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Abstract. Heavy rainfall events in mountainous areas can trigger thousands of
:::::
trigger

:
destructive landslides, which pose a risk

to people and infrastructure and significantly affect the landscape. Landslide locations are typically
:::::::::
commonly

:
mapped using

optical satellite imagery, but in some regions their timings are often poorly constrained due to persistent cloud cover. Physical

and empirical models that provide insights on the processes behind the triggered landsliding require information on both the

spatial extent and timing of landslides. Here we demonstrate that Sentinel-1 SAR
:::::::
synthetic

:::::::
aperture

::::
radar

:
amplitude time series5

can be used to constrain landslide timing to within a few days and present three methods
:::
four

:::::::::
techniques

:
to accomplish this

based on time series of: (i) the difference in amplitude between the landslide and its surroundings, (ii) the spatial variability of

amplitude between pixels within the landslide, and
::::::::
geometric (iii) geometric shadows

:::::::
shadows

::::
and

:::
(iv)

:::::
bright

:::::
spots cast within

the landslide. We test these methods
::::::::
techniques

:
on three inventories of landslides of known timing, covering various settings

and triggers, and demonstrate that , when used in combination, our methods allow 20
:
a
:::::::
method

:::::::::
combining

::::
them

::::::
allows

:::::
20-30%10

of landslides to be timed with an accuracy of 80%. This will allow multi-temporal landslide inventories to be generated for long

rainfall
::::::::::
Application

::
of

:::
this

:::::::
method

:::::
could

::::::
provide

:::
an

::::::
insight

::
on

::::::::
landslide

::::::
timings

:::::::::
throughout

:
events such as the Indian summer

monsoon, which triggers large numbers of landslides every year and has until now been limited to annual-scale analysis.

1 Introduction

Every year, many mountainous areas in tropical zones are affected by destructive rainfall-induced landslide events that pose a15

major risk to people and infrastructure (Petley, 2012). With the advent of Earth observation from space, inventories of these

landslides are routinely compiled from optical and multi-spectral satellite imagery (e.g., Marc et al., 2018; Emberson et al., 2021)

:::::::::::::::::::::::::::::::::::::
(e.g., Marc et al., 2018; Emberson et al., 2022). These data are then used to provide information to emergency response coordinators

::::::
inform

:::::
hazard

:::::::::::
management, as inputs to physicaland empirical

:
,
::::::::
empirical

:::
and

::::::::
statistical models, and to assess the impact the event has

had on the landscape, for example by estimating the volume of sediment eroded
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jones et al., 2021; Kirschbaum and Stanley, 2018; Ozturk et al., 2021; Wu et al., 2015)20

.
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Landslide early warning systems, susceptibility zonation maps, nowcasts and hazard scenarios use information on the

size
:
, location and timing of past landslides alongside information on the landscape conditions and triggering event (Guzzetti

et al., 2020). While optical satellite imagery provides information on the size and location of landslides, cloud-free, day-

light images are required. In unfavourable weather conditions, there may be a delay of weeks or months before cloud-25

free imagery over the whole area affected by triggered landslides is acquired (Williams et al., 2018; Robinson et al., 2019)

::::::::::::::::::::::::::::::::::::
(Robinson et al., 2019; Williams et al., 2018). This means that the timing of the landslides is often poorly constrained by the

optical satellite imagery. In practice, this strongly limits or simply prevents any attempt to relate landslide metrics and hy-

drometeorological metrics resulting from successive or long rainfall events, whether through empirical scalings (e.g., Marc

et al., 2018, 2019b) or physical modeling (e.g., Wilson and Wieczorek, 1995; Baum et al., 2010). In many tropical settings,30

multiple successive typhoons are common, for example typhoons Nesat, Haitang and Talim, which made landfall within a 2-

month period in 2017 in Taiwan (Janapati et al., 2019). If no cloud-free optical satellite imagery is acquired between these
::::
such

::::::::
successive

:
trigger events, the relationship between the hydrological impact of the storms and the triggered landslides cannot

be precisely established. Similarly, the Indian summer monsoon (June-September) triggers hundreds of landslides every year

in the Nepal Himalaya and cloud-free optical satellite imagery is unlikely to be available throughout this period (Robinson35

et al., 2019). This limits analysis of these landslides to the annual scale (e.g. Marc et al., 2019a; Jones et al., 2021).
:::::::
seasonal

::::
scale

::::
and

:::::::
prevents

:::::::::
association

:::
of

::::::::
individual

:::::::::
landslides

::
or

::::::::::::::
spatio-temporal

::::::
clusters

:::
of

::::::::
landslides

:::
to

::::::
specific

::::::
peaks

::
in

:::::::
rainfall.

::::::::::::::::::::::::::::::::::
(e.g. Marc et al., 2019a; Jones et al., 2021)

:
.
::::::
Studies

:::::
based

:::
on

::::::
optical

:::::::
satellite

::::::
images

:::::::
affected

:::
by

:::::
cloud

:::::
cover

::::
that

:::::::
attempt

::
to

:::
map

:::::::::
landslides

::::::::
triggered

::
by

::::::::
sequences

:::
of

:::::::::
earthquakes

::::::
and/or

::::::
rainfall

::::::
events

::::
may

:::
also

::
be

::::::
unable

::
to

:::::::::
distinguish

:::::::
between

::::::::
different

::::::
triggers

:::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Ferrario, 2019; Martha et al., 2017; Tanyaş et al., 2022)

:
.40

Current alternative methods of landslide timing are generally not widely applicable
::::::
Beyond

::::::
remote

:::::::
sensing,

::::::
several

::::::::::
approaches

::::
have

::::
been

::::
used

::
to

::::::::
constrain

::::::::
landslide

:::::
timing. Landslides that occur close to inhabited areas, or that damage important pieces of

infrastructure may be described in news reports or on social media (e.g., Kirschbaum et al., 2010)
:::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kirschbaum et al., 2010; Franceschini et al., 2022)

. Information on the timing of such landslides can also be obtained from interviews with local residents (Bell et al., 2021)
:::
and

::::::
through

::::::
citizen

:::::::
science

::::::::
initiatives

:::::::::::::::::::
(Sekajugo et al., 2022). Rainfall intensity-duration thresholds have previously been derived45

for landslides dated in this way (e.g. Dahal and Hasegawa, 2008) and for landslides whose timings and properties are known

through monitoring and field surveys (e.g. Guzzetti et al., 2007; Ma et al., 2015). Howeverthis ,
:::::
such

:::::::::
information

:::
on

::::::::
landslide

:::::
timing

:
is unlikely to be the case

:::::::
available

:
for the majority of landslides in an inventory, and will be

:
is

::::::
usually

:
biased towards

populated areas
:::
and

:::::
areas

:::::::::
accessible

:::
by

::::
road

:::::::::::::::::::
(Sekajugo et al., 2022). Seismic records of landslides can also provide highly

precise information on their timings, but will mostly record large landslides and require multiple seismic stations to allow tim-50

ing of an individual, localised landslide (e.g. Yamada et al., 2012; Hibert et al., 2019)
::::::
Current

::::::::
methods

::
of

::::::::
obtaining

::::::::
landslide

:::::
timing

::::::::::
information

::
in

:::
the

:::::::
absence

::
of

:::::::::
cloud-free

::::::
optical

:::::::
satellite

::::::
images

:::
are

:::::::
therefore

:::
not

::::::
widely

:::::::::
applicable.

Regularly acquired synthetic aperture radar (SAR) images, for example those acquired by the European Space Agency

Sentinel-1 constellation, represent a new opportunity to obtain landslide timing information for many landslides at regional

scale. SAR images penetrate cloud cover and the Sentinel-1 satellites acquire images every 12 days on two tracks over all land55

masses globally. Numerous studies have demonstrated that SAR data can be used to detect the spatial distribution of landslides
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in the case where their timing is already known(Aimaiti et al., 2019; Burrows et al., 2019, 2020; Ge et al., 2019; Konishi and Suga, 2019; Masato et al., 2020; Mondini et al., 2021; Yun et al., 2015)

, for example in the case of earthquake-triggered landslides where it can be assumed that the landslides occurred concurrently

with ground shaking
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Aimaiti et al., 2019; Burrows et al., 2019, 2020; Ge et al., 2019; Konishi and Suga, 2019; Masato et al., 2020; Mondini et al., 2019; Yun et al., 2015)

. SAR can be also used to monitor movements of slow-moving landslides (e.g. Ao et al., 2020; Bekaert et al., 2020; Hu et al.,60

2019; Kang et al., 2021; Solari et al., 2020). Mondini et al. (2019) used SAR to establish the timing of a single large landslide.

However, to-date SAR has not been used to refine timing estimates of seasonal landslide inventories. Here we present methods

of accomplishing this using
:::::::
landslide

::::::
timing

::::::::
methods

:::::
based

::
on

::::
the Sentinel-1 SAR time series

::::::
dataset in Google Earth En-

gine . This will greatly improve the temporal resolution of optically-derived landslide inventories and
:::
that

::::::::
represent

::
a
::::
step

::::::
towards

::::
this

::::
goal

::
of

::::::::
improved

::::::::
landslide

::::::::
inventory

:::::::
temporal

::::::::::
resolution,

:::
and

:::::
could unlock new comparisons between measured65

or modelled hydrological time series and landslide occurrence.

2 Data and Methods

In order to obtain timed landslide information for inventories associated with long or successive rainfall
:::::::::
information

:::
on

:::::
event

::::::
timings

:::
for

:::::::::
landslides

::::::::
triggered

:::
by

::::::::
sequences

:::
of

::::::::::
earthquakes

:::
or

::::::
rainfall

::
or

:::
by

:::::
long

::::::
rainfall

:
events, we propose a two-step

process, whereby landslide locations are mapped as polygons using optical
::
or

::::::::::::
multi-spectral satellite imagery, and the timings70

of individual landslides are then obtained from SAR time series. In this paper we address the second of these steps. We use

Sentinel-1 time series over inventories of landslides whose timings are already known to test three potential landslide timing

methodsindividually and in combination.

2.1 Case study events
:::::
studies

We used three published polygon inventories of landslides whose timings are known a-priori to test and develop landslide75

timing methods. We filtered each inventory to remove landslides smaller than 2000 m2, so that each landslide was expected to

contain a minimum of 20 10 × 10 m SAR pixels. All three inventories are located in vegetated areas, which is generally the

ideal condition for widespread landslide mapping based on multi-spectral satellite imagery.

We used two inventories of landslides from Emberson et al. (2021) triggered by short rainfall events, whose timing is there-

fore known to within a few days
::::::
(rainfall

:::::
time

:::::
series

:::
are

::::::::
available

::
in

:::
the

::::::::::::
supplementary

::::::::
material). First, an inventory of 54380

landslides triggered in Hiroshima, Japan by a heavy rainfall event which took place from 28 June to 9 July 2018, which were

mapped using a combination of drone and aerial imagery (inventory from The Association of Japanese Geographers, 2019).

The majority of landslides triggered by this event are believed to have occurred during peaks in rainfall intensity on the 6-7

July (Hashimoto et al., 2020).

Second, we used an inventory of 383 landslides triggered by Cyclone Idai in Zimbabwe between 15-19 March 2019. This in-85

ventory was compiled as part of the study of Emberson et al. (2021) using Planetdove
:::::::::::::::::::
Emberson et al. (2022)

::::
using

:::::::::
post-event

::::::::::
PlanetScope

:
optical satellite images acquired on 20 and 24 March. Media reports on this event suggest that the majority of

3



landsliding occurred between the 15-17 March (BBC News, 2019; Ministry of Information and Broadcasting, 2019; OCHA,

2019).

The third inventory used to test our methods is that of Roback et al. (2018) compiled
:::
was

::::::::
compiled

::
by

::::::::::::::::::
Roback et al. (2018)90

for the Mw 7.8 Gorkha, Nepal earthquake, which occurred on 25 April 2015. The Nepal Himalaya is an area which expe-

riences long periods of cloud cover and large numbers of rainfall-triggered landslides annually due to the monsoon and the

country’s steep topography. It is therefore useful
:::
The

::::
steep

::::::::::
topography

::
of

:::::
Nepal

::::
also

::::::
makes

:
it
::::::::::
particularly

::::::::::
challenging

::
for

:::::
SAR

::::::::::
applications

::
as

:
it
:::::
leads

::
to

::::::::
distortion

::
of
:::
the

:::::
SAR

:::::::
imagery.

::
It

::
is

::::
thus

::::::::
important to test landslide timing methods in this area, and,

since well-timed
::::::::::
environment,

:::
but

::::::::::
inventories

::
of rainfall-triggered landslide information is not widely available, we

::::::::
landslides95

::
of

::::::
known

:::::
timing

:::
are

:::
not

::::::::
available.

