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Abstract. This study proposes a framework that can efficiently utilize the information obtained from advanced tsunami simula-
tion for probabilistic tsunami hazard assessment (PTHA) and investigation of optimal facility placement. A series of numerical
simulations of the tsunami off the Pacific Coast caused by the 2011 Tohoku Earthquake is performed considering uncertainties
of fault parameters. The simulated tsunami force acting on buildings and inundation depth are calculated in the simulations,
and they are defined as tsunami hazard indices. Proper orthogonal decomposition (POD) is then applied to the simulated results
to extract the characteristic spatial modes, which can be used to construct surrogate models. Monte Carlo simulations (MCS)
are then performed at a low computational cost using the surrogate models. Based on the MCS results along with the concept
of system failure probability, the optimal placement of facilities is probabilistically investigated with the help of genetic algo-
rithms. The results indicate that the proposed framework enables us to determine the optimal placement of facilities applying

different strategies at low computational cost while effectively reflecting the results of advanced tsunami simulations.

1 Introduction

Tsunami is a disaster that has a large impact worldwide, with the recent example of the global Tonga tsunami (Heidarzadeh
et al., 2022; Kubota et al., 2022). To reduce the damage caused by tsunamis, it is essential to predict tsunamis by using
numerical analysis. The numerical analysis techniques for tsunamis have developed considerably over the years, and high-
accuracy hazard assessments and predictions have now become possible (Qin et al., 2018; Xiong et al., 2019). Natural disasters
such as tsunamis have numerous uncertainties; hence, conducting probabilistic hazard assessments that consider such factors
is important. However, advanced numerical analyses are unsuitable for probabilistic hazard assessment because a large number
of calculation cases are generally required. Therefore, it is necessary to develop a framework that effectively uses the few but

reliable numerical simulation results to achieve probabilistic evaluations.
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Probabilistic hazard assessments of natural disasters have been studied for many years in the seismology fields. Among these,
the study by Cornell (Cornell, 1968) is considered groundbreaking. Many research results have been reported on probabilis-
tic seismic hazard analyses (PSHA) (e.g., McGuire, 1977; Ishikawa and Kameda, 1988). Furthermore, probabilistic tsunami
hazard analyses (PTHA) have been established based on PSHAs; they have been proposed as a method for understanding the
relationship between tsunami heights and exceedance probabilities in a specified period ; see, e.g., Geist and Parsons (20006);
Annaka et al. (2007); Fukutani et al. (2015); Mori et al. (2017). Also, some studies have focused on actual regions such as the
southeast Aegean Sea (Mitsoudis et al., 2012), the Makran subduction zone (Heidarzadeh and Kinjo, 2011), the Cascadia sub-
duction zone (Park and Cox, 2016; LeVeque et al., 2016; Salmanidou et al., 2021) and Nankai Trough subduction zone (Nakano
et al., 2020; Baba et al., 2022). In addition, the slip distributions have been investigated based on probabilistic approaches; see,
e.g., LeVeque et al. (2016); Nakano et al. (2020); Scala et al. (2020). Moreover, numerous studies have been conducted to
efficiently utilize numerical simulation by constructing surrogate models and utilizing them in PTHA. For instance, response
surface-based approaches using polynomial functions (e.g., Kotani et al., 2020), the radial basis function (e.g., Gopinathan et
al., 2021), and the Gaussian process regression (e.g., Salmanidou et al., 2021; Alhamid et al., 2022) have been reported. A
surrogate model constructed based on the concept of the singular value decomposition is worthy of remark because spatial
modes are efficiently utilized; see Fukutani et al. (2021).

Furthermore, the appropriate placement of infrastructure and evacuation facilities is important for minimizing damage caused
by tsunamis. Numerous studies have used a probabilistic approach for the optimal placement of network systems and facilities
by considering the uncertainties of disasters such as earthquakes or tsunamis. Such research examples include risk assessments
for infrastructure system networks (Gomez and Baker, 2019; Miller and Baker, 2015), optimization of relief supply bases and
their delivery (Cavdur et al., 2020a, b; Maharjan and Hanapla, 2020), optimal placement of public and evacuation facilities
(Park et al., 2012; Zhang and Yun, 2019; Doerner et al., 2008), emergency medical service networks (Mohamadi and Yaghoubi,
2017), and optimal allocation of budgets for disaster countermeasures (Rawls and Turnquist, 2010).

