g A~ w N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

The characteristics of the 2022 Tonga volcanic tsunami in the Pacific Ocean
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Abstract. On 15th January 2022, an exceptional eruption of Hunga Tonga—Hunga Ha’apai volcano
generated atmospheric and tsunami waves that were widely observed at oceans globally, gaining a
remarkable attention to scientists in related fields. The tsunamigenic mechanism of this rare event
remains an enigmatic due to its complexity and lacking of direct underwater observations. Here, to
explore the tsunamigenic mechanisms of this volcanic tsunami event and its hydrodynamic processes in
the Pacific Ocean, we conduct tsunami waveform and spectral analyses of the waveform recordings at
116 coastal gauges and 38 deep-ocean buoys across the Pacific Ocean. Combined with the constraints of
some representative barometers, we obtain the plausible tsunamigenic origins during the volcano activity.
We identify four distinct tsunami wave components generated by air-sea coupling and seafloor crustal
deformation. Those tsunami components are differentiated by their different propagating speeds or period
bands. The first-arriving tsunami component with ~80—100 min period was from shock waves spreading
at a velocity of ~1000 m/s in vicinity of the eruption. The second component with extraordinary tsunami
amplitude in deep sea was from Lamb waves. The Lamb wave with ~30-40 min period radically
propagated outward from the eruption site with spatially decreasing propagation velocities from ~340
m/s to ~315m/s. The third component with ~10-30 min period was probably from some atmospheric
gravity wave modes propagating faster than 200 m/s but slower than Lamb waves. The last component
with ~3—-5 min period originated from partial caldera collapse with dimension of ~0.8-1.8 km.
Surprisingly, the 2022 Tonga volcanic tsunami produced long oscillation in the Pacific Ocean which is
comparable with those of the 2011 Tohoku tsunami. We point out that the long oscillation is not only
associated with the resonance effect with the atmospheric acoustic-gravity waves, but more importantly
the interactions with local bathymetry. This rare event also calls for more attention to the tsunami hazards

produced by atypical tsunamigenic source, e.g., volcanic eruption.
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1. Introduction

On 15 January 2022 at 04:14:45 (UTC), a submarine volcano erupted violently at the uninhabited Hunga
Tonga-Hunga Ha'apai (HTHH) island at 20.546°S 175.390°W (USGS, 2022). The volcano is located ~67
km north of Nuku'alofa, the capital of Tonga (NASA, 2022) (Figure 1). The blasts launched plumes of
ash, steam, and gas ~58 km high into stratosphere (Yuen et al., 2022) which not only blanketed nearby
islands in ash (Duncombe, 2022; NASA, 2022), but caused various atmospheric acoustic-gravity wave
modes (AGWs) of various scales, e.g., Lamb waves from atmospheric surface pressure disturbance
associated with the eruption (Liu and Higuera, 2022; Adam, 2022; Kubota et al., 2022; Matoza et al.,
2022). Tsunami with conspicuous sea level changes were detected by coastal tide gauges and Deep-ocean
Assessment and Reporting of Tsunamis (DART) buoy stations in the Pacific (Figure 1), the Atlantic, and
Indian Oceans as well as the Caribbean and Mediterranean seas (Carvajal et al., 2022; Kubota et al., 2022;
Ramirez-Herrera et al., 2022), while the large waves were mainly concentrated in the Pacific Ocean, like
coastlines of New Zealand, Japan, California, and Chile (Carvajal et al., 2022). The event caused at least
3 fatalities in Tonga. Two people drowned in northern Peru when ~2 m destructive tsunami waves
inundated an island in the Lambayeque region, Chile (Edmonds, 2022).

Satellite images revealed that the elevation of HTHH island has gone through dramatic change before
and after the mid-January 2022 eruption. Previously, after the 2015 eruption, the two existing Hunga
Tonga and Hunga Ha'apai Islands were linked together. The volcanic island rose 1.8 km from the seafloor
where it stretched ~20 km across and topped a underwater caldera ~5 km in diameter (Garvin et al., 2018;
NASA, 2022). After the violent explosion on 15 January 2022, the newly formed island during 2015 was
completely gone, with only small tips left in far southwestern and northeastern HTHH island (NASA,
2022). HTHH volcano lies along the northern part of Tonga—Kermadec arc, where the Pacific Plate
subducts under the Indo-Australian Plate (Billen et al., 2003). The convergence rate (15~24 cm/year)
between the Tonga-Kermadec subduction system and the Pacific plate is among the fastest recorded plate
velocity on Earth, forming the second deepest trench around the globe (Satake, 2010; Bevis et al., 1995).
The fast convergence rate contributes to the frequent earthquakes, tsunamis and volcanic eruptions in
this region historically (Bevis et al., 1995). The 2022 HTHH volcano is part of a submarine-volcano
chain that extends all the way from New Zealand to Fiji (Plank et al., 2020). HTHH volcano had many

notable eruptions before 2022 since its first historically recorded eruption in 1912, i.e., in 1937, 1988,
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2009, 2014-2015 (Global Volcanism Program, https://volcano.si.edu).
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Figure 1. The spatial distribution of the eruption site (red star), DART stations (squares), tide
gauges (triangles) and the calculated tsunami arrival times. White contours indicate the modelled

arrival times of conventional tsunami. Red contours indicate the estimated arrival times of Lamb

waves (see how we derive these contours in section 3.1).