:::::::::
Therefore

:::
we

::::::
instead used earthquake-triggered landslides, which can be assumed to occur

concurrently with the ground shaking. Since the inventory of Roback et al. (2018) covers a large area ,
::::::
(28,000

::::::
km2), with

different areas having different Sentinel-1 coverage, we focussed on triggered landslides within three large valleys: Trishuli,

Bhote Kosi and Buri Gandaki. These valleys see
::::::::
experience

:
large numbers of rainfall-triggered landslides every year , the

timing of which would be one of the key applications of our method (Marc et al., 2019a). The
::::::::::::::::
(Marc et al., 2019a)

:
.100

:::
All

:::::::::
inventories

::::
were

::::::
filtered

:::
to

::::::
remove

:::::::::
landslides

::::::
smaller

::::
than

::::
2000

::::
m2.

:::::
Since

:::
the

:::::::::
Sentinel-1

::::
GRD

::::
data

:::
set

:::
has

::
a

::::
pixel

::::
size

::
of

::
10

:::
×

::
10

:::
m,

:::
this

::::::
should

:::::
result

:::
in

:
a
:::::::::
minimum

::
of

:::
20

::::
SAR

::::::
pixels

:::::
within

:::::
each

::::::::
landslide.

::::
This

:::::::
resulted

::
in

::::::::::
inventories

::
of

::::
543

::::::::
landslides

:::
for

:::
the

:::::::::
Hiroshima

:::::
event

:::
and

::::
383

:::
for

:::::::::
Zimbabwe.

:::
In

::::::
Nepal,

::
an

:::::::::
additional

:::
step

::::
was

::::::::
required;

:::
the Mw 7.8 mainshock

on 25 April was followed by other possible landslide triggers , including the Mw 7.3 Dolakha aftershock on 12 May as well as

the annual monsoon, whose onset was around 9 June (Williams et al., 2018). Thereforefor this inventory, as well as filtering105

by landslide area, ,
:
we also removed all landslides whose trigger was specified by Roback et al. (2018) to be something other

than the mainshock
:::
have

:::::
been

::::::::
triggered

::
by

:::
an

:::::::::
aftershock

::
or

:::
by

::::::
rainfall

::::
and

::::
used

:::::
only

::::
those

::::::::
triggered

:::
by

:::
the

:::::::::
mainshock

:::
in

:::
our

:::::::
analysis. This left 650 landslides in Trishuli, 1554 in Bhote Kosi and 922 in Buri Gandaki. The Dolakha aftershock is

known to have triggered further landsliding (see Marc et al., 2019a)
:::
and

:::::::::::::::::
Roback et al. (2018)

:::::
noted

:::
that

:::
in

:::::
some

:::::
areas,

:::
no

::::::::
cloud-free

::::::
optical

:::::::
satellite

::::::
images

::::
were

::::::::
available

:::::::
between

:::
the

:::::::::
mainshock

:::
and

::::
this

:::::::::
aftershock,

::::::
making

::
it

:::::::
difficult

::
to

::::::::::
differentiate110

:::::::
between

:::::
these

:::
two

:::::::
triggers. However of the three valleys we consider here, only Bhote Kosi was close enough

::::::::
landslides

::::::::
associated

::::
with

::::
this

:::::::::
aftershock

::::
have

::::
only

:::::
been

:::::::
observed

:::
in

:::::
Bhote

:::::
Kosi,

:::::
which

::::
was

:::
the

::::::
closest

:
to the epicentre to be affected

by that event (Martha et al., 2017). Since
:::::::::::::::::
(Martha et al., 2017).

::::
97%

:::
of

:::
the

:::::::::
co-seismic

::::::::
landslides

::
in

::::::
Bhote

::::
Kosi

::::
were

::::::::
recorded

::
as

:::::::::
identifiable

:::
in

:::::::
imagery

::::::::
acquired

::::
prior

::
to
::::

the
:::::::::
aftershock

:::
and

::::
can

::::::::
therefore

::
be

:::::::::
associated

::::::::::
definitively

::::
with

:::
the

::::::::::
mainshock

:::::::::::::::::
(Roback et al., 2018).

:::::::::::
Furthermore,

:::::
since the co-event pair of SAR images for Bhote Kosi (24 April - 18 May 2015) spans both115

the Gorkha earthquake on 25 April and the Dolakha aftershock on 12 May, these two earthquakes can be considered as a single

triggering event
:::::
trigger

::::::
events

:::
are

:::::::
blended

:::
into

::
a
:::::
single

::::
time

:::::::
window

:::
by

:::
our

:::::::
methods in Bhote Kosi.

2.2 Theory: SAR backscatter and landslides

A SAR satellite actively illuminates the Earth’s surface with microwave energy, and records the phase and amplitude of the

returned signal. The difference in phase between two images acquired over the same area at different times can be used to track120

the movement of the Earth’s surface, for example movement on a fault during an earthquake, while the amplitude describes the
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Figure 1. (a-c) locations of the five inventories of triggered landslides used in this study to test landslide timings. (
:::
a,b)

:::::::
landslide

:::::::
locations

:::
from

::::::::::::::::::::::::::::::::::::::::::::::::::::::
The Association of Japanese Geographers (2019); Emberson et al. (2022)

::
are

::::::
shown

::
by

::::
white

::::::
circles.

::
(c)

::::
three

::::::
subsets

::
of

::
the

::::::::
inventory

:
of
::::::::::::::::

Roback et al. (2018)
::
are

:::::
shown

:::
for

::
the

::::
Buri

:::::::
Gandaki,

::::::
Trishuli

:::
and

:::::
Bhote

::::
Kosi

:::::
valleys

::
by

::::
blue,

:::::
white

:::
and

:::
pink

:::::
circles

:::::::::
respectively

:
(d) SAR

image acquisition timings before, during and after a defined "co-event" window of 6 months relative to the real event timing.
:::
The

::::
orbit

:::::
number

::
of
::::
each

::::
track

::
is

::::
given

::
in

:::::::
brackets.

strength of the backscattered SAR signal. The power of the signal transmitted Pr and received Pt by the sensor are described

by Eq. 1, where λ is the wavelength, G2 is the two-way antenna gain and R is the slant range (Small et al., 2004).

Pr =
λ2

(4π)3
˙

∫
Area

PtG
2x0

R4
dA (1)

This equation is solved to obtain x0, the backscatter coefficient, which can be either σ0, γ0 or β0 depending on whether the125

integration is carried out in the ground (ellipsoid) plane, the plane perpendicular to the look direction or the slant-range plane

respectively (Small et al., 2004). Different studies have demonstrated that all three of these backscatter coefficients can be

applied to detect vegetation removal due to landslides and other processes such as deforestation and wildfires (e.g. Ban et al.,
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2020; Belenguer-Plomer et al., 2019; Bouvet et al., 2018; Esposito et al., 2020; Hernandez et al., 2021; Konishi and Suga,

2018; Mondini, 2017; Mondini et al., 2019; Motohka et al., 2014). Here we used γ0.130

SAR backscatter is dependent on a number of factors, including the polarisation and wavelength used by the SAR system,

the local slope orientation relative to the SAR sensor and the roughness and dielectric properties (e.g. soil moisture, presence

of vegetation) of the material that the microwave energy interacts with at the Earth’s surface. Sentinel-1 acquires C-band SAR

data with a wavelength around 5.5 cm in two polarisations: "VV" (vertical polarisation) and "VH" (cross polarisation). We

tested both of these polarisations, but found VV to perform better than VH so present only the results for VV
:::::
(results

:::
for

::::
VH135

:::
can

::
be

::::::
found

::
in

:::
the

::::::::::::
supplementary

::::::::
material). VV data have also been acquired more consistently throughout the lifetime of

Sentinel-1 than VH. In general, for vertically polarised SAR images, rougher surfaces result in increased backscatter, as does

increased soil moisture. However, the relationship between these properties and the SAR amplitude is not simple: roughness

has a stronger effect in locations with a high incidence angle (Baghdadi et al., 2016; Dubois et al., 1995), while changes in soil

moisture have a larger effect at low incidence angles (Baghdadi et al., 2016).140

Landslides alter the local topography (and therefore the local incidence angle) of the landscape through the movement of

material and remove vegetation, which alters the dielectric properties and roughness of the Earth’s surface. For this reason,

landslides can result in both increases and decreases in amplitude. In fact within a single landslide, the amplitude of some

pixels may increase while some decrease (e.g. Tozang landslide, Mondini et al., 2021, Fig 4)
:::::::::::::::::
(e.g. Mondini, 2017).

2.3 SAR data and preprocessing145

To construct our SAR amplitude time series, we used the Google Earth Engine Sentinel-1 ground range detected (GRD) data

set. These data
::::::
Google

:::::
Earth

::::::
Engine

::
is

:
a
::::::

freely
:::::::::
accessible,

::::::::::
cloud-based

::::::::
platform

:::
that

::::::
allows

:::::
users

::
to

::::::
access

:::::::::
Sentinel-1

::::
data

::::::
without

:::
the

::::::::
technical

::::::::
expertise

:::
and

::::::::::::
computational

:::::::
facilities

:::::::::
otherwise

:::::::
required

::
to

::::::
process

:::::
SAR

::::
data.

::
It

::::
also

:::::::
provides

::::::
access

::
to

::::
other

:::::::
datasets

::::
used

::
in

::::
this

:::::
study,

::::
such

::
as

:::::::::
Sentinel-2

::::
and

:::
the

:::::
shuttle

:::::
radar

::::::::::
topography

:::::::
mission

:::::::
(SRTM)

:::::
digital

::::::::
elevation

::::::
model

::::::
(DEM).

::::
The

:::::::::
Sentinel-1

:::::
GRD

::::
data are preprocessed following the workflow of Filipponi (2019) to obtain the σ0 backscatter150

coefficient in geographic coordinates
:::::::::
backscatter

:::::::::
coefficient

:::
σ0

:
at a resolution of 20 x 22 m and a pixel size of

::
in

:::::
radar

::::::::::
coordinates.

:::
The

::::
data

:::
are

:::::
then

::::::::
resampled

:::::
onto

:
a
:
10 x 10 m

:
m
::::

grid
::
in
:::::::::

projected
:::::::::
coordinates. We then applied the module of

Vollrath et al. (2020) using the SRTM 30 m digital elevation model (DEM )
:::::
SRTM

:::::
DEM

:
to carry out an angular radiometric

slope correction based on the volume scattering model of Hoekman and Reiche (2015). This has the effect of converting from

σ0 (normalised in the ellipsoid plane) to γ0 (normalised in the plane perpendicular to local satellite look direction). The aim155

of this step is to reduce the effects of topography on the SAR backscatter. In preliminary testing, we found that γ0 performed

better than σ0. The module of Vollrath et al. (2020) also provides a shadow and layover mask that can be used to remove areas

that are not well-imaged
::::::
imaged by the satellite due to the viewing angle and local topography. This masking step is important

for landslide studies as they are likely to be carried out in areas of steep topography.

For each of our three events, we defined a "co-event" period of approximately six months. We also defined a three-month160

pre-eventperiod and two-month post-event period immediately before and after the co-event window. These pre-event and

post-event image stacks are required in some of the methods outlined in Sect. 2.
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The dates that make up the pre-event
:
", "co-event" and

:
"post-eventtime series for each case study are shown in

:
"
:::::::
periods

::::::
(shown

:::
for

::::
each

:::::
event

:::
on

:
Fig. 1d

:
). The length of the "co-event " period was defined as 6 months for the Hiroshima and

Zimbabwe events. For
::
six

:::::::
months

:::::
based

:::
on

:::
the

:::::::
intended

::::::::::
application

::
to

:::
the

::::::
Nepal

::::::::
monsoon,

::
in

::::::
which

:::::::::
landslides

::::
may

:::::
occur165

:::::::
between

::::
May

::::
and

:::::::
October.

::::::::
However,

:::
for

:
the three Nepal inventories, this was reduced to 5

:::
five

:
months in order to allow a

sufficient
::::::
number

::
of

:
pre-event images to be acquired following the satellite launch in 2014 and sufficient post-event images to

be acquired before the end of July , since few Sentinel-1 images are available over Nepal in August , September and October

:::
and

:::::::::
September

:
2015.