Thus, many research examples on the probabilistic hazard assessments of tsunamis and probabilistic optimal placement of
facilities exist; however, few studies have sufficiently used the information obtained from advanced numerical analysis. In this
study, we applied the theory of mode decomposition using proper orthogonal decomposition (POD) (Kerschen et al., 2005)
for solving such issues. The objectives of POD include extracting data characteristics or reducing data dimensions. POD is
often treated as an equivalent of Karhunen—Loeve decomposition developed by Karhunen (1947) or Kosambi (1943); or prin-
cipal component analysis (PCA) (Jolliffe and Cadima, 2016) developed by Hotelling (1933). POD has numerous application
examples in a wide range of fields; furthermore, there are various application examples in the fields of seismic engineering
and tsunami engineering. For example, Ha et al. (2008) applied POD for reducing computational costs to construct a tsunami
surrogate model. LeVeque et al. (2016) and Melgar et al. (2016) applied the Karhunen—Loeve expansion to consider the fault
slip distribution under various scenarios. Furthermore, Nojima et al. (2018) conducted research on the combination of mode
decomposition based on singular value decomposition and numerical simulations to predict the distribution of strong motion;
Bamer and Bucher (2012) used nonlinear finite element methods to construct a surrogate model, using POD for the prediction

of the behavior of buildings. Moreover, Fukutani et al. (2021) constructed a surrogate model that used POD to implement
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probabilistic inundation assessments. POD can extract the features of spatial and temporal distributions of risk indices; thus, it
is suitable for the construction of surrogate models for disaster hazard assessment.

Given this context, in this study, we constructed a surrogate model by applying POD to advanced three-dimensional (3D)
tsunami simulation results; we propose a method that uses this surrogate model to efficiently investigate the optimal placement
of facilities such as infrastructure facilities, relief supply bases, and evacuation shelters based on probability theory. Research
examples of probabilistic assessments of tsunami hazards using surrogate models of numerical simulations include the previ-
ously mentioned approach of using mode decomposition by Fukutani et al. (2021) and the approach of using response surfaces
by Kotani et al. (2020)); however, no research examples exist in which the optimal placement of facilities has been investigated
based on probability theory using a surrogate model. Therefore, in this study, we constructed a surrogate model using mode
decomposition on information obtained from advanced numerical simulations. Moreover, we proposed a method that could
efficiently investigate the optimal placement of facilities based on probability theory using this surrogate model.

The structure of this paper is as follows. Section 2 describes the framework and methods used in this study. In Section 3, we
applied the proposed method to the 2011 Off the Coast of Tohoku Earthquake (Tsuji et al., 2011) as an application example that
considers the actual damage and verified the validity of the constructed surrogate model; we also implemented Monte Carlo
simulations to conduct probabilistic risk assessments. Furthermore, the Monte Carlo simulation results and a genetic algorithm
were used to investigate the optimal placement of facilities, and the usefulness of the proposed method was discussed. Finally,

Section 4 describes the conclusions.

2 Search method for the probabilistic optimal placement using a surrogate model

The proposed method is described in this section. In this study, a combined two-dimensional (2D) and 3D tsunami analysis
was first conducted for multiple scenarios with different fault parameters. The maximum tsunami fluid force and the maximum
inundation depth were adopted as the assessment indicators. Next, POD was applied to the results obtained from these analyses
to extract the spatial modes of the tsunami fluid force and inundation depth; these spatial modes were used to construct a
surrogate model; based on this model, the spatial distribution of the tsunami hazard index for an arbitrary scenario could be
calculated with low computational cost. Furthermore, this surrogate model and uncertainty parameter fluctuation information
were combined to implement a Monte Carlo simulation and compute the probability distribution of the tsunami fluid force
and inundation depth at each assessment point; a threshold value was set to create an exceedance probability map. Finally, the
Monte Carlo simulation results were used, and a genetic algorithm was applied to investigate the optimal facility placement.
Figure 1 shows a flowchart of this study. From the next sub-section, the methods used in each portion are detailed. Of these,

for the methods described in Sections 2.1 and 2.2, the methods proposed by Tozato et al. (2022) were adopted.
2.1 Tsunami simulation method

Numerical analyses were first conducted to construct a surrogate model of each tsunami hazard index in the target region. A

numerical analysis that combined 2D and 3D analysis was conducted; first, a wide-area 2D tsunami analysis was conducted,
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Figure 1. Flowchart of probabilistic tsunami hazard analysis using the mode-decomposition—based surrogate model.



90

95

100

105

110

115

and the time history of the tsunami wave height and flow velocity that were observed offshore of the target area were acquired.
In this study, analyses were conducted using TUNAMI-N2 (Imamura, 1995; Goto et al., 1997). The following continuity and

nonlinear long wave equations are solved in the 2D analysis:

ot o Ty =0 @
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where M and N are the flow rates in the = and y directions, respectively, 7 is the water level, D is the total water depth, g is

ON 0 [MN 0 [N? on gn?
R AR R
gravitational acceleration and n is the Manning roughness coefficient.