The 2022 HTHH eruption is the first volcanic event which generates worldwide tsunami signatures since
the 1883 Krakatau event (Matoza et al., 2022; Self and Rampino, 1981; Nomanbhoy and Satake, 1995).
The tsunamigenic mechanism of this rare volcanic eruption-induced tsunami is still poorly understood
due to its complex nature and the deficiencies of near-field seafloor surveys. Various tsunami generation
mechanisms have been proposed so far based on the observations of ground-based and spaceborne
geophysical instrumentations (Kubota et al., 2022; Matoza et al., 2022; Carvajal et al., 2022). The
mechanisms are closely associated with the air-sea coupling with atmospheric waves. Atmospheric
waves propagating in the atmospheric fluid are generated by different physical mechanisms (Gossard
and Hooke, 1975a). Lamb wave is a horizontally propagating acoustic waves in Lamb mode
which is trapped at the earth's surface with group velocities close to the mean sound velocity of
the lower atmosphere (e.g. Lamb, 1932). Atmospheric gravity wave is triggered when air
molecules in the atmosphere are disturbed vertically other than horizontally ( e.g. Le Pichon et

al., 2010). Nonlinear propagation of atmospheric wave may cause period lengthening and the
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formation of shock-wave (Matoza et al., 2022). The most-mentioned mechanism of the tsunami is
the fast-traveling atmospheric Lamb wave generated by the atmospheric pressure rise of ~2 hPa during
the eruption. The Lamp wave circled the Earth for several times with travelling speed close to that of the
sound wave in the lower atmosphere, leading to globally observed sea level fluctuations (Adam, 2022;
Duncombe, 2022; Kubota et al., 2022; Matoza et al., 2022) (Figure 1). The second mechanism is
suggested to be a variety of other acoustic-gravity wave modes (Adam, 2022; Matoza et al., 2022;
Themens et al., 2022; Zhang et al., 2022). The third mechanism may be related to the seafloor crustal
deformation induced by one or more volcanic activities in the vicinity of the eruption site (e.g.,
pyroclastic flows, partial collapse of the caldera) (Carvajal et al., 2022) , which are more responsible for
the near-field tsunamis with theoretical tsunami speeds.

To investigate the possible tsunamigenic mechanisms and detailed hydrodynamic behaviors of this rare
volcanic tsunami event, in this study, we collect, process and analyze the sea level measurements from
116 tide gauge and 38 DART buoys in the Pacific Ocean (shown in Figures 1 and 2). We first do statistical
analysis of the tsunami waveforms to estimate the propagating speed of the Lamb wave and to understand
the tsunami wave characteristics in the Pacific Ocean through demonstrating the tsunami wave properties,
i.e., arrival times, wave heights and durations. We then conduct wavelet analysis for representative DART
buoys and tide gauges respectively to explore tsunamigenic mechanisms of the event and to better
understand its hydrodynamic processes in the Pacific Ocean. Aided by wavelet analysis of corresponding
barometers near the selected DART buoys and comparison with tsunami records of the 2011 Tohoku
tsunami, we are able to piece together all the analysis and demonstrate that the 2022 HTHH tsunami was
generated by air-sea coupling with a wide range of atmospheric waves with different propagating
velocities and period bands, and seafloor crustal deformation associated with the volcanic eruption. We
demonstrate as well that the tsunami was amplified at the far-field Pacific coastlines where the local

bathymetric effects play a dominant role in tsunami scale.

2. Data and Methods

2.1 Data

We collected high-quality sea level records across the Pacific Ocean at 38 DART buoys (in which 31

stations from https://nctr.pmel.noaa.gov/Dart/, 7 stations from https://tilde.geonet.org.nz/dashboard/) and
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116 tide gages from IOC (The Intergovernmental Oceanographic Commission, http://www.ioc-
sealevelmonitoring.org) (Figure 1). The epicentral distances of tide gauges and DART buoys range
between 74-10790 km and 375-10414 km, respectively. The sampling rates of DART buoys are
changing over time. Passing of tsunami event generally can trigger the DART system to enter its high
frequency sampling mode (15 seconds or 1 min) from normal frequency mode (15 min)

(www.ndbc.noaa.gov/dart). In contrast, sampling rates of normal tide gauges at coasts are uniform with

sampling interval of 1 min. The sampling interval of both DART and tide gauges is preprocessed to 15
seconds. Firstly, we eliminate abnormal spikes and fill gaps by linear interpolation. Secondly, we applied
a fourth-order Butterworth-Highpass filter with a cut-off frequency of 3.5 e-5 Hz (~ 8 hours) to remove
the tidal components (Figure 2) (Heidarzadeh and Satake, 2013). After the two steps, quality control step
is conducted to select high-quality data, in which we delete waveforms with spoiled data or massive data
loss due to equipment failure, or with the maximum tsunami heights of tide gauges less than 0.2 m, then
the selected data will be ready for further statistics and spectral analysis. We also collect and analyze the
atmospheric pressure disturbance data recorded by some representative barometers. The sampling rates
of the barometers is generally uniform with a sampling rate of 1 min except for some stations in New
Zealand with interval of 10 min. Considering the sample rate, we employ a fourth-order Butterworth-
Bandpass filter with period ranging between 2—150 min for wavelet analysis of the barometers with 1
min sample rate, while we apply the fourth-order Butterworth-Bandpass filter with range of 30—150 min
to long-period waveform display based on two reasons. (1) The barometer data we use for the analysis
include some in New Zealand with 10 min sample rate; (2) Filtering out the short-period waves helps
highlight long-period tsunami wave components.