:::
The

:::::::
lengths

::
of

:::
the

::::::::
pre-event

::::
and

:::::::::
post-event

::::
time

:::::
series

:::::
were

:::::::
selected

::
to

:::
be

::::
long

:::::::
enough

::
to

::::::::
calculate

:::::::
statistics

::::
such

:::
as

:::
the

:::::
mean

:::::::
without

::::::::
requiring

:::
the

:::::::::
processing

:::
of

::::::::::
unnecessary

:::::::
images.

:::::
These

:::::::::
pre-event

:::
and

:::::::::
post-event

::::::
image170

:::::
stacks

:::
are

:::::::
required

::
in

:::::
some

::
of

:::
the

:::::::::
techniques

:::::::
outlined

::
in

::::
Sect.

::
2.
:

Unfortunately, insufficient data were acquired on the ascending orbit over BG and BK
:::
Buri

:::::::
Gandaki

::::
and

:::::
Bhote

::::
Kosi

::
in

:::::
Nepal,

so we only present results based on the descending track data for these two inventories. In this figure
:::
Fig.

::
1d

:
and throughout the

manuscript, we refer to SAR data according to the event, track number and
:::
and

::::::
satellite

:
orbit direction, for example, ascending

track 72
::
the

:::::::::
ascending

::::
track

:
over Zimbabwe will be referred to as Z072A

:::
Zasc. Any date for which SAR imagery only covered175

part of the inventory was omitted from the time series.

2.4 SAR amplitude
::::
Four

:
techniques for

::
to

:::::::
retrieve

:
landslide timing

::::
from

:::::
SAR

:::::::::
amplitude

::::
time

:::::
series

::::
Here,

:::
we

:::::::
present

:::
four

::::::::
potential

:::::::::
techniques

:::
for

::::::::
analysing

:::::::::
Sentinel-1

:::::
GRD

::::
time

:::::
series

:::
and

::::::::::
identifying

:::
the

:::::
image

::::
pair

::::::::
spanning

::
the

::::::::
landslide

::::
date.

:::::::
Figures

:::::::
showing

::::
these

::::
four

:::::::::
techniques

::::::
applied

::
to

:::::
three

:::::::
example

::::::::
landslides

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::::::
supplementary

:::::::
material.

:
180

2.4.1 Method 1: Landslide-background difference

2.4.1
:::::::::
Technique

::
1:

::::::::::::::::::::
Landslide-background

:::::::::
difference

We expect a landslide to result in a permanent change in an amplitude time series. However, factors other than landslides can

also result in amplitude change. In particular, the rainfall that triggers the landslides will alter the soil
:::
and

::::::
canopy

:
moisture

content and so may also alter the amplitude of the returned signal. To overcome this, we calculate a background amplitude185

signal for each landslide. First, we calculated a buffer region between 30 and 500 m around each landslide (Fig. 2a). Then we

filtered this buffer to remove any pixels that lie within other landslide polygons and pixels that are dissimilar to those within

the landslide, for example pixels located on the opposite side of a ridge, in a river or with different surface cover. In order to

assess pixel similarity we calculated three surfaces
:::::::
variables

:
from pre-event satellite imagery. First, we calculated the

:::::::
greenest

::::
pixel

:::::::::
composite

::
of

:::
the

:
normalised difference vegetation index (NDVI) from a single pre-event Sentinel-2 (or, where this was190

unavailable, Landsat-8) image for
::::::
images

:::::::
acquired

::
in

:::
the

::::
year

::::
prior

::
to

:
each event. Pixels with similar NDVI values are expected

to have similar land-cover. Second, we used a stack of N pre-event SAR images i (Fig. 1) to calculate the mean amplitude

Amean,j (Eq. 2) and
::::
third,

::::
the amplitude variability ∆Amean,j (Eq. 3) for every pixel j through time

:
a
:::::
stack

::
of

:::
N

::::::::
pre-event

::::::
images. Pre-event amplitude and amplitude variability have previously been used by Spaans and Hooper (2016) to identify
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statistically similar pixels in SAR images.
::::
This

:::::
allows

:::
us

::
to

:::::::
remove

:::::
pixels

::::
that

:::
are

:::::::
unlikely

::
to
:::::::

exhibit
::::::
similar

::::::::
behaviour

:::
to195

::::
those

::::::
within

:::
the

::::::::
landslide,

:::
for

:::::::
example

:::::
pixels

:::::::
located

::
on

:::
the

:::::::
opposite

::::
side

::
of

:
a
::::::
ridge,

::
in

:
a
::::
river

::
or

::::
with

::::::::
different

::::::
surface

:::::
cover.

:

Amean,j =
1

N

N∑
i=1

Ai,j (2)

∆Amean,j =
1

N

N∑
i=1

(Amean,j −Ai,j) (3)

For every
::::
each

:
landslide, we calculated the range of NDVI, Amean,j and ∆Amean,j values seen within the polygon. The

buffer of this landslide was then filtered to remove pixels with values outside these ranges. From this filtered buffer, we then200

calculated the median background amplitude
:::::::
calculate

:::
the

::::::
median

:::::::::
amplitude

::
in

:::
the

:::::::
landslide

:::::::
polygon

::::
and

::
for

:::::
these

::::::::::
background

:::::
pixels for every image in the co-event time series. A step change in the difference between the median landslide amplitude and

the median background amplitude is then used as an indicator of landslide timing. As previously described, landslides can

result in both increases and decreases in SAR amplitude. When combining methods, we found that using the increase and

decrease in amplitude as separate inputs resulted in better performance than combining these into a single input, for example205

based on the absolute change in amplitude. Therefore, for this method, we
::::
Thus

:::
we

:
accept both a step increase and a step

decrease as a potential indicator
::
in

:::
this

::::::
metric

::
as

::::::::
indicators

:
of landslide timing.

2.4.2 Method
:::::::::
Technique 2: Pixel variability

Ban et al. (2020) observed that in forested and grassland areas, the removal of vegetation due to forest fires led to an increase in

the variability of vertically polarised Sentinel-1 γ0 between neighbouring pixels. Since landslides result in a similar denudation210

of vegetated areas, we expect that similar effects may occur. Therefore, we calculated the standard deviation of γ0 within each

landslide polygon and used a step increase in this as a potential indicator of landslide timing (e.g. Fig.2d).

2.4.3 Method
:::::::::
Technique 3: Geometric shadows

Since SAR is acquired obliquely (with an ellipsoid incidence angle of 31-44 ◦ for the data used here), steep changes in scatterer

surface height can result in geometric shadows. The wavelength of Sentinel-1 means that is primarily scattered from the canopy215

in forested areas, which means that shadows can be cast at the edges of deforested areas if these edges run approximately

perpendicular to the satellite look direction (Fig. 2b). Bouvet et al. (2018) developed a method for automatically detecting

deforested areas based on these geometric shadows. Since landslides remove vegetation, we expect that shadows should also

be cast at the edges of landslides, and that the appearance of new shadows could be used as an indicator of landslide timing.

Furthermore, the three-dimensional shape of the landslide could result in shadows cast within the landslide itself, for example220

if the landslide has a steep scar. This effect has previously been observed within a large landslide in Nepal by Ao et al. (2020).

It is worth noting that, while Bouvet et al. (2018) applied their methods in areas of gentle slopes, the area of a shadow cast by
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Timing indicator
Convolution function
Peak rainfall

(c) Technique 1 (d) Technique 2

(e) Technique 3

(f) Technique 4

Landslide

Buffer

orbit 
direction

look 
direction

(a)

N

(b)

Figure 2. (a,b) Plan and lateral views of a landslide and satellite, showing how background and shadow regions are formed in this study.

(c,d
::
c-f) Example time series for a single landslide from the Hiroshima dataset using SAR data from Sentinel-1 track 090D

::
for

:::::::::
Techniques

::
1-4

:::::::::
respectively

:::::
(Sect.

:::
2.4). Blue bar shows the duration of the rainfall event during which the landslide was triggered. (c) The median SAR

amplitude for
::::
Grey

:::::
shows the landslide,

::::::::
convolution

:::::::
between the local background signal

:::
time

::::
series

:
and areas of geometric shadowa

::::
step

::::::
function.(d) SAR amplitude standard deviation for pixels within the landslide

an object of a given height is dependent on slope and aspect: trees of the same height will cast a larger shadow on slopes facing

away from the sensor than on those facing towards it. Therefore, we expect this method
::::::::
technique to be more successful for

slopes that face away from the sensor.225

In comparisons of multiple inventories of the same event prepared by different people or groups, there are often small discrep-

ancies in the exact size, shape and location of each landslide (Milledge et al., 2021; Pokharel et al., 2021).
:::::::::::::::::::::::::::::::::::
(Milledge et al., 2022; Pokharel et al., 2021)

:
.
::::::
Spatial

::::::::::
mismatches

:::::::
between

:::::::
landslide

::::::::
polygon

:::::::
locations

:::::
could

::::
lead

::
to

:::::
pixels

:::
on

:::
the

:::::
edges

::
of

:::::::::
landslides

:::::
being

:::::::
excluded

:::::
from

::
the

::::::::
analysis. Since shadow pixels are most likely to lie at the edges of the landslide polygons, it is important not to exclude the

edge of a landslide from the analysis. Therefore we extended the area covered by each landslide polygon by 10 m (one SAR230

pixel
::
20

::
m

::::
(two

:::::
SAR

:::::
pixels) where this did not lead to intersection with another landslide in the inventory. We then identified

pixels whose amplitude decreased within this enlarged polygon as shadows. Bouvet et al. (2018) identified shadow pixels as

those whose γ0 value decreased by >= 4.5 dB during the deforestation event. We tested values between 3 and 6 dB and also
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found that a threshold of 4.5 dB performed best. We calculated the mean γ0 value for every pixel from the pre-event and post-

event image stacks and assigned those that decreased by >= 4.5 dB as shadow pixels. The co-event time series of these shadow235

pixels was then analysed and a step decrease in the median shadow γ0 relative to the median background γ0 (Sect. 2.4.1) was

used as an indicator of landslide timing.

2.5 Step change identification

2.4.1
:::::::::
Technique

::
4:

:::::::::
Geometric

::::::
bright

:::::
spots

::
As

::::
well

:::
as

::::::::
shadows,

:::
the

::::
new

:::::::::
geometry

::::::
created

:::
by

::
a

::::::::
landslide

::::
scar

::::
may

:::::
result

::
in

::::::
bright

:::::
spots

::
on

::::
the

:::
far

::::
side

::
of

:::
the

:::::
scar,240

:::::
which

:::
are

::::
due

::
to

:::::::::::::
double-bounce

:::::::::
scattering

::
of

:::
the

::::::::::
microwave

::::::
energy

::::::::
between

:::
the

:::::::
exposed

::::
soil

::::
and

:::::::
vertical

::::::
objects

:::::
such

::
as

:::
tree

::::::
trunks

::::
and

::::::::
focussing

:::
of

:::
the

::::::
energy

::::::::
scattered

::::
from

::::
the

:::
3D

::::::
surface

::::
into

::
a
:::::
small

::::
area

::
in

:::
the

:::::
radar

:::::::::
coordinate

:::::::
system

::::::::::::::::::::::::::::::
(Villard and Borderies, 2007, Fig. 2b)

:
.
::::::::
Similarly

::
to

::
the

:::::::::
Geometric

::::::::
shadows

::::::::
technique,

:::
we

::::::
applied

::
a

::
20

::
m

:::::
buffer

::
to

:::
the

::::::::
landslide

:::::::
polygon,

::::::::
identified

::::::
pixels

:::
that

::::
had

:::::::::
undergone

:
a
:::::::::

significant
::::::::
increase

::
in

:::::
mean

::
γ0::::::::

between
:::
the

::::::::
pre-event

:::
and

:::::::::
post-event

::::::
image

:::::
stacks

:::
and

:::::::
assigned

:::::
these

::
as

::::::::
“Bright”.

::::
Here

:::
we

:::::
found

:::
that

:::
the

::::::::
optimum

::
γ0:::::::

increase
::::::::
threshold

:::
was

::
5
:::
dB.

::::
The

:::::::
co-event

::::
time

:::::
series245

::
of

::::
these

::::::
bright

:::::
pixels

:::
was

::::
then

::::::::
analysed

:::
and

::
a

:::
step

:::::::
increase

::::::::
between

::::::
median

:::::
bright

:::
γ0 ::::::::

compared
::
to

:::
the

::::::
median

::::::::::
background

:::
γ0

:::::
(Sect.

:::::
2.4.1)

:::
was

:::::
used

::
as

::
an

::::::::
indicator

::
of

::::::::
landslide

::::::
timing.