The obtained tsunami wave height and flow velocity were set as the boundary conditions, and the tsunami reaching the target
area was analyzed. The method proposed by Takase et al. (2016) is used for the boundary conditions of the 2D and 3D analyses.
The time-series data of the wave height and flow velocity obtained from the 2D wide-area analysis are stored and transferred
to the 3D numerical analysis by linear interpolation in space. The interpolated values are given to the 3D analysis as input data.

A 3D analysis was performed in this portion to assess the fluid force acting on the buildings in the target area. We employed

the following set of 3D Navier-Stokes and continuity equations in the analysis domain 2, € R?

p(%—?—&-qu—f)—er:O )
V-u=0 ®)

where p is the mass density, w is the velocity vector, o is the stress tensor, and f is the body force vector. Also, assuming a

Newtonian fluid, the stress is calculated as
o=—pl+2ue(u) (6)
where p is the pressure, 4 is the coefficient of viscosity, and e(u) is the velocity gradient tensor defined as
1 T
e(u) = 3 (Vu+(Vu)") @)

To solve the governing equations of the 3D simulation, the stabilized finite element method (SFEM) is used in this study. The
detailed explanation of the numerical method used in this study is described in the relevant paper (Tozato et al., 2022). For the
tsunami uncertainty, two fault parameters (described later) were adopted as the uncertainty parameters, and numerical analyses
were conducted for several scenarios in which these parameters were changed. Specific analysis area setting conditions are

shown in Section 3.
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2.2 Construction of the surrogate model using mode decomposition

In this study, proper orthogonal decomposition (POD) was used to extract the spatial characteristic modes from the results
of numerical analysis. To apply POD, a column vector x; (called a data vector) was first defined to accommodate a tsunami
hazard index, for which we selected the spatial distribution of either the maximum impact force acting on the buildings or the
maximum inundation depth obtained from a numerical simulation for scenario ¢. Here, if there are n evaluation points, x; has
n components. Then, a data matrix was created by arranging all the data vectors according to a certain rule to be used for a

target of POD.

| |
X=| o - ay )

where NV refers to the number of scenarios. Furthermore, the vertical line in Eq. (8) was used to indicate that the data vector is
a column vector. Using this matrix, the covariance matrix of the data was expressed in the form of C' = X X T’; the eigenvalues
represent the variances, and the eigenvectors represent the spatial modes. In this study, we assumed that the eigenvalues were
arranged in descending order from the first mode, and the eigenvalue and eigenvector corresponding to the j-th mode were
expressed as A; and u;, respectively. Furthermore, in POD, the contribution rate of each mode is often used as a criterion
for determining the number of dimensions to be reduced. The contribution rate is an index that shows how much each mode
explains the data, and the contribution rate of the j-th mode d; is expressed as follows, using the eigenvalues A\, (k = 1,...,n).

ZZ:1 Ak

Furthermore, singular value decomposition was used to express the data matrix as follows using the eigenvalue A; and the

d; €))

eigenvector u;.
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Here, U is a matrix in which the modes are arranged in the column direction, 3 is a matrix in which the square roots of the
eigenvalues are arranged in diagonal terms, V' is a matrix in which the eigenvectors of X7 X are arranged, p is the number of
eigenvalues that is greater than zero, and A7 = X V7 is a matrix in which the POD coefficients are arranged. The relationship
of singular value decomposition for the result of one scenario is given as follows:

p
T; :Zaikuk =Q1U1 + o+ Qupty (1D
k=1

Here, o, donates ik component of the matrix A in which the POD coefficients are arranged. When removing modes with low
explainability for the data, the data vector is expressed approximately as a linear combination excluding the modes with a low

contribution rate as follows by determining the number of modes r to be reduced from the contribution rate or other indices.
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However, notably, a reduction in dimensions will result in a loss of the information contained in the omitted modes. Here, if
this data x; is the result of the uncertainty parameter 3;, then the POD coefficients of any uncertainty parameter 3 can be
expressed. Therefore, next, the POD coefficients v, are expressed as functions fi(3)(k = 1,...,r) of the uncertainty param-
eter. The surrogate model can be expressed as follows by expressing this as a function of the uncertainty parameter for each

corresponding mode.
z(8) Zka(ﬁ)uk (13)
k=1

In this study, the radial basis functions (RBF) (Buhmann, 1990) were used as the interpolation functions. RBF interpolation
can be used to handle cases where the analysis scenarios are not evenly arranged in the parameter space. The function fx(3)

corresponding to mode k can be expressed as follows:

N N
f(B) =Y wip(B.8:) = > wiexp(—y[|B - Bill*) (k=1,...,7) (14)

i=1 i=1
Here, 3; is the input parameter group for scenario 4, w; is the weight, and ¢(3,3;) is the basis function; ~ is a parameter
that determines the smoothness of the function. The weights of RBF interpolation can be obtained in the following form by

substituting the correspondence between the known input parameter 3; and the POD coefficient oy, that expresses the output

result.
a1k ¢(B1,B1) -+ B(B1,BN) wq
: = : : : (k=1,..,7) (15)
aNk o(BN.B1) -+ d(Bn,BN) wy
They can be expressed in their respective bold forms as follows:
ap=dw, (k=1,...,7) (16)

Here, o is a vector in which the coefficients of the k-th mode are arranged, and wy, is a vector in which the weights of
fx(B) are arranged. The function using the weight obtained in Eq. (15) is expressed as an interpolation passing through all
the referenced data points. However, cases in which the referenced data points change or oscillate at a local level can result
in interpolation with little physical meaning. To resolve such issues, we introduced a regularization term for computing the
weights. Specifically, we introduced L2 regularization called ridge regression (Hoerl and Kennard, 1970), and weight wy, was
obtained by solving the following optimization problem.

arg min(||ay, — ®wy |3 + A Jwy|[3) a7

Wi
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This process is generally used in the field of machine learning to prevent overfitting; A indicates the degree of regularization.
Introducing the regularization term allows to suppress the local oscillations and enables smooth interpolation. However, care
must be taken for cases in which regularization is introduced because this may not pass through all data points. Furthermore, the
accuracy of interpolation depends on the RBF parameter  and regularization parameter \; hence, these need to be appropriately
determined. In this study, a combination of these parameters was determined by cross-validation (Stone, 1947) and Bayesian

optimization (Mockus, 1975).
2.3 Search for the optimal placement using a genetic algorithm

A genetic algorithm (Holland, 1992) was used in this study for investigating optimal placement. Genetic algorithms search for
approximate solutions of data, where multiple individuals whose solution candidates are expressed with genes are prepared,
individuals with high fitness are preferentially selected, and solutions are searched for by repeating operations such as crossover
and mutation. The problem targeted in this study includes an extremely large number of assessment points; furthermore,
checking all combinations is extremely inefficient. Hence, we adopted the genetic algorithm for the combination optimization
problem.

Figure 2 shows an overview of the genetic algorithm. In this study, the assessment point number was placed in the component
of each individual, and optimization of those combinations was performed with a genetic algorithm. First, the number of
individuals was determined, and a combination of points to be selected was randomly determined for the initial individuals.
Next, the fitness was calculated for the generated individuals. Two individuals that are to be the parents of the next generation
were then selected according to the obtained fitness. The parent selection method involves selecting individuals with high
fitness as parents; low-fitness individuals are thus eliminated. The next generation of individuals is generated by randomly
exchanging each component for the two selected parents. The location of exchange and the number of exchanges are randomly
determined. This is repeated until the number of individuals in the next generation reaches the initially set number. In this study,
we adopted an elite conservation strategy as a method to avoid deterioration of fitness during generational change, with settings
such that some of the top individuals with high fitness could be passed on to the next generation as is. The final next-generation
individuals were determined by mutating each component of each individual with a certain probability. In this process, the
point number may be duplicated within one individual, and in such cases, the duplicated point is randomly re-selected. This

process was repeated until the fitness converged, and an optimal point combination was determined.

3 Application to cases assuming an actual tsunami

The method described in the previous section was applied to a problem in which an actual tsunami was assumed. In this
study, we conducted a series of numerical analyses that considered the uncertainties with the 2011 Off the Coast of Tohoku
Earthquake as the target event. We applied mode decomposition on these results to construct a surrogate model of the numerical

analysis, and we implemented Monte Carlo simulations to investigate the optimal placement of facilities probabilistically.
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3.1 Tsunami simulation

We used the same numerical analysis results as those conducted in previous research (Tozato et al., 2022). The reader is referred
to the study by (Tozato et al., 2022) for details regarding the computational conditions. This study only considers the slip and
rake as uncertainty parameters shown in Fig. 3 because these parameters are supposed to have a deep relationship with the
characteristics of fault stagger. The parameters at the time of the Off the Coast of Tohoku Earthquake were set as mean values,
with the slip varying between 0.7 and 1.4 times, and the rake varying between —20° to +25°. The illustration of the fault
parameters is shown in Fig. 3. Table 1 shows all analysis cases. In this study, the validity of the constructed surrogate model
was verified by using +10° rake cases among the 50 cases shown in Table 1; the remaining 40 cases were used to construct the
surrogate model.