The tsunami waveforms recorded by DART buoys which are installed offshore in the deep water are
expected to contain certain characteristics of the tsunami source (Wang et al., 2020, 2021). The
waveforms recorded by tide gauge distributed along coastlines are significantly influenced by local
bathymetry/topography which are used for investigating bathymetric effect on tsunami behaviors
(Rabinovich et al., 2017, 2006; Rabinovich, 2009). Therefore, we use the DART data for source-related

analysis and choose some tide gauge data to investigate the tsunami behaviors at the Pacific coastlines.
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Figure 2. Detided tsunami waveforms at (a) DART buoys and (b) tide gauges. Waveforms in both
subplots are shown in ascending distance. Azi stands for azimuth. The data are normalized with

respect to the largest amplitude of each tide gauge.

2.2 Tsunami Modelling

We use a numerical tsunami modelling package JAGURS (Baba et al. 2015) to simulate the tsunami
propagation of the 2022 HTHH event and obtain the theoretical tsunami arrival time based on the shallow
water wave speed (white contours in Figure 1). The code solves linear Boussinesq-type equations in a
spherical coordinate system using a finite difference approximation with the leapfrog method. We specify

a unit Gaussian-shaped vertical sea surface displacement at the volcanic base as the source of
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conventional tsunami. For a unite source i with center at longitude ¢; and latitude 6;, the
displacement distribution Zi(¢,8) can be expressed as:

(0=90)*+(6-6,)?
[ Tl (1)

Zi(p,0) = exp -
Where we set characteristic length ¢ as 5 km (NASA, 2022). The bathymetric data is resampled from the
GEBCO 2019 with 15 arc-sec resolution (The General Bathymetric Chart of the Oceans, downloaded

from https://www.gebco.net).
2.3 Spectral Analysis of Tsunami Waves

To investigate the temporal changes of the dominant wave periods, we conduct continuous wavelet
transformation (frequency-time) analyses for some representative DART buoys, tide gauges and
barometers, in which wavelet Morlet mother function is implemented (Kristekova et al., 2006). The first
32-hour time series of DART buoys and barometers after the eruption (at 04:14:45 on 15 January 2022)
are used for source-related wavelet analysis. The first 48-hour time series of tide gauges after the eruption
are employed for hydrodynamics-related wavelet analysis at coastlines. We adopt the Averaged-Root-
Mean-Square (ARMS) method as a measure of absolute average tsunami amplitude with a moving time
window of 20 min to calculate the tsunami duration (Heidarzadeh and Satake, 2014). We define the time
durations as the time period where ARMS levels of tsunami waves are above those prior to the tsunami

arrivals.

3. Results

3.1 The decreasing propagation velocities of the Lamb Wave

Although many types of atmospheric waves were generated by the 2022 HTHH eruption, the most
prominent signature was the Lamb waves which were globally observed by ground-based and spaceborne
geophysical instrumentations (Kulichkov et al., 2022; Liu et al., 2022; Lin et al., 2022; Matoza et al.,
2022; Themens et al., 2022; Adam, 2022; Kubota et al., 2022). Interestingly, we notice that a wide range
of the velocities from 280 m/s to 340 m/s were proposed through observations and Lamb wave modelling
(e.g., Kubota et al., 2022; Lin et al., 2022; Matoza et al., 2022; Themens et al., 2022). The travelling
velocity of Lamb waves in real atmosphere is affected by temperature distributions, winds and dissipation
(Otsuka, 2022). To investigate whether the propagation speeds of the lamb wave change in space and

7
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time, we analyze the waveforms recorded by the DART buoys in the Pacific Ocean. DART buoy with
pressure sensor deployed at the ocean's bottom records the sea level change that is transferred from
pressure records in Pascals, instead of direct water height. For the 2022 HTHH tsunami event, the
pressure fluctuation at DART buoy is a superposition of the pressure changes caused by tsunami and the
Lamb wave (Kubota et al., 2022). The Pacific DART buoys recorded the most discernible air-sea
coupling pulse in deep ocean with Lamb waves that arrived earlier than the theoretical tsunamis (Figure
1). The tsunami waveforms recorded by tide gauges did not clearly detect the tsunami signals associated
with the Lamb waves, therefore are not sufficient for further analysis (Figure 2). Thus, we estimate the
speed of Lamb waves using the waveforms recorded by the Pacific DART buoys. The Lamb wave
arrivals are limited within arrival time range from possible velocities of 280—340 m/s. The time points at
which the tsunami amplitudes first exceed 1 e-4 m above sea level are defined as Lamb wave arrivals.
By carefully fitting the arrivals with different constant velocities, we illustrate the velocities of Lamb
wave were generally uniform, but slightly decrease with the increase of propagation distance (Figure 3).
The Lamb waves initially propagated radially at speed of ~340 m/s before slowing to ~325 m/s after
reaching ~3400 km, and further decreasing to ~315 m/s at 7400 km. In an isothermal troposphere
assumption, the phase velocity of the Lamb wave (C;) can be estimated with the following equation

(Gossard and Hooke, 1975b):

¢, = [ @)

Where y =1.4 (air specific heat ratio corresponding to atmospheric temperature), R = 8314.36 J kmol-1
K-1 (the universal gas constant), M = 28.966 kg kmol-1 (molecular mass for dry air) are constant for the
air, T is the absolute temperature in kelvin. Thus, Lamb wave velocity is mainly affected by the air
temperature, meaning the travelling velocity of lamb waves might decrease when propagating from
regions with high temperature towards those with low temperatures, e.g., the north pole. By assuming a
set of possible temperatures in January (Table 1), we calculated the velocities Cr, could range between
312-343 m/s when temperatures vary between -30—-20 °C. Therefore, the decreased velocity of the Lamb

waves could be a consequence of cooling of the air temperature.
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Figure 3. Fitting the arrival times of normalized Lamb-induced tsunami waveforms with different

velocities. Black dots mark the arrival times of the Lamb waves. Black lines represent velocities.