For every landslide , the

2.5
:::::::::::

Identification
::
of

::::::::
landslide

::::
date

:::::
pairs

::::
Here

:::
we

:::::
detail

:::::
how

:::
the

::::
four

::::::::::
techniques

::::::::
described

::::::
above

:::
are

::::
used

:::
to

:::::::
retrieve

::::::::
landslide

:::::::
timings

::::
both

:::::::::::
individually

:::
and

:::
in250

::::::::::
combination.

::::
The

:::::::
variable

:::::::::
associated

:::::
with

::::
each

::::::::
technique

::
is
:::::::::

calculated
:::
for

:::::
each

:::::::
landslide

:::
for

::::::
every

::::
SAR

::::::
image

::::::
during

:::
the

:::::::
co-event

:::::
period

:::::
(Fig.

:
2
::::
c-f).

:::
For

::::
each

:::::::::
technique,

:::
we

::::::
expect

:::
that

:::
the

::::::::
landslide

:::::
should

:::::
cause

::
a step change in the landslide timing

indicators described in Sects. 2.4.2, 2.4.1 and 2.4.3 was identified by convolution
::::
time

:::::
series,

::::::::
allowing

::
us

::
to

:::::::
identify

:::
the

::::
date

:::
pair

::::::::
spanning

:::
the

::::::::
landslide

::::::
timing.

::
In

:::::
order

::
to

:::::::
identify

:::
this

::::
step

:::::::
change,

:::
we

::::
take

:::
the

:::::::
co-event

::::
time

:::::
series

::::
and

:::::::
subtract

::::
from

::
it

::
its

:::::
mean

:::::
value

::
to

:::::
obtain

::
a
:::::::
co-event

:::::
time

:::::
series

::::::
centred

:::
on

::::
zero.

:::::
Then

:::
we

::::::::
convolve

:::
this

:::::
series

:
with a step function . The step255

function was made up
::::::::
composed

:
of a series of -1s and 1s of twice the lengthof the

:::
that

::
is
:::::
twice

:::
its

::::::
length.

:::
The

::::::
output

::
of

::::
this

:::::::::
convolution

::
is
::
a

:::::
series

::::
that,

::::
after

::::::::
truncating

::
to

:::
the

:::::
same

:::::
length

::
as

:::
the

:::::::
original co-event time series. The landslide indicator time

series had its mean value subtracted from it so that it is centred on 0. The two of these were then convolved, resulting in a

function where a peak indicates ,
::::::
should

::::::
contain

::
a

::::
peak

:::
(in

:::
the

:::
case

:::
of a step increaseand a trough represents )

::
or

::::::
trough

:::
(in

:::
the

:::
case

:::
of a step decreasein the landslide indicator

:
)
::
at

:::
the

:::::::
location

::
of

:::
the

::::::::
strongest

:::
step

:::::::
change

::
in

:::
the time series.260

The size of the peak or trough depends on the magnitude of the increase or decrease, the level of noise elsewhere in the

time series and the length of the co-event time series (ndates). A bigger peak or trough for a time series of the same length

indicates a larger step change and less noise and is therefore a more reliable indicator of landslide timing. We therefore apply

a peak size threshold to remove unreliable landslide timing estimates. To select this threshold for each method
:::::::
technique, we

use the F1-measure, a statistic that combines both precision and recall. This F1-measure was calculated for a range of peak265
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Table 1. Confusion matrix for determining how convolution peak size relates to whether a landslide timing is likely to be correct

Peak synchronous with trigger

event

Peak asynchronous with trigger

event

Peak > threshold (timestamped) True Positive False Positive

Peak < threshold (masked) False Negative True Negative

Pixel variabilityLandslide – background 
difference (increase)

Landslide – background 
difference (decrease)

shadow – background 
difference 

bright – background 
difference H_desc H_asc

Z_desc Z_asc

Tr_desc Tr_asc

BG_desc BK_desc

Threshold

(a) (b) (c)

(d) (e)

Figure 3. F1 scores for a range of peak thresholds for the Landslide-Background Method (a and b correspond to step increase and decrease

respectively), the Pixel Variability Method (c)and the ,
:

Geometric Shadows Method (d)
:::
and

:::
the

::::::::
Geometric

:::::
Bright

:::::
Spots

::
(e)

:::::::::
Techniques.

Vertical black lines show selected thresholds.

thresholds using the confusion matrix defined in Table 1 (Fig. 3). Based on this, we require a peak of 0.4×ndates for the

Landslide-Background Method
::::::::
Technique, 0.2×ndates for the Pixel Variability Method and

:::::::::
Technique, 0.75 ×ndates for the

Geometric Shadows Method
::::::::
Technique

::::
and

::::
1.25

:::::::
×ndates:::

for
:::
the

:::::::::
Geometric

:::::
Bright

:::::
Spots

::::::::
Techique. We also assessed whether

the level of noise in the time series for each metric
::::::::
technique

:
(estimated from the variability in pre-event and post-event time

series), could be used to indicate whether a timing estimate was likely to be correct, but found this to be less reliable than the270

convolution peak size.

3 Results
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::::
After

::::::::::
identifying

:::::::
landslide

:::::::
timings

:::::
using

::::
each

::::::::
technique

:::::::::::
individually,

:::
we

::::::::
combined

:::::
these,

::::::::
assigning

::
a
::::
date

:::
pair

:::
to

:
a
::::::::
landslide

:
if
::
it

::::
was

:::::::
selected

::
by

::
at

::::
least

::::
two

::
of

:::
our

::::
four

::::::::::
techniques.

::
As

:::::::::
previously

:::::::::
described,

::
a

::
20

::
m

::::::
buffer

:::
was

:::::::
applied

::
to

::::
each

::::::::
landslide

:::::::
polygon

:::
for

:::::::::
Techniques

::
3
::::
and

:
4
:::
in

::::
order

:::
to

:::::
allow

:::
for

:::::
some

::::::
spatial

::::::::
mismatch

:::::::
between

::::
the

:::::::
landslide

::::::::
polygons

::::
and

:::
the

:::::
SAR275

:::::::
imagery.

::::
This

::::
was

:::
not

::::
done

:::
for

::::::::::
Techniques

::
1

:::
and

::
2

::
as

::::::::
including

::::::::::::
non-landslide

:::::
pixels

:::::::::::
unnecessarily

::::::
would

::::
have

:::
the

:::::
effect

:::
of

::::::
muting

:::
the

::::
step

::::::
change

::
in

:::
the

::::
time

:::::
series

:::
for

:::::
these

::::::::::
techniques.

::::::::
However,

:::
for

::::::::
landslides

::::
that

::::
have

::::
not

::::
been

:::::::
assigned

::
a
::::::
timing

:
at
::::

this
:::::
stage,

:::
we

::::
now

:::::
repeat

:::
the

::::::
above

::::::
process

:::::
using

::::
this

::
20

::
m
::::::

buffer
:::
for

:::::::::
Techniques

::
1
:::
and

::
2
::
as

:::::
well.

::::
This

::::
step

::::::::
increases

:::
the

::::::
number

::
of

:::::::::
landslides

:::::::
assigned

::
a

:::::
timing

:::
by

::::::
around

:::
5%.

:

We used each method in Sect. 2 to assign landslide dates for the five case study areas described in Sect. 2.1. Not all landslides280

are assigned a date by every method, for example if no geometric shadows are cast within the landslide polygons. Table 2

shows the
::::
The

::::
final

:::
step

::
is
::
to
::::::::
combine

:::
the

:::::::::
predictions

:::::
from

:::
the

::::::::
ascending

::::::::
(satellite

::::::
moving

::::::::::
northwards

:::
and

:::::::
looking

::::
east)

::::
and

:::::::::
descending

:::::::
(moving

::::::::::
southwards

::::
and

::::::
looking

:::::
west)

:::::
SAR

::::::
tracks.

:::
By

:::::::
carrying

:::
out

:::
the

:::::::
process

::::::::
described

::::::
above

::::
using

:::::
both

:::
the

::::::::
ascending

:::
and

::::::::::
descending

::::
track

:::::
SAR

::::
time

:::::
series,

:::
we

::::
can

:::::
obtain

::::
two

:::
sets

::
of

:::::::
timings

:::
for

:
a
:::::
given

::::::::
landslide

::::::::
inventory,

:::::
which

::::
can

:::
then

:::
be

:::::::::
combined.

::::
This

::::
has

::::::
several

::::::::::
advantages.

:::::
First,

::::::::
landslides

::::
that

:::
are

:::
not

::::::::
assigned

:
a
::::
date

::::
pair

:::::
using

::::
data

:::::
from

:::
one

:::::
track285

:::
may

:::
be

:::::
better

:::::
timed

:::
by

:::
the

:::::::
second,

::::::::
increasing

::::
the number of landslides

:::
that

:::
can

:::
be assigned a date by each method and the

percentage of these dates that were correct in each case. A baseline was
:::
pair.

:::
In

::::::::
particular,

:::::::::
landslides

:::
that

:::
are

:::::::
masked

::::
due

::
to

::::::::::::
foreshortening

::
or

::::::
layover

::::
may

:::
be

:::::
better

::::::
imaged

::
in
:::

the
:::::

other
:::::
track.

:::::::
Second,

:::
the

:::::::::
acquisition

:::::
dates

::
of

:::
the

::::
two

:::::
tracks

:::
are

:::::::
slightly

:::::
offset

::
so

:
a
::::::::
landslide

:::
that

::
is

:::::::
assigned

::
a
::::
date

:::
pair

:::
by

::::
both

:::::
tracks

::
is

:::::
timed

::::
more

::::::::
precisely.

:::
For

::::::::
example,

:
a
::::::::
correctly

:::::
timed

::::::::
landslide

::
in

:::
our

:::::::::
Zimbabwe

::::::::
inventory

::::::
should

::
be

:::::::::::
timestamped

::
as

::::
7-19

::::::
March

:::::
2019

::
by

:::
the

::::::::::
descending

::::
track

::::
time

:::::
series

::::
and

:::::
12-24

::::::
March290

::::
2019

:::
by

:::
the

::::::::
ascending

:::::
track

::::
time

::::::
series.

:::::
From

::::
both

:::::::
together,

:::
the

::::::::
landslide

::::::
would

::
be

:::::
timed

:::
as

:::::
12-19

::::::
March

:::::
2019,

:::::::::
improving

::
the

::::::::
precision

:::::
from

:::
12

::::
days

::
to

::
7.

::::
This

:::::
more

::::::
precise

::::
date

::
is
::::
also

:::::
more

:::::
likely

::
to

:::
be

::::::
correct

::::
since

::
it
::
is
:::::::
derived

::::
from

::::
two

:::
sets

:::
of

::::::::::
independent

::::::::::
observations

:::
of

::
the

:::::::::
landslide.

3
::::::
Results

:::
The

:::::::
number

::
of

:::::::::
landslides

:::::::
assigned

:::
the

:::::::
correct

::::
date

::::
pair,

:::
and

:::
the

:::::::
number

::
of

:::::::::
landslides

::::::::
assigned

:::
any

::::
date

::::
pair

:::
are

::::::
shown

:::
for295

::::
each

::
of

:::
the

:::::::::
techniques

::::::::
described

::
in

::::
Sect.

:::
2.1

::
in

:::::
Table

::
2,

:::::::
followed

:::
by

:::
the

::::::::
combined

:::::
result

:::
for

::::
each

::::
track

::::
and

:::
the

::::::::
combined

:::::
result

::::
from

::::
both

:::::
tracks

:::
for

:::::
each

:::::
event.

:::::::::::
Individually,

::::
none

::
of

:::
the

::::::::::
techniques

::
is

:::::::::
sufficiently

:::::::
accurate

::::
and

::::::::
consistent

:::
to

::::::
provide

::::::
useful

:::::::::
information

:::
on

::::::::
landslide

::::::
timing.

::::::::
However,

:::::
when

:::::::::
compared

::
to

::
a

::::::
random

:::::::
baseline

:
calculated from 1

ndates
:
:
(the percentage of

landslides we would expect to be assigned the correct date by chance for
:::
pair

:::
by a method with no skill . All three methods

::::::::
assigning

:
a
:::::::
random

::::
date

:::::
pair),

::
all

:::::::::
individual

:::::::::
techniques

:
consistently perform better than this baseline.

:::
Not

:::
all

:::::::::
landslides

:::
are300

:::::::
assigned

:
a
::::
date

:::
by

::::
every

:::::::::
technique,

:::
for

:::::::
example

::
if
:::
no

::::::::
geometric

:::::::
shadows

:::
are

::::
cast

::::::
within

::
the

::::::::
landslide

:::::::::
polygons.