Figures 4 and 5 show the target area and snapshots of the analysis results of the inundation area for the mean case (S3RY),
respectively. To confirm the validity of the numerical simulations, the simulation result for case S3RS5, which corresponds to
the actual tsunami condition, is compared with the observed data (The 2011 Tohoku Earthquake Tsunami Joint Survey Group,

2012; Mori et al., 2012). Figure 6 shows the simulated and observed inundation depths at the points A to H indicated in Fig.
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Rake
[°] -20 -15 -10 -5 0 +5 +10 +15 +20 +25
Normalized
[%] 0.753 0.815 0.877 0.938 1 1.062 1.123 1.185 1.247 1.309
value

70 0.7 SIR1 SIR2 SIR3 SIR4 SIR5 SIR6 SIR7 SIR8 SIR9 SIRI10
85 0.85 S2R1  S2R2 S2R3 S2R4 S2R5 S2R6 S2R7 S2R8 S2R9  S2R10
Slip | 100 1 S3R1  S3R2 S3R3 S3R4 S3R5 S3R6 S3R7 S3R8 S3R9 S3RI10
120 1.2 S4R1  S4R2 S4R3 S4R4 S4R5 S4R6 S4R7 S4R8  S4R9  S4R10
140 14 S5R1  S5R2  S5R3 S5R4 S5R5 S5R6  S5R7  S5R8  S5R9  S5R10
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4. These results show that although there were some differences between the numerical analysis results and observed results
at locations far away from the shore, the observation values were generally reproduced in the areas around the shore. The
difference between the numerical analysis results and the observation values in the locations far away from the shore was
considered to be because the outflows of the buildings were not considered in this study; hence, the waves did not reach the

locations far away from the shore.

Figure 4. Boundary between 2D and 3D analyses areas. Points A to H are used to compare the inundation depths between the observational

data and simulation results. (©Google Maps, Tozato et al. (2022))

In this study, the impact force acting on the buildings and the inundation depth were adopted as tsunami hazard indices. The
effects of the tsunami fluid force have been considered even in recent design criteria (American Society of Civil Engineers,
2017; Nakano, 2017); therefore, we considered the fluid force acting on buildings as a tsunami hazard index. A 3D simulation
was conducted to construct a surrogate model of the tsunami fluid force; however, the tsunami fluid force is strongly influenced
by the direction that the building is facing, and it is difficult to assess the fluid force for each point. Therefore, the tsunami fluid
force was assessed with a 2D mesh consisting of approximately 10 m x 10 m grids in this study, each of which is a unit for
force evaluation. The tsunami impact force is calculated by synthesizing all the pressures acting on the surfaces of buildings
within each grid in the two horizontal directions and averaged over the grid. Then, hereafter, each grid is regarded as a point
associated with this averaged force. In addition, for each point, the maximum impact force is represented by evaluating the
maximum value over the analysis time. An image of a mesh for evaluating the tsunami force is shown in Fig. 7. The target area

was 2,145 x 2,600 m; hence, the number of assessment points in the POD was n = 214 x 260 = 55, 640.

11
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results (The 2011 Tohoku Earthquake Tsunami Joint Survey Group, 2012)). (Tozato et al. (2022))
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Figure 7. Image of a mesh for evaluating tsunami force. (Tozato et al. (2022))

3.2 Construction of a surrogate model with POD

POD was applied to the numerical analysis results to construct a surrogate model. When applying the POD, the data at each
point were normalized in advance to mean values of 0 and standard deviations of 1. Figure 8 shows the spatial modes extracted
by the POD from the first mode to the third mode. The values shown in the figure are values of the eigenvectors u;, and
these were adjusted so that the maximum absolute value of the components in the eigenvectors was 1. The characteristics of
the spatial distribution could be read for each tsunami hazard index from the extracted modes. A comparison of the spatial
modes of the maximum impact force and maximum inundation depth confirmed that the three modes shown in Fig. 8 have
similar spacial characteristics. For example, in the first mode, the sign was the same overall, and the value on the coast side
was large; thus, the mode showed an overall tendency where the coast side was the most affected by the tsunami, with the
effect becoming smaller moving away from the coast. In the second mode, a tendency could be seen where the maximum
impact force and maximum inundation depth were opposite at the east and west sides. In the third mode, a tendency could
be seen where the maximum impact force and maximum inundation depth were opposite at the north and south sides. These
modes were considered to be related to the inflow direction of the tsunami. Furthermore, higher-dimension modes included the
characteristics of local sections. Figure 9 shows the contribution rates of the modes. The contribution rate of the first mode was
high for both the maximum impact force and maximum inundation depth.

Next, the coefficients of each mode were expressed as a function of the uncertainty parameters. As previously mentioned,
RBF interpolation shown in Eq. (14) was used, and the regularization shown in Eq. (17) was introduced in the calculation to

obtain the weight. The accuracy of the surrogate model changed according to the RBF smoothness parameter and regularization

13
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parameter; thus, it is important to appropriately determine these. In this study, these parameters were determined using cross-
validation.