Table 1. Estimated Lamb wave velocities in an isothermal troposphere assumption

Celsius temperature (°C) thermodynamic temperature (K) Cr (m/s)
20 293.15 343.14
10 283.15 337.23
0 273.15 331.21
-10 263.15 325.19
-20 253.15 318.86
-30 243.15 312.49

3.2 Tsunami features observed by DART buoys and Tide gauges

The statistics of tsunami heights and arrival times recorded at 38 DART buoys and 116 tide gauges across
the Pacific Ocean are used to interpret the tsunami characteristics. The comparison of the statistical
characters between DART and tide gauge observations yields some useful information of the
hydrodynamic process of tsunami propagation and help identify tsunami wave components with different
traveling velocities.

The average value of the maximum tsunami wave height (trough-to-crest) for the 116 tide gauge stations
is ~1.2 m. Figure 4a shows tide gauges with large tsunami heights exceeding 2 m are mainly distributed
in coastlines with complex geometries (Figure S1a), such as gauges at New Zealand, Japan, and north
and south America. For example, the largest tsunami height among tide gauges is 3.6 m at a bay-shaped
coastal area Chafiaral in Chile (Figure S1b). In sharp contrast to tide gauges, the maximum tsunami
heights of most Pacific DART buoys are less than 0.2 m. The largest tsunami height in the DART buoys
is only ~0.4 m recorded at the nearest one, 375 km from the volcano (Figure 4b). The comparison between

DART buoys and tide gauges indicate that the direct contribution of air-sea coupling to the tsunami
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heights is probably in the level of tens of centimeters (Kubota et al., 2022). The meter-scale tsunami
heights at the coastlines suggest the bathymetric effect could play a major role during tsunami
propagation. In respect to the arrival of maximum tsunami waves, the time lags between Lamb waves
and the maximum heights of tide gauges mainly range between ~0—10 h (Figure 4c). The delayed times
of ~10 h are observed in New Zealand, Hawaii, and west coast of America (Figure 4c), suggesting the
interaction between tsunami waves and local topography/bathymetry delays the arrival of the maximum
waves (e.g., Hu et al., 2022). For example, the delayed maximum tsunami height can be attributed to the
edge waves (Satake et al., 2020) and resonance effect (Wang et al., 2021) from tsunami interplays with
bays/harbors, islands, and continental shelves of various sizes. The significant regional dependence of
the coastal tsunami heights and the time lags of the maximum tsunami waves can be attributed to the
complexity of local bathymetry, such as continental shelves with different slopes, and harbor/bay with
different shapes and sizes (Satake et al., 2020). On the other hand, for tsunami events with earthquake
origins (e.g. Heidarzadeh and Satake, 2013), the first waves recorded by DART buoys are normally
observed as the largest wave since DART buoys are located in the deep sea and less influenced by
bathymetric variation. In the case of Tonga tsunami event, we observe the inconsistency between the
arrivals of the Lamb wave-induced tsunami waves and the maximum tsunami heights (Figure 4d). The
time lags of the maximum waves of DART buoys present a coarsely increasing tendency with the
increasing distance from the volcano, which indicates the contribution of other tsunami generation

mechanism propagating with a uniform but lower speed than Lamb wave.

10
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Figure 4. The spatiotemporal signatures of the 2022 HTHH tsunami across the Pacific Ocean. (a)
Observed the maximum tsunami height (trough-to-crest height) of tide gauges. (c) Arrival
differences between the maximum tsunami height of tide gauges and Lamb waves. (b) and (d) are
the same as (a) and (c) but for DART buoys.

3.3 Tsunami components identified from wavelet analysis

The statistical analysis of tsunami waveforms at tide gauges and DART buoys suggest the tsunami waves
likely contain several components with different source origins. To further identify these tsunami
components, we conduct wavelet analysis for tsunami waveforms recorded by representative DART
buoys and air pressure waveforms recorded by selected barometers. We demonstrate the analysis result
through the frequency-time (f-t) plot of wavelet which shows how energy and period vary at frequency
and time bands (Figure 5 and Figure 6). Tsunami components have clear signatures in all f-t plots as the
energy levels are quite large when they arrive. Figure 5 shows the wavelet analysis of six DART buoys
located in the vicinity of the eruption site (<3664 km). Figure 6 show the wavelet analysis of ten DART
buoys located in the Pacific rim which are far away from the source location. We observe three interesting
phenomena: 1) most of the tsunami wave energy is concentrated in four major period bands, i.e., 3-5
min, ~10-30 min, ~30-40 min, and ~80-100 min; 2) The significant tsunami component with period

