achieved at 0.07 (or 7%). The optimal window size positively relates to the size of artefacts, 662 

and we suggested it is set accordingly but no larger than 60 m (the upper threshold of the 663 

effective range of forest areas) for typical urban areas. The optimal slope threshold is roughly 664 

the mean slope of the city of Helsinki and is thus suggested as the first guess and adjusting up 665 

and down for optimal filter performance. With SMRF, the overall error of the ArcticDEM can 666 

be reduced by up to 70% with the optimized parameters, achieving a final RMSE of 1.02 m. 667 
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The flood inundation simulation performance of a standard two-dimensional 668 

hydrodynamic model was considerably improved when using the filtered ArcticDEM in that 669 

40% of the underestimated areas simulated by the ArcticDEM were eliminated. Although the 670 

flooding extent performance simulated by the ArcticDEM-SMRF is still not a strong match to 671 

the LIDAR DTM benchmark (CSI=0.56, although some of this difference will be caused by 672 

errors in LIDAR itself), the pluvial flood simulation should be seen as a rigorous test as the 673 

inundated areas usually vary within few pixels in urban areas and are easily impacted by small-674 

scale errors. The simulated water depth error of the optimal ArcticDEM-SMRF model is 675 

comparable to the likely error of the LIDAR DTM simulation, as a result of ~0.1 m 676 

improvement comparing to the original ArcticDEM.  677 

The residual errors of the filtered ArcticDEM are mainly composed of: 1) positive 678 

errors for artefacts with large patches sizes, which are not entirely removed by the filter; and 679 

2) negative errors in hilly areas which are incorrectly identified as artefacts. Thus, when using 680 

the SMRF filter in other study areas where the artefacts have a much higher density or artefacts 681 

with a large patch size comprise a significant proportion of the study area, the effectiveness of 682 

the SMRF filter could be less significant compared to the results of this study. Some 683 

modification of the SMRF filter might be able to remove the densely distributed artefacts and 684 

auxiliary data are likely to be needed to guarantee satisfying interpolation results. Applying the 685 

SMRF filter to hilly areas is also likely to yield a less effective performance. From the 686 

perspective of flood inundation simulation, the SMRF parameters shouldcould be configured 687 

towards optimizing their range to generate the DEM with the lowest error. or DEM with 688 

negative errors (over-filtered). 689 

This paper suggests that applying the SMRF without any algorithm modification is 690 

effective to generate bare-earth DEMs from ArcticDEM and are likely to be applicable to other 691 

high-resolution photogrammetry DEMs and other application areas. The generated bare-earth 692 

DEM shows largely reduced error comparing to the original ArcticDEM and comparable 693 

simulated water depth error to the LIDAR benchmark. Thus, it is a promising alternative to 694 

LIDAR data for locations where such data are either not available or would not be cost efficient. 695 

In the future, using ancillary data to address the residual errors of the filtered DEM should be 696 

integrated to the bare-earth ArcticDEM generation process. To facilitate the use of bare-earth 697 

ArcticDEM in flood simulation, the blockage of residual error within rivers and errors along 698 

road network should be carefully treated.  699 
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Data and code availability 700 

LIDAR data at 2 m was acquired from 701 
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta?lang=en. The error description of the 702 
LIDAR data can be found at https://www.maanmittauslaitos.fi/en/maps-and-spatial-703 

data/expert-users/product-descriptions/elevation-model-2-m. The quasigeoid heights was 704 
downloaded from https://www.maanmittauslaitos.fi/kartat-ja-paikkatieto/asiantuntevalle-705 
kayttajalle/koordinaattimuunnokset. The MODIS/Terra Snow Cover Daily L3 Global 500 m 706 
SIN Grid, Version 6 data is available at https://nsidc.org/data/MOD10A1/versions/6. The 707 
OpenStreetMap road network can be acquired at https://overpass-turbo.eu/. The building 708 

density information of the city of Helsinki can be found at 709 
https://hri.fi/data/en_GB/dataset/rakennustietoruudukko. The LISFLOOD-FP model is 710 
available for non-commercial research purposes from 711 
https://zenodo.org/record/4073011#.YeWAdP7P2Ul. The Bare-earth ArcticDEM can be 712 

accessed at  https://doi.org/10.5523/bris.3c1l2q7u1x14a262m6z7hh0c4r. The PMF algorithm 713 
can be accessed at 714 
http://www.pylidar.org/en/latest/_modules/pylidar/toolbox/grdfilters/pmf.html, the SMRF 715 
algorithm can be accessed at https://github.com/thomaspingel/smrf-matlab. 716 
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