The learning and verification cases used for cross-validation were obtained by taking a total of 40 cases used in the construc-
tion of the surrogate model, removing four cases that correspond to the corners of the parameter space (SIR1, SIR10, S5R1,
S5R10), and dividing the remaining 36 cases between learning and verification cases for cross-validation. The corner data were
not used for the verification cases because these data were extrapolated. In this example, the number of divisions between the
learning and verification cases was set to 12. In other words, the model was constructed using 37 cases for a single validation,
and the validation is conducted using three cases. Furthermore, the cross-validation error was calculated by comparing the

reconstructed results using the spatial mode and taking the ratio of the mean absolute error to the mean value as shown in the

14
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following equation.

N N
_ D DD DR

N
ﬁ >ie1 Zj:l Lij

Here, n is the number of assessment points, N is the number of scenarios, and x;; is the numerical analysis result for scenario

(18)

¢ and point j. Furthermore, &;; is the value for scenario ¢ and point j when reconstructed with the surrogate model, and e, is
the error when the number of modes is 7.

Figure 10 shows the cross-validation error of the maximum impact force and maximum inundation depth for each number of
modes. Cases in which no regularization term is present (Eq. (15)) are also shown in Fig. 10. Bayesian optimization was used
for the search in the parameter space, the number of searches was set to 80, and the upper confidence bound (UCB) strategy
was used for the acquisition function. The error comparison confirmed that the accuracy of the surrogate model was improved
by introducing the regularization term. By introducing the regularization term, a robust surrogate model can be constructed.

Finally, the validity of the surrogate model was verified by comparing the numerical simulation results for the scenarios
that were not used for the constructed surrogate model with the results of the constructed surrogate model. Figure 11 shows
a comparison between the numerical simulation results and the surrogate model results for the S3R3 scenario. Regarding the
number of modes used in the surrogate model, the maximum impact force was set to 8 and the maximum inundation depth
was set to 11. Also, Fig. 12 shows the mean absolute errors calculated by Eq. (18) in calculations for 10 scenarios used for
validation. As can be seen from Fig. 11, the constructed surrogate models can roughly represent the targeted spatial distribution

of the maximum impact force and maximum inundation depth. However, Fig. 12 shows that 10 % or higher errors occur in
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Figure 10. Cross-validation error for each number of modes.

some validation scenarios, and the areas of large error are localized. This is because there is a possibility that spatial modes

used for the surrogate models cannot properly capture the local characteristics.
3.3 Monte Carlo simulation

We conducted probabilistic tsunami hazard assessments using the constructed surrogate model. The surrogate model enables
the computation of the spatial distribution of hazard indices at a low computational cost; hence, many trials can be secured at a
relatively low computational cost, and a risk assessment that efficiently utilizes the advanced numerical simulation results can
be conducted.

In this study, we conducted a probabilistic assessment of the tsunami hazard by applying Monte Carlo simulations. The
variation of uncertainty parameters must be quantitatively assessed probabilistically for Monte Carlo simulations. We assumed
that the slip and rake followed a normal distribution, and the probability distribution parameters were set as shown in Table 2.
For the mean values, as mentioned in the previous section, normalized values were used as the input parameters, so these were
set as 1.0. Furthermore, for the standard deviation of the slip, a value of 0.1 was used, which indicates a standard deviation
value that is 10% of the mean value. For a normal distribution, the spread of approximately three times the given standard
deviation is present; thus, the value of three times the standard deviation was set as this value so that the range of Table 1 in the
previous section was covered. Furthermore, for the standard deviation of the rake, Japan Society of Civil Engineering (2011)

conducted probabilistic assessments where the rake was varied by £10°; therefore, in this study as well, we considered this
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Figure 11. Comparison between results of numerical simulation and the surrogate model. (Scenario: S3R3) (©Google Maps)
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Figure 12. Errors between the numerical simulation and surrogate model for each validation scenario.

degree of variation, and a value of 0.04 was used, which was considered to result in a variation of approximately three times

the standard deviation.

Table 2. Information on the variation of uncertainty parameters.

Parameter Mean Standard deviation
Slip 1.0 0.1
Rake 1.0 0.04

Monte Carlo simulations were conducted using the uncertainty parameters listed in Table 2 and the surrogate model. Specif-
ically, the information of each uncertainty parameter was used to randomly generate a combination of the slip and rake; this
value was assigned to the mode coefficient functions of the surrogate model, and the spatial distribution of the hazard index
was calculated by multiplying the coefficients and the modes. This was repeated for the number of trials, which was set to
10,000 in this study, and the probability density distributions of the maximum impact force and maximum inundation depth at
each point were calculated.