11
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band of 3-5 mins are recorded by stations between the eruption site and the north tip of the New Zealand;
3) There exists one exceptional tsunami component with longer wave period of ~80-100 min mainly
recorded in the Tonga, the New Zealand and Hawaii, which travels even faster than the Lamb waves.
To further explore the source mechanism of these tsunami components, we take advantage of the
published information related to different propagating velocities of atmospheric gravity waves (Kubota
et al., 2022) and add four kinds of propagating velocities as criteria to differentiate the tsunami arrivals
from different sources (Figure 5 and Figure 6). The first reference speed is 1000 m/s related to the
radically propagating atmospheric shock waves near the source region (Matoza et al., 2022; Themens et
al., 2022). The second one is the velocities of Lamb wave ranging between 315-340 m/s derived from
the aforementioned analysis in section 3.1 (Figure 3). The third one is 200 m/s corresponding to the lower
limit of atmospheric gravity wave modes other than Lamb waves which were also excited by the volcanic
eruptions (Kubota et al., 2022). The last is the arrival time of conventional tsunami given by tsunami
modelling (Figure 1). The theoretical velocity of conventional tsunami is significantly nonuniform
spatially as compared with those of the atmospheric waves. The conventional tsunami propagation speed
is determined by the water depth along the propagation route. The velocity of non-dispersion shallow-
water waves (Cy) in the ocean is given by:

Cy=1Jg-H 3)
Where g is gravity acceleration (9.81m/s?), H is the water depth. The propagation velocities of tsunami
are ~296-328 m/s in the deepest trenches on earth (i.e., ~11 km in Mariana Trench and ~9 km in Tonga
Trench). The velocities decrease quickly to only ~44 m/s at ~200 m depth along the edge of continental
shelf. With the average depth of ~4—5 km, the average velocities in the Pacific Ocean range between
~200-224 m/s. Thus, theoretical tsunami velocities present significant slowness and variability. We
delineate the arrival times of the four reference speeds in Figures 5 and 6.

One particularly remarkable phenomenon is that the wave component with period of ~80—-100 min
propagated at a very fast speed of ~1000 m/s in the vicinity of the HTHH site, i.e., New Zealand and
Hawaii (e.g., stations 52406, NZJ, NZE, 51425 in Figure 5, and 51407 in Fig. 6). We infer that the
tsunami component within ~80—100 min period band was likely produced by the atmospheric shock
waves during the initial stage of the volcanic eruption and spatially only cover the near-source region.

To verify this observation, we select 16 representative barometers located in the near-source region and
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far-field area for wavelet analysis (see the locations in Figure 5 and Figure 6). Figure 7 shows the
waveforms of atmospheric pressure at selected locations and Figure 8 provides the frequency-time (f-t)
plot of wavelet analysis of some representative barometers. Interestingly, we are able to discern the air
pressure pulses prior to Lamb waves at barometers in New Zealand (the two columns on the left in Figure
7), although such signals are not detectable in waveforms recorded by barometers far from the source
(the two columns on the right in Figure 7). The spatial distribution of such unusual pressure changes
suggest that the fast travelling shock waves were only limited in the near-source region, as reflected in
the travelling ionospheric disturbances (Matoza et al., 2022; Themens et al., 2022). Additionally, we also
see that the long period signals of ~80—100 min appear in DART buoys far away from the eruption site.
Such signals may be related with the long-period gravity waves (Matoza et al., 2022).

The tsunami components at period band of ~30—40 min can be readily associated with Lamb waves
because the arrival times of the tsunami waves and Lamb waves have excellent match, as shown in the
tsunami data recorded by DART buoys (e.g., NZJ and 51425 in Figure 5; 51407, 32401 and 32413 in
Figure 6) and pressure data by barometers (Figure 8).

For the tsunami components with the period band of ~10-30 min, although the arrivals of ~10-30 min
tsunami components cover some theoretical tsunami arrival times, they do not consistently match. The
tsunami components occurring within the time period between Lamb waves and the lower gravity waves’
velocities has a good agreement with the velocity range of several atmospheric gravity wave modes
(Matoza et al., 2022; Themens et al., 2022; Kubota et al., 2022). Similarly, the air pressure data also show
energy peaks at ~10-30 min period band, which is consistent with the tsunami data (Figure 8). Such
consistency further verifies the contribution of atmospheric gravity waves to the volcanic tsunami.

The tsunami components with the shortest period of ~3—5 min (stations NZE, NZF, NZG and NZJ;
marked with black dashed squares in Figure 5) are only observed at DART records near the eruption
location. Meanwhile, the arrival times of these components agree well with the modelled arrivals of
conventional tsunami. Thus, we believe the observed shortest period band should originate from the
seafloor crustal deformation. We further infer that this component could be generated by the partial
underwater caldera collapse and/or subaerial/submarine landslide failures associated with 2022 HTHH

volcanic eruption.
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Figure 5. Wavelet analysis of representative DART buoys in the vicinity of the HTHH volcano. In
each sub-plot, the solid vertical white lines mark the arrival time with travelling velocity of 1000
m/s. The solid vertical red lines mark the arrivals of Lamb waves. The dashed vertical white lines
mark lower limit of AGWs’ velocity of 200 m/s (Kubota et al., 2022). The dashed vertical black
lines represent the theoretical tsunami arrivals. The dashed horizontal white lines mark two
reference wave periods of 10 min and 30 min. The blue hexagons represent the locations of
barometers. Green triangle makes the location of the tide gauges at Charleston. Decibel (dB) is
calculated from: dB = 10 log(A/Ao), where A is wavelet power, Ao is a reference wavelet power of

the maximum one (Thomson and Emery, 2014).
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Figure 6. Wavelet analysis of representative DART buoys far away from the HTHH volcano. In