3.1 Combining methods
:::::::::
techniques

To assess the methods in combination, we take whichever date is
::
As

:::::::::
previously

:::::::::
described,

:::
we

::::::::
combined

:::
the

::::
four

:::::::::
individual

:::::::::
techniques

::
by

:::::
taking

:::::::::
whichever

::::
date

::::
pair

:::
was

:
predicted the most often for every

:::
each

:
landslide. Since it is not possible for both
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Table 2. For each case study, the total number of landslides, the number that are masked due to foreshortening or layover in the SAR images

and amplitude timing results
::
for

::
the

::::
four

::::::::
techniques

:::::::
described

::
in

:::
Sect.

::
(2).

:
For each method

:::::::
technique and combination of methods

:::::::
techniques,

we give the number of landslides
::::::
correctly

:
assigned a date followed in brackets by

:::
pairs

::::::
against the percentage

:::
total

::::::
number

:
of these assigned

dates that are correct (the specificity of each method)
:::
date

::::
pairs. Where timings were combined

::::::
obtained from multiple methods

::::::::::
combinations

:
of
:::::::::

techniques (M
::
Te) or tracks (T

:
Tr), the number of these is specified in brackets.

Hiroshima Zimbabwe Trishuli Buri Gandaki Bhote Kosi

Orbit direction Desc Asc Desc Asc Desc Asc Desc Desc

Total Landslides 543 383 650 922 1554

Non-masked 543 540 383 383 485 474 592 894

Individual techniques

Landslide-background inc 44/177 37/97 39/67 27/72 37/74 39/123 76/186 88/269

Landslide-background dec 56/182 121/226 41/172 55/147 80/160 54/236 53/152 100/264

Pixel Variability 101/258 101/167 79/158 52/112 84/194 73/169 100/227 53/152

Geometric Shadows 50/144 143/192 35/60 48/75 47/70 35/42 19/20 43/62

Geometric Bright Spots 35/89 50/68 28/43 10/11 59/89 47/90 45/70 20/42

Combined techniques, single track

Combined (⩾ 2Te) 55/71 91/105 40/52 39/43 52/66 37/43 40/54 45/69

Combined (⩾ 3Te) 14/16 31/32 11/11 2/2 18/18 7/7 4/6 7/7

Combined (4Te) 1/1 5/5 0/0 0/0 2/2 3/3 0/0 0/0

Combined techniques, combined tracks (final method)

Asc & Desc (Total) 135/171 82/113 110/130 - -

Asc & Desc (2Te, 1Tr) 80/111 76/95 80/108 - -

Asc & Desc (⩾ 3Te) 55/60 17/18 30/32 - -

Random baseline (1/ndates) 7% 17% 10% 7% 8% 8% 8% 14%

a step increase and a step decrease in the Landslide-Background Method
::::::::
Technique

:
to predict the same date, the maximum305

number of times the same date can be predicted is 3.
::
4.

:
The number of landslides assigned a date

:::
pair by at least 2 methods

:::::::::
techniques,

::
at

::::
least

::
3

:::::::::
techniques and by all 3 methods and the percentages of these

:
4
:::::::::
techniques

:::
and

:::
the

:::::::
number

::
of

:::::
these

::::
date

::::
pairs that are correct is shown in Table 2. The strong reduction in number of timed landslides when going from an individual

method
::::::::
technique to 2and then 3 methods ,

::
3
:::
and

:::::
then

:
4
::::::::::

techniques in combination underlines the fact that the nature of

the change in amplitude varies widely between landslides. However, landslides dated by 2 or 3 methods
:::::
more

:::::::::
techniques are310

correctly dated much more often. Across all 8 tracks, 56 landslides are predicted a date by
:::
503

:::::::::
landslides

:::
are

:::::::
assigned

::
a
::::
date

:::
pair

:::
by

:
2
:::
or

::::
more

::::::::::
techniques

::
of

:::::
which

::::
399

::::::
(79%)

:::
are

::::::
correct.

:::
99

:::::::::
landslides

:::
are

:::::::
assigned

::
a

::::
date

:::
pair

:::
by

:
3 methods of which

13
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Trigger 
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Selected by 4 techniques

Figure 4. Histograms showing the predicted landslide timings for each event
::

and
::::
SAR

::::
track

:
when three methods

:::
four

:::::::::
techniques are used in

combination.

52
:
or

:::::
more

:::::::::
techniques

:::
of

:::::
which

:::
92 (93%) are correct. ;

:
Fig. 4 shows the number of times each date pair is predicted

::
in

:::
the

:::::::
co-event

:::::
series

::
is

:::::::
selected by ⩾ 2methods and by ,

::
⩾
:
3 methods

:::
and

::
4

:::::::::
techniques.

3.2 Combining tracks315

Sentinel-1 acquires data on an ascending track, (moving northwards and looking east) and a descending track (moving southwards

and looking west). Therefore, we can generate two sets of dates for each landslide inventory (excluding Bhote Kosi and Buri

Gandaki where only descending track SAR data were available). This has several advantages. First, landslides that were not

assigned a date using data from one track may be better dated by the second, increasing the number of landslides in the

inventory for which a date can be assigned. In particular, landslides that are masked due to foreshortening or layover in one320

track may be better imaged in the other track. This was advantageous in Trishuli, where both
::
As

::::::::
described

::
in

::::
Sect.

::::
2.5,

:::
for

::::
each
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:::::
event,

:::
we

::::
used

:::
the

:
ascending and descending tracks were available and steep slopes meant that large numbers of landslides

were masked in each case. 474 and 485 landslides were imaged by the ascending and descending tracks respectively out of a

possible 650 landslides in Trishuli. However, 516 landslides were imaged by at least one
:
to

:::::::
generate

::
a
::::::
broader

::::
and

::::
more

::::::
robust

::
set

:::
of

::::
date

:::::
pairs.

:::::
When

::::::::
requiring

:::
the

:::::
same

::::
date

::::
pairs

:::::
from

::
at

::::
least

::
2
:::::::::
techniques

:::
on

:::::
either

:
of the two tracks , thus coverage325

was improved by using both. Second, the acquisition dates of the two tracks are slightly offset, so a landslide that is assigned

a date by both tracks has a more precise timing. For example, a landslide in the Zimbabwe inventory should be dated as 7-19

March 2019 by the descending track time series and 12-24 March 2019 by the ascending track time series. From both of these

together, the landslide would be dated as 12-19 March 2019, improving the precision from 12 days to 7. This more precise date

is also more likely to be correct since it is derived from two sets of independent observations of the landslide.330

For each event, we used the ascending and descending tracks to generate dates predicted by at least 2 methods on the same

track. Out of all the non-masked landslides in each inventory, 23% were assigned a date in Hiroshima, 21% in Zimbabwe and

14% in Trishuli and of these, 80% of the estimated dates in Hiroshima were correct
::
in

::::::::::
Hiroshima,

:::::::::
Zimbabwe

:::
and

::::::::
Trishuli,

::
we

::::::::
assigned

::::
date

::::
pairs

::
to

:::::
31%,

::::
30%

:::
and

::::
20%

:::
of

:::
the

::::::::
landslides

:::::::::::
respectively.

::
Of

:::::
these

:::::::
assigned

::::
date

:::::
pairs,

::::
79%

:::::
were

::::::
correct

::
in

::::::::
Hiroshima, 73% in Zimbabwe and 81

::
85% in Trishuli (

::::
Total

:::
in Table 2). As well as being dated

:::::
These

:::::::
assigned

:::::
dates

:::
can

:::
be335

::::::
divided

::::
into

:::
two

:::::::::
subgroups:

:::::::::
landslides

:::::
timed by 2 methods on the same track , a small number of landslides were dated either

by the 3rd method on that track or by at least one method on the other track. These landslides whose dates were assigned based

on
::::::::
techniques

:::
on

:::
one

:::::
track

::::
only

:::::
(2Te,

:::
1Tr,

:::::
Table

:::
2)

:::
and

:::::::::
landslides

:::::::
assigned

:::::::
timings

::
by

:
3 or more methods

::::::::
techniques

::::::
across

::::
both

:::::
tracks ("⩾ 3M

::
Te"in

:
, Table 2).

::::::::
Although

::::
they

::::::::
represent

:
a
:::::::
smaller

:::::
group

::::::
(5-10%

::
of

:::
the

:::::::::
landslides

::::
from

::::
each

::::::::::::
inventory),the

::::
latter

:
were assigned the correct date more often than those assigned a date only based on 2 methods on one track ("2M, 1T"340

in Table 2
:::::::
(89-94%

:::
of

:::
the

::::
time). We also tested the case where landslides were dated based on the same date

::::::::::
timestamped

:::::
based

::
on

::::::::::
overlapping

::::
date

::::
pairs

:
being selected by one method

::::::::
technique from each track, but found that this yielded too many

incorrect dates
::::::
timings

:
to be useful.

4
:::::::::
Discussion

::::
Here,

:::
we

::::
first

:::::::
evaluate

:::
the

:::::::
success

:::
and

:::::
limits

::
of

:::
our

:::::::
method

::
as

::
a

:::::::
function

::
of

::::::::
landslide

::::::::::::
characteristics,

:::::::
namely

::::
size,

:::::::::
vegetation345

:::
and

:::::
slope

::::::
aspect,

:::
and

:::
as

:
a
::::::::

function
::
of

:::::::
co-event

:::::
time

:::::
series

::::::
length.

:::::
Then

:::
we

::::::
discuss

:::::::
reasons

:::
for

:::::::::
landslides

::::::
lacking

::::::::
assigned

:::::::
timings,

::
or

:::::
worse,

::::::::
incorrect

:::::::
timings.

::::::
Finally

:::
we

:::::::
consider

:::
the

::::::::
potential

::
of

:::::::
applying

::::::
InSAR

:::::::::
coherence

::::
time

:::::
series

::::::::::
approaches

::
to

:::::::
landslide

:::::::
timing.

::::
Note

::::
that

:::::::::
throughout

:::
the

::::::::::
discussion,

::
we

::::
use

::::
"the

:::::::
method"

::
to

:::::
refer

::
to

:::
our

::::::::
algorithm

::::
that

::::::::
combines

::::::::
assigned

::::::
timings

::::
from

::::::::
multiple

:::::::::
techniques

:::
and

::::
both

:::::::::
ascending

:::
and

:::::::::
descending

:::::
track

::::
SAR

:::::
(Sect.

::::
2.5,

::::
"Asc

::
&
::::
desc

:::::
total"

:::::
Table

:::
2).

4.1 Factors affecting performance of each method
:::::::
landslide

:::::::
timing

::::::::
detection

::::::
ability.350

We assessed the performance of our dating methods
:::::::
landslide

::::::
timing

::::::
method

:
as a function of the landslide characteristics,

in terms of pre-event vegetation , landslide area, and slope aspect . This may inform future application of our methods.
:::
and

:::::::
landslide

:::::
area.

:::
We

::::
also

::::::::
analysed

:::
the

::::::
effect

::
of

:::::
slope

::::::
aspect

:::
on

:::
the

::::
four

:::::::::
individual

::::::::
landslide

::::::
timing

::::::::::
techniques.

:::
For

::::::
future
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Zimbabwe Hiroshima Trishuli

Zimbabwe Hiroshima Trishuli

Total landslides Timed landslides Correctly timed landslides Correct / timed landslides Timed / total landslidesx

Pre-event NDVI

Landslide Area

(a) (b) (c)

(d) (e) (f)

Figure 5. The distribution of total landslides (white), landslides assigned a time (light green) and landslides assigned the correct time (dark

green) for different values of pre-event NDVI (greenest value in the year preceding the event, a-c) and landslide area (d-f). Predictions were

obtained from combining ascending and descending track SAR (Sect. 3.2).

::::::::::
applications,

::::
this

::::
helps

:::
to

::::::::
determine

:::
the

:::::::::::
environments

::::::
where

:::
the

:::::::
method

:::
can

::
be

::::::::
expected

::
to

:::::
work.

::
It
::::
also

:::::::
provides

:::
an

::::::
insight

::
on

::::::::
potential

:::::
biases

::
in

:::::
terms

::
of

:::
the

::::::
subset

::
of

::
a

:::::::
landslide

:::::::::
inventory

:::
that

::::
can

::
be

:::::::
assigned

:::::::
timings

:::::
using

:::
our

:::::::
method.

:::::::
Finally,

:::
we355

:::::::
assessed

:::
the

:::::
effect

:::
that

:::
the

::::::
length

::
of

:::
the

:::::::
co-event

::::::
period

:::
has

:::
on

:::
the

::::::::::
performance

::
of

::::
our

:::::::
method,

::::
since

::::
this

::::
may

::::
vary

::
for

::::::
future

::::::::::
applications.