Maps of exceedance probability are obtained from the results of Monte Carlo simulations. The exceedance probability at
each evaluation point is calculated assuming the failure that can be defined by the criteria of each hazard index. Based on the
previous studies (Suppasri et al., 2013, 2019), we defined the criteria as 176 kN for the maximum impact force and 3 m for the
maximum inundation depth. The obtained exceedance probability maps for both hazard indices are shown in Fig. 13. In both
maps, there is a tendency that high exceedance probabilities arise near the coast and low exceedance probabilities occur farther

away from the coast. On the other hand, there are some differences between the maps locally. For example, the exceedance
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probability of the maximum impact force tends to be high in the areas where there are many buildings. Since the computational

cost of surrogate models is quite low, such probabilistic maps can be easily obtained.

(a) Impact force (b) Inundation

Figure 13. Spatial distribution for the exceedance probability. (©Google Maps)

3.4 Optimal placement of facilities using genetic algorithms

The results of the Monte Carlo simulation are used to investigate an optimal placement of the facilities. The optimal placement
is examined based on the concepts of both parallel and series systems, and the results are compared. In the case of a parallel
system, the system failure is considered to occur when all of the facilities have failed. On the other hand, regarding a series
system, the system is considered to be failed when any one of the facilities is failed. The failure of the facility is defined as
exceeding the failure criterion for each hazard index.

In this study, the optimization problem is defined to select the components of the system from the evaluation points for
the hazard indices. The areas that have 25% or higher exceedance probabilities for each failure criterion are set as the target
areas. The reason why the points of the system were selected only in these high risk areas is that a point with an exceedance
probability of 0% should be always selected if there are such points in the target area, and this does not result in an optimal
problem. This condition is not so realistic, but we employed it as a calculation condition to clearly represent the performance
of the proposed method.

For the settings of the genetic algorithm, the number of individuals was set to 200, and the mutation probability was set
to 10% for each component of each individual. Furthermore, we adopted an elite conservation strategy, and the solutions that

have high fitness values are likely to be selected for the crossover. In this study, the solution convergence was set as that when
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the solution individuals do not change over 2,000 steps. We investigated cases in which the number of the facilities is 4 for
each failure criterion and each system. Since the solution may depend on on the initial conditions, we hence conducted three
trials under the same conditions for each case.

The results of optimal placements based on the concepts of the parallel and series systems for each hazard index are shown
in Fig. 14. In these figures, the results are also compared with the placements determined based on a simple strategy, in which
the placement of the facilities is selected in order of lower exceedance probability. Red points shown in Fig. 14 indicate
the placement selected by the genetic algorithm, and black points show the placement selected in order of lower exceedance
probability. System failure probabilities for each placement are shown in Table 3. The system failure probabilities are expressed
as the probability of failure of all facilities for the parallel system and the probability of failure of one or more facilities for the

series system.

Table 3. System failure probability for each hazard index and each system.

Impact force Inundation

Parallel Series | Parallel Series
Minimum failure probability [%] 20.94 29.62 22.50 28.03
Genetic algorithm [%] 19.40 28.09 0.10 25.50

According to the results shown in Fig. 14, it is found that the selected points are placed away from the coastline. This
tendency comes from the fact that low failure probability points are generally located away from the coastal region. Different
placements were obtained for the maximum impact force and inundation depth. Comparing the parallel and series systems, it
can be seen that the points are selected by concentrating on similar locations in the series system, while the points are spatially
distributed in the parallel system. Regarding the series system, where all failures of one or more facilities would result in the
failure of the system, the points are concentrated in such an arrangement that the probability of exceedance is small. On the
contrary, one or more of the facilities need only be safe in a parallel system. That is why the selected points are spatially
distributed.

The comparison between the placement selected by the genetic algorithms and the placement selected in order of lower
exceedance probabilities shows that some selected locations are different from each other. The system failure probabilities
shown in Table 3 indicate that lower failure probability tends to be obtained by the genetic algorithm. Thus, it can be confirmed
that the genetic algorithm is suitable in this particular optimal placement problem.

A detailed analysis of the placements selected for each system was performed. Figure 15 shows the scatter plots of the
uncertainty parameters, slip and rake, considered in the Monte Carlo simulation, and the number of failure points are colored.
The placement for the parallel system optimizes around a smaller light blue area and the placement for the series system
optimizes around a larger black area. According to Fig. 15, the slip mainly contributes to the failure of each point and the

system for all placements because no failure occurs in smaller-slip cases and the failure occurs in the high-slip case. The rake
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Figure 14. Optimal placements obtained from the genetic algorithm for each hazard index. (©Google Maps) Selected points by minimum
exceedance probability show the results of placements determined in order of decreasing exceedance probability at each evaluation point.