each sub-plot, the solid vertical white lines mark the arrival time with travelling velocity of 1000
m/s. The solid vertical red lines mark the arrivals of Lamb waves. The dashed vertical white lines
mark lower limit of AGWs’ velocity of 200 m/s. The dashed vertical black lines represent the
theoretical tsunami arrivals. The dashed horizontal white lines mark two reference wave periods

of 10 min and 30 min. The blue hexagons represent the locations of barometers.
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327 Figure 7. Shockwave-related atmospheric pressure waveforms of selected barometers in the Pacific
328 Ocean. All traces have been filtered between 30 min and 150 min. In each sub-plot, the solid vertical
329 green lines mark the arrival time with travelling velocity of 1000 m/s. The solid vertical red lines
330  mark the arrivals of Lamb waves. The dashed vertical green lines mark lower limit of AGWs’
331  velocity of 200 m/s.
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334 Figure 8. Wavelet analysis of some representative barometers. In each sub-plot, the solid vertical
335  white lines mark the arrival time with travelling velocity of 1000 m/s. The solid vertical red lines
336 mark the arrivals of Lamb waves. The dashed vertical white lines mark lower limit of AGWs’
337  velocity 200 m/s. The dashed horizontal white lines mark three reference periods of 10 min and 30
338 min.
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4. Discussion

4.1 Tsunami from Caldera Collapse and Its Long-distance Traveling Capability

The tsunami wave energy distributed in different period bands is identified with reference arrival times.
The tsunami component with 3—5 min period is most likely generated by seafloor crustal deformation in
the volcanic site, but specific mechanism is not determined. A variety of possible scenarios associated
with the eruption could be responsible for the near-field tsunami waves, such as volcanic earthquakes,
pyroclastic flows entering the sea, underwater caldera flank collapse, and subaerial/submarine failures
(Self and Rampino, 1981; Pelinovsky et al., 2005). To further investigate the source mechanism, we

apply a simplified model (Rabinovich, 1997) to estimate the probable dimension of tsunami source:

L _1NEE (4)

2

Where L is the typical dimension (length or width) of the tsunami source, H is average water depth in the
source area, g is the gravity acceleration, and T is primary tsunami period. By comparing with the post-
2015 morphology of the HTHH caldera which was obtained through drone photogrammetry and
multibeam sounder surveys, Stern et al. (2022) estimate that much of the newly-formed Hunga Tonga
Island and the 2014/2015 cone were destroyed by the 2022 eruption, and the vertical deformation of
Hunga Ha’apai Island is ~10—-15 m (Stern et al., 2022). With no more quantitative constraint of the
seafloor deformation, we tentatively assume H as 10—-15 m, then the possible dimension of seafloor
crustal deformation responsible for the small-scale tsunami could be in the scale of 0.8—1.8 km (Figure
9a). The estimated size is very likely from partial caldera collapse that usually has limited scale in
volcanic site (Ramalho et al., 2015; Omira et al., 2022). If it is the case, the partial flank collapse could

be located between Hunga Tonga and Hunga Ha'apai Islands.
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Figure 9. Mechanism of tsunami component with 3-5min period. (a) The source dimension
estimated by equation 4. (b) Wavelet analysis of tide gauge at Charleston, New Zealand, 2680 km
away from the eruption site. The solid vertical white line marks the arrival time with travelling
velocity of 1000 m/s. The solid vertical red line marks the arrival of Lamb wave. The dashed
vertical white line marks lower limit of AGWs’ velocity 200 m/s. The dashed vertical black line

marks the theoretical tsunami arrivals.

An interesting phenomenon is that the tsunami component with 3—5 min period can still be observed in
a bay-shaped coastal area at Charleston in New Zealand (see the location in Figure 5) which is 2680 km
away from the eruption site and maintains a high energy level lasting up to 14 h (Figure 9b). The long-
traveling capability could be associated with the ~ 10000 m deep water depth of the Tonga Trench that
keeps the source signals from substantial attenuation. In deep open ocean, the wavelength of a tsunami
can reach two hundred kilometers, but the height of the tsunami may be only a few centimeters. Tsunami
waves in the deep ocean can travel thousands of kilometers at high speeds, meanwhile losing very little
energy in the process. The long oscillation can be attributed to the multiple reflections of the incoming
waves trapped in the shallow-water bay at Charleston.

Generally, devasting tsunamis with long-distance travelling capability are mostly generated by
megathrust earthquakes (Titov et al., 2005). Caldera collapses or submarine landslides with limited scale
normally only generate local tsunamis, e.g., the 1998 PNG (Papua New Guinea) tsunami event (Kawata
et al., 1999) and the 1930 Cabo Girdo tsunami event (Ramalho et al., 2015). Therefore, it’s exceptional
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that the tsunami component from scale-limited failure could travel at-least 2680 km away from the
eruption site. It demonstrates that tsunamis from small-scale tsunamigenic source have the capability to
travel long distance and cause long oscillation at favored condition, e.g., deep trench, ocean ridge and

bay-shaped coasts.