:

4.1.1 Vegetation

In order to assess the effect that vegetation cover has on the methods
::::::
method we propose here, we compared the number of

correctly timed, incorrectly timed and untimed landslides with different values of pre-event NDVI (Fig. 5 a-c). We took the360

maximum NDVI value for each pixel in the year preceding the event and used Sentinel-2 data for Zimbabwe and Hiroshima and

Landsat 8 for Trishuli. In all three inventories, the majority of mapped landslides occurred in vegetated areas (0.6<NDV I <

0.8). In all three cases, a landslide in a more vegetated area was more likely to be assigned a date and this date was more likely

to be correct.
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4.1.2 Area365

Another factor that could potentially effect the applicability of the methods we present here
:::
our

::::::
method

:
is landslide area. Fig.

5d-f shows the distribution of landslides against landslide area. In Zimbabwe and Hiroshima, a higher proportion of larger

landslides were assigned a date and
:::
pair

:::
and

:::
in

::
all

:::::
three

:::::
cases a higher proportion of these assigned dates were correct, but

these effects were not observed in Trishuli
:::
the

::::
date

::::
pairs

::::::::
assigned

::
to

:::::
larger

:::::::::
landslides

::::
were

::::::
correct. We limited our testing to

landslides whose area was greater than 2000 m2. Since our methods
:::::::::
techniques rely on landslides containing multiple SAR370

pixels in order to calculated the statistics such as the standard deviation, there is likely to be a lower limit on the area of

landslides that can be timed that was not reached here.

4.1.3 Aspect

The effect of aspect on landslide timing ability is more complicated than that of vegetation and area, since it is likely to

vary between the ascending and descending track SAR. Therefore, in Fig. 6, we show the ascending and descending track375

predictions for each method
::::::::
individual

::::::::
technique

:
for Zimbabwe (results are similar for Hiroshima and Trishuli). The different

methods
:::::::::
techniques we propose in Sect. 2 have different relationships with aspect. For the Landslide-Background Difference

Method
:::::::::
Technique, it appears that landslides on slopes facing towards the sensor are more likely to experience a step increase,

while slopes facing away from the sensor are more likely to experience a step decrease. For the Pixel Variability Method
:::
and

::::::::
Geometric

::::::
Bright

::::
Spot

::::::::::
Techniques, aspect does not appear to have a strong effect on how likely a landslide is to be assigned380

the correct time. For the Geometric Shadows Method
::::::::
Technique, a higher proportion of landslides are assigned a date (and

therefore exhibit a shadow) on slopes facing away from the sensor. This was expected since the same height difference will

cast a larger shadow on a slope facing away from the sensor than one facing towards it (Bouvet et al., 2018). Dates assigned

by the Geometric Shadows Method
::::::::
Technique

:
also appear more likely to be correct for slopes facing away from the sensor on

Z072A
:::
Zasc, but this pattern is less clear on Z079D.

::::
Zdesc.

:::::
Thus

:
a
::::
path

:::
for

:::::
future

:::::::::::
improvement

::
of

::::
our

::::::
method

::::
may

::
be

::
to
:::::
apply

::
a385

::::::
variable

::::::::
detection

::::::::
threshold

::
as

::
a
:::::::
function

::
of

:::::
slope

::::::
aspect,

:::::::::
particularly

:::
for

:::
the

::::::::::::::::::
landslide-background

:::::::::
difference

::::::::
technique.

:

5 Discussion

4.0.1
::::::::
Co-event

::::
time

::::::
period

::::::::
duration

:::
We

::::::
defined

::
a
:::::::::
"co-event"

::::::
period

::
of

::
6

::::::
months

:::::
when

::::::
testing

:::
the

::::::::
landslide

::::::
timing

:::::::
methods

:::
in

:::
this

::::::
paper.

::::
This

::::
time

::::::
period

::::
was

::::::
selected

:::
to

::
be

:::::::
roughly

:::
the

:::::::
duration

:::
of

:::
the

:::::
Nepal

:::::::::
monsoon.

::::::::
However,

:::::
some

:::::::::::
applications,

:::
for

:::::::
example

:::
the

::::
case

:::
of

:::::::::
successive390

::::::
storms,

::::
may

:::
not

::::::
require

:::::
such

:
a
::::
long

::::::::
window.

::
It

::
is

::::::::
therefore

:::::
useful

::
to

::::::
assess

:::::
how

:::
the

::::::
length

::
of

:::
this

:::::
time

:::::::
window

::::::
affects

:::
the

:::::::
accuracy

::
of

::::::::::
predictions.

:::
In

::::
order

:::
to

:::::
assess

::::
this,

:::
we

::::
took

:::
the

:::::
tracks

:::::
with

:::
the

::::
most

::::::::
complete

::::
time

:::::
series

:::::
(Zasc,

:::::
Hdesc,

:::::
Trdesc::::

and

::::::
BGdesc)

:::
and

::::::::
assessed

::::
their

::::::::::
performance

::::
over

:::
2-8

::::::
month

::::::
periods.

::::
Fig.

:
7
::::::
shows

:::
the

:::::::::
percentage

::
of

:::::::
assigned

::::::
timings

::::
that

:::
are

::::::
correct

:::::
based

::
on

::
at

::::
least

::
2

:::::::::
techniques

:::
for

::::
each

::::
track

::
at

::::
each

::::
time

::::::
period.

:
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Timed landslides

Correctly timed landslides

Correct / timed landslides
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Zimbabwe, descending track
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Figure 6. The distribution of total landslides (white), landslides assigned a time (light green) and landslides assigned the correct time

(dark green) over aspect . Solid, black vertical line shows the aspect facing directly away from the
::
for

::::
each

:::::::
technique

:::::
using

::::::::
ascending

:::
and

::::::::
descending

::::
track

:
SAR sensor. Dashed line shows aspect facing directly towards

:::
over the SAR sensor

:::::::
Zimbabwe

::::::
dataset.

::
On

:::::
three

:::
of

:::
the

::::
four

::::::
tracks,

::::::::::
particularly

::::::
BGdesc :::

and
:::::
Hdesc,

::::
the

:::::::
accuracy

:::::::::
decreased

::
as

::::
the

:::::::
co-event

::::::
period

::::
was

:::::::::
decreased.395

::::
This

:::
was

:::::::::
especially

::::::::
observed

:::
for

:::::::
periods

::
of

::::
less

::::
than

:
5
::::::::

months.
:::
We

:::::::
suggest

:::
that

:::::
noise

::::
may

:::
be

::::
less

:::::::::
attenuated

::
in

:
a
:::::::

shorter
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Figure 7.
:::
The

::::::::
percentage

::
of
:::::::

landslide
::::::

timings
::::
that

::
are

::::::
correct

::::
when

:::::::
assigned

::
by

::
⩾

:
2
::

of
:::
the

::::::::
techniques

::::::::
described

::
in

::::
Sect.

::
2.4

:::
for

:
a
:::::
range

::
of

::::::
co-event

::::
time

::::::
periods.

::::
time

:::::
series,

::::::::
resulting

::
in

::::::::
increased

:::::::
numbers

::
of

:::::
false

::::::::
positives.

::::
This

::::
may

::::::
explain

:::
the

::::::::
relatively

::::
poor

:::::::::::
performance

::
in

:::::
Bhote

:::::
Kosi

::::::::
compared

::
to

:::
the

:::::
other

::::
case

:::::
study

:::::
areas,

:::::
since

::::::::::::
comparatively

:::
few

::::::
images

:::::
were

::::::::
available

:::
for

:::
this

::::
case

:::::
study

:::::
(Fig.

::
4).

::::
The

::::
loss

::
of

:::::::
accuracy

::
is
:::::::::
recovered

:::::
when

:::
the

:::::::
co-event

::::::
period

::
is

::::::
further

::::::::
decreased

::
to

::
2
:::::::
months,

:::::::
possibly

::::
due

::
to

:::
the

::::::::::::
comparatively

:::::
small

::::::
number

:::
of

:::::::
possible

::::::
wrong

::::
date

::::
pairs

::::::::
available

::::::
within

::
a
:::::::
2-month

:::::::
period.

:::::
Thus

:::
for

:::::
future

:::::::
studies

:::
that

::::
aim

::
to
:::::::::

constrain
:::
the400

::::::
timings

::
of

::::::::::::::
rainfall-triggered

:::::::::
landslides,

:::
we

::::::::::
recommend

:::::::
defining

::
a
::::
long

:::::::
co-event

::::::
period

::::
(6-7

::::::::
months),

:::
but

:::
for

::::::
studies

:::
that

::::
aim

::
to

:::::::::
distinguish

::::::::
landslides

::::::::
triggered

:::
by

:
a
:::::
rapid

:::::::::
succession

::
of

:::::::
triggers

:::::::::::::::::::::::::::::::::::::
(e.g. the events studied by Tanyaş et al., 2022)

:
,
:
a
::::::::
co-event

:::::
period

::
of

::
2

::::::
months

::
or

::::
less

::::
may

::
be

::::::
better.

4.1
::::

Why
::
do

:::::
some

:::::::::
landslides

::::
have

:::
no

::::::
timing

::::::::::
estimation?

::
In

::
all

:::
our

::::
case

:::::::
studies,

:
a
:::::
large

:::::::::
proportion

::
of

::::::::
landslides

:::
are

:::
not

::::::::
assigned

:::
any

::::
date

:::
pair

:::
by

:::
our

:::::::
method.

:::::
Some

::
of

:::::
these

:::::::::
landslides,405

:::::::
primarily

:::
in

:::::
Nepal,

:::
lie

::
in

:::::
areas

::
of

::::::::::::
foreshortening

::
or

:::::::
layover

::
in

:::
the

::::
SAR

::::::
images

::::
and

::
so

:::::
were

:::::::
removed

:::::
from

:::
the

:::::::
analysis

:::::
(Sect.

::::
2.3).

::::
This

:::::::::
represents

:::::::
between

::::
25%

::::
and

::::
43%

::
of

:::
the

:::::::::
landslides

:::
on

::::
each

:::::
track

::
in

::::::
Nepal,

::
so

::::
that

::
if

::::
these

:::::::
masked

:::::::::
landslides

:::
are

:::::::
ignored,

:::
the

::::::
method

:::::::::
sensitivity

::
in

:::::
Nepal

::
is

::::::
similar

::
to

:::
the

:::
less

:::::
steep

:::::::::
landscapes

::
of

:::::::::
Zimbabwe

:::
and

::::::
Japan.

::::::
Beyond

::::
this,

:::::::::
landslides

:::
that

:::
are

:::
not

:::::::
assigned

::
a
::::
date

:::
pair

:::
are

::
a
:::::
direct

:::::
result

::
of

:::
the

:::::
target

::::::
criteria

::
of

::::
our

:::::::
method:

:
a
:::::::::
significant

::::
step

::::::
change

::
in

::
at

::::
least

::::
two

::
of

:::
the

:::::::::
techniques

:::::::
outlined

::
in

::::
Sect.

::::
2.4.

:::
We

::::::
showed

::
in

:::::
Sect.

:::
2.5

:::
that

::::::::
imposing

:
a
::::::::
threshold

:::
on

:::
the

::::::::::
convolution

:::::::
function

::::
peak

::::
was410

:::::::
essential

::
to

:::::
reach

:
a
::::::

usable
:::::::::
specificity,

:::
but

::::
this

::::
will

:::
also

:::::
have

:::::::
required

:::::
some

::::::
correct

::::::
timings

:::
to

::
be

:::::::::
discarded.

::::
Thus

:::::
time

:::::
series

::::
with

:
a
::::
high

::::::
degree

::
of

:::::
noise

::
or

:::::
where

:::
the

::::::::
landslide

:::::
results

::
in
::::
only

::
a
:::::
small

:::
step

::::::
change

:::
in

::
the

::::::
metric

::::
will

:::
not

:::::::
produce

:
a
::::
date

::::
pair.

::::::
Finally,

:::::::
although

:::
we

:::::::::
attempted

::
to

::::::
account

:::
for

:::
any

::::::
spatial

::::::::
mismatch

:::::::
between

:::::::
polygon

::::::::
locations

:::
and

:::::
SAR

:::::::
imagery

::
by

:::::::::
expanding

::
the

::::::::::
boundaries

::
of

::::
each

:::::::
polygon

:::
by

::
20

:::
m

::
in

:::::
every

:::::::
direction

::::::
(Sect.

::::
2.5),

:::
any

::::::
spatial

:::::::::::
disagreement

:::::::
beyond

:::
this

:::::
scale

::
is

:::::
likely

::
to

:::
lead

::
to
:::::::::
landslides

:::
not

:::::
being

:::::::
assigned

::
a

::::::
timing.415
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::::
Lack

::
of

:::::
trees

:::
(i.e.