Only search areas are colored in this figure.
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Figure 15. The scatter plot of the uncertainty parameters colored by the number of failure points for each placement.

contributes to the parallel system placement because the number of failure points changes in the same slip values for the parallel
system.

In the series system, the scenarios are separated into two situations; all safe and all failed. In contrast, the parallel system
shows a more complex placement pattern. Figure 16 shows a colored scenario in the uncertainty parameter space. As can be
seen in Fig. 16, regarding the maximum impact force, it can be seen that the optimal points are selected such a way that they
are not failed depending on the rake. On the other hand, in the case of the inundation depth, it can be confirmed that point 4 has
an unique tendency compared to the other points. As we can understand from this numerical example, the optimal placement
is efficiently discussed by the method proposed in this study.

Using the results of the Monte Carlo simulation using the surrogate models, the optimal facility placements can be proba-
bilistically investigated based on information from the advanced numerical simulation. This method could be used to solve the

problem of optimal placement of facilities such as relief bases, shelters, and infrastructure facilities during disasters.
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Figure 16. The scatter plot of the uncertainty parameters colored by failure or non-failure for each placement in inundation case.

4 Conclusions

In this study, we used /redthe results obtained by 2D-3D coupled simulation to construct a surrogate model, and we used this
model to propose a method that enabled the efficient investigation of the optimal placement of facilities with the probabilistic
approach. We constructed a surrogate model by applying POD to 3D tsunami simulation results, and Monte Carlo simulations
that used this surrogate model were conducted to show that it was possible to assess the probability density distribution of the
hazard indices at all points within the target area and the spatial distribution of exceedance probability with a low computational
cost. Furthermore, we show that applying the genetic algorithm to Monte Carlo simulation results enabled the search for
the optimal placement of parallel and series systems, which minimized failure probability. In this way, the proposed method
enabled the investigation of the optimal placement of facilities probabilistically by efficiently utilizing the information obtained
from advanced numerical simulations.

The uncertainty parameters in this study were limited to two when conducting assessments; however, there are more uncer-
tainties than these in actual phenomena. Thus, it is important to conduct a probabilistic hazard assessment that considers this
fact. Furthermore, the extent to which each uncertainty parameter will fluctuate must be assessed in advance to determine cases
in which numerical simulations or Monte Carlo simulations are to be conducted. The surrogate model that was constructed
with the proposed method is capable of assessments with sufficient accuracy for interpolation (within the range of uncertainty

parameters for which numerical simulations were conducted); however, the accuracy often decreases for cases of extrapolation

23



375

380

385

390

(outside the range of uncertainty parameters for which the numerical simulations were conducted); thus, an assessment of
uncertainty fluctuation is important. In addition, since the accuracy of the surrogate model changes according to the number
of training data and the number of spatial modes used in the surrogate model, it’s necessary to establish a way of properly
determining them in future studies. In this study, we used the simulation data set that was created in the previous study and
therefore could not investigate their effect for surrogate modeling. Nevertheless, an appropriate number of training data should
be carefully determined in light of accuracy. To address this problem, it may be necessary to consider adopting an approach like
Adaptive Surrogate Modeling (e.g., Wang et al., 2014; Gong et al., 2016) to check and improve the accuracy of surrogate mod-
els. Itis also noted that we calculated the exceedance probability with the failure criterion as a constant when investigating the
exceedance probability and optimal placement; however, the destruction criteria vary according to the building material. Thus,

the use of this information would enable a more advanced probabilistic risk assessment and optimal placement of facilities.

Appendix A: Verification of the validity of the numerical analysis method

In this study, we conducted a comparison with the experimental results of the study by Winter et al. (2020) and verified the
validity of the 3D analysis method adopted in this study. In the study by Winter et al. (2020), experiments were conducted on the
fluid force acting on the structure while changing the structural placement; in this study, we conducted a comparison between
the experiment results under the conditions shown in Fig. A1 among the aforementioned changes in structure placement with
the analysis results. Details of the experiment are as shown in the study by Winter et al. (2020), and a comparison was performed
with the numerical analysis results regarding the temporal changes in the water level on the front side of the structure and the
fluid force acting on the structure. Fig. A2 shows the comparison results for each case. As shown in the figure, the validity of
the adopted numerical analysis could be confirmed because the fluid force and water depth tendencies were generally captured.

Furthermore, Fig. A3 shows a snapshot of the simulation results.

Test Structure
3.658 m

t

Wave Z

Figure A1l. Configuration of the test structure. (borrowed from Winter et al. (2020))
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Figure A3. Snapshot of the numerical simulation result.
Code and data availability. Source code and details of the tsunami simulation were sourced from Kotani et al. (2020). Outputs of the simu-

lations are available the Zenodo open-access repository at https://doi.org/10.5281/zenodo.6394294 (Tozato , 2022).
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