4.2 The Possible Mechanisms of Long Tsunami Oscillation

An important tsunami behavior of the 2022 HTHH tsunami is the long-lasting oscillation ~ 3 days in the
Pacific Ocean (Figure 10a), which is comparable to that of the 2011 Tohoku tsunami, ~4 days
(Heidarzadeh and Satake, 2013). We demonstrate the duration time of the tsunami oscillation through
ARMS (Averaged-Root-Mean-Square) approach that is a measure of absolute average tsunami amplitude
in a time period. The long-lasting tsunami energy can be observed at many regions, such as the coasts of
New Zealand, Japan, Aleutian, Chile, Hawaii, and west coasts of America. Several mechanisms could
account for the long-lasting tsunami, including (1) Lamb waves circling the Earth multiple times
(Amores et al., 2022; Matoza et al., 2022), (2) resonance effect between ocean waves and atmospheric
waves (Kubota et al., 2022), and (3) bathymetric effect. We discuss the contribution of each mechanism
in the following section.

To investigate the contribution of Lamb wave to the long-lasting tsunami, we compare the air pressure
disturbances recorded by selected barometers together with the tsunami waveforms of nearby tide gauges
(Figure 10b). While the barometers present discernible wave pulses at each Lamb wave’s arrival, only
the first Lamb wave triggered clear tsunami signal and no detectable tsunami signatures correspond to
the following passage, suggesting the Lamb waves do not directly contribute to the long oscillation.
The resonance effects between ocean waves and atmospheric waves could contribute to the long
oscillation on coastlines. Besides the Lamb wave, Watanabe et al., 2022 detected internal Pekeris wave
which propagate with a slower horizonal phase speed of ~245 m/s and gravity waves with even slower
propagation speed by analyzing radiance observations taken from the Himawari-8 geostationary satellite.
Atmospheric waves with such speeds are more likely to resonant with the conventional tsunami waves
and provide continuous energy supply (Kubota et al., 2022).

To examine the role of local bathymetry in the long-lasting tsunami, we choose a well-studied and well-
recorded event: the 2011 Mw 9.0 Tohoku tsunami as a reference event and compare the tsunami records

of these two events at the same coastal stations. Although the two tsunami events were generated by

18



410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

completely different mechanisms, i.e., large-scale seafloor deformation for the Mw 9.0 megathrust
earthquake (Mori et al., 2011) and fast-moving atmospheric waves for the Mw 5.8 volcanic eruption
(Matoza et al., 2022), they both produced widespread transoceanic tsunamis which were well recorded
in the Pacific DART buoys and tide gauges. In the near-field, the 2011 Tohoku earthquake produced
runup up to 40 m at Miyako in the Iwate Prefecture in Japan's Tohoku region (Mori et al., 2011). The
epicenter is approximately 70 km east coast of the Oshika Peninsula of Tohoku region. However, the
2022 HTHH tsunami produced only ~13 m runup in the near field from eyewitness accounts in
Kanokupolu, 60 km from the volcano (Lynett et al., 2022). However, in the far-field (>1000 km), we
observe comparable tsunami wave heights in certain coastal regions. Based on the tsunami records at 21
tide gauges surrounding the Pacific Ocean, Heidarzadeh & Satake (2013) calculated the average value
of the maximum tsunami heights (trough-to-crest) of the 2011 Tohoku tsunami is 1.6 m with the largest
height 0of 3.9 m at the Coquimbo Bay in Chile (Heidarzadeh and Satake, 2013). Coincidently, the statistics
of 116 tide gauges in this study also suggest the average tsunami heights of the 2022 HTHH tsunami is
around the same order, ~1.2 m, among which, the largest height is 3.6 m at Chafiaral Bay in Chile.
Interestingly, in the coastal region of South America, the locations of the largest tsunami heights of both
events are adjacent (Figure 4a), i.e., Coquimbo (the 2011 Tohoku) and Chaiaral (The 2022 HTHH).

To further compare the far-field hydrodynamic processes between these two events quantitatively, we
conduct wavelet analysis for four representative tide gauges distributed across the Pacific Ocean, i.e.
coastal gauges at East Cape in New Zealand, Kwajalein Island, Wake Island, and Talcahuaho in Chile
(see their locations in Figures 10b). The temporal changes of tsunami energy of both events can be seen
in Figure 11. At each tide gauge, the tsunami energy of the 2011 HTHH (Figure 11a) and the 2022 Tohoku
tsunamis (Figure 11b) for the first few hours after the arrivals is nonuniform with different significant
peaks distributed within a wide period band of ~3—100 min. Then, the following long-lasting energy of
the both at each station presents similar pattern and is concentrated at identical and fairly narrower period
channel, i.e., ~20-30 min at East Cape in New Zealand, ~40—-60 min at Kwajalein Island, ~10 min at
Wake Island, and ~100 min at Talcahuaho in Chile, which reflects the local bathymetric effects of natural
permanent oscillations (Hu et al., 2022; Satake et al., 2020). Specifically, many bathymetric effects can
contribute to the long-lasting tsunami, such as multiple reflections across the basins, or the continental

shelves, and the excited tsunami resonance in bays/harbors with variable shapes and sizes (Aranguiz et
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al., 2019; Satake et al., 2020). For example, tide gauges around New Zealand are primarily distributed in
harbors/ports with major natural oscillation modes of ~20-30 min (De Lange and Healy, 1986; Lynett et
al., 2022). The first oscillation mode of central Chile is centered around ~100 min (Aranguiz et al., 2019).
Consequently, Figure 11 illustrates that the long-lasting tsunami energy of the two events is respectively
distributed in 20—30 min period at East Cape in New Zealand and in ~100 min period at Talcahuaho in
central Chile. The coupling of bathymetric oscillation mode with tsunami containing similar-period wave
results in the excitement of tsunami resonance, which amplifies tsunami waves and prolongs the tsunami
oscillation at the two stations (Heidarzadeh et al., 2019, 2021; Hu et al., 2022; Wang et al., 2022).