::::
low

::::::
NDVI)

::::
and

:::::::::::
unfavourable

::::
slope

::::::
aspect

::::::
relative

:::
to

:::
the

::::
SAR

::::::
sensor

:::
are

:::::
likely

::
to

::::::::
suppress

:::
any

:::::::
shadow

::
or

:::::
bright

::::::
pixels

:::::::::
associated

::::
with

:
a
:::::::::

landslide,
:::
and

:::::
may

:::
also

::::::
reduce

::::
the

::::::
change

::
in

:::::::
median

:::::::::
amplitude,

:::::::::
hampering

::::::::
detection

:::
of

:::::::
landslide

:::::::
timing.

:::::::::
Landslides

:::
that

::::::
effect

:::::::
sparsely

::::::::
vegetated

:::::
areas,

:::
for

::::::::
example

:::::
barren

:::
or

:::::::::
agricultural

::::::
lands,

::
or

:::::
areas

:::
that

:::::
have

::::::::
previously

:::::
been

:::::::::
deforested

::
or

::::::
eroded

:::
are

::::
thus

:::
less

:::::
likely

::
to
:::
be

:::::::
assigned

::
a

:::::
timing

:::
by

:::
our

:::::::
method.

:::::
Noise

:::
in

:::
the

::::
time

:::::
series

::::
may

::
be

::::::
related

::
to

:::::
either

::::::
natural

:::
or

::::::::::::
anthropogenic

:::::::
changes

::
to

:::
the

::::::
ground

:::::::::
properties

::::
(e.g.

::::::::::
agricultural

::::::::
practices,

::::::::::
particularly

:::
on

:::
the420

::::::::
hillslopes

::
of

::::::
Nepal).

:

:::::
Future

:::::::::
refinement

::
of

:::
the

:::::::
method

::::
may

:::::::
increase

:::
the

::::::
number

::
of

:::::::::
landslides

:::::::
assigned

::
a

::::::
timing.

:::::::
Possible

:::::
means

:::
of

::::::::::::
accomplishing

:::
this

::::::
include

::::::
finding

::::::
robust

:::
and

:::::::::
systematic

:::::
links

:::::::
between

::::::::
landslide

:::::
setting

::::
and

:::::::
optimal

::::::::
thresholds

:::
for

:::
the

:::::::::
individual

:::::::::
techniques

:::
and

:::
(as

::::::::
suggested

:::
by

:::
Fig

::
5,

:::
6).

::::
This

:::::
would

:::::
allow

::::::
metric

:::::::::
thresholds

::
to

::
be

:::::::
adapted

::
to

:::
the

::::::
setting

::
of
:::::

each
:::::::
landslide

::::::::
polygon.

:::
To

::::::
address

:::
the

:::::::
problem

:::
of

:::::
noise

:::::
within

:::
the

:::::
time

:::::
series

:::
that

::::::
masks

:::
the

::::::::
landslide

::::::
timing

::::::
signal,

:::::
future

:::::
work

::::
may

:::::::
involve

::::::
adding425

:
a
::::
first

::::
step

::
to

:::
our

:::::::::
algorithm

::
in

::::::
which

:::::
pixels

:::::::::
exhibiting

::::
high

::::::
levels

::
of

::::::::
temporal

:::::::::
variability

:::
are

::::::::
excluded

:::::
from

:::
the

::::::::
landslide

:::
and

::::::::::
background

:::::
areas.

:::::::
Finally,

:::
our

::::::
method

::::
may

:::
be

::::::::
improved

:::
by

:::
the

:::::::::::
development

::
of

::::
other

:::::::
metrics,

:::
for

::::::::
example

:::::
based

::
on

::::
VH

:::::::
polarised

:::::
SAR

::::
data

::
or

::::::
InSAR

::::::::
coherence

::::
time

::::::
series,

:::::
which

:::::
have

::::::::
previously

:::::
been

::::
used

::
to

:::::
detect

:::::::::
landslides

::
in

:::::::
forested

:::
and

::::
arid

:::::
zones

::::::::::
respectively

::::::::::::::::::::::::::::::::::::
(Cabré et al., 2020; Handwerger et al., 2022).

:

4.2 Possible causes of incorrect landslide timings430

In all of our case studies, our methods assign the wrong dates
::::::
method

:::::::
assigns

:::
the

:::::
wrong

::::
date

:::::
pairs to small number of

:::::
timed

landslides. There are several possible reasons for this. There may be real changes in the time series that are not landslides,

for example snowfall or melt, change in vegetation, change in soil moisture or human activity, which may be .
:::::::::
Activities

related to the landslide, for example the removal of material from a blocked road,
::::
may

::::
also

::::::::
contribute

:::
to

:::
this. Random noise

in the SAR signal may also result in false landslide timings. We note that for future applications, the timing confidence within435

a landslide population can be separated into landslides timed by 3 or more methods
::::::::
techniques

:
and those timed by only 2

methods
:::::::::
techniques (Table 2).

Another possibility is that delayed or multi-stage failure occurred for some landslides. Our methods are
::::::
method

::
is

:
designed

to detect only a single failure. In the case where multi-stage failure results in more than one step change in the time series, the

convolution in Sect. 2.5 will detect only the largest step change. Though it is beyond the scope of this study, it is in theory
::
in440

:::::
theory

::
it

:::::
would

::
be

:
possible to assess if the time-series contain a second peak , of similar magnitude to the largest one , to assess

the likelihood of
:
in

:::::
order

::
to

:::::
assess

:::::::
possible

:
multistage failure or landslide reactivation.

Delayed failure seems particularly likely for Zimbabwe and Hiroshima, where a large proportion of the incorrect landslide

timings are made up of the date pair immediately after the rainfall event (Fig. 4d, e, h). It is possible that some of the landslides

in these inventories did not fail immediately during the rainfall, but instead failed after a delay of a few days due to rising445

pore pressure following rainfall infiltration within the hillslope (Iverson, 2000). This is particularly possible in the case of

Z079D
:::
Zdesc, where the end of the rainfall event on 19 March 2019 coincides with the acquisition of the first post-event image,

so that only a short delay would be required for the landslide to occur during the time window immediately after the rainfall

(19-31 March 2019) rather than during the time window that spans the rainfall (7-19 March 2019). If these landslides are
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counted as correct in our analysis, the combined success rate in Zimbabwe is increased from 73% to 81
::
82%, bringing it in line450

with Hiroshima and Trishuli (Table 2), while for landslides timed by 3 or more methods
:::::::::
techniques ("⩾3M

:::
3Te" in Table 2),

the success rate is increased from 76
::
89% to 94%.

Although the Gorkha earthquake was followed by a large aftershock (12 May) and by the monsoon (approximate onset

9 June) (Williams et al., 2018)
:::::::::::::::::::::::::::::::::::::::
(approximate onset 9 June Williams et al., 2018), we are more confident of the true date of the

landslides for this event. It is possible that some landslides could have been either triggered or reactivated by monsoon rainfall.455

However, none of the incorrect landslide timings in Nepal are in June, making this unlikely (Fig. 4a-c,f).

4.3 Why do some landslides have no timing estimation?

In all our case studies, a large proportion of landslides are not assigned any date by the amplitude methods. Some of these

landslides, primarily in Nepal, lie in areas of foreshortening or layover in the SAR images and so were removed from the

analysis (Sect. 2.3). Beyond this, there are several reasons that landslides may not be assigned a timing.460

In Sect. 2.5, we discarded predictions for which the peak was too small in our convolution function. This improved the

specificity of our methods, but also required some correct predictions to be discarded. The reason for a small peak in the

convolution function is either that the step change in the metric was too small, or the rest of the time series was too noisy. In

Sect. 4.1, we demonstrated that landslides are less likely to be assigned a date if they occur in less vegetated areas or on slopes

unfavourably oriented towards the sensor. This means that using SAR to detect landslides in arid areas remains a challenge,465

although methods based on coherence time-series may be more appropriate in such cases (e.g. Cabré et al., 2020). In the case

of the Geometric Shadows Method, there is no guarantee that a landslide will contain any shadow pixels, in which case no date

can be detected using this method. This was observed to be more likely on slopes facing away from the sensor (Fig. 6).

Landslides will also have no signal in our methods if they are not located correctly in the SAR image, either due to distortion

of the radar image or to inaccuracies in the optically-derived inventory. Milledge et al. (2021) and Pokharel et al. (2021) both470

observed differences in landslide shape and location when comparing different optically-derived inventories of landslides

triggered by the Gorkha earthquake, including the inventory of Roback et al. (2018) used here. Milledge et al. (2021) observed

low spatial agreement between different inventories for all five of the trigger events they examined, suggesting this effect to

be relatively common. Such differences can be due to problems georeferencing the optical imagery, imagery from different

sources being used to compile different inventories and different teams of people carrying out the mapping. The landslide475

timing methods we present here require precise landslide locations. For the Geometric Shadows Method, which we expected

to be particularly sensitive to this form of spatial disagreement, we expanded the area covered by each landslide polygon by 10

m in an attempt to address this. However any mismatch beyond this scale between the landslide inventory and the SAR images

is likely to lead to landslides not being assigned a timing.

4.3 The effect of shortening the time window480

The percentage of landslide timings that are correct when assigned by ⩾ 2 of the methods described in Sect. 2.4 for a range of

co-event time periods.
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We used a "co-event" window of 6 months when testing the landslide timing methods in this paper. This time period was

selected to be roughly the duration of the Nepal monsoon. However, some applications, for example the case of successive

storms, may not require such a long window. It is therefore useful to assess how the length of this time window affects the485

accuracy of predictions. In order to assess this, we took the tracks with the most complete time series (Z072A, H090D, Tr019D

and BG019D) and assessed their performance over 2-8 month periods. Fig. 7 shows the percentage of assigned timings that are

correct based on at least 2 methods for each track at each time period.

On all three tracks, particularly BG019D and H090D, the accuracy decreased as the co-event period was decreased. This

was especially observed for periods of less than 5 months. We suggest that noise may be less attenuated in a shorter time series,490

resulting in increased numbers of false positives. Therefore, when applying our methods to future events, we recommend

keeping a time window of at least 5 months even in the case where the landslide timing is known more precisely than this

beforehand. This may explain the relatively poor performance in Bhote Kosi compared to the other case study areas, since

comparatively few images were available for this case study (Fig. 4). The loss of accuracy is recovered when the co-event

period is further decreased to 2 months, possibly due to the comparatively small number of possible wrong date pairs available495

within a 2-month period.

4.3 InSAR Coherence

Interferometric SAR (InSAR) coherence is a measure of the signal quality of an interferogram (an image used to measure

ground deformation formed from two SAR images acquired over the same area at different times). InSAR coherence is sensitive

to changes at the ground surface between the acquisition of the two SAR images: areas where the scatterers have changed500

significantly have high levels of noise in an interferogram and so a low coherence. Coherence is therefore sensitive to landslides

and has previously been used to detect landslide densities or individual large landslides (Burrows et al., 2019, 2020; Goorabi,

2020; Yun et al., 2015).

The coherence of each pixel in an interferogram can be estimated from the similarity in amplitude and phase change between

the two SAR images for small groups of neighbouring pixels. Coherence surfaces and the phase data required for their calcula-505

tion are not available through Google Earth Engine. However, coherence for Track 19 in Nepal has previously been calculated

by Burrows et al. (2019), covering the Buri Gandaki and Trishuli inventories tested here. This allows us to compare methods

:::::::::
techniques of landslide timing based on SAR amplitude and InSAR coherence for these two case studies.

Burrows et al. (2019) processed the data at the same resolution used here (20 × 20
::
22

:
m) and used a 3 × 3 moving

window to estimate coherence, so that the coherence surface has a resolution of 60 × 60
::
66

:
m. Similarly to the Landslide-510

Background Method
:::::::::
Technique, we obtained the median coherence of pixels within each landslide through time and the median

coherence of pixels within a 60-500 m buffer of each landslide polygon to give a background coherence. We then examined

the ratio between the landslide and background coherence through time. Using this ratio performed better than using the

landslide coherence alone, probably because other factors, such as the length of time between the two images used to form the

interferogram, can also effect coherence. Fig. 8 shows the median coherence ratio of a single landslide for different image pairs515

through time. This demonstrates two effects that we expect to see. First, the coherence that spans the landslide timing is low.
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Figure 8. Time series of ratio between landslide coherence and background coherence for a single landslide in Trishuli (black horizontal

lines). Blue vertical line shows earthquake timing.