Simply put, we do not have clear evidence that atmospheric acoustic-gravity waves from the 2022 HTHH
eruption directly contribute to the long-lasting tsunami, but the resonance effect associated with ocean
waves could a possible source of increased wave energy and amplification. However, the similarity of
far-filed hydrodynamic behaviors between the 2022 HTHH volcanic tsunami and the 2011 Tohoku
seismogenic tsunami well demonstrates the both went through similar hydrodynamic processes after their
arrivals. The consistency favors that the long-lasting tsunami of 2022 HTHH tsunami event can very
likely be attributed by the interplays between local bathymetry and conventional tsunami left after each
passage of atmospheric waves, which can well explain why the two completely distinct tsunami events

possess a comparable duration time.
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Figure 11. Wavelet analysis of tsunami waveforms recorded by 4 tide gauges during (a) the 2022
HTHH tsunami event, and (b) the 2011 Tohoku tsunami event. Horizontal white dashed lines

respectively mark reference periods of 10 min and 30 min.

4.3 Challenges for Tsunami Warning

The generation mechanisms and hydrodynamic characteristics of the 2022 HTHH volcanic tsunami are
more complicated than pure seismogenic tsunami, which challenge the traditional tsunami warning

approach.

The first challenge is posed by the tsunami components with propagating velocities faster than the
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conventional tsunami. The Tonga volcanic tsunami event provides an excellent example which highlights
that the tsunamigenic mechanisms are not limited to tectonic activities related with the sudden seafloor
displacements, but also include a variety of atmospheric waves with distinct propagation velocities. The
tsunami components in 2022 HTHH event generated by the air-sea coupling possess a wide range of
velocities from 1000 m/s to 200 m/s. The Lamb waves recorded in both the 2022 HTHH event and the
1833 Krakatoa volcanic event traveled along the Earth’s surface globally for several times (Carvajal et
al., 2022). The tsunami waves produced by Lamb waves, the wave components associated with resonance
of the air-sea coupling and their superimposition increase the difficulty of tsunami warning.

Another critical challenge is associated with the interplays between tsunami waves and local bathymetry.
The tsunami waves left by each passage of the atmospheric waves can interact with local bathymetry at
coastlines, such as continental shelves with different slopes, and harbor/bay with different shapes and
sizes. The interaction can intensify the tsunami impact and excite a variety of natural oscillation periods.
The 2022 HTHH tsunami with an extremely wide period range of ~2—100 min have a great potential to
couple with the excited natural oscillations and form extensive tsunami resonance phenomena. The
resonance effects result in long-lasting oscillation and delayed tsunami wave peaks. The uncertain

arrivals of the maximum tsunami waves pose an extra challenge to tsunami warning.

Conclusion

In the study, we explore the tsunamigenic mechanisms and the hydrodynamic characteristics of the 2022
HTHH volcanic tsunami event. Through extensive analysis of waveforms recorded by the DART buoys,
tide gauges and barometers in the Pacific Ocean, we reach the main findings as follows:

(1) We identify four distinct tsunami wave components based on their distinct propagation velocities or
period bands (~80—100 min, 10-30 min, 30—40 min, and 3—5 min). The generation mechanisms of these
tsunami components range from air-sea coupling to seafloor crustal deformation during the volcanic
eruption.

(2) The first-arriving tsunami component with 80—100 min period was most likely from shock wave
spreading at a velocity of ~1000 m/s in the vicinity of the eruption. This tsunami component was not
clearly identified by currently available publication and it’s not easy to be visually observed through time

series of the waveforms. The physical mechanism is yet to be understood. The second tsunami component
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with 30—40 min period was from Lamb waves, and was the most discussed tsunami source of this event
so far. A thorough analysis of DART measurements indicates that the Lamb waves traveled at the speed
of ~340 m/s in the vicinity of the eruption and decreased to ~315 m/s when traveling away due to cooling
of the air temperature. The third tsunami component was from some atmospheric gravity wave modes
with propagation velocity faster than 200 m/s but slower than Lamb waves. The last tsunami component
with the shortest periods 3-5 min was probably produced by partial caldera collapse with estimated
dimension of ~0.8—1.8 km.

(3) Although the resonance effect with the atmospheric acoustic-gravity waves could be a source of
increased wave energy, its direct contribution to the long-lasting oscillation is not demonstrated yet.
However, the comparison of hydrodynamical characteristics between the 2022 HTHH tsunami event and
the 2011 Tohoku tsunami event well demonstrated that the interactions between the ocean waves left by
atmospheric waves and local bathymetry contribute to the long-lasting Pacific oscillation of the 2022
tsunami event.

(4) The extraordinary features of this rare volcanic tsunami event challenge the current tsunami warning
system which is mainly designed for seismogenic tsunamis. It is necessary to improve the awareness of
people at risks about the potential tsunami hazards associated with volcanic eruptions. New approaches
are expected to be developed for tsunami hazard assessments with these unusual sources: various
atmospheric waves radiated by volcanic eruptions besides those traditionally recognized, e.g.

earthquakes, landslides, caldera collapses and pyroclastic flows etc.
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The JAGURS tsunami simulation code is employed for tsunami modelling (Baba et al., 2015;
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http://www.gebco.net. The sea level records in deep ocean are available from the Deep Ocean Assessment
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