.

Table 3. The ratio of correct / assigned landslide timings for the two coherence-based methods
::::::::
techniques

Trdesc BGdesc

Technique C1 54/154 (36%) 59/169 (35%)

Technique C2 82/312 (26%) 96/396 (24%)

Combined 27/57 (47%) 20/56 (36%)

Non-masked landslides 485 592

This drop in coherence has previously been used to detect landslide locations (Burrows et al., 2019; Goorabi, 2020; Yun et al.,

2015). However Sentinel-1 often has a low background coherence in vegetated areas due to its wavelength, which can make

any coherence decrease due to a landslide difficult to detect. Second, the coherence of post-event image pairs is higher than

pre-event image pairs due to the removal of vegetation by the landslide (previously used by Burrows et al., 2020). Based on520

these two observations, we propose two landslide timing detection methods
::::::::
techniques

:
based on InSAR coherence time series.

Method
:::::::::
Technique C1: A step increase in the coherence ratio corresponds to the first post-event image pair.

Method
:::::::::
Technique

:
C2: A temporary decrease in the coherence ratio corresponds to the co-event image pair. For each

coherence pair, this temporary decrease is calculated from the sum of the decrease in coherence ratio from the previous image

pair to this one and the increase in coherence ratio from this image to the next (adapted from the ∆C_sum method of Burrows525

et al., 2020).

Overall, the coherence-based methods
:::::::::
techniques

:
have a lower success rate than the amplitude-based methods

:::::::::
techniques

(Table 2), indicating that incorporating these data would decrease the specificity of our methods
::::::
method. However, it is worth
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noting that of the 47 landslides correctly timed across the two events using the C1 and C2 combined, only 3 had already been

timed using the combined amplitude-based methods
:::::::::
techniques in Sect. 3.1, suggesting that the incorporation of coherence530

methods
:::::::::
techniques could increase sensitivity, if these could be made more reliable.

Currently, only the Sentinel-1 SAR constellation acquires SAR data with sufficient coverage and acquisition frequency for

:::::::::
widespread

:
use in landslide timing studies. These data are acquired at C-band, which usually has low coherence in vegetated

areas. L-band data is better suited to InSAR-coherence-based landslide detection in vegetated areas (Burrows et al., 2020). The

planned NASA-ISRO NISAR mission has a similar acquisition strategy to Sentinel and will acquire L-band SAR
::::
data. It will535

be worth reassessing the potential of InSAR coherence time series for landslide timing detection following the launch of this

satellite.

4.4 Application to future events

We have developed methods that allow around 20

5
::::::::::
Conclusions

::::
and

::::::
Future

:::::::::::
Perspectives540

::
In

:::
the

::::
case

::
of

::::
long

::
or

:::::::::
successive

::::::
rainfall

::::::
events,

::::::::
landslide

:::::::::
inventories

::::::::
compiled

:::::
from

::::::
optical

::::::
satellite

:::::::
imagery

:::
are

:::::
often

::::::
poorly

:::::::::
constrained

::
in

:::::
time,

::::::
making

::
it

::::::
difficult

::
to
::::::::
associate

:::::
them

::::
with

::::::
specific

::::::::
triggering

::::::::::
conditions.

::::
Here

:::
we

::::::
present

:
a
:::::::
method

::
of

:::::
using

::::::::
Sentinel-1

:::::
SAR

::::::::
amplitude

::::
time

:::::
series

::
in

::::::
Google

:::::
Earth

::::::
Engine

::
to

::::::
identify

:::
the

::::::
timing

::
of

::::::::
triggered

::::::::
landslides

::
to

::::::
within

:
a
:::
few

:::::
days.

:::
We

:::
find

::::
that

::
by

:::::::::
combining

:::::::
multiple

:::::::::
techniques

::::
and

::::::::
ascending

::::
and

:::::::::
descending

:::::
track

:::::
SAR,

:
it
::
is

:::::::
possible

::
to

::::::
assign

::::::
timings

::
to

:::
up

::
to

::
30% of landslides in an inventory to be dated at the 6-12 days scale with ∼ 80% confidence. In

::::
with

::
an

::::::::
accuracy

::
of

:::::
80%.

::
A545

::::
small

:::::::
number

::
of

:::::::::
landslides

:::::::
(5-10%)

:::
can

::
be

:::::
timed

::::
with

:::
an

:::::::
accuracy

::
of

:::::::
⩾90%.

::::
Here

:::
we

::::::
applied

:::
our

:::::::
method

::
to

::::::::::::::
optically-derived

:::::::
landslide

::::::::::
inventories,

:::
but

::
it

::::
could

::::
also

::::::
applied

::
to
:::::::
datasets

:::::
from

::::
other

:::::::
sources,

:::
for

:::::::
example

:::::
those

:::::
based

::
on

:::::::
LIDAR

:::::
scans

::
or

::::
high

::::::::
resolution

::::::
optical

::::::
images

::::
that

:::::
allow

::::::::
landslide

::::::::
volumes

::
to

::
be

:::::::::
estimated

::::::::::::::::::
(Bernard et al., 2021).

::::
The

::::::::
precision

::
of

::::
our

:::::::
method,

:::::
which

::
in

:::::
most

:::::
cases

::
is

:::
12

:::::
days,

::::::
should

:::
be

::::::::
sufficient

::
in

:
the case of multiple successive storms , this timescale should be

sufficient
::
or

::::::::::
earthquakes to attribute landslides to a given event

::::::::::::::::::::::::::::::::::::::::::::::
(Ferrario, 2019; Janapati et al., 2019; Tanyaş et al., 2022). For550

monsoon landslide dating, this timing is not sufficiently precise to allow building
::::::
timings,

::::
this

::::::::
precision

::
is
::::
not

::::::::
sufficient

::
for

:::::::::::
construction of intensity-duration or intensity-antecedent rainfall thresholds

:
at

:::
the

::::::
hourly

::::
scale

::::::
typical

::
in

:::
the

::::::::
literature (e.g.

Bogaard and Greco, 2018). However,
::::::::
thresholds

:::::
based

:::
on

::::::
weekly

::::::
rainfall

:::::
would

:::
be

:::::::::
achievable

:::
and

::
of

::::::
interest

:::
for

::::::::::::
understanding

::::::::
triggering

:::::::::
conditions

::
in

::
the

::::::::::
Himalayan

::::::
region.

:::::::::::
Furthermore, it should allow us to establish whether landslides occur in temporal

clusters that relate to specific peaks in rainfall or are distributed throughout the monsoon. These two end-members would have555

very different implications in terms of hydrological and slope stability modeling,
::::::::
modelling

:
and thus on hazard evaluation.

It
:::::::::
Application

:::
of

:::
our

:::::::
method

:::
to

:::
the

::::::
Indian

:::::::
summer

::::::::
monsoon

:
should also allow us to better constrain whether landslides

systematically occur with a specific delay after the onset of the monsoon and/or simultaneously with reported flooding or

bursts of intense rainfall (Gabet et al., 2004). In both cases, since relatively few landslidesare timed by SAR methods, some
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inference will be needed to attribute time stamps to neighbouring landslides lacking a SAR signal. The SAR methods could560

also be combined

:::
Our

::::::
method

:::::::
assigns

::::::
timings

::
to

::::
only

::::
30%

::
of

::::::::
landslides

::
in

:::
an

::::::::
inventory,

::::
thus

:::::
timing

::::::::::
information

::
is

:::
not

:::::::
obtained

:::
for

:::
the

:::::::
majority

::
of

:::::::::
landslides.

:::::::::
Therefore,

::::
while

::::
our

::::::
method

:::::::
provides

::
a
:::::::
valuable

::::::
insight

::::
into

:::::::
landslide

:::::::
timings

:::::
during

::::
long

:::
or

::::::::
successive

:::::::
rainfall

::::::
events,

::::::
further

::::
work

:::::
could

:::::
allow

::
us

::
to
::::::
obtain

:
a
:::::
more

:::::::::::::
comprehensive

::::
view.

:::::
First,

:::
our

:::::::
method

::::
may

::
be

::::::
refined

:::
by

:::::
future

:::::::
studies,

::
for

::::::::
example

:::::::
through

:::::::
variable

::::::
metric

::::::::
thresholds

:::::::
adapted

:::
to

:::
the

::::::
setting

::
of

::::
each

::::::::
landslide

:::
or

::
by

::::::::::::
incorporating

::::
both

:::::::::
amplitude565

:::
and

:::::::::
coherence

::::
time

:::::
series.

:::::::
Second,

:::::::
remote

::::::
sensing

::::::::::
approaches

::::
such

::
as

:::
we

::::::
present

:::::
here

:::::
could

::
be

:::::::::
combined,

::::::
where

::::::::
available,

with other methods of establishing landslide timingif these are available e.g. small gaps in cloud in optical satellite imagery,
:
,
:::
for

:::::::
example reports of individual landslides or seismic data (Bell et al., 2021; Hibert et al., 2019; Yamada et al., 2012).

:::::::::::::::::::::::::::::::::::::::::::::::
(Bell et al., 2021; Hibert et al., 2019; Yamada et al., 2012)

:
.
::::::
Finally,

:::
We

::::
also

::::::
expect

::::
that

::::
both

:::
the

::::::::
precision

::::
and

:::
the

::::::
number

:::
of

::::::::
landslides

::::
that

::::
can

::
be

::::::::
assigned

::::::
timings

::::
may

::::::::
increase

::
in

::
the

::::::
future

::
as

:::::
more

:::::
SAR

::::
data

::::::::
becomes

::::::::
available,

:::
for

:::::::
example

:::::
from

:::
the

:::::::
planned

:::::::
NISAR

:::::::::::
constellation.

::::::::
Overall,

:::
our

:::::::
method570

::::::::
represents

:
a
::::
step

:::::::
towards

::::::::
improved

:::::::
temporal

:::::::::
resolution

::
for

::::::::
triggered

::::::::
landslide

:::::::::
inventories.

::::
This

:::::
could

::::::
further

:::
our

::::::::::::
understanding

::
of

::::::::::::::
monsoon-induced

::::::::::
landsliding

::
in

:::
the

:::::
Nepal

::::::::
Himalaya

::::
and

:::::::::
elsewhere.

An algorithm could be designed to automatically detect both the location and timings of rainfall-triggered landslides by

combining SAR-based timing methods with automated landslide mapping methods based on multi-spectral imagery (e.g. Behling et al., 2014; Ghorbanzadeh et al., 2021; Jelének and Kopačková-Strnadová, 2021; Milledge et al., 2021)

. They could also be applied to other forms of landslide inventory, for example those based on LiDAR scans or high resolution575

optical images that allow landslide volumes to be estimated.

In the case of prolonged rainfall events, landslide inventories compiled from optical satellite imagery are often poorly

constrained in time. Here we present methods of using Sentinel-1 SAR images in Google Earth Engine to identify the timing

of rainfall triggered landslides to within a few days. We find that by combining ascending and descending track SAR, it is

possible to date ∼ 20% of landslides in an inventory with an accuracy of ∼ 80%. A small number of landslides (3-8%) can580

be timed with accuracy of 90-95%. These methods will allow us to generate multi-temporal landslide inventories for long

rainfall events, unlocking comparisons between rainfall data, hydrological models and triggered landsliding. It also suggests

that SAR amplitude time-series could be combined with multispectral imagery in an algorithm aimed at detecting and mapping

landsliding over regional scales.

Code and data availability. Sentinel-1 GRD and Sentinel-2 data are available open-access from ESA Copernicus and were accessed through585

Google Earth Engine (https://developers.google.com/earth-engine/datasets/catalog/sentinel, last access 19 Jan 2022). Images from the USGS

Landsat archive were accessed through Google Earth Engine (https://developers.google.com/earth-engine/datasets/catalog/landsat, last ac-

cess 19 Jan 2022). Landslide polygons were obtained from Roback et al. (2018) for Nepal (available at https://doi.org/10.5066/F7DZ06F9),

The Association of Japanese Geographers (2019) for Hiroshima and Emberson et al. (2022) for Zimbabwe.
:::
The

::::::
Google

::::
Earth

::::::
Engine

::::
code

:::
used

::
in
:::
the

:::::::::
manuscript

:
is
:::::::
included

::
in

:::
the

:::::::::::
supplementary

:::::::
material.

::::::
Further

:::::::::
calculations

::::
were

:::::
carried

:::
out

:::::
using

::
the

::::::
Python

::::::
Numpy

:::::::
package.590

Images were produced using Python Matplotlib (Hunter, 2007) and PyGMT (Uieda et al., 2021) software